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Abstract

Nitroaromatic compounds are widely used in agricultural pesticides, pharmaceuticals, military
explosives, and other applications. They enter the environment via manufacturing and municipal
wastewater discharges and releases from agricultural and military operations. Because of their
ubiquity and toxicity, they are considered an important class of environmental contaminants.
Nitroaromatics are known to undergo reductive transformation to aromatic amines, and under
aerobic conditions they are susceptible to coupling reactions which may lead to their irreversible
incorporation into soil organic matter. However, there is also evidence of coupling reactions in
the absence of oxygen between reduced intermediates of the insensitive munitions compound
2,4-dinitroanisiole, leading to the formation of azo dimers. The formation of such products is a
concern since they may be more toxic than the original nitroaromatic compounds. The objective
of this research is to provide evidence of the anaerobic formation of azo coupling products. 4-
Nitroanisole was used as a model compound and was spiked into incubations containing
anaerobic granular sludge with H, as the electron donor. Using liquid chromatography, UV-Vis
spectroscopy, and mass spectrometry, the formation of the azo dimer 4,4’-
dimethoxyazobenzene was confirmed. However, due to the instability of the azo bond under the
reducing conditions of our incubations, the azo dimer did not accumulate. Consequently, 4-
aminoanisole was the major product formed in our experiment. Other minor suspected coupling
products were also detected in our incubations. The results provide clear evidence for the
temporal formation of at least one azo dimer in the anaerobic reduction of a model nitroaromatic

compound.

Keywords: nitroaromatics; anaerobic biotransformation; 2,4-dinitroanisole (DNAN);

azobenzenes; insensitive munitions compound.
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Graphical Abstract

Highlights

Study proves adduct formation during reductive transformation of nitroaromatics
4,4’-Dimethoxyazobenzene formed during anaerobic transformation of 4-nitroanisole
Reaction is hypothesized to occur between nitroso and amine intermediates

4,4’-Dimethoxyazobenzene is transient and is reductively cleaved to 4-aminoanisole
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1. Introduction

Nitroaromatic compounds are a major class of environmental pollutants. They are of significant
concern due to their toxicity, production, and use in a wide variety of industries and products.
Nitroaromatics are used in the manufacture of explosives (Urbanski, 1984; Davies and Provatas,
2006), pesticides (Zablotowicz et al., 2000; Wang and Arnold, 2003; Keum and Li, 2004),
pharmaceuticals (Strauss, 1979; Boelsterli et al., 2006), solid fuels (Powell et al., 1998), and
fragrances (Ford, 1998; Gatermann et al., 1998), and enter the environment through various
pathways. They are discharged with wastewater effluent from production plants and municipal
wastewater treatment plants. Release onto land occurs with the use of explosives on firing
ranges and when pesticides are sprayed onto agricultural fields. Some nitroaromatics are
known to be mutagenic and/or carcinogenic (Kovacic and Somanathan, 2014). Because of their
toxicity and pervasiveness in the environment, these compounds pose an elevated risk to
human and environmental health. It is therefore important to develop remediation techniques to

clean up sites contaminated with nitroaromatics.

To develop these remediation techniques, a good understanding of the fate of nitroaromatics in
the environment is required. Although there are multiple routes of nitroaromatic transformation,
including biodegradation (Ju and Parales, 2010), a common fate is their reductive
biotransformation to the corresponding aromatic amines (Drzyzga et al., 1998a; Razo-Flores et
al., 1999; Hwang et al., 2000; Esteve-Nunez et al., 2001). These reactions are important
because many nitroaromatic contaminants encounter anaerobic conditions, such as in saturated
soil, groundwater, aquatic sediments, and wastewater (Taylor et al., 2013). Some studies have
shown that this transformation may be biologically catalyzed by microorganisms (Rafii et al.,
1991; Gorontzy et al., 1993; Boopathy et al., 1998; Ahmad and Hughes, 2000). Enzymes such
as nitroreductases, commonly found in both aerobic and anaerobic bacteria, are known to
reduce a broad range of nitroaromatic compounds (Nyanhongo et al., 2005; Perez-Reinado et

