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Abstract

Voting systems typically treat all voters equally. We argue
that perhaps they should not: Voters who have supported good
choices in the past should be given higher weight than voters
who have supported bad ones. To develop a formal frame-
work for desirable weighting schemes, we draw on no-regret
learning. Specifically, given a voting rule, we wish to design
a weighting scheme such that applying the voting rule, with
voters weighted by the scheme, leads to choices that are al-
most as good as those endorsed by the best voter in hindsight.
We derive possibility and impossibility results for the exis-
tence of such weighting schemes, depending on whether the
voting rule and the weighting scheme are deterministic or ran-
domized, as well as on the social choice axioms satisfied by
the voting rule.

1 Introduction

In most elections, voters are entitled to equal voting power.
This principle underlies the one person, one vote doctrine,
and is enshrined in the United States Supreme Court ruling
in the Reynolds v. Sims (1964) case.

But there are numerous voting systems in which voters do,
in fact, have different weights. Standard examples include
the European Council, where (for certain decisions) the
weight of each member country is proportional to its popu-
lation; and corporate voting procedures where stockholders
have one vote per share. Some historical voting systems are
even more pertinent: Sweden’s 1866 system weighted voters
by wealth, giving especially wealthy voters as many as 5000
votes; and a Belgian system, used for a decade at the end
of the 19th Century, gave (at least) one vote to each man,
(at least) two votes to each educated man, and three votes to
men who were both educated and wealthy (Congleton 2011).

The last two examples can be seen as (silly, from a modern
viewpoint) attempts to weight voters by merit, using wealth
and education as measurable proxies thereof. We believe that
the basic idea of weighting voters by merit does itself have
merit. But we propose to measure a voter’s merit by the
quality of his past votes. That is, a voter who has supported
good choices in the past should be given higher weight than
a voter who has supported bad ones.
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This high-level scheme is, arguably, most applicable to re-
peated aggregation of objective opinions. For example, con-
sider a group of engineers trying to decide which prototype
to develop, based on an objective measure of success such
as projected market share. If an engineer supported a cer-
tain prototype and it turned out to be a success, she should
be given higher weight compared to her peers in future de-
cisions; if it is a failure, her weight should lower. Similar
examples include a group of investors selecting companies
to invest in; and a group of decision makers in a movie stu-
dio choosing movie scripts to produce. Importantly, the re-
cently launched, not-for-profit website RoboVote.org al-
ready provides public access to voting tools for precisely
these situations, albeit using methods that always treat all
voters equally (Procaccia, Shah, and Zick 2016).

Our goal in this paper, therefore, is to augment existing
voting methods with weights, in a way that keeps track of
voters’ past performance, and guarantees good choices over
time. The main conceptual problem we face is the develop-
ment of a formal framework in which one can reason about
desirable weighting schemes.1 To address this problem, we
build on the no-regret learning literature, but depart from the
classic setting in several ways — some superficial, and some
fundamental.

Specifically, instead of experts, we have a set of n voters.
In each round, each voter reveals a ranking over a set of
alternatives, and the loss of each alternative is determined. In
addition, we are given a (possibly randomized) voting rule,
which receives weighted rankings as input, and outputs the
winning alternative. The voting rule is not part of our design
space; it is exogenous and fixed throughout the process. The
loss of a voter in round t is given by assigning his ranking all
the weight (equivalently, imagining that all voters have that
ranking), applying the voting rule, and measuring the loss
of the winning alternative (or the expected loss, if the rule
is randomized). As in the classic setting, our benchmark is
the best voter in hindsight (but we also discuss the stronger
benchmark of best voter weights in hindsight in Section 6).

1In that sense, our work is related to papers in computa-
tional social choice (Brandt et al. 2016) that study weighted vot-
ing, in the context of manipulation, control, and bribery in elec-
tions (Conitzer, Sandholm, and Lang 2007; Zuckerman, Procaccia,
and Rosenschein 2009; Faliszewski, Hemaspaandra, and Hemas-
paandra 2009; 2015).
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At first glance, it may seem that our setting easily reduces
to the classic one, by treating voters as experts. But our loss
is computed by applying the given voting rule to the entire
profile of weighted rankings, and therein lies the rub.2 This
leads to our main research question:

For which voting rules is there a weighting scheme such
that the difference between our average per-round loss
and that of the best voter goes to zero as the number of
rounds goes to infinity?

