ReRAM-based Accelerator for Deep Learning

Bing Li*, Linghao Song*, Fan Chen*, Xuehai QianT, Yiran Chen* and Hai (Helen) Li*
Email: *{bing.li.ece, linghao.song, fan.chen, yiran.chen, hai.li} @duke.edu, Txuehai.qian@usc.edu,
*Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
TDepalrtment of Computer Science, University of Southern California, Los Angeles, CA, United States

Abstract—Big data computing applications such as deep learn-
ing and graph analytic usually incur a large amount of data
movements. Deploying such applications on conventional von
Neumann architecture that separates the processing units and
memory components likely leads to performance bottleneck due
to the limited memory bandwidth. A common approach is to
develop architecture and memory co-design methodologies to
overcome the challenge. Our research follows the same strategy
by leveraging resistive memory (ReRAM) to further enhance
the performance and energy efficiency. Specifically, we employ
the general principles behind processing-in-memory to design
efficient ReRAM based accelerators that support both testing and
training operations. Related circuit and architecture optimization
will be discussed too.

I. INTRODUCTION

Deep neural networks (DNN) have made remarkable suc-
cesses in the artificial intelligence (Al) domain, such as
computation vision, natural language process, and image pro-
cessing. Increasing the scale of DNNs is a simple approach
to elevate the performance of applications, while larger and
deeper network models demand more computation resources
and data storage. For example, AlexNet [1] in 2012 executed
about 100 million operations for one image processing, while
GoogleNet [2] in 2014 required 3.9 billion ones. Due to the
large amount of data transition between the on-chip logic units
and the off-chip memory, deploying DNNs on the computing
platforms based on traditional computing paradigms faces
unprecedented challenges [3]. With the end of Moore’s law on
the horizons, advance in architecture and memory co-design
is urgent to accelerate deep learning.

Processing-near-memory and processing-in-memory (PIM)
that attempt to integrated more local memory and even use
it for computation become an attractive approach for deep
learning acceleration. Recently 3D-stacked DRAM memory
technology is utilized to satisfy the high bandwidth require-
ment of the memory-intensive applications [4], [5]. 3D mem-
ory based PIM stacks the logic chip with the 3D memory
chip using massive number of through-silicon-vias (TSV) [6],
where computation and memory are close but decoupled with
each other.

Emerging resistive random access memory (ReRAM) [7] in
simple crossbar array has a property of bitline current summa-
tion. It achieves computation and storage simultaneously as a
low-cost matrix-vector multiplication. Example ReRAM-based
PIM architectures include Prime [8] and ISAAC [9]. However,
deploying the complete execution of DNN on ReRAM-based
structures remains difficult due to the lacking of support

978-3-9819263-0-9/DATE18/)2018 EDAA

for sophisticated training procedure. Compared to the testing
procedure, the training involves iterative weight updates and
complicate data dependencies. The latest generative adversar-
ial networks (GAN) [10], [11] that comprises two co-trained
networks further aggravates the hardware requirement and
therefore deserves specific optimizations. Our work primarily
focuses on the ReRAM-based PIM design and optimiza-
tion to accelerate both inference and training processes of
DNNGs [12]-[14].

This paper is organized as follows: Section II introduces
the background of neural networks and ReRAM-based PIM
design. Section III elaborates ReRAM-based PIM architectures
along with circuit implementations for DNN and GAN. At the
end, we conclude this paper in Section IV.

II. BACKGROUND
A. Basics of Deep Neural Network

1) CNN Structure: Here, we take the common deployed
convolutional neural network (CNN) as an example to explain
the DNN model and the associated computation requirement.
A CNN is composed of three types of layers: convolutional
layer (CONV), pooling layer (POOL) and fully-connected
layer (FC). Fig. 1 shows the basic structures in CNN models.