4
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al., 2008; Gwenin et al., 2011; Pitsawong et al., 2014). Other studies have demonstrated the
abiotic reduction of nitroaromatics by surface adsorbed Fe®* and H,S (Gorontzy et al., 1993). If
aromatic amines are exposed to air, they may be oxidized by oxidative enzymes to form radicals
that can undergo polymerization reactions (Jensen et al., 1992; Tan et al., 1999; Sierra-Alvarez
et al., 2010; Barsing et al., 2011). Furthermore, these aromatic amine radicals are known to
form covalent bonds to soil humus (Esteve-Nufez et al., 2001). Evidence of the incorporation of
2,4,6-trinitrotoluene (TNT) into soil humus was demonstrated with both "*C-labeled TNT
(Pennington et al., 1995; Drzyzga et al., 1998b; Bruns-Nagel et al., 2000b) and "°N-labeled TNT
(Bruns-Nagel et al., 2000a; Knicker et al., 2001). Because ecotoxicological assays have shown
that irreversibly bound residues of TNT have reduced toxicity (Lenke et al., 1998; Bruns-Nagel
et al., 2000b), soil composting is commonly used to remediate TNT-contaminated soils (Jerger
and Woodhull, 2000). The currently held paradigm is that nitroaromatics are reduced in
anaerobic environments to aromatic amines, which subsequently undergo aerobic
polymerization and incorporation into soil under aerobic conditions (Esteve-Nunez et al., 2001;
Snellinx et al., 2002). However, there is also evidence of coupling reactions occurring between

reduced nitroaromatic intermediates under anaerobic conditions.

The identity and toxicity of these coupling products need to be determined to develop an
effective remediation strategy. Studies have demonstrated that reduced intermediates of
nitroaromatics couple with each other under anaerobic conditions to form toxic dimers and
oligomers. This coupling is a chemical, not biological, reaction. Azoxy and azo dimers were
formed in the bioreduction of TNT (Hawari et al., 1998; Achtnich et al., 1999). Studies of the fate
of the insensitive munitions compound 2,4-dinitroanisole (DNAN) in anaerobic sludge and soil
revealed the formation of azo dimers (Olivares et al., 2013; Olivares et al., 2016a). Alternative
methods of synthesizing azo dyes are currently being explored via the chemical reduction of
nitroaromatics using Pd°, Pt°, or Fe° catalysts and H, or isopropanol as the electron donors for

5
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the coupling of the resulting reduced intermediates (Moglie et al., 2008; Hu et al., 2011; Hu et al.,
2012; Wang et al., 2013a). Coupling products formed under anaerobic conditions may have
higher toxicity than the original nitroaromatics. Dimers and trimers formed in anaerobic
incubations of DNAN were found, in most cases, to have higher toxicities to acetoclastic
methanogens and marine bioluminescent bacteria Aliivibirio fischeri than DNAN (Olivares et al.,
2016¢). An azo dimer surrogate was shown to cause many more developmental abnormalities
in zebrafish (Danio rerio) embryos, including bent axis and edema, than monomeric DNAN
transformation products (Olivares et al., 2016b). Azo dyes with amino and alkoxy groups were
also demonstrated to be mutagenic (Freeman et al., 2013). Although there is compelling
evidence that nitroaromatic-derived coupling products form under anaerobic conditions and that
such coupling products may have increased toxicity, further research is required to elucidate the
nature and mechanisms of formation of these products. The objective of this study is to
demonstrate the formation of coupling products, particularly azo dimers, in a simple system of 4-

nitroanisole (Figure 1) incubated in anaerobic granular sludge (AGS).
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Figure 1. Hypothesized reaction mechanisms of nitroaromatic compounds incubated under
anaerobic conditions leading to the formation of an azo dimer. In our experiments, the R group
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is a methoxy group. We hypothesize that 4-nitroanisole will first be reduced to intermediates 4-
nitrosoanisole, 4-hydroxylaminoanisole, and 4-aminoanisole through biologically catalyzed
reactions, as shown in (A). These intermediates, particularly 4-nitrosoanisole and 4-
aminoanisole, will then couple abiotically via nucleophilic substitution to form, after loss of H,O,

4,4’-dimethoxyazobenzene, as shown in (B).

2. Materials and Methods

2.1. Chemicals

The chemicals used in this study are listed in the Supplementary Material.

2.2.  Inoculum and mineral medium
The inoculum and mineral medium used in this study are described in the Supplementary

Material.

