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ABSTRACT

Model compression is significant for the wide adoption of Recurrent Neural Net-
works (RNNs) in both user devices possessing limited resources and business clus-
ters requiring quick responses to large-scale service requests. This work aims to
learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes
of basic structures within LSTM units, including input updates, gates, hidden
states, cell states and outputs. Independently reducing the sizes of basic struc-
tures can result in inconsistent dimensions among them, and consequently, end up
with invalid LSTM units. To overcome the problem, we propose Intrinsic Sparse
Structures (ISS) in LSTMs. Removing a component of ISS will simultaneously
decrease the sizes of all basic structures by one and thereby always maintain the
dimension consistency. By learning ISS within LSTM units, the obtained LSTMs
remain regular while having much smaller basic structures. Based on group Lasso
regularization, our method achieves 10.59x speedup without losing any perplex-
ity of a language modeling of Penn TreeBank dataset. It is also successfully eval-
uated through a compact model with only 2.69M weights for machine Question
Answering of SQuAD dataset. Our approach is successfully extended to non-
LSTM RNNs, like Recurrent Highway Networks (RHNs). Our source code is
available!.

1 INTRODUCTION

Model Compression (Jaderberg et al. (2014), Han et al. (2015a), Wen et al. (2017), Louizos et al.
(2017)) is a class of approaches of reducing the size of Deep Neural Networks (DNNSs) to accelerate
inference. Structure Learning (Zoph & Le (2017), Philipp & Carbonell (2017), Cortes et al. (2017))
emerges as an active research area for DNN structure exploration, potentially replacing human la-
bor with machine automation for design space exploration. In the intersection of both techniques,
an important area is to learn compact structures in DNNs for efficient inference computation us-
ing minimal memory and execution time without losing accuracy. Learning compact structures in
Convolutional Neural Networks (CNNs) have been widely explored in the past few years. Han
et al. (2015b) proposed connection pruning for sparse CNNs. Pruning method also works success-
fully in coarse-grain levels, such as pruning filters in CNNs (Li et al. (2017)) and reducing neuron
numbers (Alvarez & Salzmann (2016)). Wen et al. (2016) presented a general framework to learn
versatile compact structures (neurons, filters, filter shapes, channels and even layers) in DNNs.

Learning the compact structures in Recurrent Neural Networks (RNNs) is more challenging. As
a recurrent unit is shared across all the time steps in sequence, compressing the unit will aggres-
sively affect all the steps. A recent work by Narang et al. (2017) proposes a pruning approach that
deletes up to 90% connections in RNNs. Connection pruning methods sparsify weights of recur-
rent units but cannot explicitly change basic structures, e.g., the number of input updates, gates,
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Figure 1: Speedups of matrix multiplication using non-structured and structured sparsity. Speeds
are measured in Intel MKL implementations in Intel Xeon CPU E5-2673 v3 @ 2.40GHz. General
matrix-matrix multiplication (GEMM) of W - X is implemented by cblas_sgemm. The matrix
sizes are selected to reflect commonly used GEMMs in LSTMs. For example, (a) represents GEMM
in LSTMs with hidden size 1500, input size 1500 and batch size 10. To accelerate GEMM by spar-
sity, W is sparsified. In non-structured sparsity approach, W is randomly sparsified and encoded as
Compressed Sparse Row format for sparse computation (using mk1_scsrmm); in structured spar-
sity approach, 2k columns and 4k rows in W are removed to match the same level of sparsity (i.e.,
the percentage of removed parameters) for faster GEMM under smaller sizes.

