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ABSTRACT
Graph processing recently received intensive interests in light
of a wide range of needs to understand relationships. It is
well-known for the poor locality and high memory bandwidth
requirement. In conventional architectures, they incur a sig-
nificant amount of data movements and energy consumption
which motivates several hardware graph processing accel-
erators. The current graph processing accelerators rely on
memory access optimizations or placing computation logics
close to memory. Distinct from all existing approaches, we
leverage an emerging memory technology to accelerate graph
processing with analog computation.

This paper presents GRAPHR, the first ReRAM-based
graph processing accelerator. GRAPHR follows the prin-
ciple of near-data processing and explores the opportunity
of performing massive parallel analog operations with low
hardware and energy cost. The analog computation is suit-
able for graph processing because: 1) The algorithms are
iterative and could inherently tolerate the imprecision; 2)
Both probability calculation (e.g., PageRank and Collabora-
tive Filtering) and typical graph algorithms involving integers
(e.g., BFS/SSSP) are resilient to errors. The key insight of
GRAPHR is that if a vertex program of a graph algorithm can
be expressed in sparse matrix vector multiplication (SpMV),
it can be efficiently performed by ReRAM crossbar. We show
that this assumption is generally true for a large set of graph
algorithms.

GRAPHR is a novel accelerator architecture consisting of
two components: memory ReRAM and graph engine (GE).
The core graph computations are performed in sparse matrix
format in GEs (ReRAM crossbars). The vector/matrix-based
graph computation is not new, but ReRAM offers the unique
opportunity to realize the massive parallelism with unprece-
dented energy efficiency and low hardware cost. With small
subgraphs processed by GEs, the gain of performing paral-
lel operations overshadows the wastes due to sparsity. The
experiment results show that GRAPHR achieves a 16.01×
(up to 132.67×) speedup and a 33.82× energy saving on
geometric mean compared to a CPU baseline system. Com-
pared to GPU, GRAPHR achieves 1.69× to 2.19× speedup
and consumes 4.77× to 8.91× less energy. GRAPHR gains
a speedup of 1.16× to 4.12×, and is 3.67× to 10.96× more
energy efficiency compared to PIM-based architecture.

1. INTRODUCTION
With the explosion of data collected from massive sources,

graph processing received intensive interests due to the in-
creasing needs to understand relationships. It has been ap-
plied in many important domains including cyber security [59],
social media [3], PageRank citation ranking [47], natural
language processing [9, 16, 40], system biology [12, 14],

recommendation systems [33, 54, 62] and machine learn-
ing [20, 42, 61].

There are several ways to perform graph processing. The
distributed systems [10, 22, 30, 36, 57, 67] leverage the am-
ple computing resources to process large graphs. However,
they inherently suffer from synchronization and fault toler-
ance overhead [27, 50, 69] and load imbalance [63]. Alterna-
tively, disk-based single-machine graph processing systems
[28, 52, 58, 60, 70] (a.k.a. out-of-core systems) can largely
eliminate all the challenges of distributed frameworks. The
key principle of such systems is to keep only a small por-
tion of active graph data in memory and spill the remainder
to disks. The third approach is the in-memory graph pro-
cessing. The potential of in-memory data processing has
been exemplified in a number of successful projects, includ-
ing RAMCloud [45], Pregel [39], GraphLab [37], Oracle
TimesTen [29], and SAP HANA [19].

It is well-known for the poor locality because of the ran-
dom accesses in traversing the neighborhood vertices, and
high memory bandwidth requirement, because the computa-
tions on data accesses from memory are typically simple. In
addition, graph operations lead to memory bandwidth waste
because they only use a small portion of a cache block. In
conventional architecture, graph processing incurs signifi-
cant amount of data movements and energy consumption.
To overcome these challenges, several hardware accelera-
tors [4,23,46] are proposed to execute graph processing more
efficiently with specialized architecture. In the following, we
retrospect the graph computation and the current solutions to
motivate our approach.

A graph can be naturally represented as an adjacency ma-
trix and most graph algorithms can be implemented by some
form of matrix-vector multiplications. However, due to the
sparsity of graph, graph data are not stored in compressed
sparse matrix representations, instead of matrix form. Graph
processing based on sparse data representation involves: 1)
bringing data for computation from memory based on com-
pressed representation; 2) performing the computations on
the loaded data. Due to the sparsity, the data accesses in
1) may be random and irregular. In essence, 2) performs
simple computations that are part of the matrix-vector multi-
plications but only on non-zero operands. As a result, each
computing core experiences alternative long random memory
access latency and short computations. This leads to the well-
known challenges in graph processing and other issues such
as memory bandwidth waste [23].

The current graph processing accelerators mainly opti-
mize the memory accesses. Specifically, Graphicionado [23]
reduces memory access latency and improves throughput
by replacing random accesses to conventional memory hi-
erarchy with sequential accesses to scratchpad memory op-
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timization and pipelining. Ozdal et al. [46] improves the
performance and energy efficiency by latency tolerance and
hardware supports for dependence tracking and consistency.
TESSERACT [4] applies the principle of near-data processing
by placing compute logics (e.g., in-order cores) close to mem-
ory to claim the high internal bandwidth of Hybrid Memory
Cube (HMC) [48]. However, all architectures do little change
on compute unit, — the simple computations are performed
one at a time by instructions or specialized units.

To perform matrix-vector multiplications, two approaches
exist that reflect two ends of the spectrum: 1) the dense-
matrix-based methods incur regular memory accesses and
perform computations with every element in matrix/vector; 2)
the sparse-matrix-based methods incur random memory ac-
cesses but only perform computations on non-zero operands.
In this paper, we adopt an approach that can be considered as
the mid-point between these two ends that could potentially
achieve better performance and energy efficiency. Specifi-
cally, we propose to perform sparse matrix-vector multipli-
cations on data blocks of compressed representation. The
benefit is two-fold. First, the computation and data movement
ratio is increased. It means that the cost of bringing data could
be naturally hidden by the larger amount of computations on
a block of data. Second, inside this data block, computations
could be performed in parallel. The downside is that certain
hardware and energy will be wasted in performing useless
multiplications with zero.

This approach could in principle be applied to the current
GPUs or accelerators, but with the same amount of com-
pute resources (e.g., SM in GPUs), it is unclear whether the
gain would outweigh the inefficiency caused by the sparsity.
Clearly, a key factor is the cost of compute logic, — with a
low-cost mechanism to implement matrix-vector multiplica-
tions, the proposed approach is likely to be beneficial.