In Section 4, we devise no-regret weighting schemes
for any voting rule, under two classic feedback models —
full information and partial information. While these re-
sults make no assumptions on the voting rule, the forego-
ing weighting schemes heavily rely on randomization. By
contrast, deterministic weighting schemes seem more desir-
able, as they are easier to interpret and explain. In Section 5,
therefore, we restrict our attention to deterministic weight-
ing schemes. We find that if the voting rule is itself deter-
ministic, it admits a no-regret weighting scheme if and only
if it is constant on unanimous profiles. Because this property
is not satisfied by any reasonable rule, the theorem should
be interpreted as a strong impossibility result. We next con-
sider randomized voting rules, and find that they give rise to
much more subtle results, which depend on the properties of
the voting rule in question.

2 Preliminaries

Our work draws on social choice theory and online learn-
ing. In this section we present important concepts and results
from each of these areas in turn.

2.1 Social Choice

We consider a set [n] � {1, . . . , n} of voters and a set A
of m alternatives. A vote σ : A → [m] is a linear ordering
— a ranking or permutation — of the alternatives. That is,
for any vote σ and alternative a, σ(a) denotes the position
of alternative a in vote σ. For any a, b ∈ A, σ(a) < σ(b)
indicates that alternative a is preferred to b under vote σ. We
also denote this preference by a �σ b. We denote the set of
all m! possible votes over A by L(A).

A vote profile σ ∈ L(A)n denotes the votes of n voters.
Furthermore, given a vote profile σ ∈ L(A)n and a weight
vector w ∈ R

n
≥0, we define the anonymous vote profile cor-

responding to σ and w, denoted π ∈ [0, 1]|L(A)|, by setting

πσ � 1

‖w‖1
n∑

i=1

wi1(σi=σ), ∀σ ∈ L(A).

That is, π is an |L(A)|-dimensional vector such that for
each vote σ ∈ L(A), πσ is the fraction of the total weight
on σ. When needed, we use πσ,w to clarify the vote pro-
file and weight vector to which the anonymous vote profile

2For the same reason, our work is quite different from pa-
pers on online learning algorithms for ranking, where the algo-
rithm chooses a ranking of objects at each stage, and suffers a loss
based on the “relevance” of the ranking (Radlinski, Kleinberg, and
Joachims 2008; Chaudhuri and Tewari 2015).

corresponds. Note that πσ,w only contains the anonymized
information about σ and w, i.e., the anonymous vote pro-
file remains the same even when the identities of the voters
change.

To aggregate the (weighted) votes into a distribution over
alternatives, we next introduce the concept of (anonymous)
voting rules. Let Δ(L(A)) be the set of all possible anony-
mous vote profiles. Similarly, let Δ(A) denote the set of all
possible distributions over A. An anonymous voting rule is
a function f : Δ(L(A)) → Δ(A) that takes as input an
anonymous vote profile π and returns a distribution over the
alternatives indicated by a vector f(π), where f(π)a is the
probability that alternative a is the winner under π. We say
that a voting rule f is deterministic if for any π ∈ Δ(L(A)),
f(π) has support of size 1, i.e., there is a unique winner.

An anonymous deterministic voting rule f is called strat-
egyproof if for any voter i ∈ [n], any two vote profiles
σ and σ′ for which σj = σ′

j for all j �= i, and any
weight vector w, it holds that either a = a′ or a �σi a′,
where a and a′ are the winning alternatives in f(πσ,w)
and f(πσ′,w) respectively. In words, whenever a voter re-
ports σ′

i instead of σi, the outcome does not improve ac-
cording to the true ranking σi. While strategyproofness
is a natural property to be desired in a voting rule, the
celebrated Gibbard-Satterthwaite Theorem (Gibbard 1973;
Satterthwaite 1975) shows that non-dictatorial strategyproof
deterministic voting rules do not exist.3 Subsequently, Gib-
bard (1977) extended this result to randomized voting rules.
Before presenting his extension, we introduce some addi-
tional definitions.

Given a loss function over the alternatives denoted by a
vector � ∈ [0, 1]m, the expected loss of the alternative cho-
sen by the rule f under an anonymous vote profile π is

Lf (π, �) � Ea∼f(π)[�a] = f(π) · �.
The higher the loss, the worse the alternative. We say that
the loss function � is consistent with vote σ ∈ L(A) if for
all a, b ∈ A, a �σ b ⇔ �a < �b. An anonymous randomized
rule f is strategyproof if for any voter i ∈ [n], any two vote
profiles σ and σ′ for which σj = σ′

j for all j �= i, any
weight vector w, and any loss function � that is consistent
with σi, we have Lf (πσ,w, �) ≤ Lf (πσ′,w, �).

The next proposition is an interpretation of a result of Gib-
bard (1977) on the structural property shared by all strate-
gyproof randomized voting rules, applied to anonymous vot-
ing rules.