hidden states, cell states and outputs. Moreover, the obtained sparse matrices have an irregular/non-
structured pattern of non-zero weights, which is unfriendly for efficient computation in modern
hardware systems (Lebedev & Lempitsky (2016)). Previous study (Wen et al. (2016)) on sparse
matrix multiplication in GPUs showed that the speedup? was either counterproductive or ignorable.
More specific, with sparsity® of 67.6%, 92.4%, 97.2%, 96.6% and 94.3% in weight matrices of
AlexNet, the speedup was 0.25%, 0.52x, 1.38%, 1.04x, and 1.36 %, respectively. This problem
also exists in CPUs. Fig. 1 shows that non-structured pattern in sparsity limits the speedup. We
only starts to observe speed gain when the sparsity is beyond 80%, and the speedup is about 3x
to 4x even when the sparsity is 95% which is far below the theoretical 20x. In this work, we
focus on learning structurally sparse LSTMs for computation efficiency. More specific, we aim to
reduce the number of basic structures simultaneously during learning, such that the obtained LSTMs
have the original schematic with dense connections but with smaller sizes of these basic structures.
Such compact models have structured sparsity, with columns and rows in weight matrices removed,
whose computation efficiency is shown in Fig. 1. Moreover, off-the-shelf libraries in deep learning
frameworks can be directly utilized to deploy the reduced LSTMs. Details should be explained.

There is a vital challenge originated from recurrent units: as the basic structures interweave with
each other, independently removing these structures can result in mismatch of their dimensions and
then inducing invalid recurrent units. The problem does not exist in CNNs, where neurons (or filters)
can be independently removed without violating the usability of the final network structure. One of
our key contributions is to identify the structure inside RNNs that shall be considered as a group
to most effectively explore sparsity in basic structures. More specific, we propose Intrinsic Sparse
Structures (ISS) as groups to achieve the goal. By removing weights associated with one component
of ISS, the sizes/dimensions (of basic structures) are simultaneously reduced by one.

We evaluated our method by LSTMs and RHNs in language modeling of Penn Treebank
dataset (Marcus et al. (1993)) and machine Question Answering of SQuAD dataset (Rajpurkar et al.
(2016)). Our approach works both in fine-tuning and in training from scratch. In a RNN with two
stacked LSTM layers with hidden sizes of 1500 (i.e., 1500 components of ISS) for language model-
ing (Zaremba et al. (2014)), our method learns that the sizes of 373 and 315 in the first and second
LSTMs, respectively, are sufficient for the same perplexity. It achieves 10.59 x speedup of inference
time. The result is obtained by training from scratch with the same number of epochs. Directly
training LSTMs with sizes of 373 and 315 cannot achieve the same perplexity, which proves the
advantage of learning ISS for model compression. Encouraging results are also obtained in more

Defined as (new speed)/(original speed).
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compact and state-of-the-art models — the RHN models (Zilly et al. (2017)) and BiDAF model (Seo
et al. (2017)).

2 RELATED WORK

A major approach in DNN compression is to reduce the complexity of structures within DNNss.
The studies can be categorized to three classes: removing redundant structures in original DNNs,
approximating the original function of DNNs (Denil et al. (2013), Jaderberg et al. (2014), Hinton
et al. (2015), Lu et al. (2016), Prabhavalkar et al. (2016), Molchanov et al. (2017)), and designing
DNNs with inherently compact structures (Szegedy et al. (2015), He et al. (2016), Wu et al. (2017),
Bradbury et al. (2016)). Our method belongs to the first category.

Research on removing redundant structures in Feed-forward Neural Networks (FNNs), typically in
CNNss, has been extensively studied. Based on ¢; regularization (Liu et al. (2015), Park et al. (2017))
or connection pruning (Han et al. (2015b), Guo et al. (2016)), the number of connections/parameters
can be dramatically reduced. Group Lasso based methods were proved to be effective in reducing
coarse-grain structures (e.g., neurons, filters, channels, filter shapes, and even layers) in CNNs (Wen
et al. (2016), Alvarez & Salzmann (2016), Lebedev & Lempitsky (2016), Yoon & Hwang (2017)).
For instance, Wen et al. (2016) reduced the number of layers from 32 to 18 in ResNet without any
accuracy loss for CIFAR-10 dataset. A recent work by Narang et al. (2017) advances connection
pruning techniques for RNNs. It compresses the size of Deep Speech 2 (Amodei et al. (2016))
from 268 MB to around 32 MB. However, to the best of our knowledge, little work has been carried
out to reduce coarse-grain structures beyond fine-grain connections in RNNs. To fill this gap, our
work targets to develop a method that can learn to reduce the number of basic structures within
LSTM units. After learning those structures, final LSTMs are still regular LSTMs with the same
connectivity, but have the sizes reduced.

