3A-1

ReGAN: A Pipelined ReRAM-Based Accelerator for

Generative Adversarial Networks
Fan Chen, Linghao Song, Yiran Chen

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
{fan.chen, linghao.song, yiran.chen} @duke.edu

Abstract— Generative Adversarial Networks (GANs) have re-
cently drawn tremendous attention in many artificial intelligence
(AI) applications including computer vision, speech recognition,
and natural language processing. While GANs deliver state-of-
the-art performance on these Al tasks, it comes at the cost of
high computational complexity. Although recent progress demon-
strated the promise of using ReRMA-based Process-In-Memory
for acceleration of convolutional neural networks (CNNs) with
low energy cost, the unique training process required by GANs
makes them difficult to run on existing neural network acceler-
ation platforms: two competing networks are simultaneously co-
trained in GANSs, and hence, significantly increasing the need of
memory and computation resources. In this work, we propose
ReGAN - a novel ReRAM-based Process-In-Memory accelera-
tor that can efficiently reduce off-chip memory accesses. More-
over, ReGAN greatly increases system throughput by pipelining
the layer-wise computation. Two techniques, namely, Spatial Par-
allelism and Computation Sharing are particularly proposed to
further enhance training efficiency of GANs. Our experimental
results show that ReGAN can achieve 240 x performance speedup
compared to GPU platform averagely, with an average energy sav-
ing of 94 x.

[. INTRODUCTION

Generative Adversarial Networks (GANs) have recently
been extensively deployed in various image processing appli-
cations [1, 2, 3, 4] thanks to their superior performance com-
pared to previous state-of-the-art approaches. For instance, Yeh
et al. proposed using GAN to predict missing content in an im-
age based on the surrounding values and consequently, to re-
cover corrupted images [5]. CAN [6] presents a creative GAN
for generating novel art that fits within established styles. The
results demonstrate that GAN has an ability to generate high-
resolution images that are visually appealing and significantly
sharp. Most importantly, GAN and its variations can be used
for unsupervised and semi-supervised learning to reduce large
volume of annotations and labels that commonly required by
supervised deep leaning algorithms.

In a GAN framework, two adversaries — a discriminator and
a generator, are trained in parallel. Both discriminator and gen-
erator typically are modeled as Deep Neural Networks (DNNs).
In recent years, we have seen a continuously increasing trend
of deploying large and deep networks in GAN (e.g. 101-layer
ResNet generator and discriminator [4]). These models are of-
ten trained with large data sets and therefore, incurring large
consumption of computation and storage resources. However,
conventional CPU and GPU platforms are not able to accom-

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

modate this intensive training process due to the well-known
power wall [8] and memory wall [9] phenomena.

Emerging non-volatile memory-metal-oxide resistive ran-
dom access memory (ReRAM), has become a promising can-
didate for hardware accelerator implementations of Neural
Networks (NNs) due to its high density, fast access, and
low leakage power. In addtion, ReRAM-based Process-In-
Memory (PIM) accelerator is particularly an appealing op-
tion to alleviate the memory wall problem because ReRAM
provides both computation and storage capabilities. Recent
works PRIME [12] and ISAAC [13] demonstrate how to
utilize ReRAM to perform neural computations in memory.
PipeLayer [14] is presented to support both trainings and test-
ings of Convolution Neural Networks (CNNs).

Unfortunately, it is still difficult to efficiently accelerate
GANSs by adopting the existing schemes. First, two networks
are co-trained in GAN so that the training is more sophisticated
and computationally intensive. In a GAN framework, the struc-
ture of its generator and discriminator are nearly symmetric and
trained alternatively. Normally, the generator is trained to pro-
duce fake samples, the discriminator, however, is trained with
both real samples and fake samples created by the generator.
Hence, a direct adoption of PipeLayer [14] to implement GAN
takes 3x latency and hardware overhead compared to a CNN
counterpart. Second, existing schemes all focus on accelerat-
ing discriminative CNN [12, 13], but the generator core is an
up-sampling Fractional-strided CNN, which is not well studied
in prior arts.

