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Abstract

We discuss the challenges of principled statistical inference in modern data science.

Conditionality principles are argued as key to achieving valid statistical inference, in

particular when this is performed after selecting a model from sample data itself.
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1 Introduction

In recent times, even prominent figures in statistics have come to doubt the importance of
foundational principles for data analysis.

“If a statistical analysis is clearly shown to be effective at answering the questions
of interest, it gains nothing from being described as principled.” (Speed, 2016)

The above statement was made by Terry Speed in the September 2016 IMS Bulletin. It is
our primary purpose in this article to refute Professor Speed’s assertion! We argue that a
principled approach to inference in the data science context is essential, to avoid erroneous
conclusions, in particular invalid statements about significance.

We will be concerned here with statistical inference, specifically calculation and interpre-
tation of p−values and construction of confidence intervals. While the greater part of the
data science literature is concerned with prediction rather than inference, we believe that
our focus is justified for two solid reasons. In many circumstances, such, say, as microarray
studies, we are interested in identifying significant ‘features’, such as genes linked to partic-
ular forms of cancer, as well as the identity and strength of evidence. Further, the current
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reproducibility crisis in science demands attention be paid to the formal repeated sampling
properties of inferential methods.

2 Key principles

The key notions which should drive consideration of methods of statistical inference are:
validity, whether a claimed criterion or assumption is satisfied, regardless of the true unknown
state of nature; and, relevance, whether the analysis performed is actually relevant to the
particular data sample under study.

It is most appropriate to consider the notion of validity in the context of procedures
motivated by the principle of error control. Then, a valid statistical procedure is one for which
the probability is small that the procedure has a higher error rate than stated. For example,
the random set C1−α is an (approximately) valid (1− α) confidence set for a parameter θ if
Pr(θ /∈ C1−α) = α + ε for some very small (negligible) ε, whatever the true value of θ.

Relevance is achieved by adherence to what we term the ‘Fisherian proposition’ (Fisher
1925, 1934). This advocates appropriate conditioning of the hypothetical data samples that
are the basis of non-Bayesian statistics. Specifically, the Conditionality Principle, formally
described below, would maintain that to ensure relevance to the actual data under study
the hypothetical repetitions should be conditioned on certain features of the available data
sample.

It is useful to frame our discussion as done by Cox & Mayo (2010). Suppose that for
testing a specified null hypothesis H0 : ψ = ψ0 on an interest parameter ψ we calculate the
observed value tobs of a test statistic T and the associated p−value p = P (T ≥ tobs;ψ = ψ0).
Then, if p is very low, e.g. 0.001, tobs is argued as grounds to reject H0 or infer discordance
with H0 in the direction of the specified alternative, at level 0.001.

This is not strictly valid, since it amounts to choosing the decision rule based on the
observed data (Kuffner & Walker, 2017). A valid statistical test requires that the decision
rule be specified in advance. However, there are two rationales for the interpretation of the
p−value described in the preceding paragraph.

(1) To do so is consistent with following a decision rule with a (pre-specified) low Type 1
error rate, in the long run: if we treat the data as just decisive evidence against H0,
then in hypothetical repetitions, H0 would be rejected in a proportion p of the cases
when it is actually true.

(2) [What we actually want]. To do so is to follow a rule where the low value of p corre-
sponds to the actual data sample providing inconsistency with H0.

The evidential construal in (2) is only accomplished to the extent that it can be assured
that the small observed p−value is due to the actual data-generating process being discrepant
from that described by H0. As noted by Cox & Mayo (2010), once the requirements of (2)
are satisfied, the low error-rate rationale (1) follows.
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The key to principled inference which provides the required interpretation is to ensure
relevancy of the sampling distribution on which p−values are based. This is achieved through
the Conditionality Principle, which may formally be stated as follows.

Principle (Conditionality Principle). Suppose we may partition the minimal sufficient statis-

tic for a model parameter θ of interest as S = (T,A), where T is of the same dimension as

θ and the random variable A is distribution constant: the statistic A is said to be ancillary.

