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Abstract—This paper establishes a modeling framework for data
located onto or close to (unknown) smooth manifolds, embedded in
Euclidean spaces, and considers its application to dynamic magnetic reso-
nance imaging (dMRI). The framework comprises several modules: First,
a set of landmark points is identified to describe concisely a data cloud
formed by highly under-sampled dMRI data, and second, low-dimensional
renditions of the landmark points are computed. Searching for the linear
operator that decompresses low-dimensional data to high-dimensional
ones, and for those combinations of landmark points which approximate
the manifold data by affine patches, leads to a bi-linear model of the dMRI
data, cognizant of the intrinsic data geometry. Preliminary numerical tests
on synthetically generated dMRI phantoms, and comparisons with state-
of-the-art reconstruction techniques, underline the rich potential of the
proposed method for the recovery of highly under-sampled dMRI data.

I. INTRODUCTION

Current medical research and diagnosis rely heavily on magnetic
resonance imaging (MRI); a non-invasive and non-ionizing tech-
nology for high fidelity visualization of anatomical structures and
physiological functions [9]. Collecting a sufficiently large number
of MRI data to guarantee high-quality image reconstruction is an
inherently slow process due to patient discomfort as well as to physi-
cal and physiological constraints imposed on the scanning speed [9].
Such obstacles arise prominently in dynamic (d)MRI, where data
acquisition needs to abide also by the inescapable constraints imposed
by the monitored dynamical process, e.g., a beating heart [8].

Under-sampling the dMRI data is an efficient way to speed up
scanning times, at the price of aliasing effects in the reconstructed
images. To surmount aliasing given the limited number of data, spatio-
temporal correlations and any available prior knowledge regarding
the dMRI mechanism have to be taken into account. Along these
lines, compressed sensing [6], [11], [15] and the principal-component-
analysis (PCA) or low-rank-approximation paradigm [5], [7], [10],
[12], [26] are modeling frameworks that have shown a rich potential
in incorporating successfully prior information and data dependencies
into dMRI-recovery algorithms. For example, [26] extracts a low-
dimensional subspace, via the singular-value-decomposition of a
highly under-sampled data matrix, prior to forming a convex inverse
problem whose solution yields high-quality reconstructed images.
Elaborate dictionary learning (DL) techniques have also contributed
largely to the dMRI literature [1], [14], [23], [24], [27]. Remarkably,
in all of the previous DL techniques, there is no utilization of the
(presumably low-dimensional) data geometry, other than the popular
algebraic tool of matrix factorization.

Driven by the recently successful machine-learning paradigm,
manifold-learning techniques have been also implemented in dMRI
recovery [13], [16], [22], [28]. Local linear embedding (LLE) [18]
is used in [22] to achieve dimensionality reduction of the high-
dimensional dMRI data, prior to the application of a reconstruction
algorithm. Study [16] formulates a convex minimization recovery
task which is penalized by a Laplacian-matrix-based quadratic term

that quantifies all the available knowledge about the underlying
smooth data manifold. Further, to exploit any potential non-linear
dependencies between data, [28] maps the observed data to even
higher dimensional functional spaces, via kernel mappings, and solves
an inverse problem to recover the dependencies in the original input
space. Very recently, a joint manifold-learning and sparsity-cognizant
framework has been introduced in [13]. Prior to forming a convex
minimization recovery task, the intrinsic low-dimensionality geometry
of the data is learned from their highly under-sampled renditions
via an LLE-motivated framework [19]. Extensive experimentation
has showed that learning, first, any (potentially non-linear) data
geometry helps the solutions of convex inverse problems to produce
higher quality reconstruction images than state-of-the-art PCA-based
techniques [13].

