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Abstract

Galaxy cluster cores are pervaded by hot gas which radiates at far too high a rate to maintain any semblance of a
steady state; this is referred to as the cooling flow problem. Of the many heating mechanisms that have been
proposed to balance radiative cooling, one of the most attractive is the dissipation of acoustic waves generated by
active galactic nuclei. Fabian et al. showed that if the waves are nearly adiabatic, wave damping due to heat
conduction and viscosity must be well below standard Coulomb rates in order to allow the waves to propagate
throughout the core. Because of the importance of this result, we have revisited wave dissipation under galaxy
cluster conditions in a way that accounts for the self-limiting nature of dissipation by electron thermal conduction,
allows the electron and ion temperature perturbations in the waves to evolve separately, and estimates kinetic
effects by comparing to a semicollisionless theory. While these effects considerably enlarge the toolkit for
analyzing observations of wavelike structures and developing a quantitative theory for wave heating, the drastic
reduction of transport coefficients proposed in Fabian et al. remains the most viable path to acoustic wave heating
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of galaxy cluster cores.
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1. Introduction

Unopposed radiative cooling in the intracluster medium
(ICM) leads to catastrophic mass accretion rates of up to a
thousand solar masses per year (Fabian & Nulsen 1977). This
constitutes the classic cooling flow problem. Accretion rates
predicted by this model are much larger than those inferred
from X-ray observations of clusters (e.g., Peterson et al. 2003).
Moreover, the central temperature does not fall below ~keV,
and the star formation rates are significantly lower than
predicted by the cooling flow model (e.g., Hoffer et al. 2012;
Donahue et al. 2015).

Several ICM heating mechanisms have been proposed to
offset radiative cooling losses in order to solve the cooling flow
problem. Below we list various heating mechanisms considered
in the literature, discuss their limitations, and identify a few of
the most promising ones. New developments in the field
suggest that alternative heating modes that incorporate plasma
effects that go beyond pure hydrodynamics may be needed to
better explain ICM heating. One such mechanism is the
dissipation of acoustic waves excited by the supermassive
black holes in cluster centers, which is the main focus of this

paper.

1.1. ICM Heating Mechanisms
1.1.1. Thermal Conduction

Thermal conduction from the hot outer ICM regions to the
centers of cluster cool cores was considered, e.g., by Zakamska
& Narayan (2003). This mechanism lacks a feedback loop that
could maintain cluster atmospheres in globally stable states—
the models either eventually lead to catastrophic cooling or, if
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conduction is strong, to the isothermality of the ICM (e.g.,
Bertschinger & Meiksin 1986), though thermal runaway may
occur on rather long timescales (e.g., Kim & Narayan 2003).
Because of the self-limiting nature of heat conduction, Yang &
Reynolds (2016a) showed that conductive heating is unlikely to
be the dominating heating mechanism even for unsuppressed
parallel conductivity. Recent results by Roberg-Clark et al.
(2016, 2017), Komarov et al. (2017), and Fang et al. (2018)
suggest that the conductive flux may not be linearly
proportional to the temperature gradient and that conduction
could be severely suppressed compared to the Braginskii level.
Thus, conduction on its own does not appear to be a viable
solution to the cooling flow problem.

1.1.2. Dynamical Friction and Turbulent Diffusion

Dynamical friction acting on galaxies has been considered
by El-Zant et al. (2004) and Kim et al. (2005). While this
mechanism can be self-regulating because the heating occurs
for supersonically moving galaxies, the models are not
thermally stable. Moreover, the minimum temperatures,
~Tir, predicted by this model are larger than observed. While
this mechanism is unlikely to provide a complete solution to
the cooling flow problem, the onset of thermal instability can
be significantly delayed.

Ruszkowski & Oh (2011) suggested that turbulent heat
diffusion may lead to efficient heating of cool cores by
redistributing the energy from outer parts of the cool cores to
the center. In their model, turbulence is excited by galaxy
motions and is volume filling due to the excitation of large-
scale g-modes. The efficiency of turbulent diffusion is boosted
by thermal conduction that reduces the stabilizing buoyancy
forces. While there exists a parameter regime for which
catastrophic cooling can be avoided or significantly delayed,
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this is unlikely to be a general solution to the cooling flow
problem, especially if thermal conduction is significantly
suppressed.

1.1.3. Cosmic-Ray Heating

The possibility of heating cool cores by cosmic rays was
studied using analytical approaches (Loewenstein et al. 1991;
Guo & Oh 2008; Pfrommer 2013; Jacob & Pfrommer 2017a,
2017b) and MHD simulations (Ruszkowski et al. 2017). The
emerging consensus from these studies is that cosmic rays may
provide sufficient heating to offset radiative cooling even when
only a small amount of pressure support in the ICM comes
from cosmic rays. While detailed comparisons to the data
remain to be performed, these models do not demonstrably
violate constraints from radio and gamma-ray observations.
Interestingly, these findings are consistent with suggestions by
Bambic et al. (2017), who studied turbulence driving in
magnetohydrodynamical simulations and argued that turbu-
lence driving is inefficient. They suggest that cosmic rays and
sound waves may be necessary to model energy thermalization.

1.1.4. AGN Heating

By far the most promising models to explain the cooling
flow problem involve heating by active galactic nuclei (AGNs).
This mechanism provides a natural self-regulating feedback
loop (e.g., Reynolds et al. 2002; Ruszkowski & Begelman
2002; Guo et al. 2008; Gaspari et al. 2012; Li et al. 2015; Yang
& Reynolds 2016b). While the amount of energy supplied by
the AGN suffices to offset radiative cooling in cool cores, it is
unclear how the AGN energy is distributed and thermalized in
the ICM and to what extent the heating is offset by the bubble-
driven expansion of the overlying gas (Guo & Mathews 2010).
Here we distinguish between three forms of coupling: radiative
heating, mechanical heating by turbulent, or incoherent,
motions, and mechanical heating or energy transport by
coherent flows. Heating by cosmic rays could be considered
a fourth type of AGN heating if the cosmic rays are produced
by the AGN.

Radiative heating—Radiative heating was studied by a
number of authors (e.g., Ciotti & Ostriker 2007; Ciotti et al.
2010), who concluded that both AGN mechanical and radiative
feedback are needed to prevent catastrophic cooling flows in
elliptical galaxies. Recent results by Xie et al. (2017) suggest
that radiative heating could be important in low-luminosity
AGNSs, where the kinetic feedback mode is typically con-
sidered. They suggest that Compton temperatures in these
objects can be ~20 times higher than previously assumed and,
consequently, AGN can heat the gas radiatively.

Turbulent dissipation—Zhuravleva et al. (2014) proposed
that dissipation of turbulence could offset radiative cooling
inside cool cores. Their approach relies on the conversion of
gas density fluctuations to the velocity field. Several simplify-
ing assumptions are made, including isotropic turbulence and
the absence of gas density fluctuations associated with dark
matter substructure. Such fluctuations could mimic turbulent
velocity perturbations. Furthermore, dissipation of heat due to
mechanisms not involving turbulence could drive motions, and
the dissipation of these motions could be interpreted as
turbulent dissipation. While the balance of heating and cooling
predicted by this model is very approximate, even perfect
balance would not necessarily imply that turbulent dissipation
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is the dominant heating mechanism, as the cluster can go
though phases of overheating (Li et al. 2017).

Resonant scattering can be used to place further constraints
on the turbulent velocity magnitude (e.g., Hitomi Collaboration
et al. 2016; Ogorzalek et al. 2017). Lines of abundant ions can
have optical depths exceeding unity, and such lines will be
attenuated. Turbulence broadens the lines and thus lowers their
optical depth and reduces this suppression effect. However, this
suppression can be mimicked by predominantly nonturbulent
radial gas velocities (Zhuravleva et al. 2011), thus reducing the
need for substantial turbulence and associated turbulent
dissipation. This could occur if the AGN jet activity is
accompanied by a wide-angle wind originating from the
vicinity of the central black hole.

