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Abstract—Many cognitive algorithms such as neural networks
cannot be efficiently executed by von Neumann architectures,
the performance of which is constrained by the memory
wall between microprocessor and memory hierarchy. Hence,
researchers started to investigate new computing paradigms
such as neuromorphic computing that can adapt their struc-
ture to the topology of the algorithms and accelerate their
executions. New computing units have been also invented to
support this effort by leveraging emerging nano-devices. In
this work, we will discuss the opportunity of implementing
neuromorphic computing systems with spintronic devices. We
will also provide insights on how spintronic devices fit into
different part of neuromorphic computing systems. Approaches
to optimize the circuits are also discussed.

1. Introduction

Machine learning techniques, such as deep neural net-
works (DNNs), have achieved remarkable success in many
research areas and applications [1]-[3]. Some of these
techniques also obtained the ability to achieve close to or
ever better than human-level perception. Such a success,
to a great extent, is enabled by the advances in hardware
designs of neuromorphic computing systems (NCS) [4]-[8],
[10]. NCS utilize new devices and circuit components to
implement the behavior of neural networks with complex
structures or multiple nonlinear transformations to exact a
high-level abstraction of data.

In many applications, extending the depth of neural
networks for better accuracy becomes a popular approach,
exacerbating the requirement for computation resources and
data storage of hardware platforms. However, some re-
searchers believe that conventional CMOS-based computing
paradigms may not be suitable to implement large-scale
NCS due to their poor scalability, low energy efficiency
and rapidly increased hardware cost. One solution to solve
the discrepancy between the fast growth of the neural net-
work model size and the slow performance improvement of
conventional CMOS-based paradigms is to revolutionize the
implementation of NCS with emerging technologies.

Figure 1 shows a conceptual diagram of nonvolatile
memory (NVM) based NCS. Based on different functions, it
can be logical divided into three parts: synapses to compute
matrix multiplications, neuron circuits to process the cal-
culation results and then transmit the results to proceeding
layers and peripheral circuits to fulfill miscellaneous func-
tions including decoding, timing control and post-neuron
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Figure 1. System diagram for NVM based NCS.

signal processing. In this paper, we target circuit-level and
architecture-level NCS designs using emerging nonvolatile
memory (eNVM) technologies to achieve high computing
parallelism and integration density. We choose spintronic
devices, i.e., Spin-Transfer Torque RAM (STT-RAM) and
Domain Wall Memory (DWM, also know as Racetrack
Memory), to implement NCS because of their proven CMOS
compatibility and manufacturing matureness in commercial
semiconductor foundries (e.g., TSMC) and stable resistance
states. Moreover, spintronic NVM device possesses the po-
tential to realize not only high density and high performance
memory storage but also in-memory computing systems.

In this work, we will discuss the opportunity of im-
plementing neuromorphic computing systems with spin-
tronic devices. Prior research on implementing NCS on
STT-RAM [11] and Domain Wall Memory [8], [10] are
also reviewed. The corresponding computation form and
the structure of the computing paradigms are discussed in
details.

2. Fundamental of Spintronic Devices
2.1. Basics of domain wall memory

The structure of domain-wall nanowire device is illus-
trated in Figure 2. As the figure shows, multiple magnetic
domains are integrated on a memory track separated by ultra
narrow domain walls (the red part). Multiple access ports are
uniformly distributed along each track. The binary value of a
magnetic domain is represented by its relative magnetization

109



SWL4L T4

SL — I E—

(a) C (b)

antiferromagnetic layer
reference layer
oxide layer
free tayer— 7 n/m
B /) A B

y

Va

/.'A 249
‘ %

7 b, LW
Bamier layer Reference  Read/Write port
layer

Figure 2. The diagram of domain-wall nanowire device.

directions to the reference layer (the green part) at the access
port. A selected device together with a magnetic tunneling
junction (MTJ) sensor build an access port. The wordline is
split into read worline (RWL), write wordline (WWL) and
shift wordline (SWL), which support the read, write, and
shift operations.