In this paper, we demonstrate that the non-volatile memory,
metal-oxide resistive random access memory (ReRAM) [65]
could serve as the essential hardware building block to per-
form matrix-vector multiplications in graph processing. Re-
cent works [13,55,56] demonstrate the promising applications
of efficient in-situ matrix-vector multiplication of ReRAM
on neural network acceleration. The analog computation is
suitable for graph processing because: 1) The iterative al-
gorithms could tolerate the imprecise values by nature; 2)
Both probability calculation (e.g., PageRank and Collabora-
tive Filtering) and typical graph algorithms involving integers
(e.g., BFS/SSSP) are resilient to errors. Due to the low-cost
and energy efficiency, matrix-based computation in ReRAM
would not incur significant hardware waste due to sparsity.
Such waste is only incurred inside the ReRAM crossbar with
moderate size (e.g., 8 × 8). Moreover, the sparsity is not
completely lost, — if a small subgraph contains all zeros,
it does not need to be processed. As a result, the architec-
ture will mostly enjoy the benefits of more parallelism in
computation and higher ratio between computation and data
movements. Performing computation in ReRAM also en-
ables near data processing with reduced data movements: the
data do not need to go through the memory hierarchy like in
the conventional architecture or some accelerators.

Applying ReRAM in graph processing poses a few chal-
lenges: 1) Data representation. Graph is stored in com-

pressed format, not in adjacency matrix, to perform in-memory
computation, data needs to be converted to matrix format. 2)
Large graph. The real-world large graphs may not fit in
memory. 3) Execution model. The order of subgraph process-
ing needs to be carefully determined because it affects the
hardware cost and correctness. 4) Algorithm mapping. It is
important to map various graph algorithms to ReRAM with
good parallelism.

This paper proposes, GRAPHR, a novel ReRAM-based
accelerator for graph processing. It consists of two key com-
ponents: memory ReRAM and graph engine (GE), which
are both based on ReRAM but with different functionality.
The memory ReRAM stores the graph data in compressed
sparse representation. GEs (ReRAM crossbars) perform the
efficient matrix-vector multiplications on the sparse matrix
representation. We propose a novel streaming-apply model
and the corresponding preprocessing algorithm to ensure cor-
rect processing order. We propose two algorithm mapping
patterns, parallel MAC and parallel add-op, to achieve good
parallelism for different type of algorithms. GRAPHR can be
used as a drop-in accelerator for out-of-core graph processing
systems.

In the evaluation, we compare GRAPHR with a software
framework [70] on a high-end CPU-based platform ,GPU and
PIM [4] implementations. The experiment results show that
GRAPHR achieves a 16.01× (up to 132.67×) speedup and a
33.82× energy saving on geometric mean compared to the
CPU baseline. Compared to GPU, GRAPHR achieves 1.69×
to 2.19× speedup and consumes 4.77× to 8.91× less energy.
GRAPHR gains a speedup of 1.16× to 4.12×, and is 3.67×
to 10.96× more energy efficiency compared to PIM-based
architecture.

This paper is organized as follows. Section 2 introduces
the background of graph processing, ReRAM and current
hardware graph processing accelerators. Section 3 describes
GRAPHR architecture. Section 4 presents processing pat-
terns for various graph algorithms. Section 5 presents the
evaluation methodology and experiment results. Section 6
concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 Graph Processing

…

…

Edges:

Vertices:

(b) Access pattern in vertex-
centric program

…
(a) Vertex and edge accesses in 

graph processing

(random access)

(global random access)

(local sequential access)

Figure 1: Graph Processing in Vertex-Centric Program
Graph algorithms traverse vertices and edges to discover

interesting graph properties based on relationship. A graph
could be naturally considered as an adjacency matrix, where
the rows correspond to the vertices and the matrix elements
represent the edges. Most graph algorithms can be mapped
to matrix operations. However, in reality, the graph is sparse,
which means that there would be many zeros in the adjacency
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Figure 2: (a) Edge-Centric Processing and (b) Dual Sliding Windows

matrix. This property incurs the waste of both storage and
compute resources. Therefore, the current graph processing
systems use the format that is suitable for sparse graph data.
Based on such data structures, the graph processing can be
essentially considered as implementing the matrix operations
on the sparse matrix representation. In this case, individual
(and simple) operations in the whole matrix computation are
performed by the compute units (e.g., a core in CPU or an SM
in GPU) after data is fetched. In the following, we elaborate
the challenge of random accesses in various graph processing
approaches. More details on sparse graph data representation
will be discussed in Section 2.4.

To provide an easy programming interface, the vertex-
centric program featuring “Think Like a Vertex (TLAV)” [39]
was proposed as a natural and intuitive way for human brain to
think of the graph problems. Figure 1 (a) shows an example,
an algorithm could first access and process the red vertex in
the center with all its neighbors through the red edges. Then
it can move to one of the neighbors, the blue vertex on the
top, accessing the vertex and the neighbors through the blue
edges. After that, the algorithm can access another vertex
(the green one on the left), which is one of the neighbors of
the blue vertex.

In graph processing, the vertex accesses lead to random
accesses because the neighbor vertices are not stored continu-
ously. For edges, they incur local sequential access because
the edges related to a vertex are stored continuously but
global random accesses because algorithm needs to access
the edges of different vertices. The concepts are shown in
Figure 1 (b). The random accesses lead to long memory la-
tency and, more importantly, the bandwidth waste, because
only a small portion of data are accessed in a memory block.
In a conventional hierarchical memory system, this leads to
the significant data movements.

Clearly, reducing random accesses is critical to improve the
performance of graph processing, this is particularly crucial
for the disk-based single machine graph processing systems
(a.k.a out-of-core systems [28, 52, 60, 70]), because the ran-
dom disk I/O operations are much more detrimental to the
performance. In this context, the memory is considered small
and fast (therefore can afford random accesses) while disk is
considered large and slow (therefore should be only accessed
sequentially). The edge-centric model in X-Stream [52] is a
notable solution for reducing random accesses. Specifically,
the edges of a graph partition are stored and accessed sequen-
tially in disk and the related vertices are stored and accessed
randomly in memory. Such setting is feasible because typi-
cally the vertex data are much smaller than edge data. During
process, X-Stream generates Updates in scatter phase, which

incurs sequential writes, and then, applies these Updates to
vertices in gather phase, which incurs sequential reads. The
concepts are shown in Figure 2 (a).

A notable drawback of X-stream is that the number of
updates may be as large as that of edges, GridGraph [70]
proposed optimizations to further reduce the storage cost
and data movements due to updates. The solution is based
on the dual sliding windows (shown in Figure 2 (b)), which
partitions edges into blocks and vertices into chunks. On
visiting the edge blocks, the source vertex chunk (orange) is
accessed and updates are directly applied to the destination
vertex chunk (blue). This requires no temporary update stor-
age as in X-Stream. Edge blocks can be accessed in source
oriented order (shown in Figure 2 (b)) or destination oriented
order. Note that the dual sliding window mechanism is based
on edge-centric model.