In addition to the above caveats concerning the turbulent
dissipation model, there are theoretical arguments suggesting
that AGNSs are not likely to drive enough turbulence in the ICM
to offset cooling. Reynolds et al. (2015) isolated the role of
incompressible modes (g-modes and turbulence) using con-
trolled numerical experiments and demonstrated that the energy
transfer from the AGN to the ICM is insufficient to balance
cooling. This claim was corroborated by a more realistic
treatment of AGN feedback in global hydrodynamical simula-
tions of cool cores by Yang & Reynolds (2016b), who
showed that turbulent dissipation contributes to the heating
balance at the level of just a percent. The main heating in their
model was due to a combination of shocks and mixing.
However, mixing of the thermal bubble gas may be partially
inhibited by magnetic fields (Ruszkowski et al. 2007), and the
bubbles may be predominantly filled with cosmic rays rather
than thermal gas (Dunn & Fabian 2004; Guo & Mathews 2011;
Guo 2016). The above considerations suggest that alternative
heating modes need to be explored to explain the thermaliza-
tion of the energy injected by the AGN in the ICM.

A variant on turbulent heating is given in Kunz et al. (2011).
This paper is based on the idea that large-scale turbulence in the
cluster causes the plasma pressure to become anisotropic with
respect to the ambient magnetic field (p, = p; Schekochihin
& Cowley 2006). The level of anisotropy is determined by a
balance between turbulent driving and collisional relaxation. If
it is assumed that the resulting anisotropy is at the critical level
for the mirror (p, > p)) or firehose (p, < Py instability, and
that relaxation is due to Coulomb collisions, then the resulting
heating rate depends only on the ambient magnetic field
strength and plasma temperature, and is argued to be thermally
stable.

Shock dissipation—Shocks driven by AGNs have been
identified through observations (Randall et al. 2011) and in
simulations (Yang & Reynolds 2016b). They tend to form and
dissipate close to their source, and are thus a strongly centrally
concentrated form of AGN heating. However, the shock-heated
gas may propagate energy away from the cluster center through
time-dependent flows (Guo et al. 2018) that provide a
feedback loop.

There is a close relationship between shock waves and sound
waves. Sound waves can steepen into weak shock waves,
although geometrical divergence and dissipation counter this
effect. On the other hand, the reflection of shock waves from
inhomogeneities can produce sound waves. Given their close
coupling, sound waves and shock waves should be discussed in
tandem.
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Sound wave dissipation—Sound waves in the ICM were first
reported in the Perseus cluster by Fabian et al. (2003), who
suggested that viscous dissipation of the waves could balance
cooling. Subsequently, Forman et al. (2005) detected waves in
the Virgo cluster. Simulations of ICM heating by viscous
dissipation of sound waves were first performed by Ruszkowski
et al. (2004a, 2004b), who found that the waves can indeed heat
the gas efficiently and propagate to large distances despite
somewhat overheating the very central cluster regions. However,
as mentioned above, such overheating may not be inconsistent
with the data (Li et al. 2017). In the simulations of Ruszkowski
et al. (2004a, 2004b), dissipation due to thermal conduction was
completely suppressed. Using linear/analytic arguments, Fabian
et al. (2005, hereafter FOS5) suggested that suppression of
transport, and in particular thermal conduction, is needed to
allow the waves to propagate far from the AGN as is observed.
This suppression also allows for better spatial redistribution of
the wave energy without overheating the ICM.

Additional arguments in favor of sound wave dissipation
come from recent Hitomi constraints on the low level of
turbulence in the ICM (Hitomi Collaboration et al. 2016;
Fabian et al. 2017). These constraints can be most easily
satisfied when sound wave dissipation is invoked because the
velocity perturbations associated with sound waves are
significantly subsonic. However, ZuHone et al. (2017) show
that projection effects could hide faster motions. In their
analysis, they simultaneously account for the appearance of the
spiral features seen in Perseus and match the line velocity
shifts. For different lines of sight, velocities can be larger. The
observational results may also be biased toward brighter
regions and, consequently, do not constrain the velocities in the
lower density gas. Nevertheless, acoustic wave dissipation is a
promising mechanism because it is consistent with the Hitomi
data and may account for spatially well-distributed heating.
While it is not universally agreed that sound waves are
generated efficiently in AGN outbursts (Tang & Churazov
2017) and much remains to be understood about the frequency
and power spectrum of such waves, there is enough
observational and theoretical evidence for such waves to
warrant close examination.

The purpose of this paper is to improve the toolkit for studies
of acoustic waves in galaxy cluster cores by including physical
processes that were omitted from previous work. We solve
separate equations for electron and ion temperature perturba-
tions, allowing for the possibility that they differ, and we
include ion thermal conduction as well as ion viscosity. We
consider the transition in electron behavior from nearly
adiabatic to nearly isothermal, and show how this reduces the
damping rate. Finally, we consider the transition from
collisional to collisionless behavior and compare the predic-
tions of kinetic and fluid theory.

In Section 2, we present basic formulae for Coulomb
processes in a hydrogen plasma and evaluate them for densities
and temperatures derived for the ICM of the galaxy cluster
A2199, the properties of which we will continue to use for
numerical examples throughout the paper. In Section 3 and its
subsections, we give an overview of wave propagation, derive
and solve the dispersion relation in various limits, compare the
results with a kinetic theory that includes collisions, and
evaluate the electron and ion temperature perturbations. In
Section 4, we evaluate the attenuation in amplitude of a
propagating wave due to dissipation, and in Section 5, we
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evaluate the rates of entropy production by the various
dissipation mechanisms. In Section 6, we summarize the
results and conclusions.

2. The Collisionality of the ICM

We take a “collision” to be a random event that perturbs the
trajectory of a particle. In the cases considered here, each
collision has a small effect, and the “collision time” is the time
it takes for many collisions to give an rms change of order
unity.

The propagation and dissipation of waves depend critically
on the collisionality of the medium. Thermal conduction,
viscosity, and electron—ion heat exchange all dissipate wave
energy and are mediated by collisions. In a collisionless
plasma, waves are dissipated when particles absorb wave
energy through resonances.

Although the role of interactions between particles and
microscale waves is under active study (Kunz et al. 2011;
Roberg-Clark et al. 2016, 2017), in this paper we derive most
numerical estimates from Coulomb collisions’ and describe
departures from the Coulomb rates with adjustable parameters
as in FOS.

Formulae for the electron and ion Coulomb collision times 7,
and 7; (which is related to 7, by 77 = 7../2M /m for ion and
electron masses M, m and T, = T;) are given in Braginskii
(1965, hereafter B65). In evaluating these formulae, we assume
a hydrogen plasma, set the Coulomb logarithm A = 37, express
the temperature in units of 10’K, and use n (in cm73) to denote
either n, or n;, resulting in

T3 /2
(Tey 1) = (2.44 x 108, 1.48 x 10'0) T —s, 1)
n

It is also useful to have the thermal velocities

(e, vi) = (VkgT/m, \JkgT /M) )
=(1.23 x 10% 2.87 x 107)T3?cm s~ 1, 3)

and mean free paths \.; = v, ;7.;, which are almost the same
for the two species,

T2
ey A) = (3.00, 4.25) x 10""ZLcm. 4)
n
In order to describe thermal conductivity and viscosity, we
introduce diffusivities D, ; = )\ii / Te.is
T5/2
D.; = (3.69 x 10%, 1.22 x 10%%) L — cm?s~ 1. 5)
n

