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Abstract

In a regression context, when the relevant subset of explanatory variables is uncertain,

it is common to use a data-driven model selection procedure. Classical linear model theory,

applied naively to the selected sub-model, may not be valid because it ignores the selected

sub-model’s dependence on the data. We provide an explanation of this phenomenon, in

terms of overfitting, for a class of model selection criteria.
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1 Introduction

Consider the classical multiple linear regression model

y = Xβ + σε, (1)

where y is a n-vector of response variables, X is a n×p matrix of explanatory variables, β is p-

vector of slope coefficients, and ε is a n-vector of independent Gaussian noise. We assume that

p < n and that y and the columns of X are centered so that the intercept term can be ignored.

Formally, the model corresponds to the family of distributions (1) indexed by θ = (β, σ) in

Θ = R
p × (0,∞).

In practice, there is often uncertainty about the set of explanatory variables to be included.

In such cases, it is common to express the parameter θ as (S, βS, σS), where S ⊆ {1, . . . , p}
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represents a subset of the explanatory variables, βS ∈ R
|S| represents the coefficients corre-

sponding to the specific set S, and σS > 0. This amounts to decomposing the full parameter

space Θ as Θ =
⋃

S Θ(S), where Θ(S) = R
|S| × (0,∞). Then the model selection problem

boils down to choosing a satisfactory sub-model Θ(S) or, equivalently, a subset S. Standard

tools for carrying out this selection step include the Akaike information criterion, AIC (Akaike

1973), and the Bayesian information criterion, BIC (Schwarz 1978). These are designed to

produce models that suitably balance parsimony and fit.

After a subset S ⊆ {1, . . . , p} of explanatory variables is selected, a secondary goal is to

make inference on S-specific model parameters (βS, σS), or functions thereof, and/or predict

future values of the response. A naive approach, recommended in textbooks and commonly

used by practitioners, is to replace X in (1) with XS , the matrix with only the columns cor-

responding to S, and apply classical normal linear model theory. For example, for a given

x ∈ R
p, the classical 100(1− α)% confidence interval

Cα(x;S) = x>
S β̂S ± tn−|S|−1(α/2)σ̂S{x

>
S (X

>
S XS)

−1xS}
1/2, (2)

can be used for inference on the mean response at the given x. However, as is now well-known

(Berk et al. 2013), the properties that these classical procedures enjoy for a fixed/true S may not

hold for a data-dependent choice, Ŝ. For example, Cα(x; Ŝ) may not have coverage probability

equal to 1− α.

This note provides an explanation of this lack-of-validity phenomenon by showing that,

when the sub-model is selected according to information criteria such as AIC and BIC, if the

selected sub-model overfits, i.e., contains a superset of the explanatory variables in the true

model, then the corresponding estimate of the error variance will be smaller than that for the

true model. This explains the empirical findings in Hong et al. (2017), where prediction in-

tervals based on the sub-model minimizing AIC tend to be too short compared to those based

on the true model and, consequently, they tend to undercover; see Section 3. Moreover, our

Theorem 1 together with the dilation phenomenon described in Efron (2003), explains why

bootstrap may not correct the selection effect for methods that tend to overfit.

2 Result

For a given sub-model Θ(S), corresponding to a subset S ⊆ {1, . . . , p}, let (β̂S, σ̂S) denote

the least squares estimators of the Θ(S)-specific parameters (βS, σS). We consider a selection

procedure that chooses the subset S by minimizing the function

γn(S) = n log SSE(S) + cn|S|, S ⊆ {1, . . . , p}, (3)

where SSE(S) = ‖y − XSβ̂S‖
2 is the error sum of squares for sub-model Θ(S), which is

proportional to the corresponding least squares estimator σ̂2

S , cn = o(n) is a user-specified

sequence of constants, and |S| denotes the cardinality of the set S. The AIC and BIC set cn ≡ 2
and cn = log n, respectively.

Suppose that there exists a subset S? corresponding to the truly non-zero regression coef-

ficients, i.e., βi 6= 0 for i ∈ S? and βi = 0 for i 6∈ S?. We write (β̂S? , σ̂S?) for the oracle

estimators, those based on knowledge of the true sub-model Θ(S?). Of course, if Ŝ is the

subset chosen by minimizing γn in (3), then γn(Ŝ) ≤ γn(S
?) or, equivalently,

n log SSE(Ŝ) + cn|Ŝ| ≤ n log SSE(S?) + cn|S
?|; (4)
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if Ŝ 6= S?, then the inequality in (4) would be strict.

For the purpose of inference or prediction, it is common to naively use the classical nor-

mal linear model theory, based on the selected subset Ŝ, to derive uncertainty assessments.

However, using the data to select Ŝ introduces bias, violating the assumptions of that classical

theory, and thereby invalidating the conclusions. The next result provides an explanation for

this general phenomenon in cases where the selected sub-model Θ(Ŝ) overfits in the sense that

Ŝ ⊃ S?. In such cases, we find that σ̂Ŝ is smaller than the oracle estimator σ̂S? . Since the error

variance estimate is involved in all uncertainty assessment calculations, and since it is common

for selection methods to overfit, especially those based on AIC (Hurvich & Tsai 1989), this sys-

tematic under-estimation explains the general lack of validity of the classical inferential tools

applied naively in a post-selection context.

