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Abstract In an earlier work, we proposed a frame-based kernel analysis approach to the problem of recovering
erasures from unknown locations. The new approach led to the stability question on recovering a signal from
noisy partial frame coefficients with erasures occurring at unknown locations. In this continuing work, we
settle this problem by obtaining a complete characterization of frames that provide stable reconstructions. We
show that an encoding frame provides a stable signal recovery from noisy partial frame coefficients at unknown
locations if and only if it is totally robust with respect to erasures. We present several characterizations for either
totally robust frames or almost robust frames. Based on these characterizations several explicit construction
algorithms for totally robust and almost robust frames are proposed. As a consequence of the construction
methods, we obtain that the probability for a randomly generated frame to be totally robust with respect to a

fixed number of erasures is one.
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1 Introduction

In applications frames are often used for analyzing and reconstructing signals, and it is well known that
frames are generally robust to erasures, distortions and noises. Moreover, the redundancy property of
frames also makes it possible in many cases to have perfect reconstruction from erasure-corrupted frame
coefficients (see [1-8]). This has led to many approaches dealing with reconstructions of signals from
noisy data (see [9-11,13,15-18]) and generated lots of research on characterizations and constructions of
optimal or near-optimal frames for different considerations (see [14,19-22,24-26]). In addition, we refer
to [27,28] for more constructions on optimal frames.

If the encoding frame is properly selected, then a perfect reconstruction from erasure-corrupted frame
coefficients can be achieved by using the so called “partial frame operators” (see [12,26]). However, this
approach often causes some stability problem in the process of inverting the partial frame operators. We
proposed in [12] a frame-based kernel analysis approach to the problems of recovering the erasures that
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occurred at either known or unknown locations. This method recovers the lost data by solving, in most
cases, a simple system of linear equations. In addition, the new method is particularly efficient when the
number of erasures is relatively small. It is known that a frame allows perfect reconstruction with respect
to any m-erasures occurring at known locations if and only if any subsequence obtained by removing any
m-vectors from the frame sequence remains to be a frame. We proved in [12] that a frame allows erasure
location recovery for almost all input signals if and only if it is almost robust. Unfortunately, while the
reconstruction is stable from noise-free partial frame coefficients (at unknown locations), it is generally
unstable when the received data (again from unknown locations) also carries noise. This suggests that we
need to impose additional restrictions on almost robust frames in order to have a stable reconstruction.
The main purpose of this paper is to address this problem.

In [11], Han et al. considered the stability of the reconstruction with more general settings, where the
known partial frame coefficients are supposed to be unordered. Although the frames considered in [11]
also solve the problem considered in this paper, it is still interesting to consider the stability problem
when we assume only that the erasure locations are unknown, i.e., the partial frame coefficients are in
correct order. In fact, the characterization and construction of frames in this paper are more simple than
that in [11], which is expected since the problem we considered in [11] are more complicated.

We first recall and introduce a few definitions and terminologies that are needed throughout this paper.
A frame for a finite-dimensional Hilbert space N is a sequence }¢;(1<i<n such that there exist positive
constants « and S such that

ALY DL@llF <BAS 0F /N,

=1

where o and 3 are called the lower and upper frame bounds, respectively. A frame }p;(1<i<n is said to
be tight if o = 3, and Parseval if « = § = 1.
Let }¢i(1<i<ny be a frame for N. Its analysis operator 1" is defined by

Tf=Nfeillici<v, 0f /N

It is easy to see that 7" T is invertible on N and }@; = (T"T) '¢i(1<i<n is also a frame for N, which is
called the canonical or standard dual frame. The canonical dual provides us the following reconstruction

formula:
N

F=Y0beil@n /N (1.1)
i=1
Note that whenever }g;(1<;<n is a frame but not a basis, there are many (actually, infinitely many) other
choices of ¢; for which (1.1) holds. In general, if two frames }¢; (1<i<n and }@;(1<icn satisty (1.1), we
call them a pair of dual frames.

In this paper, we only consider frames }¢; (1<i<n with pairwise different elements. In addition similarly
for a matrix A, we always assume that its column vectors are pairwise different. We often identify a frame
with the matrix consisting of frame vectors as its column vectors.

In applications the frame coefficients ¢; = ) f, ;| of a signal f (encoding f) are transmitted to a receiver
and then the receiver reconstructs (decodes) the original signal f from the received data set. Erasures oc-
cur often in data transmission due to various reasons. How to recover signals from frame coefficients with
erasures is an interesting problem both in theory and in practice. In modern communication networks,
this problem is usually solved with coding theory. Here, we consider an alternate solution to this problem
and show that the redundancy of a frame can mitigate the effect of losses in packet-based communication
systems.

Assume that m frame coefficients are erased during the data transmission. In the case that the receiver
knows the location of erasures, then the erasures can be easily recovered by solving a simple system of
linear equations as long as the encoding frame }p;(X ; has the property that it remains to be a frame
whenever any of its m elements are removed (see [12]). In the case that erasures occurred at unknown
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locations, then we face the following natural problems: suppose that N coefficients c1, ..., c, were sent
and we only received ¢;,,...,¢Ciy_,., where we only know that i3 < 2 < X< iy 5, but we have no
information about the exact values of these indices. Is it still possible to recover the original signal with
these coefficients? The answer to this question depends on both the encoding frames and the input
signals. One of the main results in [12] provided a complete characterization of the encoding frames that
ensure erasure location recovery for almost all input signals.

Definition 1.1 (See [12]). A frame is called almost robust with respect to m-erasures if we can recover
any f /N Ny from its frame coefficients with m-erasures at unknown locations, where N is the union
of finitely nfany proper subspaces of N and therefore is of measure zero.

Assume that }o;(1<i<n is an almost robust frame with respect to m-erasures. For i1 < 3X<X< iy m,
write A := span};, (1<i<N m- Then we have N = N. In fact, if N'¥ N, then N is a proper subspace
of A and its n-dimensional measure is 0. For any f / N V, we can only recover the projection of f
on N from the coefficients W, el (1<isy m, while f itself'cannot be recovered, which contradicts with
the almost robustness of }¢;(1<i<n-

The following characterizes almost robust frames.

Proposition 1.2 (See [12, Theorem 4.2]). A frame }p;{(1<i<n s almost robust with respect to m-
erasures if and only if YT N-m N+ 1 < i; < xx< iny m < N{( consists of pairwise different n-
dimensional subspaces, where T N=m s the analysis operator corresponding to }¢i,{1<e<N m»

Til,..‘,z'N;mf — }>f, Soie‘ <é\/=1m.

