
SCIENCE CHINA
Mathematics CrossMark

January 2018 Vol. 61 No. 1: 151–172

https://doi.org/10.1007/s11425-016-9143-2

c⃝ Science China Press and Springer-Verlag GmbH Germany 2017 math.scichina.com link.springer.com

. ARTICLES .

Stable recovery of signals from frame coefficients
with erasures at unknown locations

Deguang Han1 , Fusheng Lv2 & Wenchang Sun2,∗

1Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA;
2School of Mathematical Sciences and the Key Laboratory of Pure Mathematics and Combinatorics,

Ministry of Education, Nankai University, Tianjin 300071, China

Email: deguang.han@ucf.edu, alfas@mail.nankai.edu.cn, sunwch@nankai.edu.cn

Received December 29, 2016; accepted July 20, 2017; published online December 4, 2017

Abstract In an earlier work, we proposed a frame-based kernel analysis approach to the problem of recovering

erasures from unknown locations. The new approach led to the stability question on recovering a signal from

noisy partial frame coefficients with erasures occurring at unknown locations. In this continuing work, we

settle this problem by obtaining a complete characterization of frames that provide stable reconstructions. We

show that an encoding frame provides a stable signal recovery from noisy partial frame coefficients at unknown

locations if and only if it is totally robust with respect to erasures. We present several characterizations for either

totally robust frames or almost robust frames. Based on these characterizations several explicit construction

algorithms for totally robust and almost robust frames are proposed. As a consequence of the construction

methods, we obtain that the probability for a randomly generated frame to be totally robust with respect to a

fixed number of erasures is one.
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1 Introduction

In applications frames are often used for analyzing and reconstructing signals, and it is well known that

frames are generally robust to erasures, distortions and noises. Moreover, the redundancy property of

frames also makes it possible in many cases to have perfect reconstruction from erasure-corrupted frame

coefficients (see [1–8]). This has led to many approaches dealing with reconstructions of signals from

noisy data (see [9–11,13,15–18]) and generated lots of research on characterizations and constructions of

optimal or near-optimal frames for different considerations (see [14, 19–22, 24–26]). In addition, we refer

to [27,28] for more constructions on optimal frames.

If the encoding frame is properly selected, then a perfect reconstruction from erasure-corrupted frame

coefficients can be achieved by using the so called “partial frame operators” (see [12,26]). However, this

approach often causes some stability problem in the process of inverting the partial frame operators. We

proposed in [12] a frame-based kernel analysis approach to the problems of recovering the erasures that
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occurred at either known or unknown locations. This method recovers the lost data by solving, in most

cases, a simple system of linear equations. In addition, the new method is particularly efficient when the

number of erasures is relatively small. It is known that a frame allows perfect reconstruction with respect

to any m-erasures occurring at known locations if and only if any subsequence obtained by removing any

m-vectors from the frame sequence remains to be a frame. We proved in [12] that a frame allows erasure

location recovery for almost all input signals if and only if it is almost robust. Unfortunately, while the

reconstruction is stable from noise-free partial frame coefficients (at unknown locations), it is generally

unstable when the received data (again from unknown locations) also carries noise. This suggests that we

need to impose additional restrictions on almost robust frames in order to have a stable reconstruction.

The main purpose of this paper is to address this problem.

In [11], Han et al. considered the stability of the reconstruction with more general settings, where the

known partial frame coefficients are supposed to be unordered. Although the frames considered in [11]

also solve the problem considered in this paper, it is still interesting to consider the stability problem

when we assume only that the erasure locations are unknown, i.e., the partial frame coefficients are in

correct order. In fact, the characterization and construction of frames in this paper are more simple than

that in [11], which is expected since the problem we considered in [11] are more complicated.

We first recall and introduce a few definitions and terminologies that are needed throughout this paper.

A frame for a finite-dimensional Hilbert space H is a sequence {φi}16i6N such that there exist positive

constants α and β such that

α∥f∥2 6
N∑
i=1

|⟨f, φi⟩|2 6 β∥f∥2, ∀ f ∈ H,

where α and β are called the lower and upper frame bounds, respectively. A frame {φi}16i6N is said to

be tight if α = β, and Parseval if α = β = 1.

Let {φi}16i6N be a frame for H. Its analysis operator T is defined by

Tf = {⟨f, φi⟩}16i6N , ∀ f ∈ H.