Proposition 2.1. Any strategyproof randomized rule is a
distribution over a collection of the following types of rules:

1. Anonymous Unilaterals: g is an anonymous unilateral if
there exists a function h : L(A) → A for which

g(π) =
∑

σ∈L(A)

πσeh(σ),

where ea is the unit vector that has 1 in the coordinate
corresponding to a ∈ A, and 0 in all other coordinates.

3The theorem also requires a range of size at least 3.
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2. Duple: g is a duple rule if

|{a ∈ A | ∃π such that g(π)a �= 0}| ≤ 2.

Examples of strategyproof randomized voting rules in-
clude randomized positional scoring rules and the random-
ized Copeland rule, which were previously studied in this
context (Conitzer and Sandholm 2006; Procaccia 2010). The
reader is referred to the full version of the paper (Haghtalab,
Noothigattu, and Procaccia 2017) for more details.

2.2 Online Learning

We next describe the general setting of online learning, also
known as learning from experts. We consider a game be-
tween a learner and an adversary. There is a set of ac-
tions (a.k.a experts) X available to the learner, a set of
actions Y available to the adversary, and a loss function
c : X × Y → [0, 1] that is known to both parties. In ev-
ery time step t ∈ [T ], the learner chooses a distribution, de-
noted by a vector pt ∈ Δ(X ), over the actions in X , and the
adversary chooses an action yt from the set Y . The learner
then receives a loss of c(xt, yt) for xt ∼ pt. At this point,
the learner receives some feedback regarding the action of
the adversary. In the full information setting, the learner ob-
serves yt before proceeding to the next time step. In the par-
tial information setting, the learner only observes the loss
c(xt, yt).

The regret of the algorithm is defined as the difference
between its total expected loss and that of the best fixed ac-
tion in hindsight. The goal of the learner is to minimize its
expected regret, that is, minimize

E[RegT ] � E

[
T∑

t=1

c(xt, yt)−min
x∈X

T∑
t=1

c(x, yt)

]
,

where the expectation is taken over the choice of xt ∼ pt,
and any other random choices made by the algorithm and
the adversary. An online algorithm is called a no-regret al-
gorithm if E[RegT ] ∈ o(T ). In words, the average regret
of the learner must go to 0 as T → ∞. In general, deter-
ministic algorithms, for which ‖pt‖∞ = 1, can suffer linear
regret, because the adversary can choose a sequence of ac-
tions y1, . . . , yT on which the algorithm makes sub-optimal
decisions at every round. Therefore, randomization is one of
the key aspects of no-regret algorithms.

Many online no-regret algorithms are known for the full
information and the partial information settings. In particu-
lar, the HEDGE algorithm (Freund and Schapire 1995) is one
of the earliest results in this space for the full information
setting. At time t+1, HEDGE picks each action x with prob-
ability pt+1

x ∝ exp(−ηCt(x)), for Ct(x) =
∑t

s=1 c(x, y
s)

and η = Θ(
√

2 ln(|X |) / T ).
Proposition 2.2 (Freund and Schapire 1995). HEDGE has
regret E[RegT ] ≤ O

(√
T ln(|X |)

)
.

For the partial information setting, the EXP3 algorithm
of Auer et al. (2002) can be thought of as a variant of the
HEDGE algorithm with importance weighting. In particular,

at time t + 1, EXP3 picks each action x with probability
pt+1
x ∝ exp(−ηC̃t(x)), for η = Θ(

√
2 ln(|X |) / T |X |) and

C̃t(x) =
t∑

s=1

1(xs=x)c(x, y
s)

psx
. (1)

In other words, EXP3 is similar to HEDGE, except that in-
stead of taking into account the total loss of an action, Ct(x),
it takes into account an estimate of the loss, C̃t(x).

3 Problem Formulation

In this section, we formulate the question of how one can
design a weighting scheme that effectively weights the rank-
ings of voters based on the history of their votes and the per-
formance of the selected alternatives.

We consider a setting where n voters participate in a se-
quence of elections that are decided by a known voting rule
f . In each election, voters submit their rankings over a dif-
ferent set of m alternatives so as to elect a winner. Given an
adversarial sequence of voters’ rankings σ1:T and alterna-
tive losses �1:T over a span of T elections, the best voter is
the one whose rankings lead to the election of the winners
with smallest loss overall. We call this voter the best voter
in hindsight. (See Section 6 for a discussion of a stronger
benchmark: best weight vector in hindsight.)