Now let us briefly discuss how to recover the erasure locations with an almost m-erasure robust frame
toi(1<ign. For each 1 < i1 < »x< iy m, we see from Proposition 1.2 that dim T iN-m A =
< N m. Hence, there exists some (N m n)C (N m) matrix M(i1,...,in m) such that

TiiN=m f = (M(i1,...,iN m)). (1.2)

Assume that m erasures at unknown locations occur during data transformation. In addition, the
received coefficient sequence is x := (z1,...,2§ ) . Then we can recover the erasures with the follow-
ing steps:

(i) Let

(i9,...,i% ,,) = argmin \M(i1,...,ix m)7\. (1.3)

11 <IN —

(ii) Set ¢ = }¢; + 1 <4 < N{ with cio = 1, 1 <1< N m. By solving the equation
M(1,...,N)c=0, (1.4)

we get erased coefficients, where M (1,..., N) is a matrix satisfying TN'=U (M (1,...,N)).

In the case that the received data is noise free, then both theory and numerical experiments tell us that
we can get perfect reconstruction of f with very high probability (see [12]). However, in real applications
the received data almost always carries noise. Denote the received coefficients by 77> iN-m f 4+ &, Let

(i1 esiy )= argmin \M(j1,...,jn ) (T I =m £ )\
J1<#<JN —m

Here, we remark that due to the noise interference it might occur that (i1,...,95 ,,) ¥ (i1,...,iN m)-
Since }; (Y, is almost robust, there is some N C (N m) matrix H(iy,...,iy5 ,,) such that
T =H(iy,... iy )T "N-m, (1.5)

where T := TV N Then the reconstructed signal in this way is given by

Rf=(T'T) *T'H(iy,...,in ,,)(T"N=mfe).
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We say that the reconstruction algorithm is stable if there exists some constant C', which is independent
of choices of (i1,...,iN m), such that

\Rf  flo < C\e\a. (1.6)

Note that the stability defined in this way is only theoretical, i.e., the reconstruction error tends to
zero as the input error does. In practice, if the constant C is large enough, then a small noise level ¢
might result in a big reconstruction error. In this paper, we focus on the theoretical part, which ensures
exact reconstruction from noise free frame coefficients.

Numerical experiments indicate that for some choices of almost robust frames, the above algorithm
might be not stable. Our main result of this paper is to give a complete characterization of almost robust
frames that provide stable reconstructions. For this purpose we introduce the following definition.

Definition 1.3. Let A be an n C N matrix with column vectors }y;(1<i<n. We say that A (or
Yoi(1<ign) is totally robust with respect to m-erasures if for any 1 < i;3 < X< iy , < N, 1 <4y <
X< iy o, < N and z,x /N satisfying )z, ¢;,| = ) ,<pi2|, 1<I<N m,wehavex ==x.

We show later that totally robust frames are automatically almost robust (see Lemma 4.2). The
following is one of the main results of this paper.

Theorem 1.4.  The above reconstruction algorithm is stable, i.e., (1.6) holds, if and only if }o;(1<i<n
is totally robust.

Totally robust frames can be explicitly constructed (see Sections 5 and 6). Moreover, we prove that
any randomly generated frame has probability one of being totally robust.

Theorem 1.5. Let A = (a;;)1<i<n.1<i<nN be an n C N matric and N m > 2n, where a;; are
independent continuous random variables. Then the probability for A being totally robust with respect to
m-erasures is one.

The rest of the paper is organized as follows. In Section 2, we give a proof of Theorem 1.4. In
Section 3, we provide a concrete method for constructing almost robust frames. Sections 4 and 5 are
devoted to totally robust frames. We first present some characterizations for totally robust frames in
Section 4 and use them to show that totally robust frames are automatically almost robust. On the basis
of characterizations of totally robust frames we provide in Section 5, an explicit construction method for
such frames, and show that Theorem 1.5 follows naturally from the construction method. In Section 6,
we use a set of different prime numbers to construct some explicit examples of frames that are either
almost robust or totally robust with respect to different number of erasures.

Notation. For a given matrix A, we adopt the following notation for convenience: A;, . ;. stands for

k

the submatrix of A consisting of the ji-th, ..., jr-th columns, A;llé’; is the submatrix of A consisting of
the 71-th, ..., 4;-th rows and the ji-th, ..., jg-th columns, and (A;llg’;)c stands for the submatrix of A
that results from removing the i1-th, ..., ig-th rows and the ji-th, ..., jir-th columns.

2 Stability of the reconstruction algorithm

In order to prove Theorem 1.4, we need the following lemma.

Lemma 2.1.  Let }o; (N be an almost robust frame for N with respect to m-erasures. For any i <
X AN gy and iy < X< Gy, With (i, .0y ) ¥ (41,...,iN m), there exists some (n  s) C (N
m  n) matriz Q such that for any f / N,

\T e (F o o) \a=\QM iy, iy )TN (f 0 fo)\a,

where M (iy, ... iy ,,) is defined by (1.2), fo / N satisfies the condition that T""N=m fq is the orthogo-
nal projection of Tt iN=m f op Tiin-m \[{ Till""’ig"—m./\/‘, and s = dim (T v-m N[{ Till*""%\’—m/\/').
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Proof.  First, we consider the case of s > 1. Take an orthonormal basis }n;,...,ns( of Tt in-mAf
{ Thin-m N Select some vectors Nsils--rsMn / T N=m N and NoytresMm / TN -m A such
that }n1,..., 0, Msg1s- -, and }gi, ... 05, Mypqs - - -, M, ( are orthonormal bases for 7% N-m A and
Tivin—m N, respectively.

Let W bean (N m n)C(N m n) matrix such that the row vectors of W 'M(iy,...,ix ,,)
are orthonormal. Denote

(W lM(ilv"'viN m))/ :(517"'751\7 m n) (21)
Then n1,..., M6, Msa1r-+>Mns§15 -+, EN m n constitute an orthonormal basis for CN ™. Consequent-
ly, for s +1 < i < n, n; can be linearly represented by 70, 1,...,1,,&1,...,{N m n. Observe that
Nst1s-++>Mn>Nsq1s- - -+ My are linearly independent. We conclude that the matrix
MMs+1, &1 XK ), €1
vV — . ) .
>775+17£N m n| ><><X>777L7£N m n|
&
. 1 . .
= : (Neg1 200, ) =W "M (ig, . sin ) (negr 200, )
g;\f m n
is of full column rank. Otherwise, there are constants ci,...,¢, s, not all of which are zeros, such that
C1
v =0,
CTL S
ie.,
& n s
: Z ciMirs = 0.
t=1
5;\/ m n
Consequently,
n s N m n ;n s n s /n s
LTATESD SINO BTSN SEO SETARMS I
t=1 u=1 t=1 v=1 t=1
n s n s
=D IO DETINTIN TR
v=1 t=1
which contradicts with the fact that 9s41,...,m,,%,41,---,7, are linearly independent.