The present study takes [13] a step forward into explicitly
modeling the low-dimensional dMRI data geometry. Built again on an
unknown smooth-manifold hypothesis for the data geometry, a small
set of data representatives, called landmark points, are extracted from
the under-sampled dMRI data cloud. These landmark points provide a
concise description of the observed data, promoting low-dimensional
and parsimonious data representations as well as efficient data storage.
Motivated by the concept of tangent spaces of smooth manifolds, data
are approximated via affine combinations of the extracted landmark
points. Similarly to [13] and along the lines of [19], a dimensionality-
reduction module is applied to compute the low-dimensional rendi-
tion, or, “compressed” versions of the landmark points. Having the
previous affine combinations, as well as a linear decompression opera-
tor, as unknowns of the data-modeling hypothesis, a bi-linear model is
derived [cf. (2)], cognizant of the underlying low-dimensional nature
of the observed dMRI data. Exploiting also the fact that dMRI data
usually capture periodic time series, e.g., a beating heart, a non-
convex, bi-linear recovery task, penalized by terms which account for
the periodicity of the recorded time series, is formulated to achieve
high-fidelity data reconstruction. Subsequently, recently developed
convex and non-convex minimization techniques are employed to
solve the resultant recovery tasks. Preliminary numerical tests on
synthetically generated high-dimensional dMRI phantom data and
comparisons against state-of-the-art methodologies underline the rich
potential of the method for high-quality data recovery.

II. PROPOSED FRAMEWORK

MRI data are observed at the discrete k-space, or frequency
domain, which admits complex-valued data and spans an area of size
N, x Nt, where N, stands for the number of phase-encoding lines
and N; for the number of frequency-encoding ones [9]. In dMRI,
an additional dimension is added to the MRI k-space to account for
the time horizon (the axis vertical on the paper in Fig. 1a), resulting
in the augmented (k,t)-space. In other words, the dMRI (k,t)-space
can be viewed as the Ny-fold Cartesian product of the (N, x Ny)-
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Fig. 1. (a) The Ny X Nt x Ng (k,t)-space. Data geometry is learned from
the “navigator” data, i.e., the data which lie in the gray-colored v X N¢ X Ng
area of the (k,t)-space (v < Np). (b) Landmark points {£j, };?:1 are affinely
combined to describe y"*. All possible affine combinations of {ekfi}?:l are
denoted by the gray—co[i)red area.

sized MRI k-space, where Vi represents the number of collected
MRI frames over time. K-space data Y; € CNo XNt (C is the set of
all complex-valued numbers), j € {1,..., Nx}, can be also viewed
as the two-dimensional (discrete) Fourier transform of the N, x Ny
image-domain data Xj, ie., Y; = F(X;). Without any loss of
generality, this study assumes that the “low-frequency” part of Y;
is located around the center of the N, X N; area. Availability of a
large number of dMRI data is infeasible in practice; the (k,t)-space
of Fig. la is usually severely under-sampled [8]. To extract useful
information from (k,t)-space data, the present framework assumes full
availability of a part of the low-frequency region of the (k,t)-space.
For simplicity and illustration reasons, it is assumed that a small
number v (< N,) of phase-encoding lines of (coined “navigator”)
data are always available (the gray-colored area in Fig. 1a). These
navigator data will be exploited to learn the intrinsic low-dimensional
structure of the dMRI data. Other than the navigator data, highly
(pseudo-randomly) under-sampled (k,t)-space data are considered to
be also available.

To facilitate processing and data representations, the (k,t)-space
data are vectorized. More specifically, the vec(Y;) operation stacks
one column of Y; below the other to yield the complex-valued
NpNt x 1 vector y; = vec(Y;), Vj € {1,...,Nx}. To avoid
notation clutter, F stands also for the two-dimensional (discrete)
Fourier transform even when applied to vectorized versions of image
frames: Flvec(X;)] := vec[F(X;)] = vec(Y;). All vectorized
k-space frames are gathered in the N Ny X Ni matrix Y :=
[V1,¥2,---,¥nNg], so that the vectorized original image-domain data
are X := F~'(Y). In a similar way, per jth k-space frame, the
“navigator” data yield a v Nt x 1 vector y;" and thus the v Nt X Ny
matrix Yo = [y1",¥3", ...,y Ny Clearly, Yoy = Y, where £
is a submatrix of the identity matrix In,n; that selects the rows of
Y which correspond to the navigator data. Recovering Y from its
partial Y, is viable only under errors, e.g., an approximation can
be obtained via QTYMV, where 7 stands for the Moore-Penrose
pseudoinverse of €2. The following modeling hypothesis generalizes
the previous argument.