2.3.  Anaerobic biotransformation assays

2.3.1. 4-Nitroanisole incubation in anaerobic sludge

To test the formation of azo dimers under anaerobic conditions, we conducted an experiment
with three spikes of 4-nitroanisole, a model compound for DNAN, into AGS incubations over a
period of 1.6 days. The temporal additions of 4-nitroanisole were intended to provide a steady
source of partially reduced nitroaromatic intermediates (i.e. 4-nitrosoanisole) to couple with
accumulated 4-aminoanisole, according to our hypothesized mechanism in Figure 1. The
objective was to increase the accumulation of coupling products to facilitate analysis. The time
interval between 4-nitroanisole spikes was determined by preliminary experiments in which 4-
nitroanisole was reduced to 4-aminoanisole in AGS in approximately 24 hours. Four mixtures
were tested. In mixture 1, 4-nitroanisole was incubated in AGS and mineral medium with H, as
the electron donor. In this full experimental treatment, we expected the formation of azo dimers

7
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from the coupling of reduced intermediates of 4-nitroanisole. In mixture 2, 4-aminoanisole was
incubated in AGS and mineral medium with H, as the electron donor. This control allowed us to
confirm that the formation of azo dimers in mixture 1 was not due to the oxidation of aromatic
amines. If oxygen was present in these flasks, 4-aminoanisole could be oxidized and couple
with itself to form these same azo dimers. In mixture 3, 4-nitroanisole was incubated in mineral
medium only. This abiotic control allowed us to attribute the formation of azo dimers in mixture 1
to the reduction of 4-nitroanisole by sludge microbes. We did not anticipate the formation of
reduced intermediates of 4-nitroanisole in mineral medium alone. Mixture 4 was an incubation of
AGS, mineral medium, and H, as the electron donor. This control was used to demonstrate that

azo dimers formed in mixture 1 were not artifacts of the sludge matrix.

The experimental setup involved sacrificial, 160 mL glass serum flasks in duplicate. 20 mL
mineral medium and 1.5 g VSS/L sieved AGS were added to each flask. The liquid was flushed
with No/CO, (80/20, v/v) and the flasks were sealed with butyl-rubber stoppers and aluminum
crimp caps. The headspace was then flushed with N,/CO, and the flask headspace was
pressurized to 1.5 atm with H,/CO, (80/20, v/v), with H, as the cosubstrate. The flasks were
incubated overnight in the dark at 30 °C and 113 rpm to allow for sludge acclimation to the
medium conditions. The following day, the headspace was again flushed with N,/CO,. For the
first spike, 0.2 mL of 400 mM 4-nitroanisole in ethanol was added to flasks containing mixtures 1
and 3 (to a final concentration of 4 mM), 0.2 mL of 400 mM 4-aminoanisole in ethanol was
added to flasks containing mixture 2 (to a final concentration of 4 mM), and 0.2 mL of ethanol
was added to flasks containing mixture 4. The flasks were again pressurized to 1.5 atm with
H,/CO,. 0.2 mL of 100 g/L ascorbic acid was added to each flask (to a final concentration of 250
mg/L) to prevent autoxidation of 4-aminoanisole and other reduced compounds. Ascorbic acid
was chosen based on previous studies that demonstrated its effectiveness as an antioxidant
(Cortinas et al., 2006; Sierra-Alvarez et al., 2010). It also did not chemically reduce 4-

8
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nitroanisole in sample stability tests. For the second and third spikes, only 4-nitroanisole, 4-
aminoanisole, and ethanol aliquots were added to the flasks as described above for the first
spike. The flasks were incubated as described above between chemical additions and sampling
times. Concentrations were adjusted in the calculations to account for the increase in reaction

volume due to chemical additions to the flushed flasks.

2.3.2. 4-Methoxyazobenzene incubation in anaerobic sludge

Because we observed the formation and subsequent disappearance of 4,4'-
dimethoxyazobenzene in our AGS incubations (Section 3.1), we decided to test the stability of
azo compounds in this reducing environment. We incubated 4-methoxyazobenzene, a readily
available analog of 4,4’-dimethoxyazobenzene, in flasks containing either mineral medium with
AGS and H, or only mineral medium. Flasks were prepared exactly as in Section 2.3.1, except
only one spike of 0.2 mL of 200 mM 4-methoxyazobenzene in ethanol was delivered into each

flask.

2.3.3. Sample processing

Due to the limited aqueous solubility of 4,4’-dimethoxyazobenzene (soluble in 25/75
H.O/acetonitrile, v/v), 60 mL of acetonitrile was added to each flask at the appropriate time point
in the above experiments (Sections 2.3.1 and 2.3.2) to solubilize any products formed. Flasks
were incubated for one hour as described in Section 2.3.1, allowing for compounds of interest to
become solubilized in the medium, before sampling the liquid. All samples were centrifuged for
ten minutes at 13,000 rpm and the supernatant was then analyzed for 4-nitroanisole and

transformation products as described in Section 2.4.