In a convolution layer, a set of kernels are convoluted with
data of channels from the previous layer (layer /) to generate
data for channels of next layer (layer [+ 1). d; is a cube
of data in a layer. d;[x,y,c| is the value at a point in the
three dimensional data cube. We also denote the size of d in
layer [as (X; xY; xCj),s00 <z < Xy3—-1,0<y <
Ys—1,0< ¢ < Cy—1 and Cy is the number of channels.
(z1,y1,¢;) indicates a point in layer I’s data cube. K is the
kernel composed of a set of weights. K is the kernel used in
the computation to generate data in layer [. A kernel represents
four dimensional data: the size of each dimension is K, K,
Cy and Cy41, where K, and K, are determined by algorithm.
djy1 is computed as:

Cl—1K,—1Ky—1

d,+1[m,y,c] - Z Z Z Kl[k1>ky7clac] Xdl[$+k17y+kyzcl]

=0 kz=0 k,=0

(€]

CONV POOL P

) Cin

Fig. 1. The basic structures in CNN model [12].

815

A convolutional layer is always followed by an element-wise
non-linearity activation function. The common used function
is rectified linear unit (ReLU).

A pooling layer performs the down-sampling along the
spatial dimensions (width and height). A max POOL passes
the maximum element in a pooling window while an average
POOL takes the mean of all the elements in a pooling window.

In fully connected layers, a.k.a. inner product layer (IP), the
values in data tube of / and / + 1 are considered as a vector
(denoted as d; and JE_H). If the previous layer is convolution
or pooling, the size of dy is X; x Yy x Cy. If the previous layer
is also inner product, then the size of d_g is the size of the
output vector from /. (Il+1 is a m x 1 vector, n is determined
by the algorithm. Wj11_; is a weight matrix of size (n x m),
m is the size of J; b is a vector of bias. The vector of [+1
is computed as:

d_2+1 = VV1+1—1J2 +b 2)

Among the three types of layers, convolutional layers con-
tribute the most to computation as matrix-vector computation
and accumulation are the prominent operations in DNNs [2].

2) Data Forward and Backward: The complete execution
of a neural network includes both training (learning) and
testing (inference). In the testing phase, a DNN performs
some specific tasks on input data, such as classification and
recognition. The input data flow through the layers consecu-
tively in forward direction. The weight values of the DNN are
determined by the training process, which involves both data
forwarding and back propagation.

During the training, a training example first goes through
the network from the first layer to the last one, generating
an output. The error between the network output and its cor-
responding expected output will be quantitatively calculated.
The error will then be propagated backwards to the previous
layer and used to calculated the change of weights. The back-
propagation continues till the input layer as such the weights
of every layers are updated. In practice, training examples are
placed in batches. The error is averaged at the end of each
batch, which is then used to update the weights.

The forward computation that are executed in both testing
and training phases can be simply realized through matrix
multiplication of input feature maps and kernels. The training
phase also involves data back propagation and the computation
becomes more complex. For example the weight updates
depend on the previous layer’s errors and the input data of
the earlier forward phase.

3) Generative Adversarial Networks (GANs): GANs and its
variations have recently been extensively deployed in various
applications, for example, recovering corrupted images based
on the surrounding values [15] or generating novel art with
established styles [16]. A very important feature of GAN is
that can be used for unsupervised and semi-supervised learning
to reduce large volume of annotations and labels commonly
required by supervised deep leaning algorithms. In the context
of image processing, most of the GAN variations are (or at
least partially) based on the deep convolutional generative

816

GANs

Discriminator (D) [Loss|

Training
—_—
sample

~.._1(real)
=" 0(fake)

CNN1 CNN2 [P3

sb < o < &b

Generator (G)
Generated

IP1 FCNN2 FCNN3
o < of < of

Noise
¥

Backpropagation

Fig. 2. A GAN system [13].

adversarial networks (DCGAN) [3], [10], [17]-[19]. So we
use DCGAN as an example to introduce the frame of GAN.

As illustrated in Fig. 2, a GAN contains two sub-networks,
namely, Generator (G) and Discriminator (D). Both of them
are typically modeled as DNNs. In GAN-based applications,
G is optimized to produce fake samples to fool D while D is
a binary classifier which is trained to distinguish real samples
from those generated by G. More specific, D acts as the general
CNN which “down-samples” the input to produce classifi-
cation [3]. In contrast, G takes a uniform noise distribution
as input, which is then projected to a small spatial extent
convolutional representation with many feature maps and used
as the start of a series of fractional-strided convolution layers
(FCNN). Different from the traditional convolution operations,
a FCNN inserts zeros into its input feature map and then
performs up-sampling convolution. So the generated output
feature map has a much larger dimension than the input one.
In addition, the training process of GANs usually operates the
batch normalization before the activation layer to improve its
stability.