2.2 ReRAM Basics
The resistive random access memory (ReRAM) [65] is an

emerging non-volatile memory with appealing properties of
high density, fast read access and low leakage power. ReRAM
has been considered as a promising candidate for future mem-
ory architecture. A primary application of ReRAM is to be
used as an alternate for main memory [18, 34, 68]. Figure 3
(a) demonstrates the metal-insulator-metal (MIM) structure
of an ReRAM cell. It has a top electrode, a bottom electrode
and a metal-oxide layer sandwiched between electrodes. By
applying an external voltage across it, an ReRAM cell can be
switched between a high resistance state (HRS or OFF-state)
and a low resistance state (LRS or On-state), which are used
to represent the logical "0" and "1", respectively, as shown
in Figure 3 (b). The endurance of ReRAM could be up to
1012 [24, 31], alleviating the lifetime concern faced by other
non-volatile memory, such as PCM [49].
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Figure 3: Basics of ReRAM
The ReRAM features the capability to perform in-situ

matrix-vector multiplication [25, 26] as shown in Figure 3
(c), which utilizes the property of bitline current summation
in ReRAM crossbars to enable computing with high per-
formance and low energy cost. While conventional CMOS
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based system showed success on neural network accelera-
tion [6,11,38], recent works [13,35,55,56] demonstrated that
ReRAM-based architectures offer significant performance
and energy benefits for the computation and memory inten-
sive neural network computing.

2.3 Graph Processing Accelerators
Due to the wide applications of graph processing and its

challenges, several hardware accelerators were recently pro-
posed. Ahn et al. [4] proposes TESSERACT, the first PIM-
based graph processing architecture. It defines a generic
communication interface to map graph processing to HMC.
At any time, each core can Put a remote memory access
and get interrupted to receive and execute the Put calls from
other cores. Ozdal et al. [46] introduces an accelerator for
asynchronous graph processing, which features efficient hard-
ware scheduling and dependence tracking. To use the system,
programmers have to understand its architecture and modify
existing code. Graphicionado [23] is a customized graph
accelerator designed for high performance and energy effi-
ciency based on off-chip DRAM and on-chip eDRAM. It
modifies the graph data structure and data path to optimize
graph access patterns and designs specialized memory sub-
system for higher bandwidth. These accelerators all optimize
the memory accesses, reducing the latency or better tolerating
the random access latency. [5] and [43] focused on the data
coherence in memory which can be accessed by instructions
from host CPU and the accelerator, and [43] also considered
atomic operations.

2.4 Graph Representation
As discussed in Section 1, supporting the matrix-vector

multiplications on small data blocks could increase the ratio
between computation and data movement and reduce the pres-
sure on memory system. With its matrix-vector multiplication
capability, ReRAM could naturally perform the low-cost par-
allel dense operations on the sparse sub-matrices (subgraphs),
enjoying the benefits without increasing hardware and energy
cost.

The key insight of GRAPHR is to still store the majority of
the graph data in the compressed sparse matrix representation
and process the subgraphs in uncompressed sparse matrix
representation. In the following, we review several commonly
used sparse representations.
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Figure 4: (a) Sparse Matrix and Its Compressed Rep-
resentations in: (b) Compressed Sparse Column (CSC),
(c) Compressed Sparse Row (CSR), (d) Coordinate List
(COO)

The three major compressed sparse representations are
compressed sparse column (CSC), compressed sparse row
(CSR) and coordinate list (COO). They are illustrated in
Figure 4. In the CSC representation, non-zeros are stored
in column major order as (row index, value) pairs in a list,

the number of entries in the list is the number of non-zeros.
Another list of column starting pointers indicate the starting
index of a row in the (row,val) list. For example, in Figure 4
(a), 4 in the colptr indicates that the 4-th entry in (row,val)
list, i.e., (0,8) is the starting of column 3. The number of
entries in colptr is the number of columns + 1. Compressed
sparse row (CSR) is similar to CSC, with row and column
alternated. For coordinate list (COO), each entry is a tuple of
(row index, column index, value) of the nonzeros.
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Figure 5: (a) A Directed Graph and Its Representations
in (b) Adjacency Matrix and (c) Coordinate List

In GRAPHR, we assume coordinate list (COO) represen-
tation to store a graph. Given a graph in Figure 5 1 (a), its
(sparse) adjacency matrix representation and COO represen-
tation (partitioned into four 4 × 4 subgraphs) are shown in
Figure 5(b) and (c), respectively. In this example, the co-
ordinate list saves 61% storing space, compared with the
adjacency matrix representation. For real-world graphs with
high sparsity, the saving is even high: the coordinate list can
only take 0.2% of space for WikiVote [32] compared to an
adjacency matrix.

3. GRAPHR ARCHITECTURE

3.1 Sparse Matrix Vector Multiplication (SpMV)
and Graph Processing

1 //Phase 1: compute edge values
2 for each edge E(V,U) from active vertex V do
3 E.value = processEdge(E.weight,V.prop)
4 end for
5

6 //Phase 2: reduce and apply
7 for each edge E(U,V) to vertex V do
8 V.prop = reduce(V.prop,E.value)
9 end for

Figure 6: Vertex Programming Model

Figure 6 shows the general vertex programming model for
graph processing. It follows the principle of “Think Like
The Vertex” [39]. In each iteration, the computation can be
divided into two phases. In the first phase, each edge is pro-
cessed with processEdge function, based on edge weight
and active source vertex V ’s property (V.prop), it computes
a value for each edge. In the second phase, each vertex re-
duces values of all incoming edges (E.value) and generates
a property value, which is applied to the vertex as its updated
property.

1As shown in Section 2.4, each entry in a coordinate list should be
a three-element tuple of {Source ID, Destination ID, Edge Weight}.
To simplify the example, we use an unweighted graph, so a two-
element tuple of {Source ID, Destination ID} is sufficient to repre-
sent one edge.
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Figure 7: GRAPHR Key Insight: Supporting Graph Processing with ReRAM Crossbar

Figure 7 (a) shows vertex program in graph view. V15, V7,
V1 and V2 each executes a processEdge function, the results
are stored in corresponding edges to V4. After all edges are
processed, V4 executes reduce function to generate the new
property and update itself. In graph processing, the operation
in processEdge function is multiplication, to generate the
new property for each vertex, what essentially needed is the
Multiply-Accumulate (MAC) operation. Moreover, the vertex
program of each vertex is equivalent to a sparse matrix vector
multiplication (SpMV) shown in Figure 7 (b). Assume A
is the sparse adjacency matrix, and x is a vector containing
V.prop of all vertices, the vertex program of all vertices can
be computed in parallel in matrix view as ATx. As shown in
Figure 3 (c), ReRAM crossbar could perform matrix-vector
multiplication efficiently. Therefore, as long as a vertex pro-
gram can be expressed in SpMV form, it can be accelerated
by our approach. We will discuss in Section 4 on the different
patterns to express algorithms in SpMV.

