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Abstract—This paper establishes a modeling framework for data

located onto or close to (unknown) smooth manifolds, embedded in

Euclidean spaces, and considers its application to dynamic magnetic reso-

nance imaging (dMRI). The framework comprises several modules: First,

a set of landmark points is identified to describe concisely a data cloud

formed by highly under-sampled dMRI data, and second, low-dimensional

renditions of the landmark points are computed. Searching for the linear

operator that decompresses low-dimensional data to high-dimensional

ones, and for those combinations of landmark points which approximate

the manifold data by affine patches, leads to a bi-linear model of the dMRI

data, cognizant of the intrinsic data geometry. Preliminary numerical tests

on synthetically generated dMRI phantoms, and comparisons with state-

of-the-art reconstruction techniques, underline the rich potential of the

proposed method for the recovery of highly under-sampled dMRI data.

I. INTRODUCTION

Current medical research and diagnosis rely heavily on magnetic

resonance imaging (MRI); a non-invasive and non-ionizing tech-

nology for high fidelity visualization of anatomical structures and

physiological functions [9]. Collecting a sufficiently large number

of MRI data to guarantee high-quality image reconstruction is an

inherently slow process due to patient discomfort as well as to physi-

cal and physiological constraints imposed on the scanning speed [9].

Such obstacles arise prominently in dynamic (d)MRI, where data

acquisition needs to abide also by the inescapable constraints imposed

by the monitored dynamical process, e.g., a beating heart [8].

Under-sampling the dMRI data is an efficient way to speed up

scanning times, at the price of aliasing effects in the reconstructed

images. To surmount aliasing given the limited number of data, spatio-

temporal correlations and any available prior knowledge regarding

the dMRI mechanism have to be taken into account. Along these

lines, compressed sensing [6], [11], [15] and the principal-component-

analysis (PCA) or low-rank-approximation paradigm [5], [7], [10],

[12], [26] are modeling frameworks that have shown a rich potential

in incorporating successfully prior information and data dependencies

into dMRI-recovery algorithms. For example, [26] extracts a low-

dimensional subspace, via the singular-value-decomposition of a

highly under-sampled data matrix, prior to forming a convex inverse

problem whose solution yields high-quality reconstructed images.

Elaborate dictionary learning (DL) techniques have also contributed

largely to the dMRI literature [1], [14], [23], [24], [27]. Remarkably,

in all of the previous DL techniques, there is no utilization of the

(presumably low-dimensional) data geometry, other than the popular

algebraic tool of matrix factorization.

Driven by the recently successful machine-learning paradigm,

manifold-learning techniques have been also implemented in dMRI

recovery [13], [16], [22], [28]. Local linear embedding (LLE) [18]

is used in [22] to achieve dimensionality reduction of the high-

dimensional dMRI data, prior to the application of a reconstruction

algorithm. Study [16] formulates a convex minimization recovery

task which is penalized by a Laplacian-matrix-based quadratic term

that quantifies all the available knowledge about the underlying

smooth data manifold. Further, to exploit any potential non-linear

dependencies between data, [28] maps the observed data to even

higher dimensional functional spaces, via kernel mappings, and solves

an inverse problem to recover the dependencies in the original input

space. Very recently, a joint manifold-learning and sparsity-cognizant

framework has been introduced in [13]. Prior to forming a convex

minimization recovery task, the intrinsic low-dimensionality geometry

of the data is learned from their highly under-sampled renditions

via an LLE-motivated framework [19]. Extensive experimentation

has showed that learning, first, any (potentially non-linear) data

geometry helps the solutions of convex inverse problems to produce

higher quality reconstruction images than state-of-the-art PCA-based

techniques [13].

The present study takes [13] a step forward into explicitly

modeling the low-dimensional dMRI data geometry. Built again on an

unknown smooth-manifold hypothesis for the data geometry, a small

set of data representatives, called landmark points, are extracted from

the under-sampled dMRI data cloud. These landmark points provide a

concise description of the observed data, promoting low-dimensional

and parsimonious data representations as well as efficient data storage.

