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Abstract

In a regression context, when the relevant subset of explanatory variables is uncertain,
it is common to use a data-driven model selection procedure. Classical linear model theory,
applied naively to the selected sub-model, may not be valid because it ignores the selected
sub-model’s dependence on the data. We provide an explanation of this phenomenon, in
terms of overfitting, for a class of model selection criteria.
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1 Introduction
Consider the classical multiple linear regression model
y=Xp+oe, (1)

where ¥ is a n-vector of response variables, X is a n X p matrix of explanatory variables, 3 is p-
vector of slope coefficients, and ¢ is a n-vector of independent Gaussian noise. We assume that
p < n and that y and the columns of X are centered so that the intercept term can be ignored.
Formally, the model corresponds to the family of distributions (1) indexed by § = (5, 0) in

© =R? x (0,00).
In practice, there is often uncertainty about the set of explanatory variables to be included.
In such cases, it is common to express the parameter 6 as (S, fs,05), where S C {1,...,p}



represents a subset of the explanatory variables, 3¢ € RI®! represents the coefficients corre-
sponding to the specific set .S, and og > 0. This amounts to decomposing the full parameter
space © as © = J; O(S), where ©(S) = RI¥! x (0, 00). Then the model selection problem
boils down to choosing a satisfactory sub-model O(.S) or, equivalently, a subset S. Standard
tools for carrying out this selection step include the Akaike information criterion, AIC (

), and the Bayesian information criterion, BIC ( ). These are designed to
produce models that suitably balance parsimony and fit.
After a subset S C {1,...,p} of explanatory variables is selected, a secondary goal is to

make inference on S-specific model parameters (g, 0s), or functions thereof, and/or predict
future values of the response. A naive approach, recommended in textbooks and commonly
used by practitioners, is to replace X in (1) with Xg, the matrix with only the columns cor-
responding to S, and apply classical normal linear model theory. For example, for a given
x € RP, the classical 100(1 — «)% confidence interval

Co(7;8) = 24 Bs £ tuoisi—1(@/2)Gs{zd (XJ Xs) s }/?, (2)

can be used for inference on the mean response at the given x. However, as is now well-known
( ), the properties that these classical procedures enjoy for a fixed/true S may not
hold for a data-dependent choice, S. For example, C,(z; S ) may not have coverage probability
equal to 1 — a.

This note provides an explanation of this lack-of-validity phenomenon by showing that,
when the sub-model is selected according to information criteria such as AIC and BIC, if the
selected sub-model overfits, i.e., contains a superset of the explanatory variables in the true
model, then the corresponding estimate of the error variance will be smaller than that for the
true model. This explains the empirical findings in ( ), where prediction in-
tervals based on the sub-model minimizing AIC tend to be too short compared to those based
on the true model and, consequently, they tend to undercover; see Section 3. Moreover, our
Theorem 1 together with the dilation phenomenon described in ( ), explains why
bootstrap may not correct the selection effect for methods that tend to overfit.

2 Result

For a given sub-model ©(S), corresponding to a subset S C {1,...,p}, let (Bs,55) denote
the least squares estimators of the ©(S)-specific parameters (g, 0s). We consider a selection
procedure that chooses the subset S by minimizing the function

’yn(S):TLIOgSSE(S>+Cn|S|, Sg {17"'7]9}7 (3)

where SSE(S) = |ly — Xsfs|? is the error sum of squares for sub-model ©(S), which is
proportional to the corresponding least squares estimator 6%, ¢, = o(n) is a user-specified
sequence of constants, and |.S| denotes the cardinality of the set S. The AIC and BIC set ¢,, = 2
and ¢, = logn, respectively.

Suppose that there exists a subset S* corresponding to the truly non-zero regression coef-
ficients, i.e., 8; # 0 fori € S* and §; = 0 for i ¢ S*. We write (BS*, dg+) for the oracle
estimators, those based on knowledge of the true sub-model ©(S*). Of course, if S is the

~

subset chosen by minimizing 7, in (3), then 7,,(S) < v, (S*) or, equivalently,
nlog SSE(S) + ¢,|S| < nlog SSE(S*) + cn|S*]: 4)

2



if # S*, then the inequality in (4) would be strict.