In this work, we propose ReGAN, a ReRAM-based PIM ac-

celerator for GAN training. Our contributions include:
e First, we analyze the general training procedure in GAN.

Then we present a pipelined architecture to improve the
system throughput by utilizing the structural layer-wise
computation. This architecture directly leverages ReRAM
cells to perform computation without the need for extra
processing units. ReRAM memory are used as buffers to
store intermediate results. Such a design greatly reduces
data movements and energy consumption by preventing

data from being transferred across memory hierarchy.
e We propose Spatial Parallelism and Computation Sharing

that explore the parallelism and data dependency in GAN

to support training more efficiently.
e We evaluate ReGAN and compare it against the state-

of-the-art GPU platform. Our experimental results show
that it improves the performance and energy efficiency by

240x and 94 x, respectively.
This paper is organized as follows: Section II introduces the

background of Generative Adversarial Networks, ReRAM, and
its application in neural computations. Section III elaborates

178

GANs
Generator (G) Training Discriminator (D) |Loss|
—
o |- sample
2 “..._1(real)
O*H % = Generated
Z Y o i o
. - D sample . - O(fake)
IPL__FCNN2 FCNN3 CNN1 CNN2 IP3
P88 < 88 <« 4§ Backpropagation §P <« P <« 6P

Fig. 1. GAN system.

ReGAN architecture and optimization. Section IV introduces
the implementation of ReGAN. Section V presents the evlau-
ation methodology and experimental results. Section VI con-
cludes this paper.

II. BACKGROUND

A. Basics of Generative Adversarial Networks

A generative adversarial network has two subnetworks, a
Generator (G) and a Discriminator (D) as illustrated in Fig. 1.
Both D and G typically are modeled as deep neural networks.
In general, the discriminator is a binary classifier which is
trained by distinguishing real samples from generated ones,
and the generator is optimized to produce samples that can fool
the discriminator.

In the context of image processing, most of the GAN varia-
tions are (or at least partially) based on the Deep Convolutional
Generative Adversarial Networks (DCGAN) [2, 6, 5, 7]. Thus
we focus on DCGAN in this work. In DCGAN, D uses dis-
criminative CNN to “downsample” the input to produce classi-
fication [11]. In contrast, G takes a uniform noise distribution
as input, which is then projected to a small spatial extent con-
volutional representation with many feature maps and used as
the start of a series of Fractional-Strided Convolution layers
(FCNN). The results are then converted into high-dimension
images.

The training process of GAN consists of two phases:

1) Propagation. An input example propagates through a se-
ries of neural networks in order to generate the network’s out-
put value(s). The function of NNs can be formulated as:

y=W . .z +band z = h(y), (1)

where the output neuron vector z is determined by the input
neuron vector x, the weight matrix of connections W and the
bias vector b. Usually, h(-) is a non-linear activation function.
A cost function J is defined to quantitatively evaluate the differ-
ence between the network output and its expected output. The
error for layer [is defined as §; = g—é and propagates back-
wards to the previous layer as:

Sio1 = W 8- B (w), ©)

2) Update. The update of each weight (W};) and bias (b;;) is:
Wiiw = Wiia—n- zig-1 - 05, 3)

bjit < bjin—n- 051, “

where 7 is the learning rate and d; ; is the error back propagated
from the node j in layer [. z;;_; is the input of the node 7 in
layer ! — 1.

Note that in practice, training examples are placed in
batches, and the error is averaged at the end of each batch,
which is then used to update the weights.

for(col = 0; row = Oy, col + +){ E
for(to = 0; to = 0O¢,to+ +){ i
for(ti = 0; ti = I, ti ++){ 5
for(i=0; i=K,i++){]
for(G=0; j=K,j++){ i
Output fmfto][row][col] += E
kernelfto][ti][i][j] * input_fm[ti][S * row + i][s*col+j]

H11rh)
Fig. 2. Convolution in CPU.