When the sequence of elections is not known a priori, the
best voter is not known either. In this case, the weighting
scheme has to take an online approach to weighting the vot-
ers’ rankings. That is, at each time step t ≤ T , the weighting
scheme chooses a weight vector wt, possibly at random, to
weight the rankings of the voters. After the election is held,
the weighting scheme receives some feedback regarding the
quality of the alternatives in that election, typically in the
form of the loss of the elected alternative or that of all al-
ternatives. Using the feedback, the weighting scheme then
re-weights the voters’ rankings based on their performance
so far. Our goal is to design a weighting scheme that weights
the rankings of the voters at each time step, and elects win-
ners with overall expected loss that is almost as small as that
of the best voter in hindsight. We refer to the expected differ-
ence between these losses as the expected regret. Formally,
let

Lf (π, �) �
∑
a∈A

f(π)a · �a

be the expected loss of the (possibly randomized) voting rule
f under the anonymous preference profile π and loss vector
�. Then the expected regret is

E[RegT ] � E

[
T∑

t=1

Lf (πσt,wt , �t)−min
i

T∑
t=1

Lf (πσt,ei , �
t)

]
,

where the expectation is taken over any additional source of
randomness in the adversarial sequence or the algorithm. In
particular, we seek a weighting scheme for which the av-
erage expected regret goes to zero as the time horizon T
goes to infinity, at a rate that is polynomial in the num-
ber of voters and alternatives. That is, we wish to achieve
E[RegT ] = poly(n,m) · o(T ). This is our version of a no-
regret algorithm.
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The type of the feedback is an important factor in design-
ing a weighting scheme. Analogously to the online learning
models described in Section 2.2, we consider two types of
feedback, full information and partial information. In the
full information case, after a winner is selected at time t,
the quality of all alternatives and rankings of the voters at
that round are revealed to the weighting scheme. Note that
this information is sufficient for computing the loss of each
voter’s rankings so far. This would be the case, for exam-
ple, if the alternatives are companies to invest in. On the
other hand, in the partial information setting only the loss
of the winner is revealed. This type of feedback is appropri-
ate when the alternatives are product prototypes: we cannot
know how successful an undeveloped prototype would have
been, but obviously we can measure the success of a proto-
type that was selected for development. More formally, in
the full information setting the choice of wt+1 can depend
on σ1:t and �1:t, while in the partial information setting it
can only depend on σ1:t and �sas for s ≤ t, where as is the
alternative that won the election at time s.

No doubt the reader has noted that the above problem
formulation is closely related to the general setting of on-
line learning. Using the language of online learning intro-
duced in Section 2.2, the weight vector wt corresponds
to the learner’s action xt, the vote profile and alternative
losses (σt, �t) correspond to the adversary’s action yt, the
expected loss of the weighting scheme Lf (πσt,wt , �t) cor-
responds to the loss of the learning algorithm c(xt, yt), and
the best-in-hindsight voter — or weight vector ei — refers
to the best-in-hindsight action.

4 Randomized Weights

In this section, we develop no-regret algorithms for the full
information and partial information settings. We essentially
require no assumptions on the voting rule, but also impose
no restrictions on the weighting scheme. In particular, the
weighting scheme may be randomized, that is, the weights
can be sampled from a distribution over weight vectors. This
allows us to obtain general positive results.

As we just discussed, our setting is closely related to the
classic online learning setting. Here, we introduce an algo-
rithm analogous to HEDGE that works in the full information
setting of Section 3 and achieves no-regret guarantees.

Algorithm 1: Full information setting, using ran-
domized weights.

Input: Adversarial sequences σ1:T and �1:T , and
parameter η =

√
2 lnn/T

for t = 1, . . . , T do
Play weight vector ei with probability

pti ∝ exp

(
−η

t−1∑
s=1

Lf (πσs,ei
, �s)

)
.

Observe �t and σt.
end

Theorem 4.1. For any anonymous voting rule f and n vot-
ers, Algorithm 1 has regret O(

√
T ln(n)) in the full infor-

mation setting.

Proof sketch. At a high level, this algorithm only considers
weight vectors that correspond to a single voter. At every
time step, the algorithm chooses a distribution over such
weight vectors and applies the voting rule to one such weight
vector that is drawn at random from this distribution. This is
equivalent to applying the HEDGE algorithm to a set of ac-
tions, each of which is a weight vector that corresponds to a
single voter. In addition, the loss of the benchmark weight-
ing scheme is the smallest loss that one can get from follow-
ing one such weight vector. Therefore, the theorem follows
from Proposition 2.2.