Therefore, we can find some (n s) C (N m n) matrix U such that
Uv =1. (2.2)

Fix some vector f / N. Then there exists some vector fo / N such that T%iN-m f, is the orthogonal
projection of T+iN=m f on TiiN—m N[ { Tiin-m A Tt follows that

TitseesiN—m (f  fo) /span}nsii,...,nnf.

Hence, we get

YT iN=m (£ f5) Nsr1]

TN (f o fo) = (nayr 00, ) C :
YTiiN=m (f fo), |
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Therefore,
\Tro e (o fo)\e = \DT N (o fo),mel (P g e (2.4)
By (2.1) and (2.3), we obtain that

Miy,-oviy )T (f 0 fo)

& YT et (f 0 fo), Dy
=W : (Msg1 xxxmpp, ) X :
65\] m n >Ti17'”7iN_m(f fO)ann|

YT iN=m (f 0 fo), Doyt
=WV :

YTU = (f o fo),

It follows from (2.2) that

YTt =m (f o fo), Mg
UW *M(iy,... ix )T N=m(f  fo) = :

YTt (f - fo), mnl

By setting @ = UW !, we get the desired conclusion.
For the case of s = 0, the same arguments work with f, = 0. This completes the proof. O
Proof of Theorem 1.4. (i) First, we prove the sufficiency.

Fix some vector f / N. Suppose that there are some (iq,...,ix ,,) ¥ (¢1,...,iN m) such that

\M(ih te ’iN m)(Tihm’iNimf + 5)\2
S\M (g, ... 0N ) (T2 N=m f L 2)\y
= \M(i1, .., in m)e\2- (2.5)

Let fo / N be such that T%-iN=m fo is the projection of Tit:iN=m f on T iN=m N { TN —m A,
By Lemma 2.1, there is a matrix ) such that

\TH et (o fo)\e
=\QM(iy, -y )T (0 fo)\e
SANQ\ AM (g, iy )TN (0 fo)\a- (2.6)

. . . -/ -/
Since T-iN=m fy /T 'N-m N we have

\M iy, . yiy ) (TN (f 0 fo) +€)\a
=\M iy, iy ) (TN f - €)\2
g\M(il,...,’L’N m)5\2-

Consequently,

\M(ilv"'viN m)Til ..... iN_m(.f fO)\2
S (\M (i, ovin m)\ A \M(ig, - iy ) \)\E\2:

By (2.6), we have

\TP = (o fo)\a SNQN(\M (i1, -y in )\ +\M iy, sy ) \)\E\2- (2.7)
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By the choice of fy, we have T iN-m fy = T in—m fo. Hence,
(T'T) YT H(iy,. .. in )T "N fo = fo. (2.8)

Recall that H(iy,...,iy ,,) is defined by (1.5). Since }¢;, (;*,™ is a frame for N, there is some constant
C1 > 0 such that

\f fo\e SO\ (f - fo)\a (2.9)
Combining (2.7)-(2.9), we get

\(T'T) "T"Hiy, ... iy )T f ) flo
=\(T'T) "T"Hiy,....iny )T (f fo)+e) (f fo)\a
S\ fo\e +\(T'T) T H(iy, vy )\ RAe\2
FNT'T) T H iy, vy )\ AT (f 0 fo)\o
S(CL+NT'T) T Hig, iy n)\)
AT (f o o\ +\(T'T) T H i, vy )\ A2
< C\e\a.

(i) Next, we prove the necessity. Assume that there are fy ¥ f, such that T4 iN=m f; = TN —m fo-
Then we have fo % 0, fo % 0, (i1, .., in m) ¥ (i, iy ,,) and s := dim (TN -m AT { TN -m \)
> 1.

Let 01, .. M, Msg1s -5 M, and 0, ¢, ..., 7, be defined as in the proof of Lemma 2.1. Since Yo (N s
almost robust, we have Ti1+iN-m A"\ Thin-m . Hence n s > 0.

Let f = fo and € = M, where A > 0. Since 7,,, / Thrin-m N[ Titein-m [ we have
M(iq, ... iy e =0and M(i1,...,in m)e ¥ 0. Consequently, v

Miy, ... iy o )WTHiN=m fo ey = M(iy, ... iy )T -mf =0

and
M(it, ... in ) (TN fode) = M(iy,...,in m)e % 0. (2.10)

Hence, (iy,...,iy ,,) is a minimizer of argmin, ;v \M(j1,...,jn m)(T""V-" fo+¢)\. By the
stability, there is some constant C' such that

\(T'T) T H(iy, iy )TN fo ) fola S O\e\,

ie.,
\(T'T) "T" H(iy,...oiy p) (TN fo+ A1) fola < CA

By letting A € 0, we get fo = (T"T) "T" H(iy,...,in ,,) T =mfo = f,, which contradicts with the
choice of fy and f,. This completes the proof. O

3 Construction of almost robust frames

In this section, we present a new characterization for almost robust frames with which we provide an algo-
rithm for constructing almost robust frames. Since frames and matrices are equivalent, for convenience,
we introduce the following definition.

Definition 3.1.  Suppose that n and N are positive integers such that n +2 < N. We call an n C N
matrix M almost robust if the frame consisting of its column vectors is almost robust with respect to
(N n 1)-erasures.

The following is a characterization of almost robust matrices.
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Theorem 3.2. Ann C N matriz A is almost robust if and only if for any 1 < j1 < X< jpy1 < N
and 1 < j; <0< J,q <K N with (41, jnv1) ¥ (Js - Jng1)s

A
VT
rank ( it — 1.
Aj gt

Recall that Aj, . is the submatriz of A consisting of the j1-th, ..., jnir1-th columns.

Proof.  The necessity is a consequence of Proposition 1.2. For the sufficiency, we only need to show
that for any 1 < ji < »x< jp41 < N, rank (4;, . j,...) =n.

Assume that rank (A;, . ;..,) < n for some 1 < j; < X< jup1 < N. Then we can find some
1 < j; < X< j,41 < N such that only one [ satisfies j; ¥ j;. Without loss of generality, we assume
Jj1 ¥ jp and j; = j; for 2 <1< n+ 1. Then we have

~~7jn+1

A
rank ( ]2"“’J”+1> = rank (Aj27'--7j’n+1) < rank (Aj11-~~7jn+l) <n 1.

A
A )
rank( Juoesdnl < n,
Aiivw’j»’mﬂ

which contradicts with the hypothesis. This completes the proof. O

jé:"'7j:1+1

Hence

Construction of almost robust frames. (i) Take some (a;1)1<i<n / R” such that ay 1 ¥ 0.
(11) Take some (ai72)1<i<n / R™ such that 1.2 v }O, a1,1< and

ail aiz2

¥ 0.

az1 a2

(iii) Assume that for some 2 < k < N 1 the matrix (a;;)1<i<n,1<i<k 18 well-defined such that for
any 1 < ¢ <min}tk,n{ and 1 < j; < »x< j; < k,

a5, XXa,j,

rank =t, (3.1)
Og,5; XXt j,

and for any 1 < s <min}k 1,n(, 1 <jj < »ox< js < kand 1 < j; < %< j, < k with j; ¥ j;, 01,

Q1 G145 XXaij, dij
rank =s.