B. Convolution Arithmetic

The core component of a discriminator is convolutional neu-
ral networks. CNN has three types of layers: convolution layer,
batch normalization layer (BN) and activation layer (c.g. sig-
moid, rectified linear unit (ReLU), Tanh, etc.). The generator
consists of a series of fractional-strided convolutions networks.
FCNN is also composed of three types of layers: fractional-
strided convolution layer, batch normalization layer and acti-
vation layer. Different from the traditional convolution oper-
ations, FCNN inserts many zeros into its input feature maps
and then performs the up-sampling convolutional computation.
The output feature maps of FCNN are larger than its input
maps.

The pseudo code of a convolution layer implemented in a
CPU is shown in Fig. 2. Fractionally-strided convolutions
work by swapping the forward and backward passes of a con-
volution [10]. As we will show in Section IIL.B, it is always
possible to implement fractionally-strided convolutions with a
direct convolution. The disadvantage is that it usually requires
adding several columns and rows of zeros to the input, resulting
in a less efficient implementation.

Activation layer is a nonlinear function which serves as a
threshold. Batch normalization layer is another important com-
ponent. It is applied before activation to stabilize the training
process of GANs. All variable names in Fig. 1 and Fig. 2 will
be used and consistent in following sections.

C. Neuromorphic Computing with ReRAM

Resistive random access memory is a type of non-volatile
memory that stores information by changing cell resistances.
Recent works [12, 13, 14] demonstrated that ReRAM is a
promising candidate to realize area efficient matrix-vector mul-
tiplication for neuromorphic computation in a crossbar archi-
tecture.

Fig. 3 (a), (b) shows an example of mapping matrix-vector

BLj (a) W”X7”~xm><1=y")<1
;i(l) § ML W Y 2o (
|5 o T
xp L P2
CTe[R TR
S]
Xm—1 = 3 ‘%j ‘%Wf":ﬂ_ 3
| J
L4

[Integrated & Fire |

(b) YoYi Vi Yn-1

Fig. 3. Mapping matrix-vector multilication (a) to ReRAM crossbar array (b).
(c) Mapping large matrix to multiple ReRAM arrays.

179

multiplication to a ReRAM crossbar. The vector is represented
by the input signals on the wordlines (WL). Each element of the
matrix is programmed into the cell conductance in the crossbar
array. Thus, the current flowing to the end of each bitline (BL)
is viewed as the result of the matrix-vector multiplication. For
a large matrix that can not fit in a single array, the input and
the output shall be partitioned and grouped into multiple arrays
as shown in Fig. 3 (¢). The output of each array is a partial
sum, which is collected horizontally and summed vertically to
generate the actual results.

Note that matrices with positive and negative elements are
implemented as two separate crossbar arrays and share the
same input ports. We adopt the same spike-based scheme
in [15], in which the worldline driver converts the input to a
sequence of weighted spikes and the integrate-and-fire circuit
integrates and converts the output currents into digital values.
Due to space limit, readers could refer to [15] for more details.

III. REGAN ARCHITECTURE

In this section, we first analyze the training procedure of Re-
GAN. Then we describe the method of mapping ReGAN to
ReRAM crossbars. Finally, we present the idea of pipelined
GAN training and two schemes to further improve the compu-
tational efficiency.

A. Training Procedure

For simplicity, Fig. 4 demonstrates the configuration of Re-
GAN to process the training of the networks shown in Fig. 1.
The discriminator(D) and the generator(G) are trained alterna-
tively until they reache an equilibrium.

Train D. 1) @@ shows the dataflow of training D on the
training samples. A training sample is fed into D at TO. This
sample flows through layers of D consecutively in forward di-
rection. A loss function is then computed at T4 based on ac-
curate labels (‘1 for training sample). Finally, the error and
partial derivatives propagate all the way back to the first layer
of D and are stored. This process takes 7 logical cycles. 2)
&)@ depicts the dataflow of training D on generated samples.
In this case, G is concatenated with D to form a large network.
G maps a random vector to a sample which has the same di-
mension with real samples. This sample follows the layers in
D and a loss function is performed with the label (‘0” for gener-
ated sample). Similarly, the partial derivatives propagate back
to the first layer of D at T10. Therefore, in T11, the derivatives
stored in 1) and 2) are summed accordingly and then used to
update the weights of D. It take 74104 1 = 18 cycles in total.
During this process, G is used but not updated.