B. ReRAM Used for PIM

Resistive random access memory (ReRAM) is a type of
non-volatile memory that stores information as device re-
sistance states. Recent studies demonstrated that ReRAM is
a promising candidate to realize area efficient matrix-vector
multiplication in a crossbar architecture [8], [9]. Fig. 3(a,b)
shows an example of mapping a matrix-vector multiplication
to a ReRAM crossbar. The vector is represented by the input
signals on the wordlines (WLs). Each element of the matrix
is programmed into the cell conductance in the crossbar array.
Thus, the current flowing to the end of each bitline (BL) is

g N JJILl §WL” BL, BL, ‘f;iv,-,omn_l% :Z)) pmxm . mxd — ynx

‘ X1 g JL'L §W’-1 R AT Input ————— >
.] ! i

T et

K1, § J||_ EW"”’*"% »41 7

,,,,,, Lot o oy by Gy Ty

Fig. 3. Mapping a matrix-vector multiplication (a) to a ReRAM crossbar
array (b). (c) Mapping large matrix to multiple ReRAM arrays [13].

Design, Automation And Test in Europe (DATE 2018)

{BZL4E4E5TSTT)

(ST oX =T16162)

(b)

) - x=356_ & __
: £ T
WUl e
| £E B
$het)\
ﬁﬁ I\Ia
|| || g L
f— 4; — ' (25&7'3;-1233 '
(49=12544/X)

Fig. 4. (a) A naive scheme and (b) a balanced scheme for data input and kernel mapping [12].

12543 s ~ o
f— 12544 —= & & 'f’
(12544=112*112) &
(a)
Forward
To T1 1

T2 i T
% |-' |“£ @)\

r A!l .h3l
Mz J\S?
Backward (Wi

Tr = Te =

To

(b)

i i i A31 1| A21
: i [A1 |i] a2 |3 a3 |i[EeL |1i— All
A3 i a2z
A31 |1 A21

| a1 i A2 [i] A3 [}[ErrL i Fam 1 LA
|m]i| A2 [ilA%| |r 1] A3 A e i
e e sl |
Th H T2 H Tz H Ty H Ts Ta H Ty Ts Ta H

Fig. 5. (a) The data dependencies of a four-layer neural network. (b) The inter-layer pipeline design. [12]

viewed as the result of the matrix-vector multiplication. For a
large matrix that can not fit in a single array, the input and the
output shall be partitioned and grouped into multiple arrays
as shown in Fig. 3(c). The output of each array is a partial
sum, which is collected horizontally and summed vertically to
generate the final calculation results.

III. RERAM BASED PIM ACCELERATOR

We investigated the ReRAM-based PIM for DNN and GAN
acceleration. The design and optimization to speedup both the
training and testing processes were explored.

A. Accelerator for General Neural Networks

PipeLayer [12] is a ReRAM-based PIM accelerator that
supports complete deep learning applications of general neural
networks. We investigated the data mapping and the inter-layer
pipeline to improve the efficiency of testing and training.

1) Data Mapping: Fig. 4(a) illustrates a naive scheme of
data input and kernel mapping to a ReRAM array. In this
example, the data of layer [, kernels and data of layer /41 have
asize of 114x114x 128, 3x3x 128 x256 and 112x112x 256,
respectively. Each kernel in layer /41 has a size of 3x3x 128 .
The size of an input vector (yellow bar) to the ReRAM array
at one cycle is 1152 x 1 (the bias is neglected for express
clarity). As the input data enter ReRAM array sequentially,
the given example will take 12544 cycles to get all outputs of

Design, Automation And Test in Europe (DATE 2018)

layer [4 1. One kernel is mapped to the bit line, for example,
the blue cuboid is mapped to the blue bar in the array and it is
the same case for the red, green and the rest cuboids, resulting
in 256 bitlines and 1152 wordlines for the ReRAM array.