From Figure 7 (b), we see that the size of the matrix and
vector are |V | × |V | and |V |, respectively, where V is the
number of vertices in the graph. In ideal case, if we are
given a ReRAM crossbar (CB) of size |V |× |V |, the vertex
program of each vertex can be executed in parallel and the
new value (i.e., V.prop in Figure 6) can be computed in
one cycle. More importantly, the memory to store AT can
directly perform such in-memory computation without data
movement. Unfortunately, this is unrealistic, the size of CB
is quite limited (e.g., 4×4 or 8×8), to realize this idea, we
need to use Graph Engines (GEs) composed of small CBs to
process subgraphs in certain manner. This is the ultimate
design goal of GRAPHR architecture. We face several key
problems. First, as discussed in Section 2.4, graph is stored
in compressed format, not in adjacency matrix, to perform
in-memory computation, data needs to be converted to matrix
format. Second, the real-world large graphs may not fit in
memory. Third, the order of subgraph processing needs to be
carefully determined, because this affects the hardware cost
to buffer the temporary results for reduction.

To solve these problems, Figure 7 (d) shows the high level
processing procedure. The GRAPHR architecture has both
memory and compute module, each time, a block of a large
graph is loaded into GRAPHR’s memory module (in blue)
in compressed sparse representation. If the memory mod-
ule can fit the whole graph, then there is only one block,
otherwise, a graph is partitioned into several blocks. Inside
GRAPHR, a number of GEs (in orange), each of which is
composed of a number of CBs, “scan” and process (similar to

a sliding window) subgraphs in streaming-apply model (Sec-
tion 3.3). To enable in-memory computation, graph data are
converted to matrix format by a controller. Such conversion
is straightforward with preprocessed edge list (Section 12).
The intermediate results of subgraphs are stored in buffers
and simple computation logics are used to perform reduction.

GRAPHR can be used in two settings: 1) multi-node: one
can connect different GRAPHR nodes and connect them to-
gether to process large graphs. In this case, each block is
processed by a GRAPHR node. Data movements happen
between GRAPHR nodes. 2) out-of-core: one can use one
GRAPHR node as an in-memory graph processing accelera-
tor to avoid using multiple threads and moving data through
memory hierarchy. In this case, all blocks are processed
consecutively by a single GRAPHR node. Data movements
happen between disk and GRAPHR node. In this paper, we
assume out-of-core setting, so we do not consider communi-
cation between nodes and its supports, we leave this as future
work and extension. Next, we present the overall GRAPHR
architecture and its workflow.

3.2 GraphR Architecture
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Figure 8: GRAPHR Architecture

Figure 8 shows the architecture of one GRAPHR node.
GRAPHR is a ReRAM-based memory module that performs
efficient near data parallel graph processing. It contains two
key components: memory ReRAM and graph engine (GE).
Memory ReRAM stores graph data in original compressed
sparse representation. GEs perform efficient matrix-vector
multiplications on matrix representation. A GE contains a
number of ReRAM crossbars (CBs), Drivers (DRVs), Sam-
ple and Hold (S/H) components placed in mesh, they are
connected with Analog to Digital Converter (ADC), Shift
and Add units (S/A) and simple algorithmic and logic units
(sALU). The input and output register (RegI/RegO) are used to
cache data flow. We discuss the detail of several components
as follows.
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Driver (DRV) It is used to 1) load new edge data to
ReRAM crossbars for processing; and 2) input data into
ReRAM crossbars for matrix-vector multiplication.

Sample and Hold (S/H) It is used to sample analog values
and hold them before converting to a digital form.

Analog to Digital Converter (ADC) It converts analog
values to digital format. Because ADCs have relatively higher
area and power consumption, ADCs are not connected to ev-
ery bitlines of ReRAM crossbars in a GE but shared between
those bitlines. If the GE cycle is 64ns, we can have one ADC
working at 1.0GSps to convert all data from eight 8-bitline
crossbars within one GE.

sALU It is a simple customized algorithmic and logic
unit. sALU performs operations that cannot be efficiently
performed by ReRAM crossbars, such as comparison. The
actual operation performed by sALU depends on algorithm
and can be configured. We will show more details when we
discuss algorithms in Section 4.

Data Format It is not practical for ReRAM cells to support
a high resolution. Recent work [26] reported 5-bit resolution
on ReRAM programing. To alleviate the pressure of diver,
we conservatively assume the 4-bit ReRAM cell. To support
higher computing resolution, e.g., 16 bit, the Shift and Add
(S/A) unit is employed. A 16-bit fixed point number M can
be represented as M = [M3,M2,M1,M0], where each segment
Mi is a 4-bit number. We can shift and add results from four
4-bit-resolution ReRAM crossbars, i.e. D3 � 12+D2 �
8+D1 � 4+D0 to get a 16-bit result.

When sALU and S/A are bypassed, a graph engine could
be simply considered as a memory ReRAM mat. A simi-
lar scheme of reusing ReRAM crossbars for computing and
storing is employed in [13].

The I/O interface is used to load graph data and instruc-
tions into memory ReRAM and controller, respectively. In
GRAPHR, controller is the software/hardware interface that
could execute simple instructions to: 1) coordinate graph
data movements between memory ReRAM and GEs based
on streaming-apply execution model; 2) convert edges in pre-
processed coordinate list (assumed in this paper but can work
with other representations as well) in memory ReRAM to
sparse matrix format in GEs; 3) perform convergence check.

Graph in 
coordinate list 
format (COO)

Preprocessing
(Section 3.4)

C N G B

Ordered edge 
list (COO) on 

disk

GraphR

Memory 
ReRAM

GEs

Load Block(i)
(sequential disk I/O)

Steaming-apply (Section 3.3) 
subgraphs  (sequential access)

Controller
in GraphR

Software
C: CB size
N: # of CB in a GE
G: # of GE in a GraphR node
B: block size (# of vertices)

Figure 9: Workflow of GRAPHR in Out-Of-Core Setting

Figure 9 shows the workflow of GRAPHR in an out-of-core
setting. GRAPHR node can be used as a drop-in in-memory
graph processing accelerator. The loading of each block is
performed in software by an out-of-core graph processing
framework (e.g., GridGraph [70]). The integration is easy be-
cause it already contains the codes to load block from disk to

1 while(true)
2 load edges for next subgraph into GEs;
3 process (processEdge) in GE;
4 reduce by sALU;
5 if(check_convergence())
6 break;
7 }

Figure 10: Controller Operations

DRAM, we just need to redirect data to GRAPHR node. Since
edge list is preprocessed in certain order, loading each block
only involves sequential disk I/O. Inside GRAPHR node, the
data is initial loaded into memory ReRAM, the controller
manages the data movements between GEs in streaming-
apply manner. Edge list preprocessing for GRAPHR needs
to be carefully designed and it is based on the architectural
parameters. Figure 10 shows the operations performed by
controller.