Another line of related research is Structure Learning of FNNs or CNNs. Zoph & Le (2017) uses
reinforcement learning to search good neural architectures. Philipp & Carbonell (2017) dynamically
adds and eliminates neurons in FNNs by using group Lasso regularization. Cortes et al. (2017)
gradually adds sub-networks to current networks to incrementally reduce the objective function. All
these works focused on finding optimal structures in FNNs or CNNs for classification accuracy. In
contrast, this work aims at learning compact structures in LSTMs for model compression.

3 LEARNING INTRINSIC SPARSE STRUCTURES

3.1 INTRINSIC SPARSE STRUCTURES

The computation within LSTMs is (Hochreiter & Schmidhuber (1997))

it =0 (x¢- Wy +hy 1 - Wy +by)

ft =0 (Xt . fo + htfl . th + bf)

Oy =0 (Xt . on + htfl N Who + bo)

u; = tanh (x4 - Wy +hy 1 - Wy, +by,)’

¢=fHOc 1+ 0w

ht =0+ tanh (Ct)
where © is element-wise multiplication, o (-) is sigmoid function, and tanh(-) is hyperbolic tangent
function. Vectors are row vectors. W' are weight matrices, which transform the concatenation (of
hidden states h;_; and inputs x;) to input updates u; and gates (i¢, f; and o). Fig. 2 is the schematic
of LSTMs in the layout of Olah (2015). The transformations by W' and the corresponding nonlin-
ear functions are illustrated in rectangle blocks. Our goal is to reduce the size of this sophisticated
structure within LSTMs, meanwhile maintaining the original schematic. Because of element-wise
operators (“@” and “®”), all vectors along the blue band in Fig. 2 must have the same dimension.
We call this constraint as “dimension consistency”. The vectors required to obey the dimension
consistency include input updates, all gates, hidden states, cell states, and outputs. Note that hidden
states are usually outputs connected to classifier layer or stacked LSTM layers. As can be seen in
Fig. 2, vectors (along the blue band) interweave with each other so removing an individual compo-
nent from one or a few vectors independently can result in the violation of dimension consistency.
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Figure 3: Applying Intrinsic Sparse Structures in weight matrices.

To overcome this, we propose Intrinsic Sparse Structures (ISS) within LSTMs as shown by the blue
band in Fig. 2. One component of ISS is highlighted as the white strip. By decreasing the size of
ISS (i.e., the width of the blue band), we are able to simultaneously reduce the dimensions of basic
structures.

To learn sparse ISS, we turn to weight sparsifying. There are totally eight weight matrices in Eq. (1).
We organize them in the form of Fig. 3 as basic LSTM cells in TensorFlow. We can remove one
component of ISS by zeroing out all associated weights in the white rows and white columns in
Fig. 3. Why? Suppose the k-th hidden state of h is removable, then the k-th row in the lower
four weight matrices can be all zeros (as shown by the left white horizontal line in Fig. 3), because
those weights are on connections receiving the k-th useless hidden state. Likewise, all connections
receiving the k-th hidden state in next layer(s) can be removed as shown by the right white horizontal
line. Note that next layer(s) can be an output layer, LSTM layers, fully-connected layers, or a mix of
them. ISS overlay two or more layers, without explicit explanation, we refer to the first LSTM layer
as the ownership of ISS. When the k-th hidden state turns useless, the k-th output gate and k-th cell
state generating this hidden state are removable. As the k-th output gate is generated by the k-th
column in W, and W}, these weights can be zeroed out (as shown by the fourth vertical white
line in Fig. 3). Tracing back against the computation flow in Fig. 2, we can reach similar conclusions
for forget gates, input gates and input updates, as respectively shown by the first, second and third
vertical line in Fig. 3. For convenience, we call the weights in white rows and columns as an “ISS
weight group”. Although we propose ISS in LSTMs, variants of ISS for vanilla RNNs, Gated
Recurrent Unit (GRU) (Cho et al. (2014)), and Recurrent Highway Networks (RHNs) (Zilly et al.
(2017)) can also be realized based on the same philosophy.