Usjy  Gsjp OXsj, Qs jt

We define aq j+1,...,ank+1 by induction. There are two cases.
Casel. 2<k<n.

Take some a1 g+1 Y }0,a1.1,...,a1,5(. Suppose that a1 xy1,...,ap k41 are well-defined for some 1 <
p<n 1. Fort =min}k,p( and 1 < j; < xx< j; < k, there is a unique z such that

a1,5, XX a1, 01 k+1

=0.
At gy XX At 5, Ot k+1

At41,5; XPXA41,5, T
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In addition, for s =min}k 1,p(, 1 < j1 < < joy1 <k and 1 < j; < o< jo 1 =k + 1 with j; ¥ j;,
01 <1< s+1, there is a unique y such that

al,jl al’ji XXX a1 aq

WJs41 Jhia

=0.

a37j1 asvji asvjs+1 as7j;+1

Os+1,51  Gst1,5] XX Qs+1,5.1 Y

Let Bp11,1 be the set consisting of all such = and y when 4;, j; and j, vary from all possible choices. Take
some api1k+1 Y Bpii k-
Case2. n+1<k<N 1.

~X
For any 1 < j1 < %< jnt+1 < k, there exists a unique sequence ¢ = (¢y, .. ., ¢,) such that

n

E CQij, = Qij,qs 1S
=1

n.

N

By (3.1), every n columns of (a; j)1<i<n,1<j<k are linearly independent. Hence none of ¢; is zero. Denote
by Sk the set of all such sequences. Let

n
Oi,k = }O,ai71,...,a¢7k< n {chaim . C / Sk,]. g‘]l < XK ]n < k}
=1

Set a1 k11 Y Chk. Assume that aq gx41,...,ap k1 are well-defined for some 1 <p <n 1. Let Byy1 i be
defined as in Case 1. Take some apt1 k41 Y Bp+1,k N Cpyi k-

Next, we show that frames consisting of column vectors of matrices constructed in this way are almost
robust. To see this, fix such a matrix A. Denote its column vectors by ¢1,..., N, respectively. By
Theorem 3.2, it suffices to show that for 1 < j; < X< jpi1 < N and 1 < j; < X< j,,y < N with

(jla s ’jn-‘rl) * (jlv s ?jn—‘,-l)?
A )
rank ( ]1""’%“) =n+1 (3.2)
J1redngt
There are two cases.
Case 1. ji¥j,01<I<n+1.

In this case, we see from the construction (a; x+1 Y Ci ) that the equations

A c=0 and A

J1s--dn41 J1rodnga

c=0 (3.3)

have no common solution but zero. Hence (3.2) is true.
Case 2.  There is some [ such that j; = j;.
Without loss of generality, we assume that j; = j; for 1 <l < sand j; ¥ j, for s+1 <1 < n+1,

where s is an integer satisfying 1 < s < n. Let ¢ be a solution of (3.3). Then we have

n+1

> alen i) = Ajujunc A, c=0
i=s+1

Since }yj, <Pj;<s+1<l<n+1 is a sequence of independent vectors, we have ¢; =0, s+1 <[ < n-+1. Hence
S
Z ¥y = Aj17~--7jn+1c =0.
=1

Consequently, ¢; = = ¢; = 0. Hence ¢ = 0. Therefore, (3.2) is true.
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4 Characterizations of totally robust frames

In this section, we present a characterization of totally robust frames with which we show that every
totally robust frame is automatically almost robust.

Theorem 4.1. Let A be an n C N matriz with column vectors }o;(1<i<n. Then }oi{1<i<n 1S a
totally robust frame for N with respect to m-erasures if and only if for any 1 < j1 < X< jNy m < N
and 1 < j; < X< jy o, <N,

A
n+rank (Aj, v Ay, ) =rank ( jl"“’JNm> . (4.1)

Proof. (i) First, we prove the necessity. Fix some 1 < j1 < &< ji < N and 1 < j; < xx< j, < N,
where k = N m. Let M = (A} A;'{ ) and r = rank (M). Then we have

yeesd J
dim}z /R*": Mz =0( =2n r. (4.2)
Denote z = (') /R" CR"™. Then Mz = 0 is equivalent to A} . c A;,L___JI,CC =0, ie.,
>Ca(pjz|:>cv<)0jl'|a ]-glgk
Since A is totally robust, we have ¢ = ¢ . Hence,
(A;hm?k A;i ..... ]L)C = 0 (43)

On the other hand, if ¢ is a solution of the above equation, then z = ( ) is a solution of Mx = 0. Hence

Aja).

2n r=mn rank(A; _; 34 eedh

'Jk

This proves (4.1).

(ii) Next, we prove the sufficiency. Suppose that (4.1) is true. Use the previous symbols. Let ¢ be a
solution of (4.3). Then x = ( ) is a solution of Mx = 0. By (4.1), every solution of Mz = 0 must be
of this form, i.e., if

>ca90jz|:>cv<pj{|a 1 <<k,
then ¢ = c¢. Hence }¢;{1<icn is totally robust with respect to m-erasures. O

The following result shows that a totally robust frame is always an almost robust frame.

Lemma 4.2. Let }o;{(1<i<n be a frame for N, where n = dimN and N > n + 2. Suppose that
Yoil1<ign is totally robust with respect to m-erasures. Then we have the following:

(1) }pi(igicn s almost robust with respect to m-erasures.

(i) N m=>=2n 1.
Proof. Putk=N mand A= (¢1,...,0N).

(i) First, we show that dim 77%+J* "= n for any j; < xxx< ji, which is equivalent to rank (4;, . ;)
= n. Assume on the contrary that it is not true. Then there is some x ¥ 0 such that

>‘r7¢jl|:0:>oa¢l|a 1<

N

k,

which contradicts with the definition of total robustness.
Next, we show that 7713k N T3k A for (J1,-+ > Jk) ¥ (41, -, Jg)- Assume on the contrary that
T3k N = T3k N Then for any = / N, there is some z / N such that T91dtg = Tii--dkg | ie.,

Since }p;(1<in is totally robust, we have © = x . Hence

Yo, 05 =)x, 05, Oz /N, 1<I<k,
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which implies that j; = j; for 1 <1 < k and therefore contradicts with the assumption.
(i) Let M = (A}, A5 xyq)- Then rank (M) < k. By (4.1), we have

rank (A1, x Ao gy1)=rank(M) n<k n (4.4)

Since rank (A1 k) = n, there exist some 1 < j1 < xx< j, < k such that ¢;,,...,¢;, are linearly
independent. Hence p;, ¢j,,...,9;. ¢j,._, are linearly independent. Therefore,

rank (A1, Ao . ky1)=n 1L (4.5)

By (4.4), we have k > 2n 1. O

Lemma 4.3.  Suppose that N > 2n +m. Let A be an n C N matriz with column vectors }¢;(1<i<n
such that every n columns of A are linearly independent and for any ji < X< jon, and j; < X< jg,

with at least n+ 1 U’s satisfying j; ¥ j,,
A .
rank ( T h") = 2n.
Ajids,

Then }pi(1<i<n 15 totally robust with respect to m-erasures.

