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Abstract

We propose a stochastic variance-reduced cu-
bic regularized Newton method (SVRC) for non-
convex optimization. At the core of our algo-
rithm is a novel semi-stochastic gradient along
with a semi-stochastic Hessian, which are specif-
ically designed for cubic regularization method.
We show that our algorithm is guaranteed to con-
verge to an (✏,

p
✏)-approximate local minimum

within eO(n4/5
/✏

3/2) second-order oracle calls,
which outperforms the state-of-the-art cubic reg-
ularization algorithms including subsampled cu-
bic regularization. Our work also sheds light on
the application of variance reduction technique
to high-order non-convex optimization methods.
Thorough experiments on various non-convex op-
timization problems support our theory.

1 Introduction

We study the following finite-sum optimization problem:

min
x2Rd

F (x) =
1

n

nX

i=1

fi(x), (1.1)

where F (x) and each fi(x) can be non-convex. Such prob-
lems are common in machine learning, where each fi(x) is
a loss function on a training example (LeCun et al., 2015).
Since F (x) is non-convex, finding its global minimum is
generally NP-Hard (Hillar & Lim, 2013). As a result, one
possible goal is to find an approximate first-order stationary
point (✏�stationary point):

krF (x)k  ✏,

for some given ✏ > 0. A lot of studies have been devoted
to this problem including gradient descent (GD), stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951), and
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their extensions (Ghadimi & Lan, 2013; Reddi et al., 2016a;
Allen-Zhu & Hazan, 2016; Ghadimi & Lan, 2016). Never-
theless, first-order stationary points can be non-degenerate
saddle points or even local maximum in non-convex opti-
mization, which are undesirable. Therefore, a more rea-
sonable objective is to find an approximate second-order
stationary point (Nesterov & Polyak, 2006), which is also
known as an (✏g, ✏h)-approximate local minimum of F (x):

krF (x)k2 < ✏g,�min(r2
F (x)) � �✏h, (1.2)

for some given constant ✏g, ✏h > 0. In fact, in some ma-
chine learning problems like matrix completion (Ge et al.,
2016), one finds that every local minimum is a global mini-
mum, suggesting that finding an approximate local min-
imum is a better choice than a stationary point, and is
good enough in many applications. One of the most pop-
ular method to achieve this goal is perhaps cubic regular-
ized Newton method, which was introduced by Nesterov &
Polyak (2006), and solves the following kind of subprob-
lems in each iteration:

h(x) = argmin
h2Rd

m(h,x)

= hrF (x),hi+ 1

2
hr2

F (x)h,hi+ ✓

6
khk32, (1.3)

where ✓ > 0 is a regularization parameter. Nesterov &
Polyak (2006) proved that fixing a starting point x0, and
performing the updating rule xt = xt�1 + h(xt�1), the
algorithm can output a sequence xi that converges to a local
minimum provided that the function is Hessian Lipschitz.
However, it can be seen that to solve the subproblem (1.3),
one needs to calculate the full gradient rF (x) and Hessian
r2

F (x), which is a big overhead in large scale machine
learning problem because n is often very large.

Some recent studies presented various algorithms to avoid
the calculation of full gradient and Hessian in cubic regu-
larization. Kohler & Lucchi (2017) used subsampling tech-
nique to get approximate gradient and Hessian instead of
exact ones, and Xu et al. (2017c) also used subsampled Hes-
sian. Both of them can reduce the computational complexity
in some circumstance. However, just like other sampling-
based algorithm such as subsampled Newton method Er-
dogdu & Montanari (2015); Xu et al. (2016); Roostakho-
rasani & Mahoney (2016a;b); Ye et al. (2017), their con-
vergence rates are worse than that of the Newton method,
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especially when one needs a high-accuracy solution (i.e.,
the optimization error ✏ is small). This is because the sub-
sampling size one needs to achieve certain accuracy may be
even larger than the full sample size n. Therefore, a natural
question arises as follows:

When we need a high-accuracy local minimum, is there

an algorithm that can output an approximate local mini-

mum with better second-order oracle complexity than cubic

regularized Newton method?