3.3 Streaming-Apply Execution Model

GE

Subgraph

GE
reduce 
(sALU)

reduce 
(sALU)

GE GEGE GE

Subgraph in GE (matrix)

Block in 
disk 

(COO)

Block in 
GraphR 
(COO)

Block in 
disk 

(COO)

Block in 
disk 

(COO)

(a) Streaming-Apply: 
Column-major (GraphR) 

(b) Streaming-Apply: 
Row-major 

(c) Global processing order

RegI RegO

Figure 11: Streaming-Apply Execution Model

In GRAPHR, all GEs process a subgraph, the order of
processing is important, since it affects hardware resource
requirement. We propose streaming-apply execution model
shown in Figure 11. The key insight is that subgraphs are
processed in a streaming manner and the reductions are per-
formed on the fly by sALU. There are two variants of this
model: column-major and row-major. During execution, RegI
and RegO are used to store source vertices and updated des-
tination vertices. In column-major order in Figure 11 (a),
subgraphs with same destination vertices are processed to-
gether. The required RegO size is the same as the number
of destination vertices in a subgraph. In row-major order
in Figure 11 (b), subgraphs with same source vertices are
process together. The required RegO size is the total number
of destination vertices of all subgraphs with the same source
vertices. It is easy to see that row-major order requires larger
RegO. On the other side, row-major order incurs less read of
RegI, — only one read is needed for all subgraphs with same
source vertices. In GRAPHR, we use column-major order
since it requires less registers, and in ReRAM, the write cost
is higher than read cost.

Figure 11 (c) shows the global processing order in a com-
plete out-of-core setting. We see that the whole graph is
partitioned into 4 blocks, three of them are stored in disk
in COO representation, one is stored in GraphR’s memory
ReRAM also in COO representation. Only the subgraph be-
ing processed by GEs is in sparse matrix format. Due to the
sparsity of graph data, if the subgraph is empty, then GEs can
move down to the next subgraph. Therefore, the sparsity only
incurs waste inside the subgraph (e.g., when one GE has an
empty matrix but others do not).
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3.4 Graph Preprocessing
To support streaming-apply execution model and conver-

sion from coordination list representation to sparse matrix
format, edge list needs to be preprocessed so that edges of
consecutive subgraphs are stored together. It also ensures se-
quential disk and memory access on block/subgraph loading.
In the following, we explain the preprocessing procedure in
detail.
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Figure 12: Preprocessing Edge List

Given some architectural parameters, the preprocessing is
implemented in software and performed only once. Figure 12
illustrates these parameters and the subgraph order we should
produce. This order is determined by streaming-apply model.
C is the size of CB; N is the number of CBs in a GE; G is the
number of GEs in a GRAPHR node; and B is the number of
vertices in a block (i.e., block size). Also, V is the number
of vertices in the graph. Among the parameters, C, N and
G specify the architecture setting of a GRAPHR node, B is
determined by the size of memory ReRAM in the node. In
the example, the graph has 64 vertices (V = 64) and each
block has 32 vertices (B = 32), so the graph is partitioned
into 4 blocks, each one will be loaded from disk to GRAPHR
node. Further, C = 4,N = 2,G = 2, so the subgraph size is
C× (C×N×G) = 4× (4×2×2) = 4×16. Therefore, each
block is partitioned into 16 subgraphs, the number of each is
the global subgraph order. Our goal is to produce an ordered
edge list according this order so that edges could be loaded
sequentially.

Before presenting the algorithm, we assume that the origi-
nal edge list is first ordered based on source vertex and then
for all edges with the same source, they are ordered by desti-
nation. In another word, edges are stored in row-major order
in matrix view. We also assume that in the ordered edge
list, edges in a subgraph is stored in column-major order.
Considering the problem in matrix view, each edge (i, j), we
first compute a global order ID (I(i, j)), so we have a 3-tuple:

(i, j, I(i, j)). This global order ID takes all zeros into account,
for example, if there are k zeros between two edges in the
global order, the different of global order ID of them is still
k. Then, all 3-tuples could be sorted by I(i, j). The ordered
edge list is obtained if we output them according to this order.
The space and time complexity of this procedure are O(V )
and O(V logV ), respectively, with common method. The key

problem here is to compute I(i, j) for each (i, j). Without con-
fusion, we simply denote I(i, j) as I. We show that I can be
computed in a hierarchical manner.

Let BI denote the global block order of the block that
contains (i, j). We assume that blocks are also processed in
column-major order: B(0,0) → B(1,0) → B(0,1) → B(1,1). The
coordinates of a block B are:

Bi =

⌊
i
B

⌋
,B j =

⌊
j
B

⌋
(1)

Based on column-major order, BI is:

IB = B j +(V/B)×B j (2)

We assume that B can divide V , and similarly, C can divide B,
C×N ×B can divide B. Otherwise, we can simply pad zeros
to satisfy the conditions, it will not affect the results since
these zeros do not correspond to actual edges. The block
corresponding to BI start with the following global order ID:

start_global_ID(BI) = BI ×B2/(C2 ×N ×G)+1 (3)

Next, we compute SI, (i, j)’s global subgraph ID. The
coordinates of the edge from the start of a block BI (Bi,B j)
are:

i′ = i−Bi ×B, j′ = j−B j ×B (4)

The relative coordinates of the subgraph from the start of
correspond block are:

SIi′ =

⌊
i′

C

⌋
,SIj′ =

⌊
j′

C×N ×G

⌋
(5)

Then, we can compute SI:

SI = (Si′ +S j′ ×B/C)+ start_global_ID(BI)

= (Si′ +S j′ ×B/C)+BI ×B2/(C2 ×N ×G)+1
(6)

Finally, we compute SubI, the relative order of (i, j) from
its corresponding subgraph (SI). The coordinates are:

SubIi = i− (B×Bi)− (Si ×C),

SubIj = j− (B×B j)− (S j ×C)
(7)

Since edges in a subgraph are assumed to be stored in column-
major order, SubI is:

SubI = SubIi +(SubIj −1)×C (8)

With SI and SubI computed, we get I:

I = (SI −1)× (C2 ×N ×G)+SubI (9)

3.5 Discussion
1 //Phase 1: compute edge values
2 for each edge E(V,U) from active vertex V do
3 E.value = r * V.prop / V.outdegree
4 end for
5

6 //Phase 2: reduce and apply
7 for each edge E(U,V) to vertex V do
8 V.prop = sum(E.value) + (1-r) / Num_Vertex
9 end for

Figure 13: PageRank in Vertex Program

Table 1 compares different architectures for graph process-
ing. GRAPHR improves over previous architectures due to
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CPU GPU Tesseract [4] GAA [46] Graphicionado [23] GRAPHR
Process Edge Instruction Instruction Instruction Specialized

AU
Specialized unit ReRAM crossbar

Reduce Instruction Instruction Instruction and
inter-cube com-
munication

Specialized
APU/SCU

Specialized unit ReRAM crossbar or sALU

Processing Model Sync/Async Sync Sync Async Sync Sync

Data Movement Disk to
memory (out-
of-core);
Memory
hierarchy

Disk to mem-
ory; CPU/GPU
memory; GPU
mem. hierar-
chy

Between cubes
(in-memory
only)

Between
memory
and accel-
erator (in-
memory
only)

Between modules in mem-
ory pipeline; memory to
SPM; SPM to/from process-
ing units.