Proof. Fix some 1 < j; < X< jy m < N and 1 < j; < %< jy ,, < V. Suppose that for some
c,e /Nandforalll <IN m,

>Ca ¢j1| = >C 750]’{" (46)
There are two cases.

Case 1. There are at least n I’s satisfying j; = j,. Since every n elements of }¢;( form a basis for NV,
we have c=c.

Case 2.  There are at most n 1 I’s satisfying j; = j;. In this case, there are at least n+1 I’s satisfying
Ji ¥ j;. We see from the hypothesis that

A
rank ( ]1""’”’") = 2n.
Ajtit
, , c 0
(A]'hm,jzv—m Aj{,.‘qjﬁv,m) ( C) = <0> :

Hence ¢ = ¢ = 0. This completes the proof. O

By (4.6), we have

Lemma 4.4.  Suppose that N 2 2n+m 1. Let A be an n C N matriz such that
(1) al’jzlforlgjgN,
(ii) every n columns of A are linearly independent, and
(ili) for any ji < X< jon 1 and j; < X< jo, 1 with at least n s satisfying j; ¥ j,,

rank (Ajly-”:jan) —om 1
Aiiv~~-»jén71

Then column vectors of A form a totally robust frame with respect to m-erasures.

Proof.  As in the proof of Lemma 4.3, we fix some 1 < j; < X< jy m < N and 1 < j; < »xxx
<Jn m < N. Suppose that for some ¢,¢c /N and forall 1 <I< N m, (4.6) holds.

We consider only Case 2. In this case, there are at least n I’s satisfying j; ¥ j,. We see from the
hypothesis that

A
rank ( jl""’”'”) =2n 1. (4.7)

s -/
J1IN—m
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C 0
AI- - A/-/ i’ - ’
( J1s+-3JN—m jl"”yjNi'm) ( C) <0>

Since a1 ; is equal to 1 for all 4, (¢, ¢)=(e1,0,...,0, ¢1,0,...,0) is a solution of the above equation.
Now we see from (4.7) that every solution of the above equation must be of this form. Hence ¢ = ¢ . This

By (4.6), we have

completes the proof. O

At the end of this subsection, we show that for N m = 2n 1, totally robust frames have a special
structure.

Theorem 4.5.  Suppose that N =2n 1+m. Let A be an nC N matriz with column vectors }¢;{1<i<n-
If Yoi({1<i<n s totally robust with respect to m-erasures, then there is some invertible matriz U such that
the first row of UA is (1,...,1).
Proof.  Since rank (A; . 2n 1) = n, there exist some 1 < j; < < j, < 2n 1 such that p;,,...,p;,
are linearly independent. Hence ¢;,  ©j,,...,%;, ©j,._, are linearly independent.

For 2n < j < N, we see from Theorem 4.1 that

rank (A1, on 1 A2 _on 1) <n L
On the other hand, since ¢;,  ©j,,...,%;, ©j,_, are linearly independent, we have
rank (A1, on 1 A2..2n 15) =1 L

Hence
rank (A1, 20 1 A2 20 15)=n L (4.8)

Denote e; = ¢;,  ¢j,_,, 2 <1 < n. Then we have ¢; / span(}pit1  ¢i(i<i<an 2)- By (4.8), we have
span(}pit1  wiligi<en 2N (@5 w20 1)) = span(}er(2<i<n)- Hence

¢j 1 /span(fei(e<icn), 1<j<N.

Let V = (¢1,€2,...,€e,). Then we have A = V A, where A is a matrix whose first row is (1,...,1). Since
rank (A) = n, V is nonsingular. Now we get the conclusion as desired by setting U =V 1. O

5 Construction of totally robust frames

On the basis of characterizations of totally robust frames in Section 4, we provide an explicit construction
method for such frames. This construction method also yields the density property of totally robust
frames. We see from Lemma 4.2 that if an n C N matrix is totally robust with respect to m-erasures,
then we have N m > 2n 1. In this section, we give two methods to construct totally robust frames,
one for the case N m > 2n and the other for the case N m > 2n 1.

A: Construction of totally robust frames with N — m > 2n. Suppose that N > 2n. Let
A= (¢1,...,90n). We define ¢; by induction.

First, set k = n 4+ 1. As in the construction of almost robust frames, we can get an n C k matrix
A = (a; j)1<i<n1< <k satisfying the following:

(P1) every n columuns of A are linearly independent;

(P2) forany 1 < s<n, 1 <j; < »ox< js <kand 1< j; <3< j, <k with j; ¥ j,, 01,

15, Qugp XXA15, A1,
rank = s;

As,jy  Gsj1 XOXAs 5, s jr

-
»J1
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(P3) for any n+ 1 < t < min}k,2n(, 1 < j; < xx< jy < k and 1 < j; < xxx< j, < k with at least

t nl’s satisfying j; ¥ j;,
A
rank ( len;.]t) — ¢
Ajp it
Note that (P3) is nothing for £k =n + 1.

Now we assume that the matrix A = (a; ;)1<i<n,1< i<k is well-defined for some k > n+1 which satisfies
(P1)—(P3). Next, we add the (k4 1)-th column @41 to A such that the new matrix also satisfies these
properties.

Fixsome n+1<t<min}k+1,2n(, 1 < j1 < xx< j < k+1and 1 < j; < »x< j, = k+ 1 such
that at least t n I’s satisfy j; ¥ j,. There are two cases.

Case 1. j; < j;.
In this case, there are at least ¢ n 1 {’s satisfying j; ¥ j, and 1 <I <t 1. By the assumption,

A
rank ( J1,~~~7Jt1> =1t 1
Aji gty

for t > n+ 2. In addition for ¢ = n + 1, the above equation is also true since every n columns of A are
linearly independent.