In this paper, we give an affirmative answer to the above
question. We propose a novel cubic regularization algorithm
named Stochastic Variance-Reduced Cubic regularization
(SVR Cubic, or SVRC for short), which incorporates the
variance reduction techniques (Johnson & Zhang, 2013;
Xiao & Zhang, 2014; Allen-Zhu &Hazan, 2016; Reddi et al.,
2016a) into the cubic-regularized Newton method. The
key component in our algorithm is a novel semi-stochastic
gradient, together with a semi-stochastic Hessian, that are
specifically designed for cubic regularization. Furthermore,
we prove that, for Hessian Lipschitz functions, to attain
an approximate (✏,p⇢✏)-local minimum, our proposed al-
gorithm requires O(n + n

4/5
/✏

3/2) Second-order Oracle
(SO) calls and O(1/✏3/2) Cubic Subproblem Oracle (CSO)
calls. Here an SO oracle represents an evaluation of triple
(fi(x),rfi(x),r2

fi(x)), and a CSO oracle denotes an
evaluation of the exact solution (or inexact solution) of
the cubic subproblem (1.3). Compared with the original
cubic regularization algorithm (Nesterov & Polyak, 2006),
which requires O(n/✏3/2) SO calls and O(1/✏3/2) CSO
calls, our proposed algorithm reduces the SO calls by a fac-
tor of ⌦(n1/5). We also carry out experiments on real data
to demonstrate the superior performance of our algorithm.

Our major contributions are summarized as follows:

• We present a novel cubic regularization method with im-
proved oracle complexity. To the best of our knowledge,
this is the first algorithm that outperforms cubic regular-
ization without any loss in convergence rate. In sharp
contrast, existing subsampled cubic regularization meth-
ods (Kohler & Lucchi, 2017; Xu et al., 2017b) suffer from
worse convergence rates than cubic regularization.

• We also extend our algorithm to the case with inexact
solution to the cubic regularization subproblem. Similar
to previous work (Cartis et al., 2011; Xu et al., 2017b),
we also layout a set of sufficient conditions, under which
the output of the inexact algorithm is still guaranteed to
have the same convergence rate and oracle complexity
as the exact algorithm. This further sheds light on the
practical implementation of our algorithm.

• As far as we know, our work is the first to rigorously
demonstrates the advantage of variance reduction for

second-order optimization algorithms. Although there ex-
ist a few studies (Lucchi et al., 2015; Moritz et al., 2016;
Rodomanov & Kropotov, 2016) using variance reduction
to accelerate Newton method, none of them can deliver
faster rates of convergence than standard Newton method.

Notation We use [n] to denote index set {1, 2, . . . , n}.
We denote vector Euclidean norm by kvk2. For sym-
metric matrix H 2 Rd⇥d, we denote its eigenvalues
by �1(H)  . . .  �d(H), its spectral norm by
kHk2 = max{|�1(H)|, |�d(H)|}, and the Schatten r-norm
by kHkSr = (

Pd
i=1 |�i(H)|r)1/r for r � 1. We de-

note A ⌫ B if �1(A � B) � 0 for symmetric matrices
A,B 2 Rd⇥d. Note that kA � Bk2  C ) kAk2 ⌫
kBk2 �C · I, C > 0. We call ⇠ a Rademacher random vari-
able if P(⇠ = 1) = P(⇠ = �1) = 1/2. We use fn = O(gn)
to denote that fn  Cgn for some constant C > 0 and use
fn = eO(gn) to hide the logarithmic terms of gn.

2 Related Work

In this section, we briefly review the relevant work in the
literature.

The most related work to ours is the cubic regularized New-
ton method, which was originally proposed in Nesterov &
Polyak (2006). Cartis et al. (2011) presented an adaptive
framework of cubic regularization, which uses an adaptive
estimation of the local Lipschitz constant and approximate
solution to the cubic subproblem. To connect cubic regu-
larization with traditional trust region method (Conn et al.,
2000; Cartis et al., 2009; 2012; 2013), Blanchet et al. (2016);
Curtis et al. (2017); Martı́nez & Raydan (2017) showed that
the trust-region Newton method can achieve the same it-
eration complexity as the cubic regularization method. To
overcome the computational burden of gradient and Hes-
sian matrix evaluations, Kohler & Lucchi (2017); Xu et al.
(2017b;c) proposed to use subsampled gradient and Hes-
sian in cubic regularization. On the other hand, in order to
solve the cubic subproblem (1.3) more efficiently, Carmon
& Duchi (2016) proposed to use gradient descent, while
Agarwal et al. (2017) proposed a sophisticated algorithm
based on approximate matrix inverse and approximate PCA.
Tripuraneni et al. (2017) proposed a refined stochastic cubic
regularization algorithm based on above subproblem solver.
However, none of the aforementioned variants of cubic reg-
ularization outperforms the original cubic regularization
method in terms of oracle complexity.