Disk to memory (out-of-core)
or between GRAPHR nodes
(multi-node);
Between memory ReRAM
and GEs (inside GRAPHR)

Memory Access Random: vertex access and start of edge list of a vertex; Reduced random with SPM. Sequential edge list.
Sequential: edge list. Pipelined memory access

Generality All algorithms Vertex program Vertex program in SpMV

Table 1: Comparison of Different Architectures for Graph Processing

1 //Phase 1: compute edge values
2 for each edge E(V,U) from active vertex V do
3 E.value = E.weight + V.prop
4 activate(U);
5 end forSomes
6

7 //Phase 2: reduce and apply
8 for each edge E(U,V) to vertex V do
9 V.prop = min(V.prop,E.value)

10 end for

Figure 14: SSSP in Vertex Program

two unique features. First, the computation is performed
in analog manner, others use either instructions or special-
ized digital processing units. This provides the excellent
energy efficiency. Second, all disk and memory accesses
in GRAPHR are sequential, this is due to preprocessing and
less flexibility in scheduling vertices. It is a good trade-off
because it is highly energy efficient to perform parallel opera-
tions in ReRAM CBs. We believe that GRAPHR is the first
architecture scheme using ReRAM CBs to perform graph
processing, and the paper presents detailed and complete so-
lution to integrate it as a drop-in accelerator for out-of-core
graph processing systems. The architecture, streaming-apply
execution model and the preprocessing algorithms are all
novel contributions. Also, GRAPHR is general because it
could accelerate all vertex programs that can be performed in
SpMV form.

4. MAPPING ALGORITHMS IN GE
In this section, we discuss two patterns when mapping

algorithms to GEs: parallel MAC and parallel add-op. We
use a typical example for each category (i.e., PageRank and
SSSP, respectively) to explain the insights. More examples
(but not all) of supported algorithms in GRAPHR are listed in
Table 2. The first two are parallel MAC pattern and the last
two are parallel add-op pattern.

4.1 Parallel MAC
In an algorithm, if processEdge function performs a mul-

tiplication, which can be performed in each CB cell, we call
it parallel MAC pattern. The parallelization degree is roughly
(C×C×N ×G) (see parameter in Figure 9).

PageRank [47] is an excellent example of this pattern.
Figure 13 shows its vertex program. It does the following

iterative computation:
−→
PRt+1 = rM ·−→PRt +(1− r)−→e .

−→
PRt is

the PageRank at iteration t, M is a probability transfer matrix,
r is the probability of random surfing and −→e is a vector of
probabilities of staying in each page.

We consider a small subgraph that could be processed
by a 5× 4 CB (the additional row is to perform addition).
It contains at most 16 edges represented by the intersec-
tion of 4 rows and 4 columns in the sparse matrix (shown
in Figure 16 (a)). Thus, the block is related to 8 vertices
(i.e., i0 ∼ i3, j0 ∼ j3). The following are the parameters for
the 4 × 4 block PageRank shown in Figure 16 (b1): M =
[0,1/2,1,0;1/3,0,0,1/2;1/3,0,0,1/2;1/3,1/2,0,0] ,−→e =
[1/4,1/4,1/4,1/4]T, r = 4/5.

We define M0 = rM and −→e0 = (1− r)−→e , so that
−→
PRt+1 =

M0
−→
PRt +

−→e0 . In CB in Figure 16 (b2, b3), the values are
already scaled with r. Figure 16 (b3) shows the mapping of
PageRank algorithm to a CB. The additional row is used to
implement the addition of −→e0 . The sALU is configured to
perform add operation in the reduce function to add PageR-
ank values (Figure 15 (a)). To check convergence, the new
PageRank value is compared with it in the previous iteration,
the algorithm is converged if the difference is less than a
threshold.

2 4 53

7 2 31

sALU�����
reg(old)

9 6 84reg(new)

3 9 42

5 6 47

sALU�����
reg	old)

3 6 42reg(new)
(b)(a) 

Figure 15: sALU Is Configured to Perform (a) add in
PageRank and (b) min in SSSP

4.2 Parallel Add-Op
In an algorithm, if processEdge function performs an

addition, which can be performed in for each CB row at
a time, we call it parallel add-op pattern. The op speci-
fies the operation in reduce that is implemented in sALU.
The parallelization degree is roughly (C×N ×G). Single
Source Shortest Path (SSSP) [15] is a typical example of this
pattern. Figure 14 shows the vertex program. We see that
processEdge performs an addition and reduce performs min
operation. Therefore, sALU is configured to perform min
operation shown in Figure 15 (b).

In SSSP, each vertex v is given a distance label dist(v) that
maintains the length of the shortest known path to vertex v
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Figure 16: Graphs to Illustrate (a) PageRank and (b) SSSP

from the source. The distance label is initialized to 0 at the
source and ∞ at all other nodes. Then the SSSP algorithm
iteratively applies the relaxation operator, which is defined
as follows: if (u,v) is an edge and dist(u)+w(u,v)< dist(v),
the value of dist(v) is updated to dist(u)+w(u,v). An active
vertex is relaxed by applying this operator to all the edges
connected to it. Each relaxation may lower the distance label
of some vertex, and when no further lowering can be per-
formed anywhere in the graph, the resulting vertex distance
labels indicate the shortest distances from the source to the
vertex, regardless of the order in which the relaxations were
performed. Breadth-first numbering of a graph is a special
case of SSSP where all edge labels are 1.

We explain the mapping of SSSP algorithm to a CB using
a small 8-vertex subgraph corresponding to a 4 × 4 block
in sparse matrix, as shown in Figure 16 (c1). It can be rep-
resented by adjacency matrix: W = [M,1,5,M;M,M,3,1;
M,M,M,M;M,M,1,M] where M indicates no edge connected
two vertices and M is set to a reserved maximum value for a
memory cell in a CB. The values are stored in the CB shown
in Figure 16 (c2).

Given a vertex u and dist(u), the row in the adjacency
matrix W for u indicates w(u,v). We could perform the
relaxation operator (i.e., addition) for u in parallel. Here,
SpMV is only used to select a row in CB by multiplying with
an one-hot vector.