We use density and temperature profiles for the cluster
A2199 in numerical examples. From Johnstone et al. (2002),
(T3, n) = (5013, 6.0 x 107375%7), where r, is the radius in
units of 100 kpc; these formulae hold for 0.05 < r, < 2.0. For
A2199, Equations (1) and (4) give in Myr, kpc, and
(kpc)® /My, respectively,

logT, = —1.84 + 1.2logn, (6)

7 Kunz et al. (2011) assume that the collision frequency is the Coulomb
frequency, which implies that the turbulent strain adjusts. Wiener et al. (2017)
assume that the collision frequency adjusts while the strain is externally
imposed. This leads to an alternative expression for the mean free path which
exceeds the Coulomb mean free path for typical cluster core parameters,
suggesting that anomalous collisions are not required to maintain the pressure
anisotropy at a stable value.
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Figure 1. Top: logq of the electron (solid) and ion (dashed) collision times in
Myr as functions of radial position in 100 kpc for the profiles of n and T
measured in A2199 by Johnstone et al. (2002). Bottom: log;, of the
collisionality parameter k); vs. radial position in kpc, assuming a wavelength
of 10 kpc, for A2199. The damping rate of such a wave can be estimated
accurately with fluid theory within about 100 kpc of the cluster, but should be
calculated from kinetic theory beyond this (see Figure 7).

log = —0.057 + 1.2logra, (N
log A\, = —0.392 + 1.35log r,, (8
log \; = —0.240 + 1.351logr,, )

logD, = 1.06 + 1.5logr,, (10)
log D; = —0.420 + 1.5logr,. (11)

The electron and ion collision times and the dimensionless
parameter k)\; for a wave with wavenumber k = 27 /(10kpc)
for A2199 are plotted in Figure 1.

3. Basic Equations and Dispersion Relation
3.1. Formulation and Estimates

We consider longitudinal (k x u = 0) electrostatic waves of
sufficiently low frequency that electron inertia can be ignored.
With these assumptions, the wave electron pressure gradient
force is almost exactly balanced by the force from the wave
electric field. Ion motion is driven by the fluctuating ion
pressure gradient and electric field, which due to electron force
balance is equivalent to driving by the fluctuating electron
pressure gradient. In these low-frequency waves, the electron
and ion densities are essentially the same (quasi-neutrality).
This is the standard propagation regime for ion acoustic waves
in both the fluid and kinetic descriptions, and also holds for the
thermal and relaxation waves discussed in Section 3.2.
However, although the electrons and ions are tightly coupled
dynamically, they are only coupled thermally through colli-
sions, and we will see that in general their temperature
perturbations are different.
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In a stratified medium with density scale height H, the effect
of gravity on sound wave propagation appears through the
acoustic cutoff frequency w,. ~ ¢,/(2H), which sets a lower
limit on the frequency of a propagating acoustic wave. For the
power-law density profiles considered here, stratification
effects are of order (kr)~' < 1, and we ignore them. Due to
the decrease of w,. with r, outward propagating waves will
not be trapped in an acoustic cavity, but waves generated at
large r might be reflected by the acoustic cutoff barrier as they
propagate inward.

We also ignore forces due to magnetic fields. This is strictly
accurate only for waves propagating parallel to the background
magnetic field, but should be a reasonable approximation if the
magnetic field is weak, as is thought to be the case in galaxy
clusters. However, even a weak field can drastically affect
plasma transport processes, and our parameterized modification
of the transport coefficients is intended to account for magnetic
geometry as well as anomalous collisional processes caused by
small-scale electromagnetic fluctuations. Because the cosmic-
ray pressure in galaxy clusters is also thought to be weak, e.g.,
Aleksic et al. (2012), we also ignore the thermal and dynamical
effects of cosmic rays. Finally, we ignore perturbations to the
heating and radiative cooling rates because their timescales are
long compared to the wave period, because the heating
mechanism is unknown, and because it is uncertain whether
the cluster gas is in thermal equilibrium at all. We briefly
discuss the possible effects of magnetic fields, cosmic rays, and
thermal damping/instability in Section 6.

As for our estimates of collisional and thermal parameters,
we assume a hydrogen plasma of uniform particle density
n, =n; =n and temperature 7, = T; = T, and denote the
electron and proton masses by m and M, respectively. We
introduce ¢ = m/M, which we will treat as a small parameter.
With this notation, 7./7;, v;/v., and D;/D, are all of order €2,

We expect the wave frequencies and wavenumbers of
acoustic waves to be related by w ~ kv;, and the characteristic
timescales associated with electron thermal conduction, ion
thermal conduction, and ion viscosity to be of order (k?D,)"!,
(k*D;)~!, and (k2D;)"!. These diffusive processes should be
important if their timescales are less than the wave period, or
wr: > €'/2 for electron thermal conduction and wr; > 1 for ion
thermal conduction or viscosity. But because wr; ~ 1 is
roughly equivalent to k)\; ~ 1, kinetic effects, viscosity, and
heat conduction for ions all become important at similar
wavelengths. In Section 3.3, we show that the ion damping
predicted by fluid theory is somewhat larger than that predicted
by kinetic theory and is likely an overestimate.

3.2. Fluid Theory

Following the physical picture described in Section 3.1, we
represent the plasma by single momentum and continuity
equations, but use separate energy equations for the electrons
and ions. The evolution of small-amplitude perturbations of a
uniform medium is then described by the system of linear
equations

nM% — V(B P) -V m, (12)
Pi+ Py =2mT + n(T,; + Ty), (13)
M _ v, (14)

ot
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30T _ m (To; — Ti)

=TV -w + x, VT, - 3——=—=, (15
2 Ot 1T Xe : M Te (15
39 _py. ul—s—x,Vle—i—Sm—(T“ i) (16
2 Ot Te
where
8u1a 3u1h 2
Tab = — + — =V - ui| = Wi (17
lab 770( ox, ox, 3 0 1 NoWiar (17)

is the stress tensor to first order in wave amplitude,
1y = 0.96nMD; (18)
is the ion viscosity,
X, = 3.16D, (19)
is the electron thermal conductivity, and
\; = 3.90D; (20)

is the ion thermal conductivity. Ion thermal conduction was not
included in FOS, but it is of the same order as ion viscosity, so
we retain it here. The numerical coefficients multiplying D, ; in
Equations (17)—(20) are calculated from kinetic theory and
taken from B65. We have omitted electron viscosity, which is
always a minor effect.

We will want to allow for modified transport coefficients, so
we introduce the parameters £, £, &, and £,; to multiply x,,
X;» and 7y, and the electron—ion equilibration term in all of the
equations. The parametric approach is undoubtedly an over-
simplification: the & should be functions that depend on local
quantities such as n and T and possibly also on global
properties such as magnetic field geometry and level of large-
scale turbulence. In fact, the functional forms of the £ may be
critical in closing the feedback loop. However, since we have
no theory for the & we adopt simple parameterization here. In
principle, the £ factors could have any magnitude, but we will
always assume they suppress transport, i.e., that they lie
between 0 and 1.°

We consider solutions of Equations (12)—(16), which depend
on ¢ and x as /&~ We will generally follow F05 in treating
w as known, real, and positive (it represents the frequency at
which the waves are driven) and solving for &, which in general
is complex: k = k,+ik;. However, in Section 3.3, we treat k as
real and solve for w to facilitate comparison with results from
kinetic theory.