For the purpose of inference or prediction, it is common to naively use the classical nor-
mal linear model theory, based on the selected subset S’, to derive uncertainty assessments.
However, using the data to select S introduces bias, violating the assumptions of that classical
theory, and thereby invalidating the conclusions. The next result provides an explanation for
this general phenomenon in cases where the selected sub-model @(S ) overfits in the sense that
S > S*. In such cases, we find that 0 is smaller than the oracle estimator &5+. Since the error
variance estimate is involved in all uncertainty assessment calculations, and since it is common
for selection methods to overfit, especially those based on AIC ( ), this sys-
tematic under-estimation explains the general lack of validity of the classical inferential tools

applied naively in a post-selection context.

Theorem 1. Suppose S O S*. If
- eXp<_anDn) > Dm (5)
where a, = (c,/n)(n — |S*| — 1) and D,, = (|S| — |S*|)/(n — |S*| — 1), then 64 < Gg-.

To gain some intuition about the condition (5), first note that a,, D,, will tend to be small.
In particular, a very conservative bound is a,D, < c¢,p/n, which is small for moderate ¢,
and n > p. Next, since z — 1 — exp(—ax) is convex for z > 0 and @ > 0, we have
1 — exp(—a,D,) > a,D, for all D, in an interval (0,d), where d = d(a,) € [0,1). So, to
meet (5) we need a,, > 1 and, again, we have a conservative bound a,, > ¢,(n —p — 1)/n,
which itself is greater than 1 for n > p and ¢, not too small. In particular, if n > p and ¢,, = 2
as in the AIC, then (5) holds.

~

of Theorem 1. Start by writing SSE(S) in terms of SSE(S*). Let X¢ and Xg« denote the sub-
matrices corresponding to the indicated subsets, and write Pg and Pg- for the respective pro-
jections onto their column spaces. Then Pythagoras’ theorem implies that

SSE(S) = SSE(S*) + Y (Ps. — Pg)Y = (1 — 7,,)SSE(S%),

where .
o 18- 15

T'n :’I"n(S*,S) ~ Fn(S*vg)v
n—[5]

and F,(S*,S) is the usual F-statistic for testing the larger ©(S) against the smaller ©(S*).
Consequently, we choose S over the strictly smaller S*, according to (4), if and only if r,, >
1 —exp(—a,Dy,).

Then the above connection between SSE(S) and SSE(S*) immediately gives a comparison
between the corresponding variance estimates:

2 _ SSEA(S) e —Tn)§SE(S ) _n— |SA - 1(1 — 7).
n—]S|-1  n-|S-1  n-|S-1

o

As above, we find that 64 < 0~ if and only if 7, > D,. By condition (5), it follows that
the lower bound on 7, derived from over-fitting is greater than that derived from the under-
estimation. Therefore, over-fitting implies under-estimation, proving the claim. O]
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Figure 1: Plots from the simulations described in Section 3.

3 Illustration

Consider the model (1), with n = 50 and p = 10, and variance o? = 1. Set S* = {1,2,3},
with corresponding coefficients 57 = 1, 85 = 2, and 35 = 3. The rows of the X matrix
are independent, p-variate normal, with mean zero, AR(1) dependence structure, and one-step
correlation p = 0.5. We simulated 1000 data sets and, for each, evaluated 04 and 7+, where S
is chosen based on the AIC. The scatterplot shown in Figure 1(a) demonstrates the systematic
under-estimation based on the AIC-selected sub-model, as predicted by Theorem 1. In all
1000 cases, we have S O S*, and those on the diagonal line correspond to S = S To
further illustrate the difference between the estimates, Figure 1(b) plots a histogram of the ratio
G+ /0, only for the strict over-fit cases. In particular, the mean from this histogram is 1.06.

While the relative difference between the two estimates does not seem remarkable, even
this small of a difference can impact the quality of inference. For example, consider using
the confidence interval (2) for inference on the mean response at a particular setting = of the
explanatory variables; here, = is an independent sample from the distribution that generated
the rows of X. The oracle 95% confidence interval Cy o5(z; S*) has coverage exactly equal to
0.95 but, in the 1000 simulations above, the coverage probability of C,, (x; S ) is roughly 0.86.
It happens that the S-based intervals tend to be shorter than the oracle, suggesting that valid
post-selection inference on the mean response requires o ¢ to be strictly larger than &g+, which
is impossible given Theorem 1 and the AIC’s tendency to over-fit.
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