The relaxation operator of u involves reading: 1) dist(u):
it is computed iteratively from the source, for the source
vertex, the initial value is zero; 2) The vector of the dist(v)
before the relaxation operator: it is a vector indicating the
distance between source and all other vertices and is also
computed iteratively from the source. In our example, for

the source vertices (i0, i1, i2, i3), the initial value is [4,3,1,2];
3) The vector of the w(u,v): it is the distance from u to the
destination vertices in the subgraph, and can be obtained by
reading a row in adjacency matrix W.

Figure 16 (c3) shows the process to perform SSSP in a 5
× 4 CB. The last row (green squares) is set to a fixed value
1, which is used to add dist(u) (the input to the last word-
line) to each w(u,v) in the relaxation operator. The initial
value for dist(u) for the destination vertices ( j0, j1, j2, j3)
are [7,6,M,M]. The vector of w(u,v) is obtained by acti-
vating the wordline associated to vertex v. In the time slot
(t = 1), wordline 0 (for source vertex i0) is activated (the red
square with input value 1) and a value 4 (this is the current
value in dist(v) for source i0) is input to the last wordline
(the green box line). The vector of the dist(v) for the des-
tination vertices (( j0, j1, j2, j3)) is set as the value of the
output at each bitline, which is [7,6,M,M]. With this map-
ping, the current summation in bitline in Figure 16 (c3-1) is
[1×M+4×1,1×1+4×1,1×5+4×1,1×M+4×1] =
[M,5,9,M]. It is the dist(u)+w(u,v) computed in parallel,
where u is the source vertex. Then the distance of source to
each vertex v is compared with the initial dist(v) ([7,6,M,M])
by an array of comparators, and in the final output of bitline,
we get [7,5,9,M], which is the updated dist(v) vector after
time slot t = 1. The parallel comparisons are performed by
vertex-related operations in. Different algorithms may require
different functions on vertices.

After time slot t = 1, we move to the next vertex in Fig-
ure 16 (c3-2), where we i) activate the second wordline; ii)
change the input to the last wordline to 3 (the distance la-
bel for source vertex i1); and iii) set the intermediate dist(v)
to be the final output of bitline in time slot t = 1, which

539



Applications Vertex Property processEdge() reduce() Ative Vertex List

SpMV Multiplication Value E.value = V.prop / V.outdegree * E.weight V.prop = sum(E.value) Not Required

PageRank Page Rank Value E.value = r * V.prop / V.outdegree V.prop = sum(E.value) + (1-r) / Num_Vertex Not Required

BFS Level E.value = 1 + V.prop V.prop = min(V.prop,E.value) Required

SSSP Path Length E.value = E.weight + V.prop V.prop = min(V.prop,E.value) Required

Table 2: Property and Operations of Applications in GRAPHR

is [7,5,9,M]. Similar as Figure 16 (c3-1), the the current
summation in bitline is [M,M,6,4] and it is compared with
[7,5,9,M], yielding the final output of bitline for time slot
t = 2 as [7,5,6,4]. We indicate the updated distance label
using orange squares. The operations in time slot t = 3 and
t = 4 can be performed in the similar manner.

Initially, before processing the block, the active indicator
for each destination vertex is set to be FALSE. After the
serial processing in CB, the active indicators for all vertices
which have been updated (marked in orange in Figure 16 (c3))
are set to be TRUE. This indicates that they are active for
next iteration. In our example, j1, j2, j3 are marked active.
Referring to Figure 16, this means that the distance labels for
these vertices have been updated. Because we are processing
the block in CB, the active indicator for destination vertex
may be accessed for multiple times, but if it is set be TRUE at
least one time, this vertex is active in next iteration. Globally,
after all active source vertices and corresponding edges are
processed in an iteration, source vertex properties (values and
active indicators) that hold the old values are updated by the
properties of the same vertices in destination. The new source
vertex properties are used in the next iteration. We can check
if there are still active vertices to determine the convergence.

5. EVALUATION

5.1 Graph Datasets and Applications
Dataset # Vertices #Edges

WikiVote(WV) [32] 7.0K 103K

Slashdot(SD) [32] 82K 948K

Amazon(AZ) [32] 262K 1.2M

WebGoogle(WG) [32] 0.88M 5.1M

LiveJournal(LJ) [32] 4.8M 69M

Orkut(OK) [51] 3.0M 106M

Netflix(NF) [8] 480K users, 17.8K movies 99M

Table 3: Graph Datasets
Table 3 shows the datasets used in our evaluation. We

use seven real-world graphs. For WikiVote(WV), Slash-
dot(SD), Amazon(AZ), WebGoogle(WG), LiveJournal(LJ),
Orkut(OK) and Netflix(NF). We run pagerank(PR), breadth
first search(BFS), single source shortest path (SSSP) and
sparse matrix-vector multiplication (SpMV) on the first six
datasets. On Netflix(NF), we run collaborative filtering(CF),
and the feature length used is 32.

5.2 Experiment Setup
In our experiments, we compare GRAPHR with a CPU

baseline platform, a GPU platform and PIM-based architec-
ture [4]. PR, BFS, SSSP and SpMV running on the CPU plat-
form are based on the software framework GridGraph [70],
while collaborative filtering is based on GraphChi [28]. PR,
BFS, SSSP and SpMV running on GPU platform are based on
Gunrock [64], while CuMF_SGD [66] is the GPU framework
for CF. We evaluate PIM-based architecture on zSim [53], a

scalable x86-64 multicore simulator. We modified zSim with
HMC memory and interconnection model, heterogeneous
compute units, on-chip network and other hardware features.
The results are validated results with NDP [21], which also
extends zSim for HMC simulation. In all experiments, graph
data could fit in memory. We also exclude the disk I/O time
from the execution time of the CPU/GPU-based platform.

CPU Intel Xeon E5-2630 V3,
8 cores, 2.40 GHz
8× (32+32)KB L1 Cache
8×256KB L2 Cache
20 MB L3 Cache

Memory 128 GB

Storage 1 TB

2 CPUs, a total number of 32 threads.

Table 4: Specifications of the CPU Platform

Graphic Card NVIDIA Tesla K40c

Architecture Kepler

# CUDA Cores 2880

Base Clock 745 MHz

Graphic Memory 12 GB GDDR5

Memory Bandwidth 288 GB/s

CUDA Version 7.5

Table 5: Specifications of the GPU Platform
Specifications of the CPU and GPU platforms are shown

in Table 4 and Table 5. The CPU energy consumption is
estimated by Intel Product Specifications [2] while NVIDIA
System Management Interface (nvidia-smi) is used to esti-
mate energy consumption by GPU. The execution times for
CPU/GPU platform are measured in the computing frame-
works.