We nondimensionalize the problem by normalizing the
first-order quantities such that (w, ny, T,1, ;) — (u/vi, ny /n,
T,./T, T,/T) = (i, ii, T,, T;) and introducing a scaled fre-
quency © = wre /2 and a scaled wavenumber K = kv, /w.
Tons are collisional (wr; < 1) for Q < e~'/2, and electrons
are collisional for < ¢~!. According to the density and
temperature profiles we adopted for A2199, waves with 10 Myr
periods span the range 0.64 <Q <54 in 0.05<
r, < 2.0, so we must consider a large range of propagation
conditions. Using Equations (13) and (14) in Equations (12),
(15), and (16) and assuming plane wave structure we derive the

8 The electron—ion thermal coupling parameter §,; may be an exception to
this; Markevitch & Vikhlinin (2007) argued for anomalously fast 7,, T;
equilibration in cluster shocks. However, it is not clear that the anomalous
processes driven in shocks also exist in acoustic waves.
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coupled system
[1 — 2K? + 1.28i¢,¢'2QK%ii — K*(T, + T) =0, (21)

2.83i¢

i — (1 + 1.49i¢,,QK?]T, — Q (T, - T) =0, (22)

in — [1 + 2.60i¢, €'/2QK?]T; — 2 8;’561 F—1T)=o0,
(23)
where we have used the equation of continuity
i—Ki=0 (24)

to eliminate .

Equations (21)—(23) describe three distinct linear modes that
can be found by standard linear algebra techniques. However,
for later purposes (Section 3.2.1) and additional physical
insight, we rewrite Equations (22) and (23) in terms of the new
variables T = T, + T, 6T = T: — T, in terms of which

T = %(T + 8T, (25)
T = %(T — 5P, (26)

Using Equations (25) and (26) in Equations (22) and (23) leads
to a pair of equations for 7 and 67,
FO2K2
6T — iKY K7e T =0, Q27
Q + iK%y + 5.66i,;

(1 + iQK2%c)T — iQK?%_6T = %ﬁ, (28)
where the ¢, = (1.49¢,, + 2.60¢,,¢'/2)/2 are proportional to
the scaled sum and difference of the electron and ion thermal
conductivities. Substituting Equation (27) into (28) and using
Equation (24) leads to expressions for both temperature
variables in terms of 7,

. 2 2 .
7 Q4+ iK ; + 5.66i¢,; %ﬁ 29)
2 K2
5 = KK g c gn (30)

where
D =Q + 2iPK%; + PKH(? — ¢?)
+ 5.66i,,(1 + iQK?c,). (31)

Substituting Equation (30) into (21) leads to the dispersion
relation

[1 — 2K? + 1.28i¢,¢'/?2QK?|D
= %Kz(Q + i2K%c, + 5.66i€,,). (32)

Ignoring all dissipative effects in Equation (32) gives the
dispersion relation in the ideal limit
1 - 1;) K?=0, (33)

with solution K2 = K¢ = 3/10, as expected for acoustic
waves in a v = 5/3 gas with mean particle mass M/2.
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When dissipation is included, Equation (32) is cubic in K>
and describes three distinct wave modes.

The acoustic mode is of greatest interest here. In the nearly
adiabatic limit 2 < 1, we can solve for this mode by setting 7
equal to its adiabatic value perturbed by electron and ion
thermal conduction, (4/3)7i/(1 + i2K%c,), in Equation (21)
or alternatively keeping only terms proportional to Q° and Q2 in
Equation (32) and assuming K is order unity. The resulting
approximate dispersion relation is

|- 2= IKGN28, 2 (- 2AUDed. (B
0

The imaginary terms in square brackets represent, respectively,
ion viscosity and the combined effects of ion and electron
thermal conduction. They lead to spatial damping at the rate K;,
which is given to first order in K;/Ky by

K = i9[1.2851,51/2 + %q]
Ky 20 5
= 0(0.0045¢, + 0.045¢,, + 0.0018¢,,) (35)

or, writing the imaginary part of k in terms of the ion mean free
path and substituting numerical values for € and K,

kidi = (w)*(0.105¢, + 1.03,, + 0.042¢,). (36)

Equation (35) agrees with Equation (1) of FO5 when written in
their notation, except that FO5 omitted ion thermal conduction,
which increases ion damping by about 40% if §, = &_..

Because Equation (1) of FO5 is a weak damping formula,
derived assuming the electrons are nearly adiabatic, it
overestimates the damping of waves in which conduction is
so efficient that the electrons become isothermal. The self-
limiting nature of conductive damping is apparent in Figure 2,
the top panel of which compares the spatial damping rates
derived from the weak damping formula (Equation (35)) with
those derived from the full dispersion relation (Equation (32))
for a wave with period 10 Myr propagating in A2199. The
bottom panel compares the acoustic mode damping rate when
electron—ion collisional coupling is omitted to the value when it
is included. Because ion conduction is unimportant for these
relatively low values of wr; (from Equation (6), logwr =
1.2logr, — 0.259 — log P;, where P; is the wave period in
units of 10 Myr), the ions are nearly adiabatic, and electron
collisions with ions prevent the electrons from relaxing to an
isothermal state in which there is little dissipation due to
electron heat conduction.

The other two modes of the system of Equations (21)—(23)
correspond to the relaxation of thermal perturbations. They are
nearly isobaric: 271 ~ —T. Their properties can be derived
approximately from Equation (29) by invoking the isobaric
condition to replace 4ii/3 by —27/3, which leads to a
quadratic equation for K>. Here, we give the approximate roots
in the limit 2 < 1.

One mode, denoted by the superscript (tem), is a temperature
wave driven by electron heat conduction. It can be derived
without using separate electron and ion energy equations,
and has T,; ~ T;. The dispersion relation for the temperature
mode is

5i

K(tem)Z ~ ,
3Q(0.75¢,, + 1.306,,¢172)

(37)
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Figure 2. Top: spatial damping rates in units of kpc™' of acoustic waves with
period 107 yr under A2199 conditions computed according to the weak
damping formula derived from Equation (35) (magenta curve) and from the full
dispersion relation (Equation (32); black dashed curve) when all transport
coefficients have their full Coulomb values. The weak damping formula
overestimates the damping rate because it assumes nearly adiabatic waves.
Bottom: comparison of the spatial damping rates with (long-dashed curve) and
without (short dashed curve) electron—ion thermal coupling. When coupling is
turned off, electron thermal conduction reduces the electron temperature
perturbation, weakening electron thermal conduction damping.

or

0.0389%iwT;
(0.75¢,, + 0.030¢,,)

(kN> = (38)

The temperature mode is excited by entropy perturbations and
damps within less than one wavelength of its source. Its
characteristic wavelength is the scale on which the heat
conduction rate is comparable to the driving frequency.

The other isobaric mode, denoted by the superscript (rel), is
driven by electron—ion temperature equilibration. As long as
electron heat conduction is much faster than ion heat
conduction, electron temperature perturbations quickly relax,
so that T,,/T;; ~ O(¢). The dispersion relation for the
relaxation mode is

1.09¢,.
@eh2 ., _ T 7Sei
B g e ¢
Or,
(k@D )\;)2 = —0.0254Q. (40)

ci

The characteristic length scale for this wave is independent of
the driving frequency and is set by the length scale at which the
ion thermal conduction time equals the electron—ion relaxation
time. It is excited by thermal perturbations, which differ
between particle species, such as viscous heating of ions in
shear flows.
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Figure 3. Top: imaginary part of the acoustic wavenumber k in units of kpc ™"
for a wave with period 10 Myr as a function of position r, in A2199. The
curves were computed assuming all transport coefficients have their full
Braginskii values (black dotted), electron thermal conduction reduced to 10%
of the Braginskii value (red dashed), and both electron thermal conduction and
ion viscosity reduced to 10% of their Braginskii values (blue solid). Bottom:
same data and styles of curve for the inner 50 kpc of the cluster.

We see from Equations (38) and (40) that both isobaric
modes are adequately described by fluid theory (k\; < 1) as
long as conduction is not too strongly suppressed. It is clear
from the large imaginary parts of the isobaric mode
wavenumbers that only the acoustic wave can transport energy
far from the source. The temperature and relaxation waves
damp locally.