For even a medium-scale LSTM, the number of weights in one ISS weight group can be very large.
It seems to be very aggressive to simultaneously slaughter so many weights to maintain the orig-
inal recognition performance. However, the proposed ISS intrinsically exists within LSTMs and
can even be unveiled by independently sparsifying each weight using ¢;-norm regularization. The
experimental result is covered in Appendix A. It unveils that sparse ISS intrinsically exist in LSTMs
and the learning process can easily converge to the status with a high ratio of ISS removed. In
Section 3.2, we propose a learning method to explicitly remove much more ISS than the implicit
{1-norm regularization.
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3.2 LEARNING METHOD

Suppose w](;") is a vector of all weights in the k-th component of ISS in the n-th LSTM layer

(1<n<Nand1l<k< K®™) where N is the number of LSTM layers and K (™) is the number
of ISS components (i.e., hidden size) of the n-th LSTM layer. The optimization goal is to remove
as many “ISS weight groups” w,({n) as possible without losing accuracy. Methods to remove weight
groups (such as filters, channels and layers) have been successfully studied in CNNs as summarized
in Section 2. However, how these methods perform in RNNs is unknown. Here, we extend the group
Lasso based methods (Yuan & Lin (2006)) to RNNs for ISS sparsity learning. More specific, the
group Lasso regularization is added to the minimization function in order to encourage sparsity in
ISS. Formally, the ISS regularization is

N K™
Row) =323 |[wi]] )
n=1 k=1 2

where w is the vector of all weights and || - ||2 is £2-norm (i.e., Euclidean length). In Stochastic

Gradient Descent (SGD) training, the step to update each ISS weight group becomes

n n aE (n)
w,(c)<—w,(€)— . ((Wn))—i—)\- W(];) , 3)
T

where F'(w) is data loss, 7 is learning rate and A > 0 is the coefficient of group Lasso regularization

to trade off recognition accuracy and ISS sparsity. The regularization gradient, i.e., the last term in
Eq. (3), is a unit vector. It constantly squeezes the Euclidean length of each w,(cn) to zero, such that,
a high portion of ISS components can be enforced to fully-zeros after learning. To avoid division by

zero in the computation of regularization gradient, we can add a tiny number € in || - ||2, that is,

2 e+Z(w,§,’;>)2, )
J

where w,(;;) is the j-th element of w,(cn). We set € = 1.0e — 8. The learning method can effectively

squeeze many groups near zeros, but it is very hard to exactly stabilize them as zeros because of the
always-present fluctuating weight updates. Fortunately, the fluctuation is within a tiny ball centered
at zero. To stabilize the sparsity during training, we zero out the weights whose absolute values are
smaller than a pre-defined threshold 7. The process of thresholding is applied per mini-batch.

4 EXPERIMENTS

Our experiments use published models as baselines. The application domains include language
modeling of Penn TreeBank and machine Question Answering of SQuAD dataset. For more com-
prehensive evaluation, we sparsify ISS in LSTM models with both a large hidden size of 1500 and
a small hidden size of 100. We also extended ISS approach to state-of-the-art Recurrent Highway
Networks (RHNs) (Zilly et al. (2017)) to reduce the number of units per layer. We maximize thresh-
old 7 to fully exploit the benefit. For a specific application, we preset T by cross validation. The
maximum 7 which sparsifies the dense model (baseline) without deteriorating its performance is
selected. The validation of 7 is performed only once and no training effort is needed. 7 is 1.0e — 4
for the stacked LSTMs in Penn TreeBank, and it is 4.0e — 4 for the RHN and the BiDAF model. We
used HyperDrive by Rasley et al. (2017) to explore the hyperparameter of A. More details can be
found in our source code.