Another line of related research is the variance reduction
method, which has been extensively studied for large-scale
finite-sum optimization problems. Variance reduction was
first proposed in convex finite-sum optimization (Roux et al.,
2012; Johnson & Zhang, 2013; Xiao & Zhang, 2014; De-
fazio et al., 2014), which uses semi-stochastic gradient
to reduce the variance of the stochastic gradient and im-
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Table 1. Comparisons between different methods to find (✏,
p
✏)-local minimum on the second-order oracle (SO) complexity and and the

cubic sub-problem oracle (CSO) complexity.

Algorithm SO calls CSO calls Gradient Lipschitz Hessian Lipschitz

Cubic regularization
O(n/✏3/2) O(1/✏3/2) no yes

(Nesterov & Polyak, 2006)
Subsampled cubic regularization eO(n/✏3/2 + 1/✏5/2)1 O(1/✏3/2) yes yes

(Kohler & Lucchi, 2017; Xu et al., 2017c)
SVRC eO(n+ n

4/5
/✏

3/2) O(1/✏3/2) no yes(this paper)

proves the gradient complexity of both stochastic gradient
descent (SGD) and gradient descent (GD). Representative al-
gorithms include Stochastic Average Gradient (SAG) (Roux
et al., 2012), Stochastic Variance Reduced Gradient (SVRG)
(Johnson & Zhang, 2013) and SAGA (Defazio et al., 2014),
to mention a few. Garber & Hazan (2015); Shalev-Shwartz
(2016) studied non-convex finite-sum problems where each
individual function may be non-convex, but their sum is still
convex. Reddi et al. (2016a) and Allen-Zhu & Hazan (2016)
extended the SVRG algorithm to the general non-convex
finite-sum optimization, which outperforms SGD and GD
in terms of gradient complexity as well. However, to the
best of our knowledge, it is still an open problem whether
variance reduction can improve the oracle complexity of
second-order optimization algorithms.

Last but not least is the vast literature of research which aims
to escape from nondegenerated saddle points by finding the
negative curvature direction. Ge et al. (2015); Jin et al.
(2017a) showed that simple (stochastic) gradient descent
with perturbation can escape from saddle points. Carmon
et al. (2016); Royer & Wright (2017); Allen-Zhu (2017)
showed that by calculating the negative curvature using Hes-
sian information, one can find (✏,

p
✏)-local minima faster

than first-order methods. Recent work (Xu & Yang, 2017;
Allen-Zhu & Li, 2017; Jin et al., 2017b) proposed first-order
algorithms that can escape from saddle points without us-
ing Hessian information. Yu et al. (2017b) proposed the
GOSE algorithm to save negative curvature computation
and Yu et al. (2017a) improved the gradient complexity by
using third-order smoothness. Raginsky et al. (2017); Zhang
et al. (2017); Xu et al. (2017a) proved that a family of algo-
rithms based on discretizations of Langevin dynamics can
find a neighborhood of the global minimum of nonconvex
objective functions.

For better comparison of our algorithm with the most related
algorithms in terms of SO and CSO oracle complexities,
we summarize the results in Table 1. It can be seen from
Table 1 that our algorithm (SVRC) achieves the lowest (SO
and CSO) oracle complexity compared with the original
cubic regularization method (Nesterov & Polyak, 2006)
which employs full gradient and Hessian evaluations and

the subsampled cubic method (Kohler & Lucchi, 2017; Xu
et al., 2017c). In particular, our algorithm reduces the SO
oracle complexity of cubic regularization by a factor of n1/5

for finding an (✏,
p
✏)-local minimum. We will provide more

detailed discussion in the main theory section.