Quantitative views of the acoustic wave behavior for A2199
are illustrated in Figure 3. The full transport case (black dotted
curve) is the same data that were plotted in Figure 2. The red
dashed curve shows the effect of reducing &, to 0.1 while
leaving other parameters the same. Although reducing the
electron conductivity reduces the damping rate at small r,, it
delays the onset of electron isothermality, resulting in some-
what elevated damping rates at larger r,. Only when both
electron conductivity and ion viscosity are reduced to 0.1 their
Braginskii values is the damping rate significantly reduced
(blue solid curve).

Although many combinations of transport suppression
parameters may be possible, there is one particular case that
we wish to discuss: a model in which ion viscosity and ion
thermal conduction are completely suppressed (£, = £, = 0).
This is the limit of very short ion mean free path due to
scattering by microinstabilities. It is not obvious that this model
is justified in galaxy cluster cores. According to estimates in
Wiener et al. (2017) for the core of the Coma cluster, the ion
Coulomb mean free path is short enough to suppress the
firchose and mirror instabilities that drive microturbulence.
However, because this model may be relevant in other
environments, because it brings out the effect of electron
isothermality, and because, as we show in Section 3.3, the fluid
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Figure 4. Top: imaginary part of the acoustic wavenumber k in units of kpc ™"

for a wave with period 10 Myr as a function of position r, in A2199. The curve
was computed assuming the electron thermal conductivity and electron—ion
temperature equilibration rate have their full Braginskii values, but ion thermal
conduction and viscosity are completely suppressed. Bottom: same curve for
the inner 50 kpc of the cluster. The peak damping rate occurs at r, ~ 0.22,
where € ~ 3.85. This is consistent with the estimate in Section 3.1 for the
importance of electron thermal conduction wr; ~ €'/2 or Q ~ 1.

model of ion transport overestimates the damping relative to a
more accurate kinetic model, we give results for this model
here and build on them throughout the paper.

The reduction in damping as the electrons become
isothermal is clearly seen in Figure 4. The peak damping rate
occurs at r, ~ 0.22, where 2 ~ 3.85. This is consistent with
the estimate in Section 3.1 for the importance of electron
thermal conduction wr; ~ ¢'/2 or Q ~ 1. In Section 4, we will
show that as a result, most of the wave attenuation and heating
takes place in the inner part of the domain.

3.2.1. The Temperature Fluctuations

While both ions and electrons contribute to the energy
carried by waves, only T,, which is generally lower than T;
because of the larger electron conductivity, is observable.
Fabian et al. (20060) argued for isothermal waves in Perseus,
while Zhuravleva et al. (2016) found evidence for adiabatic and
isobaric fluctuations as well. Here we discuss the relationships
between T, T;, and 7 in acoustic waves.

The quantity |87 /7] is plotted versus 2 in Figure 5 for
0 < Q < 10. In the adiabatic limit (2 < 1), heat conduction is
negligible, and both 7, and 7; are related to 7 by the usual
adiabatic relation T, = T, = 27i/3 for ideal gases. Electron heat
conduction becomes more important as {2 increases away from
zero, with |87 /T| being of order Q* for ) < 1. Differences
between 7, and 7. become significant for moderate 2 as the
electrons become isothermal while the ions remain nearly
aNdiabatic; isothermal electrons but adiabatic ions correspond to
|6T /T| — 1. At large €, the fluid theory should be replaced by
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Figure 5. Magnitude of 67 /7, the ratio of the difference to the sum of ion and
electron temperature fluctuations defined in Equations (25) and (26), as a
function of scaled frequency 2 with all transport coefficients set to their
Coulomb values. For Q < 1 (wr; < el/ 2), ions and electrons are well-coupled
and the temperature difference is small. As €2 increases above unity, the
electrons become more isothermal, and the ratio approaches unity. For even
larger €2, the ions become isothermal as well, and the ratio declines again. As
we will see in Section 3.3, the fluid theory is invalid for these large values of €2.

a semicollisionless or collisionless theory for these large values
of Q (Section 3.3), so we do not extend the plot to large
values here.

The magnitude and phase of 7, relative to 7i are plotted
versus €2 in Figure 6. For Q2 < 1, the waves are almost
adiabatic, 7, /7i ~ 2/3, and the quantities are almost in phase.
As Q) increases, the relative amplitude of T. decreases due to the
increasing importance of conduction, and 7, lags 7i in phase by
an increasing amount. The lag is expected for a damped wave;
it means that the fluid is losing heat at the time of greatest
compression (similar to the damped version of the classic
Eddington valve invoked to explain self-excited stellar
pulsations). However, the phase shift may be difficult to
observe owing to the small amplitude of 7, relative to 7i in the
range of €2, where the phase shift is large.

3.3. Kinetic Theory

In the collisionless limit (kA; — ©0), ion acoustic waves are
described by kinetic theory. The electrons are isothermal
(7. = 1) and the ions are adiabatic, with one degree of freedom
(7; = 3). Collisional damping processes are negligible, and
dissipation is primarily due to ion Landau damping: the
absorption of wave energy by ions traveling at slightly less than
the speed of the wave (electron Landau damping is weaker by a
factor of €!/?). Because the wave speed is near the ion thermal
speed (unless T, > T;), collisionless damping is strong. The
dispersion relation in dimensionless form written for real k£ and
complex w is

wr = (2 — 0.850)k\; 41)

for T, = T;. According to Equation (41), ion Landau damping
reduces the wave amplitude to 7% of its initial value within one
wavelength: ion acoustic waves essentially cannot propagate in
a collisionless plasma with 7, = T;.

Ono & Kulsrud (1975) studied the transition from collisional
to collisionless behavior by solving the linearized Boltzmann
equation with a Fokker—Planck collision operator. They
considered only ion—ion collisions and assumed the electrons
are isothermal. Therefore, the damping rates they calculated
account for ion viscosity and ion thermal conduction, but not
for electron thermal conduction or electron—ion temperature
relaxation.
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Figure 6. Top: the absolute value of the ratio of the normalized electron
temperature perturbation to the normalized density perturbation, |7, /7| vs. the
scaled frequency Q2. For © < 1, the ratio has the usual adiabatic value of 2/3,
but decreases to zero as conduction becomes important at high frequencies,
where the electrons are isothermal. Bottom: the phase of 7,/7i vs. €. As
expected for a damped wave, 7, always lags 7i; the lag increases with increasing
(2, but the accompanying decrease in |7, /7i| may make the phase lag difficult to
detect.

In Figure 7, the results of the Fokker—Planck calculation
from Table 2 of Ono & Kulsrud (1975; red points connected by
a dashed curve to facilitate comparison with fluid models) are
compared to the full fluid model (black dashed curve) and a
fluid model with isothermal electrons and electron—ion
coupling switched off (solid green curve). Note that we have
followed Ono & Kulsrud (1975) and computed temporal, not
spatial, damping rates. The convergence of the two fluid curves
shows that the isothermal electron-adiabatic ion model captures
the fluid behavior for k\; < 0.2. The large blue points mark the
values of k); at 5 and 100kpc from the center of A2199.
Within this range, the Fokker—Planck and fluid formulae agree
to within 20%. Considering the differences between the
physical models, this is reasonably good agreement and shows
that collisionless effects are small. Comparison of Figure 1 with
Figure 2 of Ono & Kulsrud (1975) suggests that the fluid
description is adequate within the inner 100-150 kpc of galaxy
clusters where acoustic waves are observed.