To measure the inference speed, the experiments were run on a dual socket Intel Xeon CPU ES5-
2673 v3 @ 2.40GHz processor with a total of 24 cores (12 per socket) and 128GB of memory. Intel
MKL library 2017 update 2 was used for matrix-multiplication operations. OpenMP runtime was
utilized for parallelism. We used Intel C++ Compiler 17.0 to generate executables that were run on
Windows Server 2016. Each of the experiments was run for 1000 iterations, and the execution time
was averaged to find the execution latency.
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Table 1: Learning ISS sparsity from scratch in stacked LSTMs.

Method k]e)iglﬁﬁl (vlz:leifire)llt:itgst) (Ist I ggd#; iLHSTM Weight #  Total time”  Speedup rtfjl:]];?:ﬁ
baseline 035  (82.57,7857)  (1500,1500)  66.0M  157.0ms  1.00x 1,00
1SS 0o (2597865  (373,315) 21.8M  14.82ms  10.50x 7.48x
(80.24,76.03) (381, 535) 252oM  22.1lms  7.10 5.01x
directdesign  0.55  (90.31,85.66) (373, 315) 21.8M  14.82ms  10.50x 7.48x

" Measured with 10 batch size and 30 unrolled steps.
1 The reduction of multiplication-add operations in matrix multiplication. Defined as (original Mult-add)/(left Mult-add)

LSTM 2 Output

Figure 4: Intrinsic Sparse Structures learned by group Lasso regularization (zoom in for better
view). Original weight matrices are plotted, where blue dots are nonzero weights and white ones
refer zeros. For better visualization, original matrices are evenly down-sampled by 10 x 10.

4.1 LANGUAGE MODELING

4.1.1 STACKED LSTMS

A RNN with two stacked LSTM layers for language modeling (Zaremba et al. (2014)) is selected
as the baseline. It has hidden sizes of 1500 (i.e., 1500 components of ISS) in both LSTM units.
The output layer has a vocabulary of 10000 words. The dimension of word embedding in the in-
put layer is 1500. Word embedding layer is not sparsified because the computation of selecting a
vector from a matrix is very efficient. The same training scheme as the baseline is adopted to learn
ISS sparsity, except a larger dropout keep ratio of 0.6 versus 0.35 of the baseline because group
Lasso regularization can also avoid over-fitting. All models are trained from scratch for 55 epochs.
The results are shown in Table 1. Note that, when trained using dropout keep ratio of 0.6 without
adopting group Lasso regularization, the baseline over-fits and the lowest validation perplexity is
97.73. The trade-off of perplexity and sparsity is controlled by A. In the second row, with tiny
perplexity difference from baseline, our approach can reduce the number of ISS in the first and
second LSTM unit from 1500, down to 373 and 315, respectively. It reduces the model size from
66.0M to 21.8M and achieves 10.59x speedup. Remarkably, the practical speedup (10.59x) even
goes beyond theoretical mult-add reduction (7.48%) as shown in Table 1 —which comes from the
increased computational efficiency. When applying structured sparsity, the underlying weight ma-
trices become smaller so as to fit into the L3 cache with good locality, which improves the FLOPS
(floating point operations per second). This is a key advantage of our approach over non-structurally
sparse RNNs generated by connection pruning (Narang et al. (2017)), which suffers from irregular
memory access pattern and inferior-theoretical speedup. At last, when learning a compact structure,
our method can perform as structure regularization to avoid overfitting. As shown in the third row
in Table 1, lower perplexity is achieved by even a smaller (25.2M) and faster (7.10x) model. Its
learned weight matrices are visualized in Fig. 4, where 1119 and 965 ISS components shown by
white strips are removed in the first and second LSTM, respectively.