Motivated by the concept of tangent spaces of smooth manifolds, data

are approximated via affine combinations of the extracted landmark

points. Similarly to [13] and along the lines of [19], a dimensionality-

reduction module is applied to compute the low-dimensional rendi-

tion, or, “compressed” versions of the landmark points. Having the

previous affine combinations, as well as a linear decompression opera-

tor, as unknowns of the data-modeling hypothesis, a bi-linear model is

derived [cf. (2)], cognizant of the underlying low-dimensional nature

of the observed dMRI data. Exploiting also the fact that dMRI data

usually capture periodic time series, e.g., a beating heart, a non-

convex, bi-linear recovery task, penalized by terms which account for

the periodicity of the recorded time series, is formulated to achieve

high-fidelity data reconstruction. Subsequently, recently developed

convex and non-convex minimization techniques are employed to

solve the resultant recovery tasks. Preliminary numerical tests on

synthetically generated high-dimensional dMRI phantom data and

comparisons against state-of-the-art methodologies underline the rich

potential of the method for high-quality data recovery.

II. PROPOSED FRAMEWORK

MRI data are observed at the discrete k-space, or frequency

domain, which admits complex-valued data and spans an area of size

Np × Nf, where Np stands for the number of phase-encoding lines

and Nf for the number of frequency-encoding ones [9]. In dMRI,

an additional dimension is added to the MRI k-space to account for

the time horizon (the axis vertical on the paper in Fig. 1a), resulting

in the augmented (k,t)-space. In other words, the dMRI (k,t)-space

can be viewed as the Nfr-fold Cartesian product of the (Np × Nf)-





follow. Since {ℓk}
Nl

k=1 lie on the manifold M , then according

to As. 2, Fig. 1b and the discussion regarding ynav
j , any point

taken from {ℓk}
Nl

k=1 may be faithfully approximated by an affine

combination of the rest of the landmark points. In other words,

there exists a matrix W s.t. Λ ≈ ΛW. With 1⊤
Nl
W = 1⊤

Nl
man-

ifesting the previous desire for affine combinations, the constraint

diag(W) = 0 is used to exclude the trivial solution of the identity

matrix INl
for W. Task (1) is an affinely constrained composite

convex minimization task, and, hence, the framework of [20] can

be employed to solve it, due to the flexibility by which [20] deals

with affine constraints when compared with state-of-the-art convex

optimization techniques.

2) Once W has been obtained from the previous step and for a user-

defined integer number d ≪ NpNf, solve

min
Λ̌∈C

d×Nl

‖Λ̌− Λ̌W‖2F s.to Λ̌Λ̌
∗ = Id ,

where the constraint Λ̌Λ̌∗ = Id is used to exclude the trivial

solution of Λ̌ = 0. It is not difficult to verify that the solution of

the previous task is nothing but the complex conjugate transpose

of the matrix (denoted by the ∗ superscipt) which comprises the

d minimal eigenvectors of (INl
−W)(INl

−W)∗.

The following hypothesis establishes a linear relation between Λ

and its low-dimensional rendition Λ̌.

Assumption 4. There exist an NpNf × d matrix G3 and an NpNf ×
Nl matrix E3, which gathers all approximation errors, so that Λ =
G3Λ̌+E3.

Matrix G3 can be viewed as the “decompression” operator which

reconstructs the “full” Λ from its low-dimensional representation Λ̌.

C. Data recovery task

Putting modeling assumptions 1, 3 and 4 together, it can be

verified that there exist matrices G and E s.t. Y = GΛ̌B+E. Upon

defining U := F−1(G), and since GΛ̌B = F(U)Λ̌B = F(UΛ̌B)
due to the definition of F (cf. Sec. II), the following bi-linear model

between Y and the unknowns (U,B) is established:

Y = F(UΛ̌B) +E . (2)

Bi-linearity means that whenever one of the block of variables (U,B)
is fixed to a specific value, then the dependence between Y and

the other block of variables is linear (modulo the error E term).

Interestingly, the linearity of the inverse Fourier transform F−1

suggests that the previous modeling hypothesis holds true also in

the image domain: F−1(Y) = UΛ̌B+ F−1(E).