Generated

Real T0 m ir] 3 4
sample T

sample | : : :
CAEy o] | @ = oo o 3
O, | Jrow] ==
< | | | | i |
T T2 T3 T4 TS q T7
Generator (G)

7 | 3
of o8 5§ P s [
vwg W vwg WP vwp wy
(5 1 vbg |« VS || vbY 7b8 |<—| 7b2
T‘l T‘lZ T‘11 T‘lﬂ T‘B T‘E

Fig. 4. Training loops in GAN.

Discriminator (D)
T6 il

3A-1

Train G. © @ shows the data flow of training G. It is similar
to @@ except: 1) The error is computed with inaccurate labels
(‘1” for generated sample) in T7, since the goal of G is to fool
D; 2) The error propagates all the way back to the first layer of
G; 3) The weights of G have been updated in T14 while D is
fixed.

B. Mapping ReGAN to ReRAM

Fig. 5(a) visualizes how a typical convolution layer exhib-
ited in Fig. 2 works. The three steps required to implement the
convolution layer are: 1) element-wisely multiplying a K x K
kernel by the input pixel window starting at i, X S,%, X S
across all the input channels; 2) adding the results in step 1) to
a local area in the output feature map; 3) sliding the input win-
dow by stride S, repeat 1) and 2) for all the possible locations
in the input feature maps.

In general, we can decompose the convolution between the
input and the kernel to multiplication and addition. Each ele-
ment in the output feature maps is obtained by multiplying a
region in the input feature maps with the kernel. Therefore, we
reorder cach kernel as a vector with the size of K x K x I¢.
Accordingly, the input feature map is converted to a matrix with
K x K x Icrows and Oy x Op columns. Thus, the output
feature map can be computed as:

mx 1

Wn>< m. T — ynx 1 (5)

where n = Ow = O, m = K x K X I¢o. Naturally, this
matrix-vector multiplication can be easily mapped to one or
multiple ReRAM arrays.

Given the parameters in Fig. 5(a), Fig. 5(b) shows an ex-
ample about how error backpropagates backwards in CNN: 1)
zero padding the error map for P = 2; 2) rotating the kernel
used in the forward path for 180°; 3) computing the error back-
propagation for CNN as the convolution between the modified
error maps and kernel.

Different from the CNN downsampling, the generator em-
ploys FCNN to project the input feature maps to a higher-
dimensional space. Mathematically we can implement a FCNN
with a direct CNN [10] as illustrated in Fig. 6(a): 1) adding ze-
ros between each input in the feature maps with zero padding;

kernel

L

Input feature maps
s=&"Stride s=1

Output feature maps

® RepeatD@ for each
possible location

(a) Ic (Input channel)

Oc (Output channel)

Output error maps (51) Kernel rotate 180° Input error maps (o1)

(b) T LEEET—Padding p=K-1

Fig. 5. Visualization of a single convolution layer (a) Data forward, (b) Error
backpropagation.

180

Input feature maps kernel Output feature maps

Stride s=1/2

lh=4

—_—
Adding 1 zero between
each input; padding p=1

=8

Oh:

Kernel rotate 180°

Output error maps (&)
e

Input error maps (511)

Stride s=2

(b)

Fig. 6. Visualization of a single fractional-strided convolution layer (a) Data
forward, (b) Error backpropagation.

2) computing the convolution between the extended input fea-
ture maps and the kernel. Fig. 6(b) describes how the error
propagates backwards in FCNN, which is performed as a typi-
cal convolution with strides.

Every convolution boils down to an efficient implementa-
tion of a matrix-vector multiplication, making the mapping to
ReRAM crossbar much simpler. In practice, FCNN involves
adding many columns and rows of zeros to the input, result-
ing in a structurally sparse input matrix and hence, less effi-
cient implementation. However, simply change the data layout
often produces non-structured memory access that adversely
impacts practical acceleration in hardware platforms. Optimiz-
ing ReGAN to further improve computation efficiency requires
non-trivial effort and is left for future work.