Then, inference should be based on the conditional distribution of T given A = a, the
observed value in the actual data sample.

In practice, the requirement that A be distribution constant is often relaxed. It is (see,
for instance, Barndorff-Nielsen & Cox, 1994) well-established in statistical theory that to
condition on the observed data value of a random variable whose distribution does depend
on θ might, under some circumstances, be convenient and meaningful, though this would in
some sense sacrifice information on θ.

This extended notion of conditioning is most explicit in problems involving nuisance
parameters, where the model parameter θ is partitioned as θ = (ψ, λ), with ψ of interest and
λ a nuisance parameter.

Suppose that the minimal sufficient statistic can again be partitioned as S = (T,A),
where the distribution of T given A = a depends only on ψ. We may extend the Condition-
ality Principle to advocate that inference on ψ should be based on this latter conditional
distribution, under appropriate conditions on the distribution of A. We note that the case
where the distribution of A depends on λ but not on ψ is just one rather special instance.

A simple illustration of conditioning on an exactly distribution constant statistic is given
by Barndorff-Nielsen & Cox (1994, Example 2.20). Suppose Y1, Y2 are independent Poisson
variables with means (1 − ψ)l, ψl, where l is a known constant. There is no reduction by
sufficiency, but the random variable A = Y1 + Y2 has a known distribution, Poisson of mean
l, not depending on ψ. Inference would, say, be based on the conditional distribution of Y2,
given A = a, which is binomial with index a and parameter ψ.

Justifications for many standard procedures of applied statistics, such as analysis of 2×2
contingency tables, derive from the Conditionality Principle, even when A has a distribution
that depends on both ψ and λ, but when observation of A alone would make inference on
ψ imprecise. The contingency table example concerns inference on the log-odds ratio when
comparing two binomial variables: see Barndorff-Nielsen & Cox (1994, Example 2.22). Here
Y1, Y2 are independent binomial random variables corresponding to the number of successes
in (m1,m2) independent trials, with success probabilities (θ1, θ2). The interest parameter is
ψ = log{θ2/(1− θ2)}− log{θ1/(1− θ1)}. Inference on ψ would, following the Conditionality
Principle, be based on the conditional distribution of Y2 given A = a, where A = Y1+Y2 has
a marginal distribution depending in a complicated way on both ψ and whatever nuisance
parameter λ is defined to complete the parametric specification.

Central to our discussion, therefore, is recognition that conditioning an inference on the
observed data value of a statistic which is, to some degree, informative about the parameter
of interest is an established part of statistical theory. Conditioning is supported as a means
of controlling the Type 1 error rate, while ensuring relevance to the data sample under test.
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Of course, generally, conditioning will run counter to the objective of maximising power
(minimising Type 2 error rate), which is a fundamental principle of much of statistical
theory. However, loss of power due to adoption of a conditional approach to inference may
be very slight, as demonstrated by the following example.

Suppose Y is normally distributed as N(θ, 1) or N(θ, 4), depending on whether the
outcome δ of tossing a fair coin is heads (δ = 1) or tails (δ = 2). It is desired to test the
null hypothesis H0 : θ = −1 against the alternative H1 : θ = 1, controlling the Type 1 error
rate at level α = 0.05. The most powerful unconditional test, as given by Neyman-Pearson
optimality theory, has rejection region given by Y ≥ 0.598 if δ = 1 and Y ≥ 2.392 if δ = 2.
The Conditionality Principle advocates that instead we should condition on the outcome of
the coin toss, δ. Then, given δ = 1, the most powerful test of the required Type 1 error rate
rejects H0 if Y ≥ 0.645, while, given δ = 2 the rejection region is Y ≥ 2.290. The power
of the unconditional test is 0.4497, while the power of the more intuitive conditional test is
0.4488, only marginally less.