2.4.  Analytical Methods

2.4.1. UHPLC-DAD
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Samples were analyzed using an ultra-high performance liquid chromatograph coupled to a
diode-array detector (UHPLC-DAD, Agilent 1290 Infinity, Santa Clara, CA, USA). 5 uL sample
injections were separated using an Acclaim RSLC Explosives E2 column (2.1 mm x 100 mm,
2.2 um; Thermo Fisher Scientific, Waltham, MA) at room temperature. An inline guard column
with a filter cartridge was used to remove any particles remaining after centrifugation and
supernatant harvest. To analyze samples from the incubation of 4-nitroanisole in AGS (Section
2.3.1), the mobile phase was run at a flow rate of 0.25 mL/min for 20.5 min and consisted of a
gradient of methanol/H,O (v/v) in the following ratios: from 0-5 min held at (50/50), from 5-10
min increasing to (90/10), from 10-15 min held at (90/10), from 15-15.5 min decreasing back to
(50/50), and from 15.5-20.5 min held at (50/50). The compounds were analyzed at the following
wavelengths and had the following retention times: 4-nitroanisole (300 nm, 7.0 min), 4-
aminoanisole (300 nm, 2.1 min), and 4,4’-dimethoxyazobenzene (360 nm, 11.9 min). To
analyze samples from the incubation of 4-methoxyazobenzene in AGS (Section 2.3.2), the
mobile phase was run at a flow rate of 0.25 mL/min for 25.5 min and consisted of a gradient of
methanol/H,0 (v/v) in the following ratios: from 0-5 min held at (15/85), from 5-15 min increasing
to (90/10), from 15-20 min held at (90/10), from 20-20.5 min decreasing back to (15/85), and
from 20.5-25.5 min held at (15/85). The compounds were analyzed at the following wavelengths
and had the following retention times: 4-methoxyazobenzene (360 nm, 16.8 min), aniline (280
nm, 5.6 min), and 4-aminoanisole (300 nm, 7.5 min). All analyzed compounds were compared

with prepared standards with respect to retention times and UV-Vis spectra.

2.4.2. UHPLC-Q-ToF-MS
The mass spectrometric analytical methods used to confirm the presence of 4,4’-
dimethoxyazobenzene in samples from the incubation of 4-nitroanisole in AGS are described in

the Supplementary Material.
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3. Results

3.1.  4-Nitroanisole incubation in anaerobic sludge

The results of the anaerobic biotransformation of 4-nitroanisiole to 4-aminoanisole in AGS are
shown in Figures 2-6. 4-Nitroanisole was largely converted to 4-aminoanisole, but not entirely.
Figure 2 shows the disappearance of 4-nitroanisole after each spike into flasks containing AGS,
as measured by UHPLC. 4-Aminoanisole gradually accumulates as 4-nitroanisole is
transformed. Figure 3 shows that 76% of the consumed 4-nitroanisole was converted to 4-
aminoanisole. The remaining 24% is not accounted for. Although 4-Nitroanisole is reduced in
AGS, most likely following the well-known pathway of nitro group reduction (Figure 1A), there is
a discrepancy in the mass balance. Consequently, it is essential to study other peaks in the
UHPLC chromatograms that formed over the course of the experiment to determine whether

coupling reactions like those hypothesized in Figure 1B took place.
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Figure 2. Fate of 4-nitroanisole in anaerobic sludge: nitro group reduction. 4-Nitroanisole

transformed into 4-aminoanisole when incubated with anaerobic granular sludge supplied with

mineral medium and H; as the electron donor (n=2). 4-Nitroanisole was delivered in three 4 mM

spikes.
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Figure 3. Mass balance of 4-nitroanisole incubated in anaerobic sludge. Overall consumption of
4-nitroanisole and accumulation of 4-aminoanisole at the end of the incubation experiment (4-

nitroanisole in anaerobic granular sludge, n=2, shown in Figure 2).