To evaluate GRAPHR, for the ReRAM part, we use NVSim
[17] to estimate time and energy consumption. The HRS/LRS
resistance are 25M/50K Ω, read voltage (Vr) and write volt-
age (Vw) are 0.7V and 2V respectively, and current of LRS/HRS
are 40 uA and 2 uA respectively. The read/write latency and
read/write energy cost used are 29.31ns / 50.88ns, 1.08 pJ /
3.91nJ respectively from data reported in [44]. The program-
ming of a bipolar ReRAM cell is to change (from High to
Low) or inverse. For multi-level cell, the programming is to
change the resistance to a middle state between High and Low,
and the middle state is determined by the programming volt-
age pulse length. Actually, the difference between High and
Low is the worse case. Note that [7, 26] describe a ReRAM
programming prototype, which includes: 1) writing circuitry;
2) ReRAM cell/array; and 3) conversion circuitry. They
demonstrated the possibility of 1% accuracy for multi-level
cell. However, in a real production system, only “writing cir-
cuitr” and “ReRAM cell/array” are needed, there is no need
to consider the conversion, as we just need to “acquiesce” a
writing precision. Therefore, this energy cost estimation for
4-bit cell programming is reasonable and more conservative
than two recent ReRAM-based accelerators [13, 55].

For on-chip registers, we use CACTI 6.5 [1] at 32nm to
model. For Analog/Digital converters, we use data from [41].
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The system performance is modeled by code instrumentation.
The ReRAM crossbar size S, number of ReRAM crossbars
per graph engine C and number of graph engines is 8, 32, 64
respectively.

5.3 Performance Results
Figure 17 compares the performance of GRAPHR and

CPU platform. The CPU implementation is used as the
baseline and execution times of applications of GRAPHR
are normalized to it. Compared to CPU platform, the ge-
ometric mean of speedups with GRAPHR architecture on
all 25 executions is 16.01×. Among all applications on
the datasets, the highest speedup achieved by GRAPHR is
132.67×, and it happens on SpMV on WikiVote dataset. The
lowest speedup GRAPHR achieved is 2.40×, on SSSP us-
ing OK dataset. PageRank and SpMV are parallel MAC
pattern and have higher speedup compared to CPU-based
platform. For BFS and SSSP which are parallel add-op pat-
tern, GRAPHR achieves lower speedups only due to parallel
addition.addition.

PageRank BFS SSSP SpMV
WV SD AZ WG LJOK WV SD AZ WG LJOK WV SD AZ WG LJOK WV SD AZ WG LJOK CF Gm
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Figure 17: GRAPHR Speedup Compared to CPU

5.4 Energy Resultsgy
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Figure 18: GRAPHR Energy Saving Normalized to CPU
Platform

Figure 18 shows the energy savings in GRAPHR archi-
tecture over CPU platform. The geometric mean of energy
savings of all applications compared to CPU is 33.82×. The
highest energy achieved by GRAPHR is 217.88×, which is on
sparse matrix-vector multiplication on SD dataset. The low-
est energy saving achieved by GRAPHR happens on SSSP on
OK dataset, which is 4.50×. GRAPHR gets the high energy
efficiency from the non-volatile property of ReRAM and the
in-situ computation capability.

5.5 Comparison to GPU Platform
GPUs take advantage of a large amount of threads (CUDA

cores) for high parallelism. The GPU used in the comparison
has 2880 CUDA cores, while in GRAPHR we have a compara-
ble number (2048 = 32×64) of crossbars. To compare with
GPU, we run PageRank and SSSP on LiveJournal dataset,
and collaborative filtering(CF) on Netflix dataset.
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Figure 19: GRAPHR (a) Performance and (b) Energy
Saving Compared to GPU Platform

The performance and energy saving normalized to CPU
are shown in Figure 19 (a) and (b). Overall, the performance
of GRAPHR is higher than GPU with considering the data
transfer time between CPU memory and GPU memory, — an
overhead GRAPHR does not incur. GRAPHR has performance
gains ranging from 1.69× to 2.19× compared to GPU. More
importantly, GRAPHR consumes 4.77× to 8.91× less en-
ergy than GPU. Figure 19 (a) shows that, GRAPHR achieves
higher speedups on PageRank and CF, where MACs domi-
nate the computation and are fully supported by GRAPHR
and GPU. For SSSP, the vertex-related traversing in GRAPHR
requires accessing to main memory and storage. In GPU, a
cache based memory hierarchy better supports the random
accessing. So the speedup of GRAPHR is lower. The reason
why GRAPHR still has gain in SSSP is due to sequential ac-
cess pattern. For energy saving, GRAPHR is better than GPU.
Besides energy saving by in-situ computation in GEs and the
in-memory processing system design, from Fig 17 in [23]
we see that in conventional CMOS system, static energy con-
sumption by eDRAM (memory) incurs the majority of energy
consumption. As the technology node scales down, leakage
power dominates in CMOS system. In contrast, ReRAM has
almost 0 static energy leakage, so GRAPHR has higher energy
saving.

5.6 Comparison to PIM Platform
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Figure 20: GRAPHR (a) Performance and (b) Energy
Saving Compared to PIM Platform

We compare GRAPHRwith a PIM-based architecture (i.e.,
Tesseract [4]). The performance and energy saving normal-
ized to CPU are shown in Figure 20 (a) and (b). GRAPHR
gains a speedup of 1.16× to 4.12×, and is 3.67× to 10.96×
more energy efficiency compared to PIM-based architecture.

5.7 Sensitivity to Sparsity
We use #Edge/(#Vertex)2 to represent the density of a

dataset, and with the density decreases, the sparsity increases.
Figure 21 (a) and (b) shows the performance and energy sav-
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ing of GRAPHR(compared to the CPU platform) with the
density of datasets. With the sparsity increases, the perfor-
mance and energy saving slightly decreases. Because with
the sparsity increases, the number of edge blocks to be tra-
versed will increase, which slows down the edge accessing
time and consumes more energy.gy
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Figure 21: GRAPHR (a) Performance and (b) Energy
Saving with Dataset Density

6. CONCLUSION
This paper presents GRAPHR, the first ReRAM-based

graph processing accelerator. The key insight of GRAPHR
is that if a vertex program of a graph algorithm can be ex-
pressed in sparse matrix vector multiplication (SpMV), it
can be efficiently performed by ReRAM crossbar. GRAPHR
is a novel accelerator architecture consisting of two compo-
nents: memory ReRAM and graph engine (GE). The core
graph computations are performed in sparse matrix format in
GEs (ReRAM crossbars). With small subgraphs processed by
GEs, the gain of performing parallel operations overshadows
the wastes due to sparsity. The experiment results show that
GRAPHR achieves a 16.01× (up to 132.67×) speedup and
a 33.82× energy saving on geometric mean compared to a
CPU baseline system. Compared to GPU, GRAPHR achieves
1.69× to 2.19× speedup and consumes 4.77× to 8.91× less
energy. GRAPHR gains a speedup of 1.16× to 4.12×, and is
3.67× to 10.96× more energy efficiency compared to PIM-
based architecture.
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