C. Pipeline Design

In training, the input data are normally processed in batch of
size B (e.g. 64). It means inputs within the same batch are all
processed based on the same parameters. The backpropagated
error due to each input are stored and only applied at the end
of each batch. Therefore, no dependency exists among data
inputs inside a batch. We propose an architecture to increase
the system throughput by pipelining the training process.

In the execution, a new input can enter the pipeline every cy-
cle within a batch. At the end of a batch, a new input belonging
to the next batch cannot enter the pipeline until all inputs in
previous batch are processed and weights are updated.

TABLE I
LATENCY OF PIPELINE
[Loop || Forward | Backward | Update |
(12} Lp Lp+1 0
(3 (4] Lo+ Lp Lp+1 1
(3 (5] Lo+ Lp La+Lp+1 1

Assuming the discriminator has L p layers, the generator has
L layers, the batch size is B. The pipelined execution cycles
of the three training phases are shown in Table. I. To update D,
we first train D on real samples, which takes Lp+Lp+1+B—
1 cycles (a new batch has to wait B — 1 cycles for the previous
batch to drain from the pipeline); then Lg+Lp+Lp+1+B—1
cycles to train D on generated samples; finally, it take one cycle
to update D. Similarly, it takes 2Lg + 2Lp + B + 1 cycles to
train G. Without the pipeline, the training of D and G consume
(4Lp + L¢ + 2)B cycles and (2L¢ + 2Lp + 1)B cycles,
respectively.

T0 Tl T2 T3 T4 15 T6 T T7
g Q)l 1P1 T—)tFCNNZT—)l FONN3 I—ﬁCNNl T—)‘ CONN2 1—)| 1P3 r_)
T10 T9 T8 =
8 a7 e /
vwp rwyp rwp
vby by by
a7 of o &P P 59
e VWIG € VWZG € VW3G <« VWlb(_ VWzD < VW3D
7S - 7bf vb§ Vb vh? by

T13 T2 T11 T10 T9 8

Fig. 7. Improved pipeline by computation sharing.

D. Computation Optimization

We propose spatial parallelism and computation sharing to
further optimize the pipeline performance.

Spatial Parallelism (SP). Since D remains unchanged in
OO and OO, we can duplicate D for two copies, and there-
fore training phases @ @ and ©~@ work in parallel. In this
way, the total latency is only the latency of ®7@ as spatial
parallelism hides the latency of @~ @.

Computation Sharing (CS). Fig. 7 highlights the difference
between training phases ©~@ and ®~@®. They share the same
forward path. However, they are distinguished from the defi-
nition of loss function, and hence have different backpropaga-
tion data path. With this observation, we propose to co-train D
and G by duplicating the memory for intermediate computation
storage (e.g. memory to store the error and partial derivatives).
In this case, the training of D and G share the forward path
TO-T6. At cycle T7, two backward branches are computed in
parallel. The weights of G are updated at T14 and D can be
updated at T11.

Note that spatial parallelism and Computation Sharing are
two orthogonal methods which can be combined to improve
the performance.

IV. IMPLEMENTATION OF REGAN

A. Overall Architecture

we propose ReGAN, a novel ReRAM-based Process-In-
Memory accelerator, which leverages ReRAM cells to perform
computation for GANs acceleration without the need of extra
processing units. Fig. 8 shows the overview of ReGAN. Sim-
ilar to [12], ReGAN partitions the ReRAM main memory into
three regions: memory (Mem) subarrays, full function (FF)
subarrays, and Buffer subarrays. Mem subarrays are the same
as conventional memory subarrays and have data storage ca-
pability. FF subarrays can be configured in both computation
and storage modes. In computation mode, FF subarrays exe-
cute matrix-vector multiplications; in memory mode, they are
used as Mem subarrays for data storage. We reserve Mem sub-
arrays that are closest to the FF subarrays as Buffer subarrays,
which are used to store the intermediate results between lay-
ers (e.g. generated images, data required for compute partial
derivatives, etc.). They are connected to FF subarrays through
private data ports, so that buffer accesses do not consume the
bandwidth of Mem subarrays.