In practice, only few (k,t)-space data are known. To explicitly take

account of the limited number of data, a (linear) sampling operator

S(·) is introduced where S(Y) keeps only those entries of Y that are

collected by the measurement system. It is also often in dMRI that

image frames capture a periodic process, e.g., heart movement, other

than the static background. In other words, it is reasonable to assume

that the one-dimensional Fourier transform Ft of the time profile of

every MR pixel, i.e., every row of the matrix Ft(UΛ̌B), is a sparse

vector. Since the DC Fourier coefficients do not provide any useful

information on periodic time series, the linear operator P(·) is also

applied to P[Ft(UΛ̌B)] to remove the first column of Ft(UΛ̌B),
which gathers the DC Fourier coefficients of all the MR-pixel time

profiles.

Algorithm 1 Solving the bi-linear recovery task of (3)

Input: Available are data S(Y). These include the navigator Ynav

ones. Choose parameters λ1, λ2, λ3, CU , τU , τB > 0, as well as

ζ ∈ (0, 1) and γ0 ∈ (0, 1].

1: Compute landmark points Λ from the columns of Ynav accord-

ing to Sec. II-A.

2: Compute the low-dimensional rendition Λ̌ of Λ according to

Sec. II-B.
3: Arbitrarily fix (U0,B0,Z0) and set n = 0.

4: while n ≥ 0 do

5: Available are (Un,Bn,Zn) and γn.

6: Let γn+1 := γn(1− ζγn).

7: Obtain Ûn via (4), B̂n via (5), and the (i, j)th entry of Ẑn,

∀(i, j), via the following soft-thresholding rule:

[Ẑn]ij := [PF t(UnΛ̌Bn)]ij ·

(

1−

λ2/λ1

max
{

λ2/λ1,
∣

∣[PF t(UnΛ̌Bn)]ij
∣

∣

}

)

.

8: Update

(Un+1,Bn+1,Zn+1) := (1− γn+1)(Un,Bn,Zn)

+ γn+1(Ûn, B̂n, Ẑn) .

9: Set n equal to n+ 1 and go to step 5.

10: end while

Output: Extract the limit points U∗ and B∗ of sequences (Un)n and

(Bn)n, respectively, and recover the dMRI data by the estimate

X̂ := U∗Λ̌B∗.

To summarize, given parameters λ1, λ2, λ3, CU > 0, the bi-linear

data-recovery task is formulated as

min
(U,B,Z)

1
2

∥

∥S(Y)− SF(UΛ̌B)
∥

∥

2

F
+ λ1

2

∥

∥Z− PF t(UΛ̌B)
∥

∥

2

F

+ λ2‖Z‖1 + λ3‖B‖1

s.to ‖Uei‖ ≤ CU , ∀i ∈ {1, . . . , d} and 1
⊤

Nl
B = 1

⊤

Nfr
, (3)

where ei denotes the ith column of the identity matrix Id and

the auxiliary variable Z is used to incorporate the sparsity of

P[Ft(UΛ̌B)] into the design. Notice that the CU bound is used

to prevent unbounded solutions for U due to the bi-linearity in

UΛ̌B. To solve the non-convex task (3), the successive-convex-

approximation framework of [4] is employed and presented in a

concise form in Alg. 1.

Step 7 of Alg. 1 comprises convex minimization sub-tasks. More

specifically, at every step of the algorithm, given (Un,Bn,Zn), the

following estimates are required (for τU , τB > 0):

Ûn = argmin
U

1
2

∥

∥S(Y)− SF(UΛ̌Bn)
∥

∥

2

F
+ τU

2
‖U−Un‖

2
F

+ λ1

2

∥

∥Zn − PF t(UΛ̌Bn)
∥

∥

2

F

s.to ‖Uei‖ ≤ CU , ∀i ∈ {1, . . . , d} , (4)

and

B̂n ∈ argmin
B

1
2

∥

∥S(Y)− SF(UnΛ̌B)
∥

∥

2

F
+ τB

2
‖B−Bn‖

2
F

+ λ1

2

∥

∥Zn − PF t(UnΛ̌B)
∥

∥

2

F
+ λ3‖B‖1

s.to 1
⊤

Nl
B = 1

⊤

Nfr
. (5)