Fig. 4(b) illustrates a data mapping scheme for performance
and execution efficiency improvement. The 1152 x 256 matrix
is divided into a group of 18 (= 9 x 2) matrices and each
of subgroup maps to a 128 x 128 ReRAM array. The array
outputs are horizontally collected and then vertically added to
get the results. In addition, the weights are duplicated into X
copies and stored in multiple ReRAM subarrays to achieve
higher intra parallelism. If X = 1, the design is equivalent to
the naive scheme. If X = 12544, the results of a layer could be
generated in just one cycle but the hardware cost is excessive.
Essentially, a good trade-off between hardware resource of
ReRAM array and performance requires a carefully chosen
X. Fig. 4 is an example with X = 256.

2) Inter Layer Parallelism: For simplicity, Fig. 5(a) shows
the data dependency during the training of a 3-layer CNN. The
rectangles are ReRAM subarrays that perform the computation
for one layer. The circles are memory subarrays to store
intermediate results transferred between ReRAM subarrays for
different layers. Red dashed lines denote the system states
between two consecutive cycles. Data dependencies exist in
forward and backward computations. Training phase is more

817

complicated than testing phase because it involves data depen-
dencies between outputs from previous layers and the compute
of partial derivatives and errors for weight updates.

In training, the input data are normally processed in batch.
The inputs in the same batch are all processed based on the
same weights at the start of the batch. The weight updates
due to each input are stored and only applied to at the end of
a batch. Therefore, no dependency exists among data inputs
inside a batch. The Pipelayer architecture in Fig. 5(b) was
proposed to support the training pipeline.

Assuming that a neural network has L layers and the batch
size is B. The computation of a batch requires (2L +1)B +1
cycles, in which the forward process takes L x B cycles, the
backward computation takes (L + 1) x B cycles, and each
weight update needs one cycle. For a total number of N inputs,
the total number of training cycles is (2L+1) N+ N/B. For the
pipelined execution, a new input could enter every cycle within
a batch. A new input belonging to the next batch, however,
cannot enter the pipeline until all inputs in the previous batch
are processed and weights are updated. The first weight update
is generated after (2L + 1) cycles. Then there will be (B — 1)
cycles until the end of batch. Finally, one cycle is needed to
update all weights within the batch. The total number of cycles
to process NN inputs with L layers is (N/B)(2L + B + 1).

3) Implementation of PipeLayer: Fig. 6 shows the imple-
mentation of PipeLayer, in which a memory bank is divided
into three regions—morphable subarrays, memory subarrays,
and bank buffer subarrays. The ReRAM-based morphable
subarray can alter its function between memory and computing
modes. A morphable unit behaves the same as a regular
ReRAM subarray in the memory mode and performs matrix-
vector multiplications in the computing mode. Extra peripheral
circuitry are extended to supports activation function. Memory
subarrays are used as buffers to store intermediate results,
which greatly reduces the data movements. Each memory bank
contains a bank control unit, which decodes the incoming
instructions and determines the operation mode of morphable
subarrays.

Here are the details of some key circuit components used
in the hardware implementation. (a) Spike driver converts the

p
ae 1&F I I&F N [
5 o || E o V| L2
1 S subarray | S| subarray J}*|| 2|
Activation Activation —
2 il 1&F [1&F BIFL] .
el 18l g[mom I 2[wmow i 2 H
5 § 4 2| subarray Ol subarray }'|| 2 "
3| |&= - -
== ‘ —
2, 1&F i (I O I
gl g[mom [2] mom i E]
G| | 2| Subarray H{ S| subarray | | Q)
‘Activation Activatio —
de 1&F 5 (i 1&F ™ [L~
i qg) Morp i g Morp : S -
*{ 8| subarray S| subarray || 2
s T e
| »«I Connection @4“‘ d

11 emory ubarray T

Addr_Col

Global 10 Row Buffer

5 nfiguration :
—] Conlroller —
Data H

Fig. 6. The PipeLayer implementation.