3 The Proposed Algorithm

In this section, we present a novel algorithm, which utilizes
stochastic variance reduction techniques to improve cubic
regularization method.

To reduce the computation burden of gradient and Hes-
sian matrix evaluations in the cubic regularization updates
in (1.3), subsampled gradient and Hessian matrix have
been used in subsampled cubic regularization (Kohler &
Lucchi, 2017; Xu et al., 2017c) and stochastic cubic reg-
ularization (Tripuraneni et al., 2017). Nevertheless, the
stochastic gradient and Hessian matrix have large variances,
which undermine the convergence performance. Inspired
by SVRG (Johnson & Zhang, 2013), we propose to use
a semi-stochastic version of gradient and Hessian matrix,
which can control the variances automatically. Specifically,
our algorithm has two loops. At the beginning of the s-th
iteration of the outer loop, we denote bxs = x

s+1
0 . We first

calculate the full gradient gs = rF (bxs) and Hessian ma-
trixHs = r2

F (bxs), which are stored for further references
in the inner loop. At the t-th iteration of the inner loop, we
calculate the following semi-stochastic gradient and Hessian
matrix:

v
s+1
t =

1

bg

X

it2Ig

�
rfit(x

s+1
t )�rfit(bxs) + g

s
�

� 1

bg

X

it2Ig

�
r2

fit(bxs)�H
s
�
(xs+1

t � bxs
�
, (3.1)

U
s+1
t =

1

bh

X

jt2Ih

�
r2

fjt(x
s+1
t )�r2

fjt(bxs)
�
+H

s
,

(3.2)

1It is the refined rate proved by Xu et al. (2017c) for the subsam-
pled cubic regularization algorithm proposed in Kohler & Lucchi
(2017)
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Algorithm 1 Stochastic Variance Reduction Cubic Regularization (SVRC)
1: Input: batch size bg, bh, penalty parameterMs,t, s = 1 . . . S, t = 0 . . . T , starting point bx1.
2: Initialization

3: for s = 1, . . . , S do

4: x
s+1
0 = bxs

5: g
s = rF (bxs) = 1

n

Pn
i=1 rfi(bxs),Hs = 1

n

Pn
i=1 r2

fi(bxs)
6: for t = 0, . . . , T � 1 do

7: Sample index set Ig, Ih, |Ig| = bg, |Ih| = bh;
8: v

s+1
t = 1

bg

P
it2Ig

rfit(x
s+1
t )�rfit(bxs) + g

s �
�

1
bg

P
it2Ig

r2
fit(bxs)�H

s
�
(xs+1

t � bxs)

9: U
s+1
t = 1

bh
(
P

jt2Ih
r2

fjt(x
s+1
t )�r2

fjt(bxs)) +H
s

10: h
s+1
t = argminhvs+1

t ,hi+ 1
2 hU

s+1
t h,hi+ Ms+1,t

6 khk32,
11: x

s+1
t+1 = x

s+1
t + h

s+1
t

12: end for

13: bxs+1 = x
s+1
T

14: end for

15: Output: random choose one xs
t , for t = 0, ..., T and s = 1, ..., S.

where Ig and Ih are batch index sets, and the batch sizes
will be decided later. In each inner iteration, we solve the
following cubic regularization subproblem:

h
s+1
t = argminms+1

t (h)

= hvs+1
t hi+ 1

2
hUs+1

t h,hi+ Ms+1,t

6
khk32. (3.3)

Then we perform the update xs+1
t+1 = x

s+1
t + h

s+1
t in the

t-th iteration of the inner loop. The proposed algorithm is
displayed in Algorithm 1.

There are two notable features of our “estimator” of the full
gradient and Hessian in each inner loop, compared with that
used in SVRG (Johnson & Zhang, 2013). The first is that
our gradient and Hessian estimators consist of mini-batches
of stochastic gradient and Hessian. The second one is that
we use second order information when we construct the
gradient estimator vs+1

t , while classical SVRG only uses
first order information to build it. Intuitively speaking, both
features are used to make a more accurate estimation of the
true gradient and Hessian with affordable oracle calls. Note
that similar approximations of the gradient and Hessian
matrix have been staged in recent work by Gower et al.
(2017) and Wai et al. (2017), where they used this new kind
of estimator for traditional SVRG in the convex setting,
which radically differs from our setting.