Both (4) and (5) can be viewed as affinely constrained composite con-

vex minimization tasks, so that [20] can be used to solve them. From a

computational complexity perspective, it is important to point out that

the proposed scheme relies on minimization sub-tasks for three block

variables, whose computational complexities depend on the solver

adopted for the optimization. It is also worth noting that those three

minimization sub-tasks are independent of each other, hence they can

be solved in parallel. Details on the implementation issues of parallel

optimization techniques, which speed up execution time, and of [20],

as the optimization module which solves the minimization sub-tasks,

are deferred to an upcoming journal publication.

III. NUMERICAL TESTS

Following [13], an MRXCAT phantom [25], based on extended

cardiac torso (XCAT), was used to generate breath-hold cardiac cine

data of size (Np, Nf, Nfr) = (408, 408, 360). Data are dynamic, since

they include 15 cardiac cycles and 24 cardiac phases, and under-

sampled: i) A number of ν := 4 navigator lines are considered

(cf. Fig. 1); ii) Only 8 samples, picked randomly, out of the Nfr-length

time profile of each k-space pixel are considered. The locations of the

chosen samples are distributed independently over all time profiles.

Overall, the under-sampling factor turns out to be (approximately)

equal to 32. The proposed method is tested vs. the PCA-based

PS-sparse scheme [26] and [13]. Validation is performed via the

normalized-root-mean-square error NRMSE := ‖X − X̂‖F/‖X‖F,

where X is the original image-domain data (cf. Sec. II) and X̂

stands for an estimate of X, computed via any of the employed

reconstruction schemes. Parameters of each method are tuned to

achieve the best possible NRMSE performance. With regards to

the proposed method, the dimensionality of the compressed data is

d := 4, while the number of landmark points is set to Nl := 60.

Figs. 2 and 3 depict results of the numerical tests for all employed

algorithms. Fig. 2 demonstrates reconstruction results for image frame

#351 of the dMRI data. Further, Fig. 3 compares the NMRSE errors

across all 360 frames. It can be observed that i) the errors for the

proposed scheme are uniform across all 360 frames, as opposed to the

fluctuations observed for the other two schemes, and ii) the proposed

scheme achieves the lowest NMRSE across all frames. Quantitative

results on the whole data set (408× 408× 360) show an NRMSE of

0.051 for the proposed scheme, which is lower in comparison to the

value of 0.081 for PS-Sparse [26] and 0.079 for [13].

IV. CONCLUSIONS AND THE ROAD AHEAD

A modeling framework of manifold data and its application to

dMRI were introduced. Given a cloud of highly under-sampled dMRI

data, landmark points were computed to capture the underlying low-

dimensional manifold-data geometry. Low-dimensional renditions of

the landmark points were also computed to promote parsimonious

representations and efficient storage of data. Overall, the dMRI

reconstruction task was viewed as an inverse problem where the data

fidelity is modeled via a bi-linear term, and the objective function

is penalized by a term which quantifies the a-priori information on

the periodicity of the observed time series. Preliminary numerical

tests on synthetically generated phantom dMRI data underline the

rich potential of the proposed framework against state-of-the-art

dMRI reconstruction techniques. On-going research includes tests on

real data, comparisons with additional state-of-the-art techniques and

several extensions of the advocated model, which will be presented

during CAMSAP 2017.

(a) Original (b) PS-sparse [26]

(c) [13] (d) Proposed

Fig. 2. Original frame #351, of size 408 × 408, and its reconstructed
versions. NRMSE values per method are: 0.059 for PS-sparse [26], 0.06 for
[13] and 0.052 for the proposed method.

Fig. 3. Frame-wise NRMSE: Comparing the proposed scheme (yellow curve),
[13] (blue curve, ’MLS’) and [26] (red curve, ’PS’) over all 360 MRXCAT
frames of size 408×408. The proposed method achieves the lowest NRMSE
uniformly across all frames.
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