Assumption 1. There exist an /N, Nt X v Nt matrix G1 and an N, Ny X
Ng matrix Eq, which gathers all approximation errors, such that (s.t.)
Y = GlYnav + El-

A. Landmark points

nav N

The high-dimensional navigator data {y;"};1, carry useful
information about spatio-temporal dependencies in the (k,t)-space.
To promote parsimonious data representations, especially in cases
where Ny attains large values, it is desirable to extract a subset
{&hit, € {y3™}% (N < Ny), called landmark points, which

provide a “concise description,” in a user-defined sense, of the data

cloud {y;‘“’};\rﬁl. To this end, the following modeling assumption
imposes structure on {y}‘-’“"’}j\jjl.
Assumption 2. Data {y?“v}Nil lie on a smooth low-dimensional

manifold M [21] embedded in the high-dimensional Euclidean space
C¥Nr (cf. Fig. 1b).

For example, the most commonly met case of a smooth manifold
in theory and practice is a linear subspace. Based on As. 2 and the
concept of the tangent space of a smooth manifold, it is conceivable
that neighboring landmark points cooperate affinely to describe vector
y;" (the gray-colored area in Fig. 1b depicts all possible affine
combinations of {€, , £k, , £k, }). Upon defining the v N X N} matrix
A :=[£1,0,,..., £y, itis assumed that there exists an IV} X 1 vector
b; that renders the approximation error ||y} — Aby|| small, where
[I-|| denotes the standard Euclidean norm of space C*™*. Since affine
combinations are desirable, b; is constrained to satisfy 1;1 b; =1,
where 1y, stands for the all-one N; X 1 vector and superscipt T
denotes vector/matrix transposition. Moreover, motivated by the low-
dimensional nature of M, according to As. 2, it is envisioned that
only a few landmark points cooperate into representing y;", i.e., b;
is sparse. The previous arguments are summarized into the following
modeling hypothesis.

Assumption 3. There exist a sparse N} X N matrix B, with 1;]B =
1},&, and a v Nt X N, matrix E9, which gathers approximation errors,
S.t. Yna\/ = AB + EQ.

The previous modeling assumption holds true in the prototypical
case where M is a linear subspace. In such a case, any linearly
independent subset of {y‘}‘”};vﬁl, which spans the column (range)
space of Ynay, can be selected as the columns of A. Notice also
that under such a choice for A, the coefficient matrix B satisfies
1;'\—,1B = 11-'\—,&, since the column (range) space of Ynay, being a linear

subspace, is also the affine hull [17] of the columns of A.

Although several strategies may be implemented to identify the
landmark points A of a data cloud that lies onto or close to a general
manifold M, a greedy optimization methodology, introduced in [2],
is adopted here. In short, at every step of the algorithm, a landmark
point is selected from {y}" };\21 by maximizing, over all un-selected
{y‘;ﬁ"};\f:frl, the minimum distance to the landmark points which have
been already selected up to the previous step of the algorithm.
The algorithm of [2] scores a computational complexity of order
O(NiNx), which is naturally heavier than that of the naive randI(\)rm—
nﬂv} fr

selection algorithm that chooses {£;.} ", randomly from {yi" .

B. Reducing the dimension of the landmark points

The landmark points A, obtained in the previous section, are still
high-dimensional. To meet restrictions imposed by finite computa-
tional resources, it is desirable to reduce the dimensionality of A. To
this end, the methodology of [19], which is motivated by [3], [18],
is employed. The approach comprises two steps.

1) Given A and a user-defined Ay > 0 solve the convex minimiza-
tion task
min A — AW|2 + Aw | W]
WECNlXNl
sto 13, W =13, and diag(W) =0, (1

where ||-||r stands for the Frobenius norm of a matrix. A few
comments on the choice of the loss function and constraints



follow. Since {Ek}fj‘:l lie on the manifold M, then according

to As. 2, Fig. 1b and the discussion regarding y3", any point
taken from {fk}fj‘:l may be faithfully approximated by an affine
combination of the rest of the landmark points. In other words,
there exists a matrix W s.t. A ~ AW. With ILIW = 1%1 man-
ifesting the previous desire for affine combinations, the constraint
diag(W) = 0 is used to exclude the trivial solution of the identity
matrix Iy, for W. Task (1) is an affinely constrained composite
convex minimization task, and, hence, the framework of [20] can
be employed to solve it, due to the flexibility by which [20] deals
with affine constraints when compared with state-of-the-art convex
optimization techniques.