Let us now address the partial information setting. One
may wonder whether the above approach, i.e., reducing our
problem to online learning and using a standard algorithm,
directly extends to the partial information setting (with the
EXP3 algorithm). The answer is that it does not. In par-
ticular, in the classic setting of online learning with partial
information feedback, the algorithm can compute the esti-
mated loss of the action it just played, that is, the algorithm
can compute c(xt, yt). In our problem setting, however, the
weighting scheme only observes σt and �tat for the specific
alternative at that was elected at this time. Since the losses
of other alternatives remain unknown, the weighting scheme
cannot even compute the expected loss of the specific voter
it it selected at time t, i.e., Lf (πσt,eit

, �t). Therefore, we
cannot directly use the EXP3 algorithm by imagining that
the voters are actions, as we do not obtain the partial infor-
mation feedback that the algorithm requires. Nevertheless,
we can design a new algorithm inspired by EXP3.

Algorithm 2: Partial information setting, using ran-
domized weights.

Input: An adversarial sequences of σ1:T and �1:T ,
and parameter η =

√
2 lnn/Tn.

Let L̃
0
= 0.

for t = 1, . . . , T do
for i = 1, . . . , n do

Let pti ∝ exp(−ηL̃t−1
i ).

end

Play weight vector eit from distribution pt, and
observe the vote profile σt, the alternative
at ∼ f(πσt,eit

), and its loss �tat .

Let �̃
t

be the vector such that �̃tit = �tat/ptit and
�̃ti = 0 for i �= it.

Let L̃
t
= L̃

t−1
+ �̃

t
.

end

Theorem 4.2. For any anonymous voting rule f and n vot-
ers, Algorithm 2 has regret O(

√
Tn ln(n)) in the partial in-

formation setting.
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To prove the theorem, we show that certain properties,
which are necessary for the performance of EXP3, still hold
in our setting. Specifically, Lemma 4.3 asserts that �̃

t
creates

an unbiased estimator of the expected loss of the weighting
scheme. Moreover, it states that for any voter i∗, L̃t

i∗ is an
unbiased estimator for the loss that the weighting scheme
would have received if it followed the rankings of voter i∗
throughout the sequence of elections. Lemma 4.4 then es-
tablishes that the variance of this estimator is small.

Lemma 4.3. For any t, any i∗, it ∼ pt, and at ∼
f(πσt,eit

), we have

Eit,at

[
n∑

i=1

pti �̃
t
i

]
= Eit

[
Lf (πσt,eit

, �t)
]

and

Eit,at

[
L̃T
i∗

]
=

T∑
t=1

Lf (πσt,ei∗ , �
t).

Proof. For ease of notation, we suppress t when it is clear
from the context. First note that �̃ is zero in all of its ele-
ments, except for �̃it . So,

n∑
i=1

pi�̃i = pit �̃it = pit
�at

pit
= �at .

Therefore, we have

Eit,at

[
n∑

i=1

pi�̃i

]
= Eit,at [�at ] = Eit

[
Lf (πσ,eit

, �)
]
.

For clarity of presentation, let �̃
i,a

be an alternative repre-
sentation of �̃ when it = i and at = a. Note that �i,ai∗ �= 0
only if i∗ = i. We have

Eit,at

[
L̃T
i∗

]
=

T∑
t=1

Eit,at

[
�̃i

t,at

i∗

]

=
T∑

t=1

n∑
i=1

pti Ea∼f(πσt,ei
)

[
�̃i,ai∗

]

=
T∑

t=1

pti∗ Ea∼f(πσt,ei∗ )

[
�ta
pti∗

]

=
T∑

t=1

Ea∼f(πσt,ei∗ )

[
�ta
]

=
T∑

t=1

Lf (πσt,ei∗ , �
t).

Lemma 4.4. For any t, it ∼ pt, and at ∼ f(πσt,eit
), we

have

Eit,at

[
n∑

i=1

pti(�̃
t
i)

2

]
≤ n.

Proof. For ease of notation, we suppress t when it is clear
from the context. Since �̃ is zero in all of its elements, except
for �̃it , we have

n∑
i=1

pi(�̃i)
2 = pit(�̃it)

2 = pit

(
�at

pit

)2

=
(�at)2

pit
.

Therefore,

Eit,at

[
n∑

i=1

pi(�̃i)
2

]
= Eit,at

[
(�at)2

pit

]

=
n∑

i=1

pi Ea∼f(πσ,ei
)

[
(�a)

2

pi

]

=
n∑

i=1

Ea∼f(πσ,ei
)

[
(�a)

2
]

≤ n.

We are now ready to prove the theorem.

Proof of Theorem 4.2. We use a potential function, given by
Φt � − 1

η ln
(∑n

i=1 exp(−ηL̃t−1
i )

)
. We prove the claim by

analyzing the expected increase in this potential function at
every time step. Note that

Φt+1 − Φt = −1

η
ln

(∑n
i=1 exp(−ηL̃t−1

i − η�̃ti)∑n
i=1 exp(−ηL̃t−1

i )

)

= −1

η
ln

(
n∑

i=1

pti exp(−η�̃ti)

)
.