A straightforward way to reduce model complexity is to directly design a RNN with a smaller hidden
size and train from scratch. Compare with direct design approach, our ISS method can automatically
learn optimal structures within LSTMs. More importantly, compact models learned by ISS method
have lower perplexity, comparing with direct design method. To evaluate it, we directly design a
RNN with exactly the same structure of the second RNN in Table 1 and train it from scratch instead
of learning ISS from a larger RNN. The result is included in the last row of Table 1. We tuned
dropout keep ratio to get best perplexity for the directly-designed RNN. The final test perplexity is
85.66, which is 7.01 higher that our ISS method.
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Table 2: Learning ISS sparsity from scratch in RHNs.
Perplexity RHN
(validate, test)  width

baseline 0.0 (67.9, 65.4) 830 23.5M

*

ISS  0.004 (67.5,65.00 726 18.9M
ISS  0.005 (68.1,65.4) 517 11.1M
ISS  0.006 (70.3,67.7) 403 7.6M
ISS  0.007 (74.5,71.2) 328 5.7M

* All dropout ratios are multiplied by 0.6x.

Method A Parameter #

4.1.2 EXTENSION TO RECURRENT HIGHWAY NETWORKS

Recurrent Highway Networks (RHN) (Zilly et al. (2017)) is a class of state-of-the-art recurrent mod-
els, which enable “step-to-step transition depths larger than one”. In a RHN, we define the number
of units per layer as RHN width. Specifically, we select the “Variational RHN + WT” model in Table
1 of Zilly et al. (2017) as the baseline. It has depth 10 and width 830, with totally 23.5M parameters.
In a nutshell, our approach can reduce the RHN width from 830 to 517 without losing perplexity.

Following the same idea of identifying the “ISS weight groups” to reduce the size of basic structures
in LSTMs, we can identify the groups in RHNs to reduce the RHN width. In brief, one group include
corresponding columns/rows in weight matrices of the H nonlinear transform, of the 7" and C' gates,
and of the embedding and output layers. The group size is 46520. The groups are indicated by JSON
files in our source code*. By learning ISS in RHNs, we can simultaneously reduce the dimension of
word embedding and the number of units per layer.

Table 2 summarizes results. All experiments are trained from scratch with the same hyper-
parameters in the baseline, except that smaller dropout ratios are used in ISS learning. Larger A,
smaller RHN width but higher perplexity. More importantly, without losing perplexity, our ap-
proach can learn a smaller model with RHN width 517 from an initial model with RHN width 830.
This reduces the model size to 11.1M, which is 52.8% reduction. Moreover, ISS learning can find a
smaller RHN model with width 726, meanwhile improve the state-of-the-art perplexity as shown by
the second entry in Table 2.

4.2 MACHINE READING COMPREHENSION

We evaluate ISS method by state-of-the-art dataset (SQuAD) and model (BiDAF). SQuAD (Ra-
jpurkar et al. (2016)) is a recently released reading comprehension dataset, crowdsourced from
100, 000+ question-answer pairs on 5004 Wikipedia articles. ExactMatch (EM) and F1 scores
are two major metrics for the task®. The higher those scores are, the better the model is. We adopt
BiDAF (Seo et al. (2017)) to evaluate how ISS method works in small LSTM units. BiDAF is a
compact machine Question Answering model with totally 2.69M weights. The ISS sizes are only
100 in all LSTM units. The implementation of BiDAF is made available by its authors .

BiDAF has character, word and contextual embedding layers to extract representations from input
sentences, following which are bi-directional attention layer, modeling layer, and final output layer.
LSTM units are used in contextual embedding layer, modeling layer, and output layer. All LSTMs
are bidirectional (Schuster & Paliwal (1997)). In a bidirectional LSTM, there are one forward plus
one backward LSTM branch. The two branches share inputs and their outputs are concatenated for
next stacked layers. We found that it is hard to remove ISS components in contextual embedding
layer, because the representations are relatively dense as it is close to inputs and the original hidden
size (100) is relatively small. In our experiments, we exclude LSTMs in contextual embedding layer
and sparsify all other LSTM layers. Those LSTM layers are the computation bottleneck of BiDAF.