Further support for conditioning, to eliminate dependence of the inference on unknown
nuisance parameters, is provided by the Neyman-Pearson theory of optimal frequentist in-
ference (see, for example, Young & Smith, 2005).

A key context where this theory applies is when the parameter of interest is a component
of the canonical parameter in a multiparameter exponential family model. Suppose Y has a
density of the form

f(y; θ) ∝ h(y) exp{ψT1(y) + λT2(y)}.

Then (T1, T2) is minimal sufficient and the conditional distribution of T1(Y ), given T2(Y ) =
t2, say, depends only on ψ. The distribution of T2(Y ) may, in special cases, depend only on
λ, but will, in general, depend in a complicated way on both ψ and λ. The extended form
of the Conditionality Principle argues that inference should be based on the distribution of
T1(Y ), given T2(Y ) = t2. But, in Neyman-Pearson theory this same conditioning is justified
by a requirement of full elimination of dependence on the nuisance parameter λ, achieved in
the light of completeness of the minimal sufficient statistic only by this conditioning. The
resulting conditional inference is actually optimal, in terms of furnishing a uniformly most
power unbiased test on the interest parameter ψ: see Young & Smith (2005, Chapter 7).

Our central thesis is that the same Fisherian principles of conditioning are necessary to
steer appropriate statistical inference in a data science era, when models and the associated
inferential questions are arrived at after examination of data:

“Data science does not exist until there is a dataset”.

Our assertion is that appropriate conditioning is needed to ensure validity of the infer-
ential methods used. Importantly, however, the justifications used for conditioning are not
new, but mirror the arguments used in established statistical theory.
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3 Classical and ‘post-selection’ inference

In classical statistical inference, the analyst specifies the model, as well as the hypothesis to
be tested, in advance of examination of the data. A classical α−level test for the specified
hypothesis H0 under the specified model M must control the Type 1 error rate

P (reject H0|M,H0) ≤ α.

The appropriate paradigm for data science is, in our view, the structure for inference
that is known as ‘post-selection Inference’, as described, for example, by Lee et al. (2016)
and Fithian, Sun & Taylor (2014).

Now it is recognised that inference is performed after having arrived at a statistical model
adaptively, through examination of the observed data.

Having selected a model M̂ based on our data Y , we wish to test a hypothesis Ĥ0. The
notation here stresses that Ĥ0 will be random, a function of the selected model and hence
of the data Y . The key principle to follow in this context is expressed in terms of selective
Type 1 error: we require that

P (reject Ĥ0|M̂, Ĥ0) ≤ α.

That is, we require that we control the Type 1 error rate of the test given that it was actually
performed. The thinking leading to this principle is really just a 21st century re-expression
of Fisherian thought.

A simple example, the ‘File Drawer Effect’, serves to illustrate the central ideas, and
is a template (Fithian, Sun & Taylor, 2014) for how statistical inference is performed in
data science. Suppose data consists of a set of n independent observations Yi distributed
as N(µi, 1). We choose, however, to focus attention only on the apparently large effects,
selecting for formal inference only those indices i for which |Yi| > 1, Î = {i : |Yi| > 1}. We
wish, for each i ∈ Î, to test H0,i : µi = 0, each individual test to be performed at significance
level α = 0.05.

A test which rejects H0,i when |Yi| > 1.96 is invalidated by the selection of the tests to
be performed. Though the probability of falsely rejecting a given H0,i is certainly α, since
most of the time that hypothesis is not actually tested, the error rate among the hypotheses
that are actually selected for testing is much higher than α.

Letting n0 be the number of true null effects and supposing that n0 → ∞ as n→ ∞, in
the long run, the fraction of errors among the true nulls we test, the ratio of the number of
false rejections to the number of true nulls selected for testing, tends to PH0,i

(reject H0,i|i ∈

Î) ≈ 0.16.
The probability of a false rejection conditional on selection is the natural and controllable

error criterion to consider. We see that

PH0,i
(|Yi| > 2.41

∣

∣ |Yi| > 1) = 0.05,

so that the appropriate test of H0,i, given that it is selected for testing, is to reject if |Yi| >
2.41.
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In a formal framework of post-selection inference, we assume that our data Y lies in some
measurable space with unknown sampling distribution Y ∼ F . The task is to pose, on the
basis of Y itself, a reasonable probability model M̂ , then carry out inference, using the same
data Y .