A number of compounds other than 4-aminoanisole were detected in UHPLC after incubating 4-
nitroanisole in anaerobic sludge (Figure 4). We observed the transient formation of the coupling
product 4,4’-dimethoxyazobenzene (Figure 4A). The peak identified as 4,4’-
dimethoxyazobenzene in mixture 1 had the same UHPLC retention time as the standard, as
shown in the chromatograms in Figure 5. No peak with this retention time was formed in any of
the controls. The UV-Vis spectrum of the peak in mixture 1 closely resembles that of the 4,4’-

dimethoxyazobenzene standard, as shown in the inserts in Figure 5. No other peak identified in
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any incubation has a similar UV-Vis spectrum, suggesting that this compound is not an artifact
or contaminant. Two pieces of mass spectrometric evidence were found that corroborated these
UHPLC results. Extracted ion chromatograms for the transition 243.1>107.05 for 4,4’-
dimethoxyazobenzene from the incubation sample and chemical standard (shown in Figures 6A
and 6B, respectively) are nearly identical. Product ion spectra generated from precursor ion m/z
243.1 from the incubation sample and chemical standard also closely resemble one another
(shown in Figures 6C and 6D, respectively). 4,4’-Dimethoxyazobenzene was not detected in
any of the controls by LC-MS measurements, confirming the absence of artifacts and
contamination. Furthermore, measured accurate parent ion masses were in close agreement.
The observed high resolution accurate mass measurement for the commercially obtained dimer
standard was 243.1126, 0.8 ppm lower than the calculated mass of 243.1128 for C14HsN,0,",
while the observed mass for the experimentally produced dimer was 243.1131, only 1.2 ppm
higher than the calculated mass. Through our experimental setup and analytical techniques, we
were able to prove that 4,4’-dimethoxyazobenzene is formed when incubating 4-nitroanisole in
anaerobic sludge. However, because 4,4’-dimethoxyazobenzene disappeared shortly after its
formation (Figure 4A), we looked for additional compounds that may have formed and

accumulated.
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Figure 4. Fate of 4-nitroanisole in anaerobic sludge: coupling product formation. (A) Formation
and disappearance of 4,4’-dimethoxyazobenzene () and (B) formation of a possible coupling
product (m, peak with 8.2 minute UHPLC retention time) in anaerobic granular sludge
incubations supplied with mineral medium, H, as the electron donor, and three spikes of 4 mM
4-nitroanisole (n=2). The insert in panel B is the UV-Vis spectrum for the possible coupling

product.
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Figure 5. UHPLC and UV-Vis spectral evidence of coupling product formation when incubating

4-nitroanisole in anaerobic sludge. Comparison of UHPLC retention times and UV-Vis spectra of

the peaks with retention time of 11.9 minutes, (A) from the 4-nitroanisole incubation sample in

anaerobic sludge taken at 2.1 days from Figure 4A and (B) from a 7.8 yM 4,4’-

dimethoxyazobenzene standard. The inserts in panels A and B are the UV-Vis spectra

corresponding with these peaks with retention times of 11.9 minutes in the sample and the

standard, respectively. UHPLC chromatograms were obtained at 360 nm.
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Figure 6. Mass spectrometric evidence of coupling product formation from 4-nitroanisole
incubation in anaerobic sludge. Extracted ion chromatograms from selected reaction monitoring
transition 243.1>107.05 are shown for (A) acetonitrile extract of incubation products from 4-
nitroanisole incubation in anaerobic granular sludge and (B) 1.6 pg/L 4,4’-
dimethoxyazobenzene standard. The product ion spectra from the tallest peaks in

chromatograms A and B are shown in plots C and D, respectively.

Several small peaks were observed in the UHPLC chromatograms of mixture 1. The largest of

these additional peaks, shown in Figure 4B, is a putative coupling product. This peak has
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absorbance in the visible light (350-750 nm) range, which is characteristic of azo dimers (Fabian
and Hartmann, 1980). Since 4,4’-dimethoxyazobenzene and the putative coupling product were
not observed in any of the controls, we concluded that they formed exclusively due to the
transformation of 4-nitroanisole incubated in AGS. The concentration of 4-nitroanisole remained
stable and no dimers formed when incubated only in mineral medium (Figure S1), which
indicates that dimer formation requires the biologically-catalyzed reduction of 4-nitroanisole.
Because the concentration of 4-aminoanisole remained stable upon incubation in AGS (Figure
S2) and no additional peaks were identified in UHPLC, we assume that our incubation flasks
were sufficiently anaerobic and that dimers did not form due to autoxidation of 4-aminoanisole in
the presence of oxygen (for example during sample handling). Finally, because no dimers were
found in AGS incubations without aromatic compounds, we conclude that the dimers formed in
4-nitroanisole incubations are not artifacts arising from the inoculum. In addition to 4,4’-
dimethoxyazobenzene, other coupling products are likely to have formed from the incubation of
4-nitroanisole in anaerobic sludge. However, an explanation is needed for the disappearance of

4.4’-dimethoxyazobenzene after its formation, as shown in Figure 4A after day 2.