While we have focused here on the inner parts of the ICM,
density and temperature profiles have been measured at larger
radii as well. Although both 7, and T generally decline with r,
the entropy parameter 7/ n2/3 is found to increase with r in a
large sample of clusters (Pratt et al. 2010), and )\; (which is
proportional to 7% /n) appears to do so as well. For example, the
n, and T profiles derived by Simionescu et al. (2012) for
Perseus give \; ~ 20-25kpc at r, ~ 10. This suggests that
acoustic waves launched by dynamical disturbances will damp
almost immediately in the outer parts of massive galaxy
clusters. Lower mass clusters are cooler and more collisional;
for example, the profiles derived for Centaurus by Walker et al.
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Figure 7. Comparison of the scaled wave damping rate Im[w] /kv; as a function
of k); in three different treatments. The top and bottom panels show the same
data over different ranges. The black dashed curve is the full fluid dispersion
relation. The green curve was obtained from the fluid theory assuming
isothermal electrons (7, = 0) and ignoring electron—ion collisional coupling
because of its relative slowness. The red points are the damping rates taken
from Table 2 of Ono & Kulsrud (1975) and are based on solving the Fokker—
Planck equation for ions, accounting for ion—ion collisions only and assuming
isothermal electrons. We have added the long-dashed curve to facilitate
comparison with the other curves. The blue points show k); for A2199 at 5 and
100 kpc from the cluster center. The elevated damping rates at low k); seen in
the full fluid theory are due to electron thermal conduction. As k); and k.,
which is almost the same, increase, the electrons become more isothermal and
the damping rates predicted by the green and black dashed curves converge.
On the other hand, beyond k)\; ~ 0.2, the fluid theory significantly over-
estimates the damping rate.

(2013) give A\;~ 4 kpc at r, ~ 10, indicating a more favorable
environment for the propagation of waves.

Collisionless acoustic wave damping heats the ions, not the
electrons. Using Equation (1) and the relation 7,; = 7. /€, we see
that if T ~ 5keV and n,~10"* cm ™, 7,; ~ 1.6 Gyr. This suggests
that 7; may exceed T, in the outer parts of galaxy clusters, making
collisionless damping even stronger. It further suggests that
pressure models based on 7, may underestimate the ion pressure.

4. Wave Attenuation

Damping attenuates wave amplitude by a factor

exp(—.A(a, r)), where
Ala. r) = f " kdr, (42)

for a wave launched at a. Equation (42) can be written in terms
of the scaled variables as

Q, ;
A(Qaa Qr) = El/zf KldQ

—, 43
Q, vidr/dr “43)

where 2, are the values of {2 at a and r. If the temperature and
density are power laws, (T, n) < (%, r—?), we can write
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Figure 8. Attenuation integrals fo S;OI K;(S)S74dS for g = 0.29, the value

derived for A2199, for two transport models. The solid curve represents full
Braginskii. The dotted curve shows the effect of completely suppressing ion
transport, bringing out the effect of the transition to electron isothermality.

i 7) = (o132, Tipri329/2) Equation (43) is then

1/2 . \4 rQ K.
2 re (WT,()) f K,dQ’ 44)
3a + 268 rvimo\e'/?) Jo,  Q

where ¢ = 2Qa + 8 — 1)/(Ba + 23), and we have used
EI/ZQ 2/Ba+20)
ry = ( ) .

WTio

A(Qa’ Qr) =

(45)

For A2199, the profiles of Johnstone et al. (2002) give
a=03, =075 and ¢ =0.29. The integral in
Equation (44) is plotted in Figure 8 for 2(a) = 0.001 (for all
practical purposes, the center) out to 2 = 25.

With 750 = 2.76 x 10"3s, vy = 643 x 10’ cms ', the
prefactor multiplying the integral in Equation (44) is
8.52/ P(7)'29, where P7 is the wave period in units of 10 Myr, and

237 1,

Q= 2 (46)

P,

The attenuation factor A4 for a wave with P; = 1 is plotted
versus r, in Figure 9,

The sensitivity of the attenuation factor to gas temperature
depends on the transport model and cluster profiles. If we
denote the temperature at the reference level where 7 is
measured by T, then the prefactor in Equation (44) scales as
T34=9/2 or —1.57 for A2199. For a 10% increase in Ty, this
reduces the prefactor to 7.34 for waves with P; = 1. On the
other hand, €2 scales as Tg/ 2. For A2199, increasing T by 10%
increases €2(0.75) for a wave with P; = 1 to 19.4, increasing .A
from 6.18 to 6.22 in the full Braginskii case and decreasing A
from 3.07 to 2.80 in the full suppression of the ion
transport case.

If all forms of transport are so strongly suppressed that the
weak damping formula (Equation (35)) applies, the attenuation
factor can be written in the form

10 Myr |
A(, rz):607(¥) 2%, (47)

where &, = 0.0048¢, + 0.045¢,, + 0.0018¢,; is a total sup-
pression factor. If all transport coefficients have their full
Braginskii values, then & = 0.0516. Equation (47) can be
used to solve for the degree of transport suppression needed to
achieve any given attentuation factor. For example, if
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Figure 9. Attenuation factors A defined in Equations (42)-(44) for two

transport models. The solid curve represents full Braginskii. The dotted curve

shows the effect of completely suppressing ion transport, bringing out the

effect of the transition to electron isothermality (collisional electron—ion
temperature coupling is present in the model).

P = 10 Myr, then A(0, 0.5) = 1 if & = 0.0068, or 13% of
the Braginskii value.

5. Heating by Wave Dissipation

The heating rate is given by FO05 in terms of an acoustic
luminosity Ly«(r), which takes the value L;,; at an injection
radius ri,; and is attenuated by dissipation as it travels through
the medium according to

dL _ —2k;Ls. (48)
dr
The heating rate per unit volume is
Ly(r)
iss = 2ki——. 49
« 4rr? “9)

If we define a wave energy flux F, such that L, = 47r2F;, then
Equations (48) and (49) identify the heating rate with the
divergence of F. Since k; = O for an ideal system, the heating
rate vanishes without dissipation.

Equation (49) is intuitively plausible, but it has two
limitations. One is that it does not separate energy input due
to PdV work from energy input due to heating. The other is that
it can be estimated from, e.g., our understanding of AGN
power output (as was done in F05), but not measured directly
within the ICM.

To illustrate the first problem, we start with the energy
conservation law for the combined electron—ion fluids (B65),

8_6 = -V .F, (50)
ot
where
€= l,ou2 + E(Pe + P) (51)
2 2

is the combined mechanical and thermal electron and ion
energy density, and

F= (6 +FR+ Plu+ 5”77 L éceXeVT€ - gciXiVE
(52)
is a generalized energy flux made up of the mechanical,

enthalpy, viscous, and conductive energy fluxes, summed over
electrons and ions.
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Equation (52) can be used to calculate L;y;, the rate at which
an oscillating source transmits energy to the surrounding
medium. For simplicity, we consider a spherically symmetric
source oscillating around an equilibrium position at 7 = a. By
symmetry, the energy flux is radial: F = 7F. The energy per
solid angle outside the source changes according to

gfuoc erldr = f;o g—irzdr - E(a)a2%
= F(a)a® — e(a)a’u(a), (53)

where in the second equality we have used Equation (50),
assumed F decays faster than 2 at infinity, as must occur for a
damped wave, and identified Oa/0t with u(a). Using
Equation (52), we then find for the rate of energy input to
the medium

%j:x eridr
0T,

= az[(Pe + P)u + f,,(ﬂ' Cu)y — fceXe_ - gciXi%] .
or or ],

(54)

Equation (54) shows that the global energy is changed by PdV
work (the first term on the right-hand side of Equation (54))
and by dissipation (the viscosity and heat conduction terms).
The wave contribution to Equation (54) comes from expanding
F to second order in the wave amplitude. We will not do that
here, except to note that in an ideal medium the pressure and
velocity perturbations are out of phase by m/2, so only a
damped or growing wave can do work on its environment
(Goldreich & Nicholson 1989).