(2)

Taking the expected increase in the potential function over
the random choices of it and at for all t = 1, . . . , T , we
have

E [ΦT+1 − Φ1]

=

T∑
t=1

Eit,at [Φt+1 − Φt]

≥
T∑

t=1

Eit,at

[
− 1

η
ln

(
n∑

i=1

p
t
i

(
1 − η�̃

t
i +

1

2

(
η�̃

t
i

)2
))]

=

T∑
t=1

Eit,at

[
− 1

η
ln

(
1 − η

(
n∑

i=1

p
t
i �̃

t
i − η

2

n∑
i=1

p
t
i

(
�̃
t
i

)2

))]

≥
T∑

t=1

Eit,at

[
n∑

i=1

p
t
i �̃

t
i − η

2

n∑
i=1

p
t
i

(
�̃
t
i

)2

]

≥ E

[
T∑

t=1

Lf (πσt,eit
, �

t
)

]
− ηTn

2
, (3)

where the second transition follows from Equation (2) be-
cause for all x ≥ 0, e−x ≤ 1− x+ x2

2 , the fourth transition
follows from ln(1 − x) ≤ −x for all x ∈ R, and the last
transition holds by Lemmas 4.3 and 4.4. On the other hand,
Φ1 = − 1

η lnn and for any i∗,

ΦT+1 ≤ −1

η
ln

(
exp(−ηL̃T

i∗)
)
= L̃T

i∗ .
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Therefore,

E [ΦT+1 − Φ1] ≤ E

[
L̃T
i∗ +

1

η
lnn

]

= E

[
T∑

t=1

Lf (πσt,ei∗ , �
t) +

1

η
lnn

]
.

(4)

We can now prove the theorem by using Equations (3) and
(4), and the parameter value η =

√
2 lnn/Tn:

E

[
T∑

t=1

Lf (πσt,eit
, �t)− min

i∈[n]

T∑
t=1

Lf (πσt,ei
, �t)

]

≤ 1

η
lnn+

ηTn

2

≤
√
2Tn lnn.

5 Deterministic Weights

One of the key aspects of the weighting schemes we used
in the previous section is randomization. In such weighting
schemes, the weights of the voters not only depend on their
performance so far, but also on the algorithm’s coin flips. In
practice, voters would most likely prefer weighting schemes
that depend only on their past performance, and are therefore
easier to interpret.

In this section, we focus on designing weighting schemes
that are deterministic in nature. Formally, a deterministic
weighting scheme is an algorithm that at time step t+1 deter-
ministically chooses one weight vector wt+1 based on the
history of play, i.e., sequences σ1:t, �1:t, and a1:t. In this
section, we seek an answer to the following question: For
which voting rules is there a no-regret deterministic weight-
ing scheme? In contrast to the results established in the pre-
vious section, we find that the properties of the voting rule
play an important role here. In the remainder of this sec-
tion, we show possibility and impossibility results for the
existence of such weighting schemes under randomized and
deterministic voting rules.

We begin our search for deterministic weighting schemes
by considering deterministic voting rules. Note that in this
case the winning alternatives are induced deterministically
by the weighting scheme, so the weight vector wt+1 should
be deterministically chosen based on the sequences σ1:t and
�1:t. We establish an impossibility result: Essentially no de-
terministic weighting scheme is no-regret for a determin-
istic voting rule. Specifically, we show that a deterministic
no-regret weighting scheme exists for a deterministic voting
rule if and only if the voting rule is constant on unanimous
profiles.
Definition 5.1. A voting rule f is constant on unanimous
profiles if and only if for all σ, σ′ ∈ L(A), f(eσ) = f(eσ′),
where eσ denotes the anonymous vote profile that has all of
its weight on ranking σ.

Theorem 5.2. For any deterministic voting rule f , a deter-
ministic weighting scheme with regret o(T ) exists if and only

if f is constant on unanimous profiles. This is true in both the
full information and partial information settings.

Proof. We first prove that for any voting rule that is constant
on unanimous profiles there exists a deterministic weighting
scheme that is no-regret. Consider such a voting rule f and
a simple deterministic weighting scheme that uses weight
vector wt = e1 for every time step t ≤ T (so it does not
use feedback — whether full or partial — at all). Note that
at each time step t and for any voter i ∈ [n],

f(πσt,wt) = f(eσt
1
) = f(eσt

i
) = f(πσt,ei

),

where the second transition holds because f is constant on
unanimous profiles. As a result,

Lf (πσt,wt , �t) = Lf (πσt,ei
, �t).

In words, the total loss of the weighting scheme is the same
as the total loss of any individual voter — this weighting
scheme has 0 regret.