4 Main Theory

We first lay down the following Hessian Lipschitz assump-
tion, which are necessary for our analysis and are widely
used in the literature (Nesterov & Polyak, 2006; Xu et al.,
2016; Kohler & Lucchi, 2017).

Assumption 4.1 (Hessian Lipschitz). There exists a con-

stant ⇢ > 0, such that for all x,y and i 2 [n]

kr2
fi(x)�r2

fi(y)k2  ⇢kx� yk2.

In fact, this is the only assumption we need to prove our
theoretical results. The Hessian Lipschitz assumption plays
a central role in controlling the changing speed of second
order information. It is obvious that Assumption 4.1 implies
the Hessian Lipschitz assumption of F , which, according to
Nesterov & Polyak (2006), is also equivalent to the follow-
ing lemma.
Lemma 4.2. Let function F : x ! Rd satisfy ⇢-Hessian
Lipschitz assumption, then for any h 2 Rd, it holds that

kr2
F (x)�r2

F (y)k2  ⇢kx� yk2,

F (x+ h)  F (x) + hrF (x),hi+ 1

2
hr2

F (x)h,hi

+
⇢

6
khk32,

krF (x+ h)�rF (x)�r2
F (x)hk2  ⇢

2
khk22.

We then define the following optimal function gap between
initial point x0 and the global minimum of F .
Definition 4.3 (Optimal Gap). For function F (·) and the
initial point x0, let �F be

�F = inf{� 2 R : F (x0)� F
⇤  �},

where F ⇤ = infx2Rd F (x).

W.L.O.G., we assume �F < +1 throughout this paper.

Before we present nonasympotic convergence results of
Algorithm 1, we define

µ(xs+1
t ) = max

⇢
krF (xs+1

t )k3/22 ,��
3
min(r2

F (xs+1
t ))

[Ms+1,t]3/2

�
.

(4.1)
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By definition in (4.1), µ(xs+1
t ) < ✏

3/2 holds if and only if

krF (xs+1
t )k2  ✏, �min

�
r2

F (xs+1
t )

�
> �

p
Ms+1,t✏.

(4.2)

Therefore, in order to find an (✏,
p
⇢✏)-local minimum of

the non-convex function F , it suffices to find a point xs+1
t

which satisfies µ(xs+1
t ) < ✏

3/2, andMs+1,t = O(⇢) for all
s, t. Next we define our oracles formally:
Definition 4.4 (Second-order Oracle). Given an index i and
a point x, one second-order oracle (SO) call returns such a
triple:

[fi(x),rfi(x),r2
fi(x)]. (4.3)

Definition 4.5 (Cubic Subproblem Oracle). Given a vector
g 2 Rd, a Hessian matrixH and a positive constant ✓, one
Cubic Subproblem Oracle (CSO) call returns hsol, where
hsol can be solved exactly as follows

hsol = argmin
h2Rd

hg,hi+ 1

2
hh,Hhi+ ✓

6
khk32.

Remark 4.6. The second-order oracle is a special form of
Information Oracle which is introduced by Nesterov, which
returns gradient, Hessian and all high order derivatives of
objective function F (x). Here, our second-order oracle will
only returns first and second order information at some point
of single objective fi instead of F . We argue that it is a
reasonable adaption because in this paper we focus on finite-
sum objective function. The Cubic Subproblem Oracle will
return an exact or inexact solution of (3.3), which plays an
important role in both theory and practice.

Now we are ready to give a general convergence result of
Algorithm 1:
Theorem 4.7. Under Assumption 4.1, let At, Bt,↵t and
�t be arbitrary positive constants, fix Ms,t = Mt for all s.
Define sequences {⇥t}Tt=0 and {ct}Tt=0 as follows

ct =

✓
⇥t

M
3/2
t

+
1

A
1/2
t

◆
⇢
3/2

b
3/4
g

+

✓
⇥t

M3
t

+
1

B2
t

◆

· C⇢
3(log d)3/2

b
3/2
h

+ ct+1

✓
1 +

1

↵2
t

+
2

�
1/2
t

◆
,

⇥t =
3Mt � 2⇢� 4At � 4Bt

12
� ct+1(1 + 2↵t + �t),

cT = 0,
(4.4)

where ⇢ is the Hessian Lipschitz constant, Mt is the regu-
larization parameter of Algorithm 1, and C is an absolute
constant. If setting batch size bh > 25 log d, Mt = O(⇢),
and⇥t > 0 for all t, then the output of Algorithm 1 satisfies

E[µ(xout)] 
E
⇥
F (bx0)� F

⇤⇤

�nST
, (4.5)

where �n = mint ⇥t/(15M
3/2
t ).