By detecting the resistance of MTJ, the stored bit can be
read out. Moreover, write operation is realized by a highly-
efficient shift-based write method introduced in [12]. As
indicated in Figure 2, two fixed domains (the pink part)
with different magnetizations sandwich the memory track.
During write operations, the write transistor T2 is turned
on; different voltages pairs are then applied to the bitline
(BL) and the source line (SL) to shift one of the two fixed
domains into the memory track. Note that a shift operation
is required to align the memory cell to an access port during
read/write operations.

In particular, a recent work [13] investigated the latest
Skyrmions Racetrack Memory (SKM) for cache designs.
Spin Hall Effect (SHE) based motion in SKM further im-
proves the energy efficiency in existing DWM, demon-
strating great potentials in ultra-low power neuromorphic
computing.

2.2. Giant spin hall effect

Giant Spin Hall Effect (GSHE) MTIJ is a three-terminal
device, as depicted in Figure 3 [14]. A GSHE MTIJ is com-
prised of a stack of various layers, ie., a free layer, an di-
electric oxide layer, and a reference layer, a GSHE electrode
strip, and a antiferromagnetic layer. Similar to conventional
MTIJs, the relative angle of the magnetization directions in
the reference layer and the free layer determines the device
resistance. Parallel (low resistance) and anti-parallel (high
resistance) orientations represent the binary data ‘0’ and °1°,
respectively. The antiferromagnetic layer on the top is used
to ensure that the magnetic orientation of the reference layer
is always fixed. Moreover, the electrode strip is coupled with
the free layer, which filters the charge current flowing in it
into spin-polarized current. It will exert a spin torque on the
free layer and change the free layer magnetization between
parallel and anti-parallel states.

Such a scheme isolates the programming and sensing
to avoid read disturbance. When the applied programming
current on the strip (from terminal A to B as shown in
Figure 3) is larger than a switching threshold, the device will
be written to 0’ and it will switch to *1° if a current larger
than the threshold is applied on the opposite direction. If
the current from either direction is lower than the threshold

Figure 3. (a) Diagram of GSHE MTI; (b) circuit symbol of GSHE MTI.

current, the device will not be written and remain its current
data state.

Figure 3 (b) shows the symbol for the GSHE MTI.
The ‘n” and ‘m’ denote the selections of input nodes and
switching threshold, respectively [14]. The threshold can be
adjusted through device film engineering.

3. Spintronic Device as Synapse

Emerging nonvolatile memories, especially the ones with
cross-point or crossbar array structure, can be used as the
analogy of matrix multiplication to implement NCS. The
resistance values of emerging nonvolatile memory devices
represent the weights in the neural networks. At algorithm-
level, the trained weights generally follow lognormal dis-
tribution. shown as the green curve in Figure 4. However,
for the nonvolatile memories, the programming process is
limited by the resolution that CMOS circuitry can offer.
The limited programming resolution requires a quantization
process that maps each analog weight to one of the values
that are represented by the discrete resistance states of
NVMs. Blue curve in Figure 4 depicts an example of direct
quantization after training, where the well-trained weights
are quantized to 6 (peaks) levels.

At device-level, binary MTJ is the most common due to
the ease of fabrication to control the magnetic anisotropy.
Multi-bit storage cells can be realized by either producing
more stable states [15] or the stack of MTIJs [16]. However,
these approaches still cannot satisfy the algorithm-level
requirement of 8-bit weight for general applications [17].
Except for device engineering optimization, algorithm-level
technique is also helpful and efficient to relax this strong
requirement of the resistance state resolution.

By changing the regularization in training, the weight
distribution can be tuned to fit the resistance values pro-
vided by the MTJs [18]. In the study of machine learning,
regularization is referred to as the process of introducing
additional information to prevent overfitting [18]. Without
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Figure 4. Weight distribution before (green) and after (blue) quantiza-
tion [18].
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Figure 5. Weight distribution before (green) and after (blue) quantization
using the periodic regularization method in training [18].
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Figure 6. Relative accuracy after quantization using different regularization
function in training [18]. The neural network is for the recognition for
LeNet-5 database.

loss of generality, the regularization term can be expressed
by a complexity penalty added to the cost function of
the learning process. Traditional regularization function is
realized by a monotonically (in the most input region)
rising, which is not efficient to tune the trained weight. If a
periodic function, such as cosine and sawtooth, is used as the
regularization function, the trained weights will shift to the
target digitalized levels in training, leading to a best balance
of computation accuracy and weight digitalization. Figure 5
shows the weight distribution with a revised regularization in
training. Compared with Figure 4, the regularization method
is capable of tuning the trained weight distribution according
to the available resistance states. Figure 6 shows the relative
accuracy using this method after quantization. The accura-
cies are normalized to the trained baseline without using
quantization. The use of cosine or sawtooth regularization
saves the quantization loss compared with conventional L1
or L2 norm regularization. In this way, algorithm-level
weights are tailored for accuracy enhancement for NVM
based NCS implementations.

4. Domain Wall Memory As Neuron Circuit

This section reviews some previous works about imple-
menting neuromorphic computing systems with domain wall
memory.
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Figure 7. (a) Spin neurons connected with synapses. (b) Nerual network
circuit using spin neurons. [8]
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4.1. Spin neurons

Spin torque neuron designs based on DWM are proposed
in [8] for low power neural network computation. As shown
in Figure 7(a), a spin neuron has three terminals which can
be used for current-mode thresholding. Figure 7(b) illus-
trates a 3x3 neural network circuit using spin neurons. Ex-
perimental results demonstrate that spin neurons can achieve
more than two orders of magnitude lower energy and beyond
three orders of magnitude reduction in energy-delay product
compared to CMOS-based analog circuit-model of neurons.

4.2. Domain wall memory based convolutional neu-
ral networks (CNNs)

[10] proposed to implement CNN convolutional layers,
which are the core building blocks of CNNs, by adopting
the partial dot product implementation using DWM-based
cell strings. Multiple partial dot products are then merged
in DWM-based sub-array. In the proposed DWM-based
architecture, each cell array is composed of a DWM-based
sub-array and an Analog to Digital Converter (ADC) sub-
array. Due to page limit, we skip the details but refer the
readers who are interested in this architecture to [10].

Simulation results using 65 nm CMOS process show
that the proposed design archives 34% energy savings with
some extendible for high resolution classifications, com-
pared to the conventional implementation using memristor-
based crossbar.

5. GSHE Logic As Peripheral Circuit

Although the adoption of nonvolatile memory dramati-
cally improves computation and storage efficiency in these
designs, the peripheral circuits, including the decoders and
the controllers etc., greatly hinder the performance metrics
of these NCS, such as area, power, recognition accuracy, and
training speed [19]. For example, the voltage-based sensing
scheme in [20] requires analog-digital and digital-analog
converters (ADC/DAC), which result in large signal dis-
tortion and power consumption. The spiking based designs
commonly adopt integrate-and-fire circuit (IFC) to generate
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Figure 8. Fundamental logic gates are implemented by GSHE MTls.

output spikes. Although the power efficiency dramatically
improves, an IFC component still requires a number of
transistors and a capacitor for charge accumulation [19].

Further reduction of power and area requires the im-
provements of peripheral circuits. Spintronic devices based
logic serves as a promising design alternative to replace the
CMOS based implementations.

For the implementations of complex types of neural
networks, e.g., Brain-State-in-a-Box (BSB), high density is
critical to efficient on-chip implementations. [14] proposed
to use GSHE devices to implement digital logic, which
is a design alternative to the CMOS-based implementation
of peripheral circuits that usually need a large number of
gates. The basic structures of OR, AND, NOR and NAND
gates are shown in Figure 8. The logic is implemented by
threshold logic design.

Due to the small size of GSHE devices, digital logic can
be implemented on a very small area. For a two-input AND
gate, GSHE logic uses only one GSHE MTIJ, which can
be scaled to the range from 10nm to 30nm [21]. However,
in comparison, conventional CMOS logic consumes several
hundreds of feature size square or even larger to meet the
requirements of performance or drive capability [22].

6. Conclusion

In this paper, we review several research papers on im-
plementations of NCS using spintronic devices. The devel-
opment of spintronics leads to various devices that demon-
strate appropriate features to construct neural networks. We
give our insights on how STT, DWM and GSHE devices fit
into different parts of NCS according to their characteristics.
By exploring the promising approaches, we provide different

approaches to optimize the circuits to obtain satisfactory
performance.
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