Next, we prove that if f is not constant on unanimous
profiles then for any deterministic weighting scheme there
is an adversarial sequence of σ1:T and �1:T that leads to
regret of Ω(T ), even in the full information setting. Take
any such voting rule f and let τ, τ ′ ∈ L(A) be such that
f(eτ ) �= f(eτ ′). At time t, the adversary chooses σt and �t

based on the deterministic weight vector wt as follows: The
adversary sets σt to be such that σt

1 = τ and σt
j = τ ′ for all

j �= 1. Let alternative at be the winner of profile πσt,wt , i.e.,
f(πσt,wt) = eat . The adversary sets �tat = 1 and �tx = 0 for
all x �= at. Therefore, the weighting scheme incurs a loss of
1 at every step, and its total loss is

T∑
t=1

Lf (πσt,wt , �t) =
T∑

t=1

�tat = T.

Let us consider the total loss that the ranking of any indi-
vidual voter incurs. By design, for any j > 1,

f(πσt,e1
) = f(eτ ) �= f(eτ ′) = f(πσt,ej

).

Therefore, for at least one voter i ∈ [n], f(πσt,ei
) �= eat .

Note that such a voter receives loss of 0, so the combined
loss of all voters is at most n − 1. Over all time steps, the
total combined loss of all voters is at most T (n − 1). As a
result, the best voter incurs a loss of at most (n−1)T

n , i.e., the
average loss. We conclude that the regret of the weighting
scheme is

RegT =
T∑

t=1

Lf (πσt,wt , �t)− min
i∈[n]

T∑
t=1

Lf (πσt,ei
, �t)

≥ T − (n− 1)T

n

=
T

n
.
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Theorem 5.2 indicates that we need to allow random-
ness (either in the weighting scheme or in the voting rule)
if we wish to have no-regret guarantees. As stated before,
we would like to have a deterministic weighting scheme so
that the weights of voters are not decided by coin flips. This
leaves us with no choice other than having a randomized
voting rule. Nonetheless, one might argue in favor of hav-
ing a deterministic voting rule and a randomized weight-
ing scheme, claiming that it is equivalent because the ran-
domness has simply been shifted from the voting rule to the
weights. To that imaginary critic we say that allowing the
voting rule to be randomized makes it possible to achieve
strategyproofness (see Section 2.1), which cannot be satis-
fied by a deterministic voting rule.

We next show that for any voting rule that is a distribution
over unilaterals there exist deterministic weighting schemes
that are no-regret. An important family of strategyproof ran-
domized voting rules — randomized positional scoring rules
(see the full version of the paper (Haghtalab, Noothigattu,
and Procaccia 2017)) — can be represented as distributions
over unilaterals, hence the theorem allows us to design a
no-regret weighting scheme for any randomized positional
scoring rule.

The weighting schemes that we use build on Algorithms 1
and 2 directly. In more detail, we consider deterministic
weighting schemes that at time t use weight vector pt and
a randomly drawn candidate at ∼ f(πσt,pt), where pt is
computed according to Algorithms 1 or 2. The key insight
behind these weighting schemes is that, if f is a distribution
over unilaterals, we have

Ei∼pt [f(πσt,ei
)] = f(πσt,pt), (5)

where the left-hand side is a vector of expectations. That is,
the outcome of the voting rule f(πσt,pt) can be alternatively
implemented by applying the voting rule on the ranking of
voter i that is drawn at random from the distribution pt.
This is exactly what Algorithms 1 and 2 do. Therefore, the
deterministic weighting schemes induce the same distribu-
tion over alternatives at every time step as their randomized
counterparts, and achieve the same regret. The next theorem,
whose complete proof appears in the full version of the pa-
per (Haghtalab, Noothigattu, and Procaccia 2017), formal-
izes this discussion.

Theorem 5.3. For any voting rule that is a distribution
over unilaterals, there exist deterministic weighting schemes
with regret of O(

√
T ln(n)) and O(

√
Tn ln(n)) in the full-

information and partial-information settings, respectively.

The theorem states that there exist no-regret deterministic
weighting schemes for any voting rule that is a distribution
over unilaterals. It is natural to ask whether being a distri-
bution over unilaterals is, in some sense, also a necessary
condition. While we do not give a complete answer to this
question, we are able to identify a sufficient condition for
not having no-regret deterministic weighting schemes.