Remark 4.8. To ensure that xout is an (✏,
p
⇢✏)-local mini-

mum, we can set the right hand side of (4.5) to be less then
✏
3/2. This immediately implies that the total iteration com-
plexity of Algorithm 1 is ST = O(E

⇥
F (bx0)� F

⇤⇤
/✏

3/2),
which matches the iteration complexity of cubic regulariza-
tion Nesterov & Polyak (2006).

Remark 4.9. Note that there is a log d term in the expres-
sion of parameter ct, and it is only related to Hessian batch
size bh. The log d term comes from matrix concentration in-
equalities, which is believed to be unavoidable (Tropp et al.,
2015). In other words, the batch size of Hessian matrix bh

has a inevitable relation to dimension d, unlike the batch
size of gradient bg .

The iteration complexity result in Theorem 4.7 depends on
a series of parameter defined as in (4.4). In the following
corollary, we will show how to choose these parameters in
practice to achieve a better oracle complexity.

Corollary 4.10. Under Assumption 4.1, let batch sizes bg
and bh satisfy

p
bg = bh/ log d = 1400n2/5. Set the pa-

rameters in Theorem 4.7 as follows

At = Bt = 125⇢,↵t =
p
2n1/10

,�t = 4n2/5
.

⇥t and ct are defined as in (4.4). Let the cubic regularization
parameter be Mt = 2000⇢, and the epoch length be T =
n
1/5. Then Algorithm 1 converges to an (✏,

p
⇢✏)-local

minimum with

O

✓
n+

�F
p
⇢n

4/5

✏3/2

◆
SO calls and O

✓
�F

p
⇢

✏3/2

◆
CSO calls.

(4.6)

Remark 4.11. Corollary 4.10 states that we can reduce
the SO calls by setting the batch size bg, bh related to n.
In contrast, in order to achieve a (✏,p⇢✏) local minimum,
original cubic regularization method in Nesterov & Polyak
(2006) needs O(n/✏3/2) second-order oracle calls, which is
by a factor of n1/5 worse than ours. And subsampled cubic
regularization Kohler & Lucchi (2017); Xu et al. (2017c)
requires eO(n/✏3/2 +1/✏5/2) SO calls, which is even worse.

5 SVRC with Inexact Oracles

In practice, the exact solution to the cubic subproblem (3.3)
cannot be obtained. Instead, one can only get an approxi-
mate solution by some inexact solver. Thus we replace the
CSO oracle in (4.5) with the following inexact CSO oracle

ehsol ⇡ argmin
h2Rd

hg,hi+ 1

2
hh,Hhi+ ✓

6
khk32.

To analyze the performance of Algorithm 1 with inexact
cubic subproblem solver, we relax the exact solver in Line
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(a) a9a (b) covtype (c) ijcnn1

(d) a9a (e) covtype (f) ijcnn1

Figure 1. Logarithmic function value gap for nonconvex regularized logistic regression on different datasets. (a), (b) and (c) present the
oracle complexity comparison; (d), (e) and (f) present the runtime comparison.

10 of Algorithm 1 with

ehs+1
t ⇡ argminms+1

t (h). (5.1)

The ultimate goal of this section is to prove that the theoret-
ical results of our SVRC algorithm still hold with inexact
subproblem solvers. To this end, we present the follow-
ing sufficient condition, under which inexact solution can
ensure the same oracle complexity as the exact solution:

Condition 5.1 (Inexact condition). For each s, t and given
� > 0, ehs+1

t satisfies �- inexact condition if ehs+1
t satisfies

m
s+1
t (ehs+1

t )  �Ms+1,t

12
kehs+1

t k32 + �,

krm
s+1
t (ehs+1

t k  �
3/2

,

khs+1
t k32  kehs+1

t k32 + �.