A
If rank (4, ")) <, then there exists some ¢ / R’ ! such that

/ il
1o Jt

Ajyjer © = B> (5.1)
Aji g €= Piye (5.2)

Since the rank of A;, . j, , is no less than n, the dimension of the set consisting of all ¢ satisfying (5.1) is
no greater thant 1 n < n 1. Therefore, the dimension of the set F := } A; c:A;

Bttt 1 € At € = P
A .
is no greater than n 1. In addition for ¢;; / R" \/Fl, rank(Aj_} """ j_t )=t
1

Case 2. j: =j,.

there exists again some ¢ / R? ! such that

Ajp g €= Pies Ajgi_ €= Pl

Consequently,
(Aj 1)

By (P2), we have rank (4;, . j, , Ay .
of solutions of (5.3) is no greater than ¢ 1 (¢ n) =mn 1. Therefore, the dimension of the set

= }Aj{,...,j,’,_lc 0 (A, Ajiwwj{_l)c = 0( is no greater than n 1. And for ¢;; / R" \/Fg,

A .
rank(A;} """ )=t

il

SJt—1 Aj{w-wj{,l)cz 0. (53)

) >t n. Hence the dimension of the set consisting

coJt—1

~~~~~~~
In both cases, we find a set F' of dimension no greater than n 1 such that for ¢; / R" ,

oo dt

A .
rank(A:} ¥ ) = t. Let E; be the union of all such F' when ¢, j; and j, vary from all possible choices.
CLA !
Then E; is of measure 0 in R™.

Define B; ;, and C;j as in the construction of almost robust matrices. Then there are finitely many

functions f; ; such that

BixNCik=1}fij(a11, - nk, @1 k+15---5 G 1,5+1) 0 1 < J < ni(.

Let

n

EQ = U}J} /Rn Xy = fi,j(aLl,...,an,k,xl,...,xi 1)<

i=1
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Then FE> is of measure 0 in R™.

Take some @11 /R™ (FE;NEs). Then (P1)—(P3) hold with k being replaced by k+ 1. By induction,
we can construct an n C'V matrix with these properties. It follows from Lemma 4.3 that }y;(1<i<n 18
a totally robust frame with respect to N 2n erasures.

Remark 5.1. We point out that frames constructed in this way are not totally robust with respect to
(N 2n+ 1)-erasures.

To see this, set

(jl,...,jgn 1):(1,...,n,n+2,...,2n),
(J1s--sdam 1) =(2,...,n+1,n+2,...,2n).

-,

\/} (0,0)( such that

x 0
(A911-~7j2n71 A;’{,...,jén_l) ( x) = <0> :

A/* X A/- ’

. ”
J1s--5J2n—1 J1sdan—1

Then there exists some (z,2) /R" CR"

Hence
z =0. (5.4)

Therefore,
>x7¢]z|:>$7@jl’|v 1<Z<2n 1.

By (P2), rank (A} . A;‘{w-,jén,l) = n. It follows from (5.4) that ¥ x . Otherwise, z =z =0,
which contradicts with the choice of (z,x ). Hence A is not totally robust with respect to (N 2n + 1)-
erasures.
B: Construction of totally robust frames with N —m > 2n — 1.  Suppose that N > 2n. As in
the case of N 'm > 2n, we can construct an n C k matrix A = (a; j)1<i<n,1<j<k inductively such that
(Ql) a1 =1for1 <j<k,
(Q2) every n columns of A are linearly independent,
(Q3) for any 2 < s <n, 1 < j; < xx< js <k and 1 < j; < o< j, < k with j; ¥ 5, 01,

1 XXX 1
G2,5; Qg5 XXag;, A2
rank . ) =S,

Gsjy  Qs,jr XOXasj,  As,j!

and
(Q4) for any n < t < min}k,2n  1(, 1 < j1 < xx< jy < k and 1 < j; < »x< j, < k with at least

t  n+11s satisfying j; ¥ jj,
A
rank < ]1"“’jt> =t
Ajiit

In addition, the proof is almost the same as that for the case of N m > 2n except that (5.3) is
replaced by

(Ajlgu-’jtfl Aj{.,m,j{_l)c =0,
c1+ x4¢ 1 =1.

The following shows that totally robust frames are abundant.

Theorem 5.2.  Let A = (a;,;)1<i<n,1<j<nN be an n C N matriz, where a; ; are independent continuous
random variables, n < N. Denote column vectors of A by }pi(1<i<n. Then the following assertions are
true with probability 1:

(1) }pi(igi< s almost robust with respect to m-erasures whenever N m > n + 1.
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(ii) }pi(1<icn s totally robust with respect to m-erasures whenever N m > 2n.

(iil) }oi(1<icn is totally robust with respect to m-erasures whenever N m > 2n 1 and the first row
of A is replaced by (1,...,1).
Proof. ~ We prove only the first conclusion. The other two can be proved with the similar arguments.

We see from the construction that }g;(1<;<n is almost robust if ¢; is not a solution of finitely many
systems of linear equations which depend on ¢i,...,¢; 1. Consequently, if }p;{1<;<n is not almost
robust for some sample point, it must be contained in one of the following sets:

F; = }pi / Ei,

where E; —R™ is of measure 0 and E; depends on ¢1,...,¢; 1. For example, Ey = }x / R" : 21 = 0(
and Eo =}r /R" 21y =0o0r z1 =a1,1 or a;, 122 ag1x1 = 0.

Since entries of A are continuous random variables, we have P(Fy) = 0.

Suppose that for some s > 1, P(F;) =0, 0 1 < < s. Then we have

P(Fot1) = P(Fo1 FY 500F) = P(FY 5000 P(Fop [[F7 200F) = 0.

S S S

By induction, we see that P(F;) =0 for any 1 <4 < N. This completes the proof. O

The following is another statement on the density of robust frames, which can be proved similarly to
Theorem 5.2.

Theorem 5.3. For N m > n (resp. N m > 2n), the set of all vectors (a1,1,...,an1,-..,01 N,
o yan ) forwhich }p; = (a1, -, an:) (1<i<n 18 not an m-erasure almost robust (resp. totally almost)
frame is of measure zero in R™N.

6 Examples

In this section, we present some concrete examples. First, we give two simple examples of almost robust
frames among which one is not totally robust and hence provides unstable reconstruction, and the other
one is totally robust and hence provides stable reconstruction.

Example 6.1. Consider the frame consisting of column vectors of

1011
A:<0 )
0113

It is easy to check that

01 10