2) Once W has been obtained from the previous step and for a user-
defined integer number d < N, Ny, solve

min A — AW|F sto AA" =Tq,
AG(Cd X Ny

where the constraint AA* = I; is used to exclude the trivial
solution of A = 0. It is not difficult to verify that the solution of
the previous task is nothing but the complex conjugate transpose
of the matrix (denoted by the * superscipt) which comprises the
d minimal eigenvectors of (In, — W)(In, — W)™,

The following hypothesis establishes a linear relation between A
and its low-dimensional rendition A.

Assumption 4. There exist an N, Ny X d matrix G and an N, N; X
N matrix E3, which gathers all approximation errors, so that A =
Gs3A + Es.

Matrix Gs can be viewed as the “decompression” operator which
reconstructs the “full” A from its low-dimensional representation A.

C. Data recovery task

Putting modeling assumptions 1, 3 and 4 together, it can be
verified that there exist matrices G and E s.t. Y = GAB +E. Upon
defining U := F~!(G), and since GAB = F(U)AB = F(UAB)
due to the definition of F (cf. Sec. II), the following bi-linear model
between Y and the unknowns (U, B) is established:

Y = F(UAB) +E. )

Bi-linearity means that whenever one of the block of variables (U, B)
is fixed to a specific value, then the dependence between Y and
the other block of variables is linear (modulo the error E term).
Interestingly, the linearity of the inverse Fourier transform JF~*
suggests that the previous modeling hypothesis holds true also in
the image domain: F~'(Y) = UAB + F'(E).

In practice, only few (k,t)-space data are known. To explicitly take
account of the limited number of data, a (linear) sampling operator
S(+) is introduced where S(Y') keeps only those entries of Y that are
collected by the measurement system. It is also often in dMRI that
image frames capture a periodic process, e.g., heart movement, other
than the static background. In other words, it is reasonable to assume
that the one-dimensional Fourier transform F; of the time profile of
every MR pixel, i.e., every row of the matrix F;(UAB), is a sparse
vector. Since the DC Fourier coefficients do not provide any useful
information on periodic time series, the linear operator P(-) is also
applied to P[F;(UAB)] to remove the first column of F;(UAB),
which gathers the DC Fourier coefficients of all the MR-pixel time
profiles.

Algorithm 1 Solving the bi-linear recovery task of (3)

Input: Available are data S(Y). These include the navigator Ynay

ones. Choose parameters A1, A2, A3, Cu, 7v, 78 > 0, as well as
¢ €(0,1) and 7o € (0,1].

1: Compute landmark points A from the columns of Y, accord-
ing to Sec. II-A.

2: Compute the low-dimensional rendition A of A according to
Sec. II-B.

3: Arbitrarily fix (Ug, Bo, Zo) and set n = 0.

4: while n > 0 do

5:  Available are (U,,B,,Z,) and v,.

6

7

Let V41 := yn(1 = (yn)-
Obtain U, via (4), B, via (5), and the (i, j)th entry of Z,,
Y(,7), via the following soft-thresholding rule:

[Zn}zg = [/P]:t(Unlv\Bn)}” . <1—

Ag/Al
max {A2/A1, [[PF(UnAB)is|} )
8:  Update
(Unt1,Brt1, Znt1) = (1 = vn41)(Un, Bn, Zn)
+ ’Yn+l(fjm Bm Zn) .
9:  Setn equal to n+ 1 and go to step 5.
10: end while

Output: Extract the limit points U, and B.. of sequences (Uy), and
(Bn)n, respectively, and recover the dMRI data by the estimate
X := U.AB..

To summarize, given parameters A1, A2, Az, Cu > 0, the bi-linear
data-recovery task is formulated as

i, 3[lS0Y) - SF(UAB)|2 + 21|z — PF.(UAB)|

+ A2l Zl, + As[IBIl,

sto ||Uei|| < Cu, Vi€ {l,...,d} and 13B=14%,, (3
where e; denotes the ith column of the identity matrix Iz and
the auxiliary variable Z is used to incorporate the sparsity of
P[F:(UAB)] into the design. Notice that the Cy bound is used
to prevent unbounded solutions for U due to the bi-linearity in
UAB. To solve the non-convex task (3), the successive-convex-
approximation framework of [4] is employed and presented in a
concise form in Alg. 1.