3.2.  4-Methoxyazobenzene incubation in anaerobic sludge

To confirm that reductive azo bond cleavage may have caused the disappearance of 4,4’-
dimethoxyazobenzene formed in 4-nitroanisole incubations with AGS, we incubated an azo
dimer with a closely related structure, 4-methoxyazobenzene, with AGS. 4-Methoxyazobenzene
was rapidly converted to the corresponding aromatic amines in AGS, but not in an un-inoculated
medium control (Figure S3). The concentration of 4-methoxyazobenzene decreased rapidly
when incubated in AGS under the same conditions as the experiment in which 4-nitroanisole
was incubated in AGS. As 4-methoxyazobenzene disappeared, aniline and 4-aminoanisole
formed and accumulated. These were the expected products from the cleavage of the azo bond
under reducing conditions. 4-Methoxyazobenzene was stable when incubated without inoculum,
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as shown in Figure S3B, supporting the role of the sludge in catalyzing the azo bond cleavage.
The abrupt disappearance of 4,4’-dimethoxyazobenzene after formation in spiking experiments
was due to incubation conditions involving AGS and H, that are conducive to azo bond
cleavage. These observations have important implications for the environmental fate of 4-

nitroanisole and other nitroaromatics.

4. Discussion

The present study provides compelling evidence that azo compounds form when nitroaromatics
are incubated under anaerobic conditions. The formation of 4,4’-dimethoxyazobenzene in our
experiments reflects the findings of other studies in which TNT and DNAN were incubated in
sludge and soil. In one study, tetraamino azotoluenes and a putative polyazo precipitate were
detected after incubating TNT in anaerobic sludge (Hawari et al., 1998). This is consistent with
the formation of 4,4’-dimethoxyazobenzene in our experiments incubating 4-nitroanisole in AGS.
However, 2,4,6-triaminotoluene (TAT), an aromatic amine transformation product of TNT, did
not accumulate and instead disappeared completely with the formation of azo compounds,
unlike the accumulation of 4-aminoanisole in our experiments. The three amino groups on TAT
make it much more reactive than 4-aminoanisole. This group also proposed that a one-electron
aromatic amine oxidation mechanism may have caused the formation of azo dimers. However,
our AGS likely contained fewer trace minerals than the sludge used by this group, since we did
not observe any azo dimer formation in our 4-aminoanisole AGS controls (Figure S2).
Furthermore, the azo compounds accumulated in that study rather than becoming cleaved back
into the corresponding aromatic amines, which could indicate less reducing conditions than in
our AGS incubations. In another study, azoxy dimers formed and bound to soil when TNT was
incubated under anaerobic conditions (Achtnich et al., 1999). Azoxy compounds may be
reduced to azo compounds, as shown in Figure S4 (Smith and March, 2006). Ultimately, the
study found that the concentration of azoxy groups disappeared, accompanied by a
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corresponding increase in amino group concentration, similar to the accumulation of 4-
aminoanisole after 4,4’-dimethoxyazobenzene disappeared from our incubations. When
incubating DNAN in the same AGS used in our experiments, the formation of azo and hydrazine
dimers was observed (Olivares et al., 2013). Multiple azo and hydrazine compounds were
formed because the additional nitro group on DNAN makes it more reactive than 4-nitroanisole.
Furthermore, seven azo dimers were detected upon incubating DNAN in soil under anaerobic
conditions (Olivares et al., 2016a). 2,4-Diaminoanisole (DAAN), an aromatic amine
transformation product of DNAN and analog of 4-aminoanisole, was not detected in solution due
to either binding with humic substances or coupling with nitroso intermediates to form dimers.
The biotic formation of azo dimers and the subsequent reduction to hydrazine dimers and
aromatic amines has been documented in the literature, though differences in nitroaromatic
structure and inoculum may have ultimately determined the products that accumulated.
Studying the mechanisms of azo dimer formation and transformation will help determine the

effects of environmental conditions on the fate of these compounds.