Remark 5.2. Similar inexact conditions have been studied
in the literature of cubic regularization. For instance, Nes-
terov & Polyak (2006) presented a practical way to solve
the cubic subproblem without termination condition. Cartis
et al. (2011); Kohler & Lucchi (2017) presented termina-
tion criteria for approximate solution to cubic subproblem,
which is slightly different from Condtion 5.1.

Now we present the convergence result of SVRC with inex-
act CSO oracles:

Theorem 5.3. Let ehs+1
t to be the output in each inner

loop of Algorithm 1 which satisfies Condition 5.1. Let

At, Bt,↵t,�t > 0 be arbitrary constants. Let Ms,t = Mt

for each s, and ⇥t and ct are defined in (4.4), where
1  t  T . If choosing batch size bh > 25 log d and
Mt = O(⇢), and ⇥t > 0 for all t, then the output of Algo-
rithm 1 with inexact subproblem solver satisfies:

E[µ(xout)] 
E[F (bx0)� F

⇤]

�nST
+ �

0
t,

where

�
0
t = � ·

✓
⇥t +

⇥t

2M3/2
t

+ 1

◆
, �n = min

t
⇥t/(15M

3/2
t ).

Remark 5.4. By the definition of µ(x) in (4.1) and (4.2),
in order to attain an (✏,

p
✏) local minimum, we require

E[µ(xout)]  ✏
3/2 and thus �

0
t < ✏

3/2, which implies
that � in Condition 5.1 should satisfy � < ✏

3/2
/(⇥t +

⇥t/(2M
3/2
t ) + 1). Thus the total iteration complexity of

Algorithm 1 is O(�F /(�n✏3/2)).

By the same choice of parameters, Algorithm 1 with inexact
oracle can achieve a reduction in SO calls.
Corollary 5.5. Under Condition 5.1, and under the same
conditions as in Corollary 4.10, the output of Algorithm
1 with the inexact subproblem solver satisfies Eµ(xout) 
✏
3/2 + �f within

O

✓
n+

�F
p
⇢n

4/5

✏3/2

◆
SO calls and O

✓
�F

p
⇢

✏3/2

◆
CSO calls,

where �f = O(⇢�).
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(a) a9a (b) covtype (c) ijcnn1

(d) a9a (e) covtype (f) ijcnn1

Figure 2. Logarithmic function value gap for nonlinear least square on different datasets. (a), (b) and (c) present the oracle complexity
comparison; (d), (e) and (f) present the runtime comparison.

Remark 5.6. It is worth noting that even with the inexact
CSO oracle satisfying Condition 5.1, the SO and CSO com-
plexities of SVRC remain the same as that of SVRC with
exact CSO oracle. Furthermore, this result always holds
with any inexact cubic sub-problem solver.

6 Experiments

In this section, we present numerical experiments on differ-
ent non-convex Empirical Risk Minimization (ERM) prob-
lems and on different datasets to validate the advantage of
our SVRC algorithm in finding approximate local minima.

Baselines: We compare our algorithm with adaptive cubic
regularization (Adaptive Cubic) (Cartis et al., 2011), sub-
sampled cubic regularization (Subsampled Cubic) (Kohler
& Lucchi, 2017), stochastic cubic regularization (Stochastic
Cubic) (Tripuraneni et al., 2017), gradient cubic regular-
ization (Gradient Cubic) (Carmon & Duchi, 2016) and
trust region Newton method (TR) (Conn et al., 2000). All
algorithms are carefully tuned for a fair comparison.

Calculation for SO calls: For Subsampled Cubic, each
loop takes (Bg + Bh) SO calls, where Bg and Bh are the
subsampling sizes of gradient and Hessian. For Stochastic
Cubic, each loop costs (ng+nh) SO calls, where ng and nh

denote the subsampling sizes of gradient and Hessian-vector
operator. Gradient Cubic, Adaptive Cubic and TR cost n
SO calls in each loop. We define the amount of epochs to
be the amount of SO calls divided by n.