Step 7 of Alg. 1 comprises convex minimization sub-tasks. More
specifically, at every step of the algorithm, given (U, B,,Z,), the
following estimates are required (for 7o, 7 > 0):

U, = argmin £||S(Y) — S}'(UABn)Hi + U - U, |2
U
+ % |20 — PF(UAB,)||;
sto |Uei|| < Cu, Vie{1,...,d}, )
and
B, € argmin 1||S(Y) — SF(U,AB)|[2 + Z|B - B,||?
B
+ 2|2 — PF(ULAB)|Z + Xs||BJl,
sto 1B =14, . )



Both (4) and (5) can be viewed as affinely constrained composite con-
vex minimization tasks, so that [20] can be used to solve them. From a
computational complexity perspective, it is important to point out that
the proposed scheme relies on minimization sub-tasks for three block
variables, whose computational complexities depend on the solver
adopted for the optimization. It is also worth noting that those three
minimization sub-tasks are independent of each other, hence they can
be solved in parallel. Details on the implementation issues of parallel
optimization techniques, which speed up execution time, and of [20],
as the optimization module which solves the minimization sub-tasks,
are deferred to an upcoming journal publication.

III. NUMERICAL TESTS

Following [13], an MRXCAT phantom [25], based on extended
cardiac torso (XCAT), was used to generate breath-hold cardiac cine
data of size (INVp, Ny, Nir) = (408,408, 360). Data are dynamic, since
they include 15 cardiac cycles and 24 cardiac phases, and under-
sampled: i) A number of v := 4 navigator lines are considered
(cf. Fig. 1); ii) Only 8 samples, picked randomly, out of the Ny-length
time profile of each k-space pixel are considered. The locations of the
chosen samples are distributed independently over all time profiles.
Overall, the under-sampling factor turns out to be (approximately)
equal to 32. The proposed method is tested vs. the PCA-based
PS-sparse scheme [26] and [13]. Validation is performed via the
normalized-root-mean-square error NRMSE := ||X — X||r/||X|F,
where X is the original image-domain data (c¢f. Sec. II) and X
stands for an estimate of X, computed via any of the employed
reconstruction schemes. Parameters of each method are tuned to
achieve the best possible NRMSE performance. With regards to
the proposed method, the dimensionality of the compressed data is
d := 4, while the number of landmark points is set to N, := 60.

Figs. 2 and 3 depict results of the numerical tests for all employed
algorithms. Fig. 2 demonstrates reconstruction results for image frame
#351 of the dMRI data. Further, Fig. 3 compares the NMRSE errors
across all 360 frames. It can be observed that i) the errors for the
proposed scheme are uniform across all 360 frames, as opposed to the
fluctuations observed for the other two schemes, and ii) the proposed
scheme achieves the lowest NMRSE across all frames. Quantitative
results on the whole data set (408 x 408 x 360) show an NRMSE of
0.051 for the proposed scheme, which is lower in comparison to the
value of 0.081 for PS-Sparse [26] and 0.079 for [13].

IV. CONCLUSIONS AND THE ROAD AHEAD

A modeling framework of manifold data and its application to
dMRI were introduced. Given a cloud of highly under-sampled dMRI
data, landmark points were computed to capture the underlying low-
dimensional manifold-data geometry. Low-dimensional renditions of
the landmark points were also computed to promote parsimonious
representations and efficient storage of data. Overall, the dMRI
reconstruction task was viewed as an inverse problem where the data
fidelity is modeled via a bi-linear term, and the objective function
is penalized by a term which quantifies the a-priori information on
the periodicity of the observed time series. Preliminary numerical
tests on synthetically generated phantom dMRI data underline the
rich potential of the proposed framework against state-of-the-art
dMRI reconstruction techniques. On-going research includes tests on
real data, comparisons with additional state-of-the-art techniques and
several extensions of the advocated model, which will be presented
during CAMSAP 2017.
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Fig. 2. Original frame #351, of size 408 x 408, and its reconstructed
versions. NRMSE values per method are: 0.059 for PS-sparse [26], 0.06 for
[13] and 0.052 for the proposed method.
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Fig. 3. Frame-wise NRMSE: Comparing the proposed scheme (yellow curve),
[13] (blue curve, "MLS’) and [26] (red curve, 'PS’) over all 360 MRXCAT
frames of size 408 x 408. The proposed method achieves the lowest NRMSE
uniformly across all frames.
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