Reduced intermediates of nitroaromatics are thought to couple with each other in the absence
of oxygen to form azo dimers and oligomers. Condensation reactions between nitrosoaromatics
and aromatic amines or aromatic hydroxylamines are known to produce azo coupling products
(Hu et al., 2011; Merino, 2011). Azo coupling may be initiated by nucleophilic attack of the
hydroxylamine group (Pizzolatti and Yunes, 1990) or the amine group (Moglie et al., 2008; Zhao
et al., 2011) onto the nitroso group. The coupling between nitrosoaromatics and aromatic
hydroxylamines is the most widely accepted mechanism (Smith and March, 2006; Hu et al.,
2011; Wang et al., 2013a; Wang et al., 2013b). This may explain the formation of azoxy
compounds when TNT was incubated in soil (Achtnich et al., 1999), since hydroxylamine
intermediates were observed prior to the detection of the azoxy compounds. However, since
hydroxylamines are less abundant during nitroaromatic transformation than amines, we
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hypothesize that the principal mechanism responsible for dimer formation involves the coupling
of nitrosoaromatics and aromatic amines (Figure 1B). The azo dimers in DNAN incubations with
soil were hypothesized to have formed from the coupling of nitroso intermediates and aromatic
amines (Olivares et al., 2016a). Alternatively, coupling products may form when oxidized soil
minerals (e.g. MnO,) perform a one-electron oxidation of aromatic amines generating a cation
radical that initiates the coupling (Laha and Luthy, 1990). Although we did not observe the
formation of azo dimers when incubating 4-aminoanisole in AGS, this may be an important
pathway in soil or in sludge with high mineral content. Several mechanisms may be responsible
for the formation of azo compounds under anaerobic conditions, all of which involve the
coupling of reduced intermediates of nitroaromatics. The toxicity of these azo dimers compared
with that of the parent nitroaromatics and their reduced intermediates should be considered

when designing remediation schemes.

Although azo compounds comprise a minor portion of the products formed in our incubations,
their relatively high toxicity may be an issue. Azo compounds have been shown to be more toxic
than parent nitroaromatics and corresponding aromatic amines. Therefore, it is desirable to
minimize their formation and accumulation in the environment. A surrogate dimer and trimer for
DNAN proved to be slightly more toxic or comparable in toxicity to acetoclastic methanogens
and A. fischeri than DNAN and many fold more toxic than DAAN when comparing 1Cs, values
(Liang et al., 2013; Olivares et al., 2016¢). When comparing the lowest-observed-effect
concentrations (LOECs) on zebrafish embryos, two dimer surrogates and a trimer surrogate for
DNAN were found to be ten to 100 times more toxic than DAAN (Olivares et al., 2016b).
Therefore, it may be desirable to promote the reduction of azo compounds to the corresponding
aromatic amines. Many studies have shown that azo compounds readily undergo reductive
biotransformation to the corresponding aromatic amines via azo reductases present in
anaerobic bacteria (Walker, 1970; Razo-Flores et al., 1997; Robinson et al., 2001; Stolz, 2001;
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Rau et al., 2002; Gavin et al., 2012). Irrigation or addition of an electron donor can help
establish and maintain reducing conditions in contaminated soils. Both aromatic amines and azo
coupling products with free amine groups may be amenable to humification: removal and
detoxification through irreversible binding and incorporation into soil humus. Studies have
demonstrated that amine groups on aromatic amines covalently bond to quinone and other
carbonyl compounds found in soil humus, forming Schiff bases and Michael adducts (Thorn et
al., 1996; Gulkowska et al., 2012). Furthermore, there is evidence that '*C- and "°N-labeled TNT
becomes covalently bound to soil under anaerobic incubation (Drzyzga et al., 1998b; Achtnich
et al., 1999; Bruns-Nagel et al., 2000a; Knicker et al., 2001). A recent study demonstrated that
“C-labeled DNAN becomes irreversibly incorporated into the nonextractable fraction of soil
humus, humin, and that the reduced aromatic amine DAAN forms an insoluble precipitate when
paired with 1,4-benzoquinone, a model quinone compound, and humin (Olivares et al., 2017).
To lower the risk of nitroaromatic-contaminated sites, reducing conditions should be established
to cleave any azo coupling products that may form into the corresponding aromatic amines,
which can then become irreversibly bound to soil humus. Soils with low organic carbon content,
and therefore low humification capability, can be amended with compost or peat (Olivares et al.,
2017). Additional strategies such as containment and oxidative processes may be applied to

remove any residual aromatic amines.