B. FF Subarray Design
The design goal for FF subarrays is to support both storage
and computation with a minimum area and energy overhead.

181

IBank

%W{ﬂ-ﬁ-%-%- :

Z

X

Aesseqns AJOWSIN

Aesleqns {4

,Global Row Decoder

Buffer Subarray (&
; -
Global Row Buffer) [Controter] ||

=

Fig. 8. The ReGAN architecture.

To achieve this goal, we replace the power-hungry ADC and
DAC in [12] with the spike-based scheme as [15]. In this sec-
tion we demonstrate how ReGAN supports batch normaliza-
tion, activation function, and fully connected layers as fol-
lows.

Batch normalization (BN) greatly improves the training sta-
bility in the original DCGAN [2]. However, it causes the out-
put of a neural network for an input example to be highly de-
pendent on several other inputs in the same batch. Therefore,
VBN, virtual batch normalization is introduced in [7]. In VBN,
each example is normalized based on the statistics collected on
a reference batch. The reference batch are chosen once and
fixed at the start of training. Moreover, results in the recent
works [3, 4] shows that BNs are not as necessary as previously
claimed. In this work, we use the state-of-the-art GAN [3, 4]
without BN to compose our benchmark suit. However we still
add several components in Wordline drivers marked as light
blue in Fig. 8@ to support VBN. We deploy the sub and shift
to do the minus and division in BN layers. Note that the di-
visor should be 2" in this case. When complex BN layers are
applied, ReGAN requires the help of CPU for BN computation.

Fig. 8®) depicts the design of activation function. Computa-
tion results from both the positive subarray and negative subar-
ray are first merged by the subtractor, and then sent to the con-
figurable Look Up Table (LUT) to realize the activation func-
tion. The LUT can be bypassed in certain scenarios, e.g. when
a large NN is mapped to multiple crossbar arrays.

DCGAN are fully convolution layers except the last layer
in D and the first layer in G. However, the first layer of G is
only matrix multiplication, and hence can be easily mapped
to ReRAM crossbars. While the last layer of D just flattened
the output of previous CNN layers, therefore, it does not re-
quire extra computation. Fully connected layers in CNNs can
be converted to convolutional layers.

C. Pipeline Implementation

Fig. 8 highlights the pipelined design of ReGAN to perform
the training of GAN. @ When the input are latched into the
buffer subarry, the FF subarrys start the computation. When the
first input vector is sent to the ReRAM crossbar, @ the word-
line driver can continue to process the next input vector. @
The input are multiplied element-wisely with the two crossbar
with positive and negative weights, respectively. @ Integrated-
and-Fire circuits collect a current on the bitline and produce
output pulse representing results. @ The activation function
units perform non-linear functions on results. ® The interme-
diate data (e.g. partial sum, derivatives, etc.) are stored in the

3A-1

TABLE I
BENCHMARKS (C: CONVOLUTION/FRACTION-STRIDE CONVOLUTION
LAYER; F: FULLY CONNECTED LAYER.)

[Name || Database | G Topology [D Topology |
MLPIA mnist 128-dim 2-layer | 2-layer MLP
MLPIB mnist 128-dim 2-layer 3CIF
MLP2A mnist 512-dim 4-layer | 4-layer MLP
MLP2B mnist 128-dim 2-layer 3CIF

GANI1 cifar-10 4C1F 4C1F
GAN2 celebA/LSUN 5CIF 5CIF
ResnetGAN cifar-10 [4] [4]

buffer subarray. @ The results are write back to the memory
subarry when the compuation of one layer is finished or when
the buffer subarray is full.

V. EXPERIMENTS

Workload. We ran experiments on image generations. Since
the image size is critical to the topology of the generator, we
selected a variety of dataset including: MNIST [16], cifar-
10 [17], celebA [18] and LSUN [19].