To this end, we introduce a classic concept. Alternative
a ∈ A is a Condorcet winner in a given vote profile if for
every b ∈ A, a majority of voters rank a above b. A deter-
ministic rule is Condorcet consistent if it selects a Condorcet

winner whenever one exists in the given vote profile; see the
full version of the paper (Haghtalab, Noothigattu, and Pro-
caccia 2017) for formal definitions. We extend the notion of
Condorcet consistency to randomized rules.
Definition 5.4. For a set of alternatives A such that |A| =
m, a randomized voting rule f : Δ(L(A)) → Δ(A) is
probabilistically Condorcet consistent with gap δ(m) if for
any anonymous vote profile π that has a Condorcet win-
ner a, and for all alternatives x ∈ A \ {a}, f(π)a ≥
f(π)x + δ(m).

In words, a randomized voting rule is probabilistically
Condorcet consistent if the Condorcet winner has strictly
higher probability of being selected than any other alter-
native, by a gap of δ(m). As an example, a significant
strategyproof randomized voting rule — the randomized
Copeland rule, defined in the full version of the paper (Hagh-
talab, Noothigattu, and Procaccia 2017) — is probabilisti-
cally Condorcet consistent with gap δ(m) = Ω(1/m2).
Theorem 5.5. For a set of alternatives A such that |A| = m,
let f be a probabilistically Condorcet consistent voting rule
with gap δ(m), and suppose there are n voters for

n ≥ 2

(
3

2δ(m)
+ 1

)
.

Then any deterministic weighting scheme will suffer regret
of Ω(T ) under f (in the worst case), even in the full infor-
mation setting.

The theorem’s proof is relegated to the full version of the
paper (Haghtalab, Noothigattu, and Procaccia 2017). It is in-
teresting to note that Theorems 5.3 and 5.5 together imply
that distributions over unilaterals are not probabilistically
Condorcet consistent. This is actually quite intuitive: Distri-
butions over unilaterals are “local” in that they look at each
voter separately, whereas Condorcet consistency is a global
property. In fact, these theorems can be used to prove — in
an especially convoluted and indirect way — a simple re-
sult from social choice theory (Moulin 1983): No positional
scoring rule is Condorcet consistent!

6 Discussion

We conclude by discussing several conceptual points.

A natural, stronger benchmark. In our model (see Sec-
tion 3), we are competing with the best voter in hindsight.
But our action space consists of weight vectors. It is there-
fore natural to ask whether we can compete with the best
weight vector in hindsight (hereinafter, the stronger bench-
mark). Clearly the stronger benchmark is indeed at least as
hard, because the best voter i∗ corresponds to the weight
vector ei∗ . Therefore, our impossibility results for com-
peting against the best voter in hindsight (Theorems 5.2
and 5.5) extend to the stronger benchmark. Moreover, vot-
ing rules that are distributions over unilaterals demonstrate
a certain linear structure where the outcome of the vot-
ing rule nicely decomposes across individual voters. Under
such voting rules, the benchmark of best weights in hind-
sight is equivalent to the benchmark of best voter in hind-
sight. Therefore, Theorem 5.3 also holds for the stronger
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benchmark, and, in summary, each and every result of Sec-
tion 5 extends to the stronger benchmark. By contrast, The-
orems 4.1 and 4.2 do not hold for the stronger benchmark;
the question of identifying properties of voting rules (be-
yond distributions over unilaterals) that admit randomized
no-regret weighting schemes under the stronger benchmark
remains open. We describe the stronger benchmark in more
detail, and formalize the above arguments, in the full version
of the paper (Haghtalab, Noothigattu, and Procaccia 2017).

Changing the sets of alternatives and voters over time.
We wish to emphasize that the set of alternatives at each
time step, i.e., in each election, can be completely different.
Moreover, the number of alternatives could be different. In
fact, our positive results do not even depend on the num-
ber of alternatives m, so we can simply set m to be an upper
bound. By contrast, we do need the set of voters to stay fixed
throughout the process, but this is consistent with our moti-
vating examples (e.g., a group of partners in a small venture
capital firm would face different choices at every time step,
but the composition of the group rarely changes).

Optimizing the voting rule. Throughout the paper, the vot-
ing rule is exogenous. One might ask whether it makes sense
to optimize the choice of voting rule itself, in order to obtain
good no-regret learning results. Our answer is “yes and no”.
On the one hand, we believe our results do give some guid-
ance on choosing between voting rules. For example, from
this viewpoint, one might prefer randomized Borda (which
admits no-regret algorithms under a deterministic weight-
ing scheme) to randomized Copeland (which does not). On
the other hand, many considerations are factored into the
choice of voting rule: social choice axioms, optimization
of additional objectives (Procaccia, Shah, and Zick 2016;
Boutilier et al. 2015; Elkind, Faliszewski, and Slinko 2009;
Conitzer and Sandholm 2005), and simplicity. It is therefore
best to think of our approach as augmenting voting rules that
are already in place.
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