5. Conclusions

Nitroaromatics are a complex class of contaminants, and understanding their fate, particularly in
anaerobic environments, is crucial in designing remediation methods. This work has
demonstrated that azo compounds form via the coupling of intermediates generated when
nitroaromatics are reduced in anaerobic sludge incubations. 4,4’-Dimethoxyazobenzene was
formed in incubations of 4-nitroanisole in anaerobic granular sludge supplied with mineral
medium and H, as the electron donor. This evidence is based on matching UHPLC retention
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times, UV-Vis spectra, mass spectrometric product ion spectra, and high resolution accurate
masses for precursor ions when compared with a commercially obtained dimer standard. This
reaction occurs under strict anaerobic conditions and does not require oxygen. The most
probable coupling mechanism is the nucleophilic substitution of an aromatic amine onto a
nitrosoaromatic compound. The azo dimer that formed in our incubations, however, was not
stable and was reductively cleaved to form aromatic amines. This study provides evidence of
the formation of azo compounds from the anaerobic incubation of nitroaromatics as well as
insight into the risk assessment and remediation of these contaminants. Because aromatic
amines are the dominant product, a remediation strategy for nitroaromatic-contaminated soll
may involve reduction to aromatic amines followed by incorporation into soil humus, i.e. via

covalent bonding between the amines and quinone groups present in the soil organic matter.
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Figure captions

Figure Captions

Evidence of Anaerobic Coupling Reactions between Reduced Intermediates of 4-

Nitroanisole

Warren M. Kadoya, Reyes Sierra-Alvarez, Stanley Wong, Leif M. Abrell,

Eugene A. Mash Jr., and Jim A. Field

Figure 1. Hypothesized reaction mechanisms of nitroaromatic compounds incubated under
anaerobic conditions leading to the formation of an azo dimer. In our experiments, the R group
is a methoxy group. We hypothesize that 4-nitroanisole will first be reduced to intermediates 4-
nitrosoanisole, 4-hydroxylaminoanisole, and 4-aminoanisole through biologically catalyzed
reactions, as shown in (A). These intermediates, particularly 4-nitrosoanisole and 4-
aminoanisole, will then couple via nucleophilic substitution to form, after loss of H,O, 4,4’-

dimethoxyazobenzene, as shown in (B).

Figure 2. Fate of 4-nitroanisole in anaerobic sludge: nitro group reduction. 4-Nitroanisole
transformed into 4-aminoanisole when incubated with anaerobic granular sludge supplied with
mineral medium and H; as the electron donor (n=2). 4-Nitroanisole was delivered in three 4 mM

spikes.

Figure 3. Mass balance of 4-nitroanisole incubated in anaerobic sludge. Overall consumption of
4-nitroanisole and accumulation of 4-aminoanisole at the end of the incubation experiment (4-

nitroanisole in anaerobic granular sludge, n=2, shown in Figure 2).



Figure 4. Fate of 4-nitroanisole in anaerobic sludge: coupling product formation. (A) Formation
and disappearance of 4,4’-dimethoxyazobenzene (&) and (B) formation of a possible coupling
product (m, peak with 8.2 minute UHPLC retention time) in anaerobic granular sludge
incubations supplied with mineral medium, H, as the electron donor, and three spikes of 4 mM
4-nitroanisole (n=2). The insert in panel B is the UV-Vis spectrum for the possible coupling

product.

Figure 5. UHPLC and UV-Vis spectral evidence of coupling product formation when incubating
4-nitroanisole in anaerobic sludge. Comparison of UHPLC retention times and UV-Vis spectra of
the peaks with retention time of 11.9 minutes, (A) from the 4-nitroanisole incubation sample in
anaerobic sludge taken at 2.1 days from Figure 4A and (B) from a 7.8 uM 4,4’-
dimethoxyazobenzene standard. The inserts in panels A and B are the UV-Vis spectra
corresponding with these peaks with retention times of 11.9 minutes in the sample and the

standard, respectively. UHPLC chromatograms were obtained at 360 nm.

Figure 6. Mass spectral evidence of coupling product formation from 4-nitroanisole incubation in
anaerobic sludge. Extracted ion chromatograms from selected reaction monitoring transition
243.1 > 107.05 are shown for (A) acetonitrile extract of incubation products from 4-nitroanisole
incubation in anaerobic granular sludge and (B) 1.6 ug/L 4,4’-dimethoxyazobenzene standard.
The product ion spectra from the tallest peaks in chromatograms A and B are shown in plots C

and D, respectively.
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