818

input to a sequence of spikes. In weight update, it serves
as write driver to tune weights stored in the ReRAM array.
PipeLayer uses a weighted spike coding scheme [9] to further
reduce the area and energy overhead. (b) Integration and
fire circuit (I&F) is a required component of a spike-based
scheme. It integrates input current and generates output spikes.
The output spikes are connected to a counter. Essentially the
analog currents are converted into digital values. (c¢) Activation
function defined in CNN algorithms is implemented in our
design. When morphable subarrays are configured as memory,
it is bypassed. A register is used to keep the maximum
value of a sequence, realizing the max pooling function. (d)
Connection component is used to connect morphable subarrays
and memory subarrays. When a morphable subarray is in
computing mode, it needs to store the produced output into
memory subarray(s) so the output can be used as inputs of the
morphable subarrays for other layers in the following cycle.
(e) Control unit offloads the computation from the host CPU
and orchestrates the data transfers between memory subarrays
and morphable subarrays in training and testing based on the
algorithm configurations (e.g., batch size).

B. Accelerator for Generated Adversarial Networks

ReGAN [13] is a ReRAM-based PIM accelerator to improve
the computational efficiency for GAN training. The details of
the architecture design shall be discussed in this subsection.

1) Mapping GAN to ReRAM Crossbar Arrays: As afore-
mentioned, a GAN contains two different subnetworks, mak-
ing the hardware implementation more challenging. Compared
to the general neural networks discussed in Section III-A,
the generator (G) employs a different convolution, namely,
fractional-strided convolution layers (FCNN), which is used to
project the input feature maps to a higher-dimensional space.
However, as illustrated in Fig. 7(a), the computation of a
FCNN during data forwarding process can be taken the same
way as a traditional convolution [20] by first adding zeros
between each input in the feature maps with zero padding and
then computing the convolution between the extended input
feature maps and the kernel. Fig. 7(b) describes the error
propagation backwards in FCNN, which indeed is a typical
convolution with strides.

Input feature maps kernel Output feature maps

Stride s=1/2

v@

1

—_—
Adding 1 zero between

W=4 " each input; padding p=1

Ih

(a)

Output error maps (51) Kernel rotate 180°

4 Stride s=2

Input error maps (511)

- o

conv
D

(b)

Fig. 7. Visualization of a single fractional-strided convolution layer during
(a) data forwarding and (b) error backpropagation processes [13].

Design, Automation And Test in Europe (DATE 2018)

Real TO T T2 3 4

sample :E : i ;

%e‘ FCNN2 FCNN3 0 2| NNt oz [
£ = — —

° ! | ! Generated | i !

T1 T2 T4 5 T4

13| sample

Generator (G) Discriminator (D)

7 T6 T5

1 2 3 @
W vwyf Wy
Q| vh¢ vb§

T10 T9 T8

Fig. 8. The training pipeline in GAN [13].

2) Training Pipeline for Efficiency: The training pipeline in
Fig. 8 is formed in ReGAN architecture to increase the system
throughput of the training process.

Training Discriminator (D). D is trained on the training
samples as well as the faked samples generated by G. (a) When
training on the training samples, the dataflow is illustrated by
@@ in Fig. 8. A real training sample is fed into D and flows
through layers of D consecutively in forward direction. A loss
function is then computed at T4 based on accurate labels (1’
for training sample). Finally, the error and partial derivatives
propagate all the way back to the first layer of D and are
stored. (b) ©"@ of Fig. 8 depicts the dataflow of training D
on generated samples. In this case, G is concatenated with
D to form a large network. G maps a random vector to a
sample which has the same dimension with real samples. This
sample follows the layers in D and a loss function is performed
with the label (‘0° for generated sample). Similarly, the partial
derivatives propagate back to the first layer of D at T10.
Therefore, in T11, the derivatives stored at the end of stages
(a) and(b) are summed accordingly and then used to update the
weights of D. During this process, G is used but not updated.

Training Generator (G). The data flow of training G follows
©@ in Fig. 8. The procedure is very similar to training D
with generated samples depicted by @ @, except: (a) The
error is computed with inaccurate labels (‘1’ for generated
sample) in T7; (b) The error propagates all the way back to
the first layer of G; and (c) The weights of G are updated in
T14 while D is fixed.