MNIST contains 60K gray written digits labeled from 0 to
9 with a size of 28 x 28 pixels. CIFAR-10 is 32 x 32 color
image dataset. LSUN-Bedrooms dataset is a collection of nat-
ural images of indoor bedrooms. The generated samples are
3-channel images of 64 x 64 pixels in size. CelebA includes
200K celebrity images with large pose variations and back-
ground clutter. We scaled and center-cropped CelebA images
into 108 x 108 pixels, then re-size them into 64 x 64 pixels.

For MNIST, we built four GANSs, each of which has a Mul-
tiLayer Perceptron (MLP) generator and an MLP/CNN dis-
criminator. For CIFAR-10 and SVHN, we built a symmetric
GAN with four CNN/FCNN layers in G/D. In particular, we
also selected the 101-layer ResNet GAN in [4] as benchmarks
on CIFAR-10. For CelebA and LSUN, we built a five-layer
CNN/FNN GAN as benchmark. Table II details the networks
and dataset.

Experimental Setup. We compare ReGAN against the a
GPU-based platform. On the GPU platform, the training of
GAN are based on the widely used framework Tensorflow [20].
The parameters of our GPU platform are shown in Table III.
‘We built a ReRAM simulator based on NVSim [21] to evaluate
ReGAN. We adopted the read/write latency, read/write energy
from [14] as 29.31 ns/50.88 ns per spike, 1.08 pJ/3.91 nJ per
spike. The area model are based on [22].

Performance Results. The performance comparison is
shown in Fig. 9. For each application, we report the per-

TABLE III
CONFIGURATION OF THE GPU PLATFORM.
Memory 128 GB
Storage 1 TB4
Graphic Card NVIDIA Geforce GTX 1080
Architecture Pascal
CUDA Cores 2560
Base Clock 1607 MHz

Compute Capability || 6.1

Graphic Memory 8 GB GDDRS5X
Memory Bandwidth || 320 GB/s
CUDA Version 8

182

formance comparison of pipelined ReGAN (pipe), pipelined
ReGAN with Spatial Parallerism (pipe+sp), pipelined Re-
GAN with Computation Sharing (pipe+cs) and pipelined Re-
GAN with both Spatial Parallerism and Computation Sharing
(pipe+sp+cs). The GPU platform is used as our baseline and
all performance and energy results on different settings are nor-
malized to it.

1E+3

=
m
+
-

\,\ N-R
*f‘ ‘ “Ii
NR N
\l §-54

Norm. Speedup
Vs s s s oA

S

Fig. 9. Normalized speedup.

For simple MLP generators, cs achicves better improvement
than sp. This is because cs hides the long latency training
phase ®7@ since we train D and G alternatively. For complex
generators, e.g. GANI, GAN2, ResnetGAN, sp and cs achieve
marginal improvement since G is updated several times before
D is updated to avoid the case that D quickly maintaines near
its optimal solution and G changes slowly.

On average, ReGAN achieves 116x speedup. sp and cs can
further improve the the performace to 240 x.

Energy Results. Fig. 10 shows the energy consumption of
all applications. Although, sp and cs boost the performance of
simple MLP generators, it also increases power consumption
for the extra FF subarrays and Buffer subarrays. Thus, they
have similar energy consumption in different settings.

oo 1643
£
S ;
© ZININ
n 1E+2 ; N = =
& a0 L i%lllaﬂgl N R
g 1E+1 H J 4] &l ﬁl |\.\- x/x 1&- l%l 1%- 141 1&- 141 INNER I % é % ? l&\
5] | W pipe B2 pipe+sp B pipe+cs [pipe+sp+c QI I %I ‘% N
E’ 1E+0 l IZZIMINE 22NN 22NN ZZNNEE [EZ NN EZ NN § & A |§‘
s . . & s S o S S o
2 & & & FE S P
F &Y S S E
Y Y Y F ,,o“‘e X ©
Q~¢

Fig. 10. Normalized energy saving.

GAN?2 trained celebA and LSUN show different energy con-
sumption. This is due to trainings on generating faces (celebA)
are apparently easier than generating bedroom images (LSUN).
GAN converges faster on celebA dataset and therefore results
in higher energy saving. We can see from the results that Re-
GAN provides significant energy savings for deep networks.
The highest energy saving are 578 x (ResnetGan on cifarl0).