Theorem 1. Suppose Ŝ ⊃ S?. If

1− exp(−anDn) > Dn, (5)

where an = (cn/n)(n− |S?| − 1) and Dn = (|Ŝ| − |S?|)/(n− |S?| − 1), then σ̂Ŝ < σ̂S? .

To gain some intuition about the condition (5), first note that anDn will tend to be small.

In particular, a very conservative bound is anDn ≤ cnp/n, which is small for moderate cn
and n � p. Next, since x 7→ 1 − exp(−ax) is convex for x > 0 and a > 0, we have

1 − exp(−anDn) > anDn for all Dn in an interval (0, d), where d = d(an) ∈ [0, 1). So, to

meet (5) we need an > 1 and, again, we have a conservative bound an ≥ cn(n − p − 1)/n,

which itself is greater than 1 for n � p and cn not too small. In particular, if n � p and cn ≡ 2
as in the AIC, then (5) holds.

of Theorem 1. Start by writing SSE(Ŝ) in terms of SSE(S?). Let XŜ and XS? denote the sub-

matrices corresponding to the indicated subsets, and write PŜ and PS? for the respective pro-

jections onto their column spaces. Then Pythagoras’ theorem implies that

SSE(Ŝ) = SSE(S?) + Y >(PS? − PŜ)Y = (1− rn)SSE(S?),

where

rn = rn(S
?, Ŝ) =

|Ŝ| − |S?|

n− |Ŝ|
Fn(S

?, Ŝ),

and Fn(S
?, Ŝ) is the usual F-statistic for testing the larger Θ(Ŝ) against the smaller Θ(S?).

Consequently, we choose Ŝ over the strictly smaller S?, according to (4), if and only if rn >
1− exp(−anDn).

Then the above connection between SSE(Ŝ) and SSE(S?) immediately gives a comparison

between the corresponding variance estimates:

σ̂2

Ŝ
=

SSE(Ŝ)

n− |Ŝ| − 1
=

(1− rn)SSE(S?)

n− |Ŝ| − 1
=

n− |S?| − 1

n− |Ŝ| − 1
(1− rn)σ̂

2

S? .

As above, we find that σ̂Ŝ < σ̂S? if and only if rn > Dn. By condition (5), it follows that

the lower bound on rn derived from over-fitting is greater than that derived from the under-

estimation. Therefore, over-fitting implies under-estimation, proving the claim.
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Ŝ

versus σ̂S?

ratio[ratio > 1]

D
e

n
s
it
y

1.00 1.05 1.10 1.15 1.20 1.25

0
5

1
0

1
5

(b) Histogram of σ̂S?/σ̂
Ŝ
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Figure 1: Plots from the simulations described in Section 3.

3 Illustration

Consider the model (1), with n = 50 and p = 10, and variance σ2 = 1. Set S? = {1, 2, 3},

with corresponding coefficients β?
1
= 1, β?

2
= 2, and β?

3
= 3. The rows of the X matrix

are independent, p-variate normal, with mean zero, AR(1) dependence structure, and one-step

correlation ρ = 0.5. We simulated 1000 data sets and, for each, evaluated σ̂Ŝ and σ̂S? , where Ŝ
is chosen based on the AIC. The scatterplot shown in Figure 1(a) demonstrates the systematic

under-estimation based on the AIC-selected sub-model, as predicted by Theorem 1. In all

1000 cases, we have Ŝ ⊇ S?, and those on the diagonal line correspond to Ŝ = S?. To

further illustrate the difference between the estimates, Figure 1(b) plots a histogram of the ratio

σ̂S?/σ̂Ŝ , only for the strict over-fit cases. In particular, the mean from this histogram is 1.06.

While the relative difference between the two estimates does not seem remarkable, even

this small of a difference can impact the quality of inference. For example, consider using

the confidence interval (2) for inference on the mean response at a particular setting x of the

explanatory variables; here, x is an independent sample from the distribution that generated

the rows of X . The oracle 95% confidence interval C0.05(x;S
?) has coverage exactly equal to

0.95 but, in the 1000 simulations above, the coverage probability of Cα(x; Ŝ) is roughly 0.86.

It happens that the Ŝ-based intervals tend to be shorter than the oracle, suggesting that valid

post-selection inference on the mean response requires σ̂Ŝ to be strictly larger than σ̂S? , which

is impossible given Theorem 1 and the AIC’s tendency to over-fit.
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BERK, R., BROWN, L., BUJA, A., ZHANG, K. & ZHAO, L. (2013). Valid post-selection

inference. Ann. Statist. 41, 802–837.

EFRON, B. (2003). Second thoughts on the bootstrap. Statist. Sci. 18, 135–140.

HONG, L., KUFFNER, T. A. & MARTIN, R. G. (2017). On prediction of future

insurance claims when the model is uncertain. Submitted. Available at SSRN:

https://ssrn.com/abstract=2883574.

HURVICH, C. M. & TSAI, C.-L. (1989). Regression and time series model selection in small

samples. Biometrika 76, 297–307.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461–464.

5


	Introduction
	Result
	Illustration