=111, T =]11][,
13 13
10 10
71,24 _ 01 |, 71,23 _ 01 |,
13 11

and the corresponding matrices M (iy,12,13) (see (1.2)) are

M(2,3,4)=( 2 11), M(1,3,49)=(2 31),
M1,2,4)=( 1 31), M(1,2,3)=( 1 11).
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Since M (2,3,4), M (1,3,4), M(1,2,4) and M (1,2,3) are pairwise linearly independent, A is almost robust

with respect to l-erasure. But
2
7234 1 — pl24 2 111,
2 1
5

which implies that the frame consisting of column vectors of A is not totally robust and so the corre-
sponding reconstruction algorithm is not stable.

Example 6.2. Consider the frame consisting of column vectors of

1111
A= .
(1236)

In this case, we have

12 11
234 — [ 13|, 4|13,
16 16
11 11
T1.2,4 12|, 723 12|,
16 13

and
M(2,3,4)=(3 41), M(1,3,4)=(3/2 5/21),
M(1,2,4)=(4 51), M(1,23)=(1 21).

Again, M(2,3,4), M(1,3,4), M(1,2,4) and M(1,2,3) are pairwise linearly independent. Hence A is
almost robust with respect to l-erasure.
For any 1 <11 <is <iz3<4and 1< j; < j2 <jsz <4 with (il,ig,ig) ¥ (jl,jg,jg), we have

102,13 R2 { TIt:J2:J3R2 — span}(l, 1, 1)/ <

72:3:4 1 — L34 1 — l24 1 — 7123 1 _
0 0 0 0

This implies that the frame consisting of column vectors of A is totally robust and so the corresponding
reconstruction algorithm is stable.

Next, we present a class of examples of totally robust frames constructed from a set of prime num-
bers. For aq,...,a; / R, denote by Q(ay,...,a;) the minimal field containing all rational numbers and

Observe that

ai,...,0ak.
The following result may be well-known and the proof can be found in [23].

Proposition 6.3.  Ifpi,....Di,.,Pj1,---,Dj, are m +n different prime numbers, then

Pir - pin / QG Pi(Fly)-

To present concrete examples of robust frames, we need the following lemma.
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Lemma 6.4. Let A=( D;;)i<i j<n be an nCn matriz, where p; ; are different prime numbers. Then
we have det(A) ¥ 0.
Moreover, if the first row of A is replaced by (1,...,1), we also have det(A) ¥ 0.

Proof. By Laplace’s formula, we have

det(A) =" Dar( 1)"* det((47)).
k=1

Let P be the set consisting of all entries of A except P, ,. Observe that
det(A7)9) /Q(P), 1<k<n

and

pnj /QP), 1<j<n L
By Proposition 6.3, it suffices to prove that det((A?)¢) ¥ 0. Using Proposition 6.3 again and again, we
reduce it to show that pj 1 ¥ 0, which is obviously correct. Hence det(A) ¥ 0.
The second conclusion can be proved similarly. This completes the proof. O

We say that a frame for R" is of uniform excess if any of its n elements form a basis for R".

Theorem 6.5.  Let }p;{1<i<nn be a sequence of different prime numbers. Set

i =( PG Dntts PG Dntzs---» Pin) s 1<i<N.
Then }pi(1<i<n 5 an almost robust frame with respect to m-erasures whenever m < N n 1.

Proof. Let A = (¢1,...,¢n). For any 1 < i3 < »x< i, < N, we see from Lemma 6.4 that
det(A;, .. 4,) ¥ 0. Hence }o;(1<icn is of uniform excess.

Next, we show that }y;(1<i<n is almost robust with respect to (N7 n 1) erasures. Fix some
1<ip < 200 i1 K N and 1 <1y < o<1, < N with

(i1,02, s ing1) ¥ (i1, 00,50 y)-

Then there is some 1 < s < n+ 1 such that iy / }i{1<i<nt-

Consider the matrix A consisting of rows of Agy .. ine, and the first row of Ai’lwwi’nﬂ’ ie.,
PG, Dn+1 PGz Dn+1 XX D, 1)n+1
PGy Dn+2 PGz Dn+2 XX D, 1)n+2
A= :
Diin Dion XXX Pipiin
DG Dn+1 PG, 1)n+l ><><><\/p(i;L+1 1)n+1
We conclude that det(A) ¥ 0. To see this, expanding det(A) along the last row, we get
n+1
det(A) = D /D nuer (1" det((ART)°).
k=1
Denote by P the set consisting of all entries of A;, ;... Sincei, / }i1, ... ine1(, wehave DG 1ni1

/ P. By Proposition 6.3, to show that det(A) ¥ 0, it suffices to prove that the (n + 1, s) cofactor of A is
not equal to zero. Observe that

det(A?Jrl)c = det(Ail7~~774‘sfl,is+la~~’in+1)'
We see from Lemma 6.4 that det(A?+1)¢ % 0. Hence det(A) ¥ 0. Therefore,
Ay,
rank ( b ”“) =n+1
Ay
1 tng

By Theorem 3.2, we get the conclusion as desired. O
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Next, we show that the frame defined in Theorem 6.5 is totally robust whenever N m > 2n.

Theorem 6.6.  Let }p;(1<ixn be defined as in Theorem 6.5. Then it is totally robust with respect to
m-erasures whenever N m = 2n.

Proof. Fix some 1 < i1 < »X< iy m < Nand 1 < 4 < xx< iy ,, < N with (41,...,i8 m)
¥ (iq,.-.yix ). It suffices to show that for any z,y /N, if

Ti17"'7iN—mx:TiIIV"'7i;V—my7 (61)

then x = y. There are two cases.
Case 1.  #}l: ;= i;{ > n. In this case, there exist 1 < s; < »x< s, <N m such that i, =i, for
1 <1< n. By (6.1), we have
Tisl,...,isn (l‘ y) =0.
Since }g;{1<ign is of uniform excess, }%’sl (1<i<n is a basis for N. Hence z = y.

Case 2.  #}l: i; =14, <n. In this case, there exist some 0 <k <n 1,1<s5 < xx<s; <N m
and 1 <7rp < X< 719, ¢ <N msuch that }ri,...,ron p({ }s1,...,86( = His, =i, for 1 <1<k
and 4., ¥4, for 1 <1<2n k. By (6.1), we have

. . ., v
Thayseoisy, sy reotsy,
Trriotran g TZTl"”’iTznfk
Tisl"“’isk Ti317~--7isk
L = R . -7 v .
Trisestray g Pl o,

L<$y>:o.

To prove z = y = 0, it suffices to show that det(L) ¥ 0.
By definition, we have

Let

Then (6.2) is equivalent to

L=(4 B),

where

PGy, nt1 XX Dign

D(i.,, 1nt1 XX Pign

A= R
PG, 1)n+1 XX Diun
D(iry, . Dn+1 XX /Dip,  n
P(is, 1)n+1 XX Pign
B PG, n+1 XX Pign

VPG, Dntr XX /Di