Assuming D has Lp layers and G has Lg layers. To update
D, training D on real samples takes 2Lp + 1 + B — 1 cycles
as a new batch has to wait B —1 cycles for the previous batch
to drain from the pipeline; then Lg +2Lp + 1+ B — 1 cycles
to train D on generated samples; finally, it takes one cycle to
update D. Similarly, it takes 2Lg + 2Lp + B + 1 cycles to
train G. Without the training pipeline, the D and G training
processes for a batch of data consume (4L p+ La+2)B cycles
and (2Lp + 2Lp + 1)B cycles, respectively.

3) Pipeline Optimization: Spatial parallelism (SP) and
computation sharing (CS) were proposed in ReGAN to further
improve the pipeline performance. As D remains unchanged in
@A and O®™O, we proposed to duplicate D into two copies.
So the training phases @ @ and ©~@ work in parallel,
realizing the spatial parallelism. The latency of @@ is
hidden so the effective latency is reduced to the one of @™ @.

Fig. 9 highlights the difference between training phases
OO and O @. They share the same forward path but have
different loss functions, and hence different back-propagation

Design, Automation And Test in Europe (DATE 2018)

T0 T2

T1 13 T4
Q)‘ IP1 ’—ﬁmnmzi—)‘ FCNN3‘—ﬁ CNN1 ‘—ﬁ CNN2 1—)‘ 1P3
T

15

noise

10 T9 T8

o]zl 7]/
ywe vwp vwy
Vby vb? vbY

8¢ 5§ 5§ 57 59 57
O vws |« rwf|e—| TWS | <— VWP Ie—| ywp |€—| VWP
7b§ | VbS Vb§ Vb vbD vb?

113 T12 T T10 To 8

Fig. 9. Improved pipeline by computation sharing [13].

data paths. Computation sharing attempts to co-train D and G
by doubling the memory storage for intermediate computation
(i.e., the error and partial derivatives). As such, the training
of D and G share the forward path TO-T6. At cycle T7, two
backward branches are executed in parallel. The weights of G
will be updated at T14 and D can be updated at T11.

4) Hardware Implementation: Fig. 10 shows the overview
of ReGAN implementation. The design partitions the ReRAM
main memory into three regions: memory (Mem) subarrays,
Sfull function (FF) subarrays, and Buffer subarrays. Mem
subarrays are the same as conventional memory subarrays
for data storage. FF subarrays can be configured in both
computation and storage modes. In computation mode, FF
subarrays execute matrix-vector multiplications; in memory
mode, they are used as Mem subarrays for data storage. Buffer
subarrays are used to store the intermediate results between
layers (e.g., generated images, data required for compute
partial derivatives, etc.). They are connected to FF subarrays
through private data ports, so that buffer accesses do not
consume the bandwidth of Mem subarrays.

FF subarrays are implemented to support the batch normal-
ization (BN), activation function, and fully connected (FC)
layers in ReRAM arrays. First, additional components are
included in wordline drivers to support virtual batch normal-
ization (VBN) (marked as light blue in Fig. 10()), in which
each example is normalized based on the statistics collected
on a reference batch [19]. The reference batch is chosen once
and fixed at the start of training. Sub and shift are used to do
the minus and division in BN layers, and the divisor is 2".

To realize the activation function, the results from both the

IBank

T
o — -

t
"
[=
Connection W)

Buffer Subarray J
Global Row Buffer

WETTY]

ELEqNS

==
f=
[s

BNEqns 14

Global Row Decoder

(

Fig. 10. The ReGAN implementation [13].

819

TABLE I
COMPARISON OF RERAM-BASED ACCELERATORS

Accelerator Architecture Optimization Implementation Speedup | Energy Saving
PipeLayer [12] | Data mapping; Inter-layer parallelism Convolution; activation; pooling 42.45x 7.17x
ReGAN [13] FCNN computation; D&G co-training; SP&CS | Convolution; activation; pooling; BN 240 x 94 %

positive subarray and negative subarray are first merged by
the subtractor, and then sent to the configurable look-up table
(LUT), as depicted in Fig. 10(®).