VI. CONCLUSIONS

In this paper, we analyze the training procedure in GAN
and present a ReRAM-based PIM, ReGAN, to accelerate GAN
training. Two orthogonal methods — Spatial Parallelism and
Computation Sharing are proposed to further improve effi-
ciency. Compared to state-of-the-art GPU platform, on average
ReGAN improves performance by 240x and achieves 94 x en-
ergy saving.

3A-1

ACKNOWLEDGMENT

This work was supported in part by NSF 1725456, NSF
1744082 and DOE DE-SC0018064. Any opinions, findings
and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
views of grant agencies or their contractors.

REFERENCES

Tan Goodfellow, ez al., “Generative adversarial nets,” In Advances in neu-

ral information processing systems (NIPS), 2014.

[2] Alec Radford, et al., “Unsupervised representation learning with deep
convolutional generative adversarial networks,” In International Confer-
ence on Learning Representation (ICLR), 2016.

[3] Martin Arjovsky, et al.,
arXiv:1701.07875, 2017.

[4] Tshaan Gulrajani, et al., “Improved training of wasserstein gans,” In arXiv
preprint, arXiv:1704.00028, 2017.

[5] Raymond Yeh, er al., “Semantic image inpainting with perceptual and
contextual losses,” In arXiv preprint, arXiv:1607.07539, 2016.

[6] Ahmed Elgammal, er al., “CAN: Creative Adversarial Networks, Gen-

erating “Art” by Learning About Styles and Deviating from Style and

Deviating from Style Norms™ In arXiv preprint, arXiv:1706.07068, 2017.

—_
—
—

“Wasserstein gan,” In arXiv preprint,

[7]1 Tim Salimans, et al., “Improved techniques for training gans,” In Ad-

vances in Neural Information Processing Systems (NIPS), 2016.

[8] X. Guo, et al., “Resistive computation: avoiding the power wall with low-
leakage, STT-MRAM based computing,” In ACM SIGARCH Computer
Architecture News, pp. 371-382, 2010.

[91 W.A. Wulf, et al., “Hitting the memory wall: implications of the obvious,”
In ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20-24,
1995.

[10] Vincent Dumoulin, ez al., “A guide to convolution arithmetic for deep
learning,” In arXiv preprint, arXiv:1603.07285, 2016.

[11] J. Schmidhuber, et al., “Deep learning in neural networks: An overview,”
In Neural networks, vol. 61, pp. 85117, 2015.

[12] Ping Chi, ef al., “Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main memory,” In Pro-
ceedings of the 43rd International Symposium on Computer Architec-
ture(ISCA), 2016.

[13] Ali Shafiee, et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” In Proceedings of the 43rd
International Symposium on Computer Architecture(ISCA), 2016.

[14] Linghao Song, et al., “PipeLayer: A pipelined ReRAM-based accelerator
for deep learning,” In High Performance Computer Architecture (HPCA),
2017.

[15] Chenchen Liu, et al., “A spiking neuromorphic design with resistive
crossbar,” In Design Automation Conference (DAC), 2015.

[16] Y. LeCun, et al., “The MNIST database of handwritten digits,” 1998.

[17] Alex Krizhevsky, ef al., “Learning multiple layers of features from tiny
images,” In Technical report, University of Toronto, 2009.

[18] Ziwei Liu, er al., “Deep Learning Face Attributes in the Wild,” In Pro-
ceedings of International Conference on Computer Vision (ICCV), 2015.

[19] Fisher Yu, er al., “Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop,” In arXiv preprint,
arXiv:1506.03365 2015.

[20] M Abadi, er al, “TensorFlow:
ing on het-erogeneous systems,”
https://www.tensorflow.org/.

Large-scale machine learn-
2015. Software available from

[21] Xiangyu Dong, et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging nonvolatile memory,” In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 31.7 (2012):
994-1007.

[22] R. Fackenthal, er al., “A 16Gb ReRAM with 200MB/s write and 1GB/s
read in 27nm technology,” In ISSCC Tech, 2014.

183