Let S ≡ S(Y ) be the selection event. For instance, this might be the event that model
M̂ is chosen, or, in the context of the File Drawer Effect example, the event S = {|Y | > 1}.

The central proposal is that to be relevant to the observed data sample and yield pre-
cisely interpretable validity, the inference we perform should not be drawn from the original
assumed distribution, Y ∼ F , but by considering the conditional distribution of Y |S. This
is just the Fisherian proposition being applied.

In terms of our discussion above, the selection event S will typically be informative about
the quantity θ of interest, and conditioning will therefore discard information. But, to ignore
the selection event loses control over the (Type 1) error rate, potentially badly. Principled
inference requires conditioning on the selection event, and therefore drawing inferences from
leftover information in Y , given S.

4 Example: File Drawer Effect

Consider the File Drawer Effect example, but now take the selection event as {Y > 1}. We
compare ‘nominal’ confidence intervals, not accounting for selection, and selective confidence
intervals, of coverage 95%.

Figure 1 compares the selective and non-selective confidence intervals, as a function of
the observed value Y . If Y is much larger than 1, there is hardly any selection bias, so
no adjustment for selection is really required. When Y is close to 1, the need to properly
account for selection is stark.

Figure 2 compares the lengths of the selective and non-selective confidence intervals: the
non-selective interval is Y ± 1.96, and therefore has length 3.92, whatever the true mean
µ or data value Y . Figure 3 illustrates the coverage of the invalid non-selective confidence
interval: this generally exceeds 95%, but if the true mean µ is much less than 1, undercoverage
is substantial. If the true mean is exactly 1, but only in this case, the non-selective interval
has coverage exactly 95%.
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If we do not take the model M seriously, there is still a well defined linear predictor in
the population for design matrix XM . Now we define the target of inference as

βM ≡ argmin
bM

E‖Y −XMb
M‖2 = X+

Mµ,

X+

M ≡ (XT
MXM)−1XT

M is the Moore-Penrose pseudo-inverse of XM .
This ‘saturated model’ perspective is convenient as it allows meaningful inference even

if, say, our variable selection procedure does a poor job.
The saturated model point of view can be advocated (see, for example, Berk et al., 2013)

as a way of avoiding the need, in the adaptive model determination context typical of data
science, to consider multiple candidate probabilistic models.

Under the selected model, βM
j can be expressed in the form βM

j = ηTµ, say, whereas
under the saturated model there may not exist any βM such that µ = XMβ

M .
Compared to the selected model, the saturated model has n − |M | additional nuisance

parameters, which may be completely eliminated by the classical device of conditioning on
the appropriate sufficient statistics: these correspond to P⊥

MY ≡ (In−XM(XT
MXM)−1XT

M)Y .
Considering the saturated model as an exponential family, again assuming σ2 is known,

and writing the least-squares coefficient βM
j again in the form ηTµ, inference is based on the

conditional distribution of ηTY , the conditioning being on the observed values of P⊥
η Y ≡

(In − ηT (ηTη)−1ηT )Y , as well as the selection event.
The issue then arises of whether to perform inference under the selected or saturated

models. Do we assume P⊥
Mµ = 0, or treat it as an unknown nuisance parameter, to be

eliminated by further conditioning?
Denoting by XM\j the matrix obtained from XM by deleting (XM)j, and letting U =

XT
M\jY and V = P⊥

MY , the issue is whether to condition on both U and V , or only on U .
Of course, conditioning on the selection event is assumed.