In order to eliminate the ambiguity between doing work and

adding heat, we appeal to the entropy conservation law (B65,
Landau & Lifshitz 1987)

B—S+V~(SV+—qe+qi)=9, (55)
ot T

where S is the plasma entropy per volume, ¢,, g; are the electron
and ion heat fluxes, and 0T = T (6, + 6., + 0., + 6,;) are the
rates of entropy production per volume due to ion viscosity,
electron heat conduction, ion heat conduction, and electron—ion
collisional heat exchange, respectively. For waves, these heat
sources take the forms

1 pv? 21512
T0, = =& T Wap = 1288, —-(@n *Iif (56)
ngcexe 2 2.23 pviz 21712

10, = —=—<|VT|" = —&. ., — kNI | T, (57)
T el’? T
2

760, = —n§;Xi|VT“|Z = 3906, L APITE, (58)
Ti

2
m n Vo~ ~
TOu = 36, (T, — T)? = 42466225007, — TP,
M Tr, T

(59)

where the notation comes from Section 2.

The contributions of viscosity, electron and ion heat
conduction, and electron—ion thermal coupling to the heating
rate computed from Equations (56)—(59) are shown as
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Figure 10. Top and middle panels: scaled dimensionless heating rates due to
ion viscosity (solid green curve), ion heat conduction (dotted red curve),
electron heat conduction (blue dashed curve), and electron—ion thermal
coupling (solid orange curve) from Equations (56) to (59) and their sum, the
function ¥ (solid black curve), as functions of the collisionality parameter wr;
when all transport coefficients have their full values. To convert these rates to
energy per volume per time for a wave with density amplitude 7, multiply by
pv? /772, The top and middle panels plot the same data, but the middle panel is
zoomed in. The points w7; = 1.2 and wr; = 0.3 correspond to r, = 1.92 and
r, = 0.60, respectively, for a wave with P = 10 Myr. The bottom panel shows
the scaled heating rate due to electron thermal conduction when ion transport is
completely suppressed. It is very similar to the electron heating rate in the full
Braginskii transport case.

functions of wr; in the top and middle panels of Figure 10 for
the case where all transport coefficients have their full
Coulomb values. The total scaled heating rate summed over
all contributions is given by the black curve. At small wr;,
electron thermal conduction dominates, but is overtaken by ion
heat conduction and viscosity as wr; increases beyond a few
tenths, mirroring the contributions of these processes to
damping. As the electrons approach isothermality, their
temperature perturbation 7, is determined by balancing thermal
conduction against compression. This leads to 7, o 7i/k and
VT, independent of k, giving a nearly constant rate of entropy
production. Ion thermal conduction is relatively unimportant
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for the range of wr; considered here, so entropy production is
nearly quadratic in wr; (or k), as is viscous heating. The bottom
panel of Figure 10 shows the scaled entropy production rate by
electron thermal conduction when ion transport is completely
suppressed. It is very similar to the blue dashed curves in the
top and middle panels. The location of the peak coincides with
the maximum damping rate, which is near r, ~ 0.22 (see
Figure 4).

Although these results are presented in dimensionless form,
they are readily converted to physical values. Expressing 7, and
T, in terms of 7 using Equations (25), (26), (29), and (30),
denoting the resulting sum of the coefficients of (pvl-2 /)% in
Equations (56)—(59) by ¥, and using Equation (1), we have

2
0T = U232 = 0.93 x 1019025 /22 erg cm 3 s,
Ti

(60)

The factor W (which is a function of wr;) is the black curve
plotted in Figure 10.

In following the heating associated with any particular wave
propagating outwards from the cluster center, it is important to
consider its attenuation. Thus, although entropy production
increases outward in the full Braginskii model, this is more
than offset by the decreasing amplitude. If ion transport is
suppressed, there is very little attenuation and nearly constant
entropy production once the wave enters the isothermal regime,
resulting in a much flatter heating rate.

Equation (60), because of its n* dependence, is readily
compared to the optically thin radiative cooling rate to
determine, for any temperature, wr;, and choice of
&0 &0 &0 €,0), the wave relative amplitude 77 such that wave
heating balances radiative cooling. Following FO5, we write the
radiative cooling rate as

A = 10"*n2(1.137; "7 4 5379 4 6.3) ergcm 3 s\,
(61)

Combining Equations (60) and (61) gives, for 7y, the wave
amplitude at which wave heating balances radiative cooling,

33 x 1073
Meq = pos

Figure 11 plots 7ieq as a function of r, for a wave period of
10 Myr for the n and T profiles in A2199 and two transport
models: full Braginskii (top) and electron thermal conduction
only (bottom). While density perturbations as large as 15% can
be tolerated without overheating the cluster center, this value
drops below 2% at 200 kpc for the full Braginskii case. This is
due to the shorter electron and ion collision times at the cluster
center, which reduce the transport coefficients and weaken the
damping. However, it is an underestimate because the fluid
model overestimates viscous damping relative to the kinetic
model. Notably, the relative flatness of ¥ in the model without
ion transport produces a much flatter curve, as shown in the
lower panel of Figure 11.

As shown in Figure 7, kinetic effects reduce the damping
rate below the predictions of fluid theory. And, because the
heating rates due to ion viscosity and ion thermal conduction
scale roughly as w?, increasing the wave period by a factor of 3
would increase 7i.q by almost the same factor. Nevertheless, our
work supports the conclusion reached in FO5: in order to

(11375712 4 537 + 6.3T9°)05, (62)
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Figure 11. The wave amplitude, measured by the relative density perturbation
i = én/n, at which radiative cooling balances wave dissipation for a wave
with a period of 10 Myr in A2199, computed using the results plotted in
Figure 10 according to two transport models: full Braginskii (top) and electron
thermal conduction only (bottom). Wave amplitudes above the curve would
overheat the cluster; lower amplitudes would underheat it. The top plot
underestimates én/n because the viscous damping rates computed from fluid
theory are overestimates.

balance wave heating and radiative cooling, transport processes
must be strongly suppressed.

Although we have not performed a full stability analysis of
acoustic wave heating, Figure 4 and Equation (60) suggest that
heating by waves in the full Braginskii model is thermally
unstable while heating due to dissipation by electron conduc-
tion alone is stable. According to the second equality in
Equation (60) the heating rate per volume H for a wave of fixed
amplitude 6n = nii is proportional to WT~!/2, while W itself is a
function of wr;, which is proportional to 2 /n. If n and T are
perturbed isobarically, such that An/n = —AT/T, then
AV/U = 5/2(AT/T)(¥'/T), where the prime denotes differ-
entiation with respect to argument. For full Braginskii
transport, W increases roughly linearly with wr;, so
AU/U ~ 5/2(AT/T) and AH/H = 2AT/T. That is, a
positive temperature perturbation increases the heating rate.
The same conclusion applies to models with suppressed
Braginskii transport. In contrast, U is nearly independent
of wr; for nearly isothermal acoustic waves, so AH/H =
—1/2(AT/T): a positive temperature perturbation decreases
the heating rate. This argument should not replace a full
stability analysis, however. Although given in terms of local
quantities, the analysis here implicitly applies to perturbations
on length scales and timescales that are large enough to average
over the acoustic waves that are assumed to be supplying the
heat. A complete stability analysis of these larger scale
perturbations would include the response of the acoustic waves
to slow changes in the density and temperature of the medium
in which they propagate (Zweibel 1980; Drury & Falle 1986)
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as well as perturbations to the radiative cooling rate due to these
larger scale perturbations. Global gradients in the background
medium should be included as well. These tasks are well beyond
the scope of this paper, but could be a promising direction in the
future.