“groups_hidden830.json
SRefer to Rajpurkar et al. (2016) for the definition of EM and F1 scores.
Shttps://github.com/allenai/bi-att-flow/tree/dev
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Table 3: Remaining ISS components in BiDAF by fine-tuning.
EM  Fl | ModFwdl ModBwdl ModFwd2 ModBwd2 OutFwd OutBwd | weight# Total time®

67.98 77.85 | 100 100 100 100 100 100 | 2.69M 6.20ms
67.21 76.71 100 95 78 82 71 52 2.08M 5.79ms
66.59 76.40 84 90 38 46 34 21 1.48M 4.52ms
65.29 75.47 54 47 22 30 18 12 1.03M 3.54ms
64.81 75.22 52 50 19 26 15 12 1.01M 3.51ms

" Measured with batch size 1.

Table 4: Remaining ISS components in BiDAF by training from scratch.
EM  Fl | ModFwdl ModBwdl ModFwd2 ModBwd2 OutFwd OutBwd | weight# Total time®

67.98 77.85 | 100 100 100 100 100 100 | 2.69M 6.20ms
67.36  77.16 87 81 87 92 74 96 2.29M 5.83ms
66.32 76.22 51 33 42 58 37 26 1.17™™ 4.46ms
65.36  75.78 20 33 40 38 31 16 0.95M 3.59ms
64.60 74.99 23 22 35 35 25 14 0.88M 2.74ms

" Measured with batch size 1.

We profiled the computation time on CPUs, and find those LSTM layers (excluding contextual em-
bedding layer) consume 76.47% of total inference time. There are three bi-directional LSTM layers
we will sparsify, two of which belong to the modeling layer, and one belongs to the output layer.
More details of BiDAF are covered by Seo et al. (2017). For brevity, we mark the forward (back-
ward) path of the 1st bi-directional LSTM in the modeling layer as ModFwdl (ModBwdl). Sim-
ilarly, ModFwd2 and ModBwd2 are for the 2nd bi-directional LSTM. Forward (backward) LSTM
path in the output layer are marked as Out Fwd and OutBwd.

As discussed in Section 3.1, multiple parallel layers can receive the hidden states from the same
LSTM layer and all connections (weights) receive those hidden states belong to the same ISS. For
instance, ModFwd2 and ModBwd?2 both receive hidden states of ModFwd1l as inputs, therefore the
k-th “ISS weight group” includes the k-th rows of weights in both ModFwd2 and ModBwd2, plus
the weights in the k-th ISS component within ModFwd1. For simplicity, we use “ISS of ModFwd1”
to refer to the whole group of weights. Structures of six ISS are included in Table 5 in Appendix B.
We learn ISS sparsity in BiDAF by both fine-tuning the baseline and training from scratch. All the
training schemes keep as the same as the baseline except applying a higher dropout keep ratio. After
training, we zero out weights whose absolute values are smaller than 0.02. This does not impact EM
and F1 scores, but increase sparsity.

Table 3 shows the EM, F1, the number of remaining ISS components, model size, and inference
speed. The first row is the baseline BiDAF. Other rows are obtained by fine-tuning baseline using
ISS regularization. In the second row by learning ISS, with small EM and F1 loss, we can reduce
ISS in all LSTMs except ModFwd1l. For example, almost half of the ISS components are removed
in OutBwd. By increasing the strength of group Lasso regularization (\), we can increase the ISS
sparsity by losing some EM/F1 scores. The trade-off is listed in Table 3. With 2.63 F1 score loss,
the sizes of Out Fwd and Out Bwd can be reduced from original 100 to 15 and 12, respectively. At
last, we find it hard to reduce ISS sizes without losing any EM/F1 score. This implies that BiDAF is
compact enough and its scale is suitable for both computation and accuracy. However, our method
can still significantly compress this compact model under acceptable performance loss.

At last, instead of fine-tuning baseline, we train BiDAF from scratch with ISS learning. The results
are summarized in Table 4. Our approach also works well when training from scratch. Overall,
training from scratch balances the sparsity across all layers better than fine-tuning, which results
in even better compression of model size and speedup of inference time. The histogram of vector
lengths of “ISS weight groups” is plotted in Appendix C.