In the classical, non-adaptive, setting this issue does not arise, as ηTY, U and V are
mutually independent: they are generally not independent conditional on the selection event.

If we condition on V when, in fact, P⊥
Mµ = 0, we might expect to lose power, while

inferential procedures may badly lose their control of (Type 1) error rate if this quantity is
large, so that the selected model is actually false. We contend that such further conditioning
is, however, necessary to ensure validity of the conclusions drawn from the specific data set
under analysis.

6 Example: Bivariate Regression

Suppose that Y is distributed as N2(µ, I2), so that σ2 = 1 and that the design matrix is
X = I2.

We choose (using Least Angle Regression, lasso, or some such procedure) a ‘one-sparse
model’, that is XM is specified to have just one column. The selection procedure chooses
M = {1} if |Y1| > |Y2| and M = {2} otherwise.

Suppose the data outcome is Y = {2.9, 2.5}, so the chosen model is M = {1}.
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The selected model has Y distributed as N2((µ1, 0), I2). Inference on µ1 would base a
test of H0 : µ1 = 0 against H1 : µ1 > 0 on rejection for large values of Y1, Y1 > c, say. This
test may be expressed as H0 : ηTµ = 0, with η = (1, 0)T . In the test of nominal Type 1
error α based on the selected model, c is fixed by requiring PH0

(Y1 > c |M, |Y1| > |Y2|) = α,
explicitly assuming that µ2 = 0. Notice that, in terms of the discussion of the previous
Section, there is no U in this example, since XM has only one column. The issue is whether
to condition only on the selection event, or also on V = P⊥

MY ≡ P⊥
η Y = Y2.

In the saturated model framework, we reject H0 if Y1 > c′, where c′ satisfies

PH0
(Y1 > c′

∣

∣Y2 = 2.5, |Y1| > |Y2|) ≡ PH0
(Y1 > c′

∣

∣ |Y1| > 2.5) = α.

Conditioning on the observed value Y2 = 2.5 as well as the selection event eliminates com-
pletely dependence of the Type 1 error rate on the value of µ2. It is immediately established
here that c = 1.95, c′ = 3.23, in tests of nominal Type 1 error rate 0.05.

Figure 4 compares the power functions of the tests in the selected and saturated models.
If the selected model is true, µ2 = 0, the test under the selected model is generally more
powerful than the test derived from the saturated model, though we note the latter is actually
marginally more powerful for small values of µ1. However, if the selected model is false (the
Figure illustrates the case µ2 = 2), control of Type 1 error at the nominal 5% level is lost:
the test of µ1 = 0 has Type 1 error rate exceeding 10% when the selected model is false and
µ2 is actually equal to 2.

Figures 5 and 6 examine the distributions of Y2 and Y1 respectively, conditional on the
selection event |Y1| > |Y2|. Figure 5 demonstrates that the conditional distribution of Y2
varies little with µ1, the interest parameter, so that Y2 is rather uninformative about µ1.
By contrast, the conditional distribution of Y1, shown in Figure 6, depends strongly on µ1.
Conditioning on the observed value of Y2 is justified on the grounds that conditional on
the selection event this value is, relative to Y1, uninformative about µ1, while this further
conditioning ensures exact control of Type 1 error.

What do we conclude from this analysis? The operational difference between the satu-
rated and selected model perspectives may (Fithian, Sun & Taylor, 2014) be important in
key practical contexts, such as early steps of sequential model-selection procedures. How-
ever, the case being made is that a principled approach to inference is forced to give central
consideration to the saturated model in contexts such as those discussed here, where valid
interpretation of significance is key. The Fisherian proposition requires conditioning on the
selection event, as it is necessary (Young, 1986) to condition the inference on features of
the data sample which control the propensity for extreme value of the test statistic to occur
for spurious reasons. Precise control of the Type 1 error rate then demands elimination
of nuisance parameter effects, achieved only by further conditioning on P⊥

η Y : this leads to
inference from the saturated model perspective.
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