It is easy to see that T ∗T is invertible on H and {φ̃i = (T ∗T ) 1φi}16i6N is also a frame for H, which is

called the canonical or standard dual frame. The canonical dual provides us the following reconstruction

formula:

f =

N∑
i=1

⟨f, φi⟩φ̃i, f ∈ H. (1.1)

Note that whenever {φi}16i6N is a frame but not a basis, there are many (actually, infinitely many) other

choices of φ̃i for which (1.1) holds. In general, if two frames {φi}16i6N and {φ̃i}16i6N satisfy (1.1), we

call them a pair of dual frames.

In this paper, we only consider frames {φi}16i6N with pairwise different elements. In addition similarly

for a matrix A, we always assume that its column vectors are pairwise different. We often identify a frame

with the matrix consisting of frame vectors as its column vectors.

In applications the frame coefficients ci = ⟨f, φi⟩ of a signal f (encoding f) are transmitted to a receiver

and then the receiver reconstructs (decodes) the original signal f from the received data set. Erasures oc-

cur often in data transmission due to various reasons. How to recover signals from frame coefficients with

erasures is an interesting problem both in theory and in practice. In modern communication networks,

this problem is usually solved with coding theory. Here, we consider an alternate solution to this problem

and show that the redundancy of a frame can mitigate the effect of losses in packet-based communication

systems.

Assume that m frame coefficients are erased during the data transmission. In the case that the receiver

knows the location of erasures, then the erasures can be easily recovered by solving a simple system of

linear equations as long as the encoding frame {φi}Ni=1 has the property that it remains to be a frame

whenever any of its m elements are removed (see [12]). In the case that erasures occurred at unknown
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locations, then we face the following natural problems: suppose that N coefficients c1, . . . , cN were sent

and we only received ci1 , . . . , ciN−m , where we only know that i1 < i2 < · · · < iN m but we have no

information about the exact values of these indices. Is it still possible to recover the original signal with

these coefficients? The answer to this question depends on both the encoding frames and the input

signals. One of the main results in [12] provided a complete characterization of the encoding frames that

ensure erasure location recovery for almost all input signals.

Definition 1.1 (See [12]). A frame is called almost robust with respect to m-erasures if we can recover

any f ∈ H \H0 from its frame coefficients with m-erasures at unknown locations, where H0 is the union

of finitely many proper subspaces of H and therefore is of measure zero.

Assume that {φi}16i6N is an almost robust frame with respect to m-erasures. For i1 < · · · < iN m,

write H̃ := span{φil}16l6N m. Then we have H̃ = H. In fact, if H̃ ̸= H, then H̃ is a proper subspace

of H and its n-dimensional measure is 0. For any f ∈ H \ H̃, we can only recover the projection of f

on H̃ from the coefficients {⟨f, φil⟩}16l6N m, while f itself cannot be recovered, which contradicts with

the almost robustness of {φi}16i6N .

The following characterizes almost robust frames.

Proposition 1.2 (See [12, Theorem 4.2]). A frame {φi}16i6N is almost robust with respect to m-

erasures if and only if {T i1,...,iN−mH : 1 6 i1 < · · · < iN m 6 N} consists of pairwise different n-

dimensional subspaces, where T i1,...,iN−m is the analysis operator corresponding to {φiℓ}16ℓ6N m,

T i1,...,iN−mf = {⟨f, φiℓ⟩}
N m
ℓ=1 .

Now let us briefly discuss how to recover the erasure locations with an almost m-erasure robust frame

{φi}16i6N . For each 1 6 i1 < · · · < iN m, we see from Proposition 1.2 that dimT i1,...,iN−mH = n

< N m. Hence, there exists some (N m n)× (N m) matrix M(i1, . . . , iN m) such that

T i1,...,iN−mf = N (M(i1, . . . , iN m)). (1.2)

Assume that m erasures at unknown locations occur during data transformation. In addition, the

received coefficient sequence is x := (x1, . . . , xN m)∗. Then we can recover the erasures with the follow-

ing steps:

(i) Let

(i01, . . . , i
0
N m) = argmin

i1<···<iN−m

∥M(i1, . . . , iN m)x∥. (1.3)

(ii) Set c = {ci : 1 6 