PG, . Dol XX Di o
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Expanding det(L) along the last row, we get

det(L

M:

Sl 1P der(£3)

=

+ Z N 1)n+l( 1)*"+ det((L27,)°).
=1

It ipy, , <, ,, then /Pir, _.n appears only once in the entries of L. In addition for the case of
Urgp_p > by m appears only once in the entries of L. By Proposition 6.3, to prove
det(L) ¥ 0, it suffices to show that det((L3")¢) ¥ 0 or det((L3")¢) ¥ 0.

Assume that ip,, , <4,, . Then we only need to show that det((L3})“) ¥ 0. Expanding det((L3)¢)
along the last row and repeat the previous procedure, we can reduce the problem to prove a smaller

matrix to be nonsingular. Obviously, the procedure can be repeated many times.

Set ng = #}u: iy >i,,u="r1,72,...,72, {. There are three cases.

(i)np<nand2n k np<n In thls case, the previous procedure can be executed 2n &k 1 times
and we reduce the problem to prove that

det((LY M2 )0, i iy, <

ry

or
det((Ly 2t i a)) ¥ 0, iy >
ie.,
det(Lyy it i) ¥ 0 or  det(Ly Mty w0, (6.3)
Since k£ + 1 < n, it is easy to see that entries of Li0+f+1n0+k+1 and Llo k:[)1+k are pairwise different,

respectively. By Lemma 6.4, both inequalities in (6.3) are true.
(ii) no > n. In this case, there is an integer ny > 2 such that i, > i, and Hlu iy > i,,u =

Ty Prgdls -« Ton E{ = M. By repeating the procedure 2n k& mnq + 1 times, we reduce the problem
to show that det((L "1“; o ik2n)) ¥ 0, which is equivalent to det(L nH”ltﬁnlﬁk 1) ¥ 0. Since

ni+k 1< n, entries of L ’"1+k !

it mm 4k 1 are pairwise different. Similar to Case (i), we can prove that

the above inequality is true.

(iii) 2n k& no > n. In this case, we can find some integer no > 2 such that i, < iy, and
HIu iy <y, U = Ty, Thgtly -5 Ton k{ = N. By repeating the procedure 2n  k  mng + 1 times, we
reduce the problem to show that det((L”er]; 3 matimil...2n)®) ¥ 0, which can be proved similarly to
Case (ii). This completes the proof. O

For the case of N m > 2n 1, we get a similar result.

Theorem 6.7.  Let }pi{1<i<(n 1)n be a sequence of different prime numbers, where N > 2n andn > 2.

For1<i< N,leto;=(1, DG D D+1> PG D D42 ---» Pim 1)) - Then
(1) }pi(igis s an almost robust frame with respect to m-erasures whenever N m >n+ 1.

(ii) }ei(1<icn is a totally robust frame with respect to m-erasures whenever N m > 2n 1.

Proof. (i) First, we show that }p;(1<icn is of uniform excess. To see this, fix some 1 < 43 < xxx
<ip < N. We see from Lemma 6.4 that the matrix (¢;,,...,¢;,) is nonsingular. Hence }y;, (1<i<n I8 a
basis for N. Therefore, }¢;(1<i<n is of uniform excess.

Similar to Theorem 6.5 we can prove that }¢;{1<i<n is almost robust with respect to m-erasures
whenever m < N n 1. We leave the details to interested readers.

(ii) Fix some 1 < i1 < Xx< iy m < N and 1 < iy < x0x< iy ,,, < N with

(11, 0N m) ¥ (g, ey iN )
It suffices to show that for any z,y /N, if

Tilw--;imex — CZ"i/l:'“vi}\?'—my7 (64)
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then z = y. There are two cases.
Case 1.  #} : i =14, > n. Similar to Theorem 6.6, we can prove that = y.

Case 2.  #}: i =4,( <n. In this case, there exist some 0 <k <n 1,1<s1 < xx<s, <N m
and 1 < 7 < X< rop 1 ¢ < N m such that }ri,...,790 1 k( { }s1,...,8( = H is, = i,
I1<i<kandi, ¥i, for1<I<2n 1 Fk. By (6.4), we have

. . . M
sy eestsy, Thsyelsy,
Trriotran 1k T e, 1k
Tsysisy sy isy
L= ) ) , .
Tlrl"“’ir2n—1—k TZ:‘I""’Z;‘Zn—l—k

L<x> ~0. (6.6)
v

Denote the column vectors of L by ¢;, 1 < ¢ < 2n. Then we have ¢ = (1 = (1,...,1). We
rewrite (6.6) as

for

Let

Then (6.5) is equivalent to

Gy + GQry + 200t Gt (Cat1y1 + Cnrayz + 200 Canyn) = 0,
ie.,
CaTa + 200t CuTn + Cui1(T1 Y1) Cutayz X Cnyn = 0.
If (5, ..., (o, are linearly independent, then the above equation implies that

Tog = XXX=Tp =21 Y1 = Yo = Xxx=7y, =0.

Hence z = y.
Now it remains to prove that (s,...,(ap are linearly independent. Let K = ({2,(3,...,(2n). Then K
isa(2n 1)C(2n 1) matrix. It suffices to prove that det(K) ¥ 0. Observe that K = (4 e B), where

PGy, 1)(n 1)+1 XXX Pi,, (n 1)

D, 1)(n 1)+1 XXX Di,, (n 1)

A= e T e ,
PG, D(n 1)+1 X Di, (n 1)
V/Plrg, e D DL % Py (0 1)
e=(1,...,1),
D@y, 1)(n 1)+1 XXX Dis, (n 1)
B D(is, D(n 1)+1 XXX Di,, (n 1)
Pgr, 1)(n 1)+1 XXX Pir (n 1)

\/p(i;ﬂznflfk (n 1)+1 xqu/pi;zmilik(n 1)

Let ng = #(}u : 4y > iy, u =71,72,...,72, 1 k(). There are three cases.
(i)np<n land2n 1 k mno<n 1
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As Case (i) in the proof of Theorem 6.6, we reduce the problem to prove that

1, k+1 1. k+1
det(K, 0 L iper) 0 or det(K 07 ) ¥ 0. (6.7)
Since k<n 1,n9+1<nand ng+ k > n, one column of K}l;]';’lkfl_nﬁkﬂ or K}L;)"_'_’_k:ol+k is (1,...,1)

and entries in other columns consist of different numbers. By Lemma 6.4, both inequalities in (6.7) are
true.

(i) no >n 1.

In this case, there is an integer ny > 2 such that

irpy >y, and  H#(Ju iy >0, U= "Tn, Tni41s---5T2n 1 k() =n 1.

As Case (ii) in the proof of Theorem 6.6, we reduce the problem to prove that det(LiZﬂ:ﬁ +1k o) ¥ 0.
Since n1 +k 1 < n, we see from Lemma 6.4 that the above inequality is true.

(ii)2n 1 k mno>n 1.

Again, the conclusion can be proved similarly to Case (iii) in the proof of Theorem 6.6. We omit the
details. O
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