5 CONCLUSION

We proposed Intrinsic Sparse Structures (ISS) within LSTMs and its learning method to simulta-
neously reduce the sizes of input updates, gates, hidden states, cell states and outputs within the
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sophisticated LSTM structure. By learning ISS, a structurally sparse LSTM can be obtained, which
essentially is a regular LSTM with reduced hidden dimension. Thus, no software or hardware spe-
cific customization is required to get storage saving and computation acceleration. Though ISS is
proposed with LSTMs, it can be easily extended to vanilla RNNs, Gated Recurrent Unit (GRU) (Cho
et al. (2014)), and Recurrent Highway Networks (RHNs) (Zilly et al. (2017)).
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APPENDIX A ISS UNVEILED BY /;-NORM REGULARIZATION

LSTM 1 LSTM 2 Output

1500

10000

6000

Figure 5: Intrinsic Sparse Structures unveiled by ¢; regularization (zoom in for a better view). The
top row shows the original weight matrices, where blue dots are nonzero weights and white ones
refer zeros; the bottom row are the weight matrices in the format of Fig. 3, where white strips are ISS
components whose weights are all zeros. For better visualization, the original matrices are evenly
down-sampled by 10 x 10.

We take the large stacked LSTMs by Zaremba et al. (2014) for language modeling as the example.
The network has two stacked LSTM layers whose dimensions of inputs and states are both 1500, and
it has an output layer with a vocabulary of 10000 words. The sizes of “ISS weight groups” of two
LSTM layers are 24000 and 28000. The perplexities of validation set and test set are respectively
82.57 and 78.57. We fine-tune this baseline LSTMs with ¢;-norm regularization. The same training
hyper-parameters as the baseline are adopted, except a bigger dropout keep ratio of 0.6 (original
0.35). A weaker dropout is used because ¢1-norm is also a regularization to avoid overfitting. A
too strong dropout plus ¢;-norm regularization can result in underfitting. The weight decay of ¢;-
norm regularization is 0.0001. The sparsified network has validation perplexity and test perplexity
of 82.40 and 78.60, respectively, which is approximately the same with the baseline. The sparsity of
weights in the first LSTM layer, the second LSTM layer and the last output layer is 91.66%, 90.32%
and 90.22%, respectively. Fig. 5 plots the learned sparse weight matrices. The sparse matrices
in the top row reveal some interesting patterns: there are lots of all-zero columns and rows, and
their positions are highly correlated. Those patterns are profiled in the bottom row. Much to our
surprise, sparsifying individual weight independently can converge to sparse LSTMs with many ISS
removed—504 and 220 ISS components in the first and second LSTM layer are all-zeros.
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APPENDIX B ISS IN BIDAF

Table 5: The ISS in BiDAFE.

Dimensions of

Receivers of

Size of

LSTM name weight matrix hidden states “ISS weight group”
ModFwd?2
ModFwdl 900 x 400 ModBwd?2 4800
ModFwd2
ModBwd1l 900 x 400 ModBwd2 4800
OutFwd
ModFwd2 300 x 400 OutBwd 3201
logit layer for start index
OutFwd
ModBwd2 300 x 400 OutBwd 3201
logit layer for start index
OutFwd 1500 x 400 logit layer for end index 6401
OutBwd 1500 x 400 logit layer for end index 6401

13
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APPENDIX C HISTOGRAM OF VECTOR LENGTHS OF ISS WEIGHT GROUPS IN

BIDAF
ModFwd1 ModBwd1 ModFwd2
80 80 80
[ baseline
60 ["Jiss-learned 60 60
40 40 40
20 20 20
0 0 0
0 50 100 50 100 150 0 20 40 60
ModBwd2 OutFwd OutBwd
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40 40 40
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0 0 0
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Figure 6: Histogram of vector lengths of “ISS weight groups” in BiDAF. The ISS-learned BiDAF
is the one in the third row of Table 4 with EM 66.32 and F1 76.22. Using our approach, the lengths
are regularized closer to zeros with a peak at the zero, resulting in high ISS sparsity.
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