6. Conclusions

In this paper, we revisited the pioneering study by FO5 of
acoustic wave dissipation and its effect on thermal balance in
galaxy clusters. FO5 showed that nearly adiabatic acoustic
waves which are damped by plasma thermal conduction and
viscosity would damp within one wavelength of their source
and overheat the cluster gas if these transport coefficients have
the full Braginskii values. Assuming thermal conduction is
suppressed entirely and viscosity is reduced to 10% of its
Braginskii value allowed a model in which radiative cooling
balanced dissipation of a power-law spectrum of waves.

Our results are consistent with those of F05. The wave
attenuation due to dissipation can be readily evaluated if
transport is so strongly suppressed that the weak damping
formula applies (Equation (47)). For example, we found that
waves with a 10 Myr period have an e-folding length of 50 kpc
in A2199 if transport is reduced to 13% of its Braginskii value.
Although different combinations of suppression coefficients
can achieve this, it requires strong suppression of electron
thermal conduction, which accounts for 87% of the total
transport in the full Braginskii model.

Here we have focused on enlarging the toolkit for wave
heating studies rather than creating a full heating model based
on a spectrum of waves. Rather than using a quasi-adiabatic
approximation, which applies only for strong collisionality
(wr, < 1), we derived and solved a dispersion relation
(Equation (32)) which is based on separate energy equations
for electron and ion fluids (Equations (15) and 16), each with
its own thermal conductivity and coupled through a Coulomb
collision-based energy exchange term. This allows each
particle species to transition from adiabatic to isothermal as
collisionality decreases (Section 3.2) and yields three modes:
the acoustic wave, which is the main topic of this paper, and
two nearly isobaric modes, one corresponding to the relaxation
of a thermal pulse (Equation (38)), and the other corresponding
to electron—ion temperature equilibration (Equation (40)). The
isobaric modes are nonpropagating and dissipate their energy
within one wavelength of their source.

Conductive damping of acoustic waves is self-limiting:
efficient conduction reduces the temperature contrast across the
wave and thus reduces the dissipation associated with heat
flow. This effect is captured by single fluid theory (e.g., Landau
& Lifshitz 1987), but the collisionality at which the transition
occurs depends on electron—ion thermal coupling; see Figure 2.
For the parameter regimes we studied—wave periods of
~10 Myr in the inner 200kpc of A2199—electrons are
isothermal over most of the range if the conductivity has the
full Braginskii value while ions are nearly adiabatic. Damping
is then due primarily to electron heat conduction near the
cluster center, where the gas is most collisional, and to ion
thermal conduction and viscosity at lower collisionality and
larger radii.

In Section 3.2.1, we evaluated the relative difference
between the electron and ion temperature fluctuation and
found that for moderate €2, or wr; > €'/2, it can become quite
large (Figure 5). Likewise, the electron temperature fluctuation
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becomes much smaller relative to the density fluctuation than
predicted from adiabatic theory, and 67, lags én in phase
(Figure 6).

The damping rates, as shown in Figure 2, are lower than the
rates computed in the adiabatic approximation of FOS5, but are
still high (Figure 3). At 100 kpc from the center of A2199, for
example, waves with a 10 Myr period have been attenuated by
more than a factor of ¢® if transport coefficients are at their full
Braginskii values (Figure 9). Completely suppressing ion
transport reduces the attenuation factor to about 50 if electron
thermal conduction is at full strength, which is still large.
Partially suppressing electron thermal conduction does result
in less attenuation, but the dependence is weak. For example,
decreasing the conductivity by a factor of 3 reduces the
attenuation factor by only 20%. It is difficult to reconcile these
short damping lengths with observations of roughly uniform
density enhancements under the propagating acoustic wave
interpretation. It is also unlikely that such strongly damped
waves could lie within the inertial range of a turbulent
cascade.

In Section 3.3, we considered kinetic corrections to the fluid
picture by comparing the fluid theory to the Fokker—Planck
calculation of Ono & Kulsrud (1975; Figure 7). The damping
rates calculated according to the fluid and Fokker—Planck
models are qualitatively similar, but are higher by ~50% in the
fluid model under cluster conditions. In the fully collisionless
limit (k\; > ~6), acoustic waves damp within one wave period
unless the electron temperature is much higher than the ion
temperature. Thus, while kinetic effects somewhat mitigate the
rapid damping problem under partial collisionality, they do not
solve it completely and imply rapid damping rates in the hottest
clusters. In fact, without the strong suppression of collisionless
damping, acoustic waves cannot propagate in the outer parts of
galaxy clusters.

In Section 5, we evaluated the heating associated with wave
dissipation by calculating the rate at which ion viscosity,
electron and ion heat conduction, and electron—ion temperature
equilibration produce entropy. The relative magnitudes of these
entropy sources, shown in Figure (10), track their relative
contributions to damping. Electron heat conduction dominates
at the highest collisionalities but ion heat conduction and ion
viscosity dominate as wr; increases, similar to their contribu-
tions to damping. Entropy production by electron—ion temp-
erature equilibration is always small. By writing the heating
rate in a form explicitly proportional to n? (Equation (60)), we
were able to solve for the relative density perturbation
amplitude 7 = én/n at which the rate of wave dissipation
balances the rate of radiative cooling for a given value of the
collisionality parameter wr; and ambient temperature 7T
(Equation (62)). The result, plotted in the upper panel of
Figure 11 for a 10 Myr period wave in A2199, shows that the
equilibrium wave amplitude 7ieq ranges from about 15% near
the cluster center to less than 2% at 200 kpc for the full
Braginskii model. However, because the damping rates
predicted from the fluid model are higher than the rates
predicted from the Fokker—Planck model, the values of 7igq
computed here are probably underestimates. The model with
electron thermal conduction damping only can tolerate a
significantly larger wave amplitude without overheating, as
seen in the lower panel of Figure 11.

Bearing in mind that our treatment only applies to plane
waves in a uniform medium and ignores global geometry,
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density, and temperature gradients, we can draw some
provisional conclusions. Our calculations reinforce the claim
of FO5 that without significant suppression of transport,
acoustic waves in galaxy cluster plasmas should dissipate
within one to two wavelengths of their source. This is in
conflict with the interpretation of regularly spaced multiple
density ridges as propagating acoustic waves, poses problems
for theories of acoustic turbulence with a large inertial range,
and puts strict upper limits on wave amplitudes to avoid
overheating. How can these problems be resolved?

Magnetic fields, which are undoubtedly present in galaxy
clusters, can reduce transport. A large-scale magnetic field
perpendicular to the direction of wave propagation almost
completely suppresses heat conduction and viscosity, greatly
reducing both damping and heating. While this favorable
orientation might hold near AGN-driven bubbles due to the
sweeping up of the magnetized ICM, it is unlikely to be a
solution everywhere in the cluster core. A more general way
to reduce transport is to increase the effective collisionality of
the medium due to magnetic field fluctuations on small scales.
This could occur for electrons due to heat conduction
instabilities (Roberg-Clark et al. 2016) and for ions due to
pressure anisotropy instabilities (Kunz et al. 2011). As shown
in Figures 4, 8, 9, and 10, completely suppressing ion
transport results in a dissipation rate that is strongly peaked
around the location where the electrons transition from
adiabatic to isothermal, reduced attenuation factors, and a
relatively flat rate of scaled entropy production with
collisionality and, implicitly, with position in the cluster.
The numerical examples presented are for waves with a
10 Myr period; the transition occurs closer to or farther from
the source depending on whether the wave period is shorter or
longer.

It is also possible that the density fluctuations around AGN
cavities are driven by a large-scale instability that maintains
them despite strong dissipation mechanisms. Cosmic-ray
streaming can destabilize acoustic waves (Drury & Falle 1986;
Begelman & Zweibel 1994) but requires magnetic field
strengths and cosmic-ray pressures that exceed current
estimates for galaxy clusters. Further exploration of these and
other instabilities, as well as detailed modeling of acoustic
wave propagation and damping for realistic galaxy cluster
sources and geometries, are topics for future work.
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