Parameters and subproblem solver: For each algorithm

and each dataset, we choose different bg, bh, T for the best
performance. Meanwhile, we choose Ms,t = ↵/(1 +
�)(s+t/T )

,↵,� > 0 for each iteration. When � = 0, it has
been proved to enjoy good convergence performance. This
choice of parameter is similar to the choice of penalty pa-
rameter in Subsampled Cubic andAdaptive Cubic, which
sometimes makes some algorithms behave better in our ex-
periment. For the subproblem solover of (3.3) in each loop,
we choose the Lanczos-type method (Cartis et al., 2011).

Datasets: The datasets we use are a9a, covtype, ijcnn1,
which are common datasets used in ERM problems. The
detailed information about these datasets are in Table 2.

Table 2. Overview of the datasets used in our experiments

Dataset sample size n dimension d

a9a 32,561 123

covtype 581,012 54

ijcnn1 35,000 22

Non-convex regularized logistic regression: The first non-
convex problem we study is a binary logistic regression prob-
lem with a non-convex regularizer

Pd
i=1 �w

2
(i)/(1 +w

2
(i))

(Reddi et al., 2016b). Specifically, suppose we are given
training data {xi, yi}ni=1, where xi 2 Rd and yi 2 {0, 1}
are feature vectors and labels corresponding to the i-th data
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(a) a9a (b) covtype (c) ijcnn1

(d) a9a (e) covtype (f) ijcnn1

Figure 3. Logarithmic function value gap for robust linear regression on different datasets. (a), (b) and (c) present the oracle complexity
comparison; (d), (e) and (f) present the runtime comparison.

points. The minimization problem is as follows

min
w2Rd

1

n

nX

i=1

yi log �(x
T
i w) + (1� yi) log[1� �(xT

i w)]

+
dX

i=1

�w
2
(i)/(1 +w

2
(i)),

where �(x) = 1/(1 + exp(�x)) is the sigmoid function.
We fix � = 10 in our experiments. Recall the definition
Ms,t = ↵/(1+�)(s+t/T )

,↵,� > 0. We set ↵ = 0.05,� =
0 for a9a and ijcnn1 datasets and ↵ = 5e3,� = 0.15 for
covtype. The experiment results are shown in Figure 1.

Nonlinear linear squares: The second problem is a non-
linear least squares problem which focuses on the task of
binary linear classification (Xu et al., 2017b). Given training
data {xi, yi}ni=1, where xi 2 Rd and yi 2 {0, 1} are feature
vectors and labels corresponding to the i-th data points. The
minimization problem is

min
w2Rd

1

n

nX

i=1

[yi � �(xT
i w)]2.

Here � is the sigmoid function. We set ↵ = 0.05, 1e8, 0.003
and � = 0, 1, 0.5 for a9a, covtype and ijcnn1 datasets re-
spectively. The experiment results are shown in Figure 2.

Robust linear regression: The third problem is a robust
linear regression problem where we use a non-convex robust
loss function log(x2

/2+1) (Barron, 2017) instead of square
loss in least square regression. Given a training sample

{xi, yi}ni=1, where xi 2 Rd and yi 2 {0, 1} are feature
vectors and labels corresponding to the i-th data point. The
minimization problem is

min
w2Rd

1

n

nX

i=1

⌘(yi � x
T
i w),

where ⌘(x) = log(x2
/2 + 1). We set ↵ = 0.1, 1e9, 2 and

� = 0.1, 1, 0 for a9a, covtype and ijcnn1 datasets respec-
tively. The experimental results are shown in Figure 3.

From Figures 1, 2 and 3, we can see that our algorithm
SVRC outperforms all the other baseline algorithms on all
the datasets. The only exception happens in the non-linear
least square problem and the robust linear regression prob-
lem on the covtype dataset, where our algorithm behaves
a little worse than Adaptive Cubic at the high accuracy
regime in terms of epoch counts. However, under this set-
ting, our algorithm still outperforms the other baselines in
terms of the cpu time.

7 Conclusions

In this paper, we propose a novel second-order algorithm
for non-convex optimization called SVRC. Our algorithm
is the first algorithm which improves the oracle complexity
of cubic regularization and its subsampled variants under
certain regime using variance reduction techniques. We also
show that similar oracle complexity also holds with inexact
oracles. Under both settings our algorithm outperforms the
state-of-the-art methods.
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