FC layer in DCGAN is the last layer in D and is the first
layer in G (see in Fig. 2). The last layer of D is the flattened
version of previous CNN layer and does not require extra
computation. ReGAN maps the first layer of G to ReRAM
arrays to implement the matrix multiplication.

C. Evaluation of ReRAM based Accelerators

Table I summarizes the architecture design and optimiza-
tions in PipeLayer and ReGAN. Both evaluations were com-
pared to the implementation on the state-of-art GPU platform,
GTX 1080. PipeLayer used the databases MNIST [21] and
ImageNet [22] as the benchmarks. ReGAN selected the fol-
lowing datasets to obtain enough usable data: MNIST [21],
cifar-10 [23], celebA [24] and LSUN [25]. Compared to
the GPU platform, on average, PipeLayer achieves 42.45x
speedup and 7.17x energy saving. Due to the high complexity
of GAN system, ReGAN obtains even higher benefit—240x
improvement in performance and 94 x energy reduction.

IV. CONCLUSION

Emerging non-volatile resistive random access memory
(ReRAM) is capable of computation and storage simultane-
ously, demonstrating great potential in processing-in-memory
(PIM). In this paper, we discuss novel ReRAM-based accel-
erator architecture for deep learning. The underlying circuit
implementation and architectural optimization are extensively
explored to improve the computing efficiency in training and
inference procedures. Our previous exploration shows that
the in-situ computation property of ReRAM crossbar arrays
enables a broader design space for deep learning acceleration
and can be further leveraged to construct the future computing
platforms.

ACKNOWLEDGMENT

This work was supported in part by NSF 1725456, 1744082,
1253424 and DOE DE-SC0018064. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of grant agencies or their contractors.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097—
1105.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient process-
ing of deep neural networks: A tutorial and survey,” arXiv preprint
arXiv:1703.09039, 2017.

J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85-117, 2015.

(2]

820

[4] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee, “An optimized
3d-stacked memory architecture by exploiting excessive, high-density
tsv bandwidth,” in HPCA. IEEE, 2010, pp. 1-12.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in ISCA, 2015, pp.
105-117.

G. H. Loh, “3d-stacked memory architectures for multi-core processors,”
in ISCA. 1IEEE, 2008, pp. 453-464.

H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal-oxide rram,” Proc. of the IEEE, vol.
100, no. 6, pp. 1951-1970, 2012.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: a novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in HPCA. 1EEE Press,
2016, pp. 27-39.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in ISCA, 2016, pp. 14-26.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[11] I. Gulrajani, FE Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” arXiv preprint
arXiv:1704.00028, 2017.

L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in HPCA. 1EEE, 2017, pp. 541—
552.

F. Chen, L. Song, and Y. Chen, “Regan: A pipelined reram-based
accelerator for generative adversarial network,” in ASPDAC, 2018.

L. Song et al., “Graphr: Accelerating graph processing using reram,” in
HPCA, 2018.

1. Raymond Yeh, ef al., “Semantic image inpainting with perceptual and
contextual losses,” arXiv preprint arXiv:1607.07539, 2016.

1. Ahmed Elgammal, et al., “Can: Creative adversarial networks, generat-
ing “art” by learning about styles and deviating from style and deviating
from style norms,” arXiv preprint arXiv:1706.07068, 2017.

R. Yeh, C. Chen, T. Y. Lim, M. Hasegawa-Johnson, and M. N. Do,
“Semantic image inpainting with perceptual and contextual losses,”
arXiv preprint arXiv:1607.07539, 2016.

A. Elgammal, B. Liu, M. Elhoseiny, and M. Mazzone, “Can: Creative
adversarial networks, generating” art” by learning about styles and
deviating from style norms,” arXiv preprint arXiv:1706.07068, 2017.
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in Neural
Information Processing Systems, 2016, pp. 2234-2242.

V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint arXiv:1603.07285, 2016.

Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

O. Russakovsky er al., “ImageNet Large Scale Visual Recognition
Challenge,” IJCV, vol. 115, no. 3, pp. 211-252, 2015.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 3730-3738.

F Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning with
humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.

(3]

[6]
(7]

(8]

(91

[10]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]

Design, Automation And Test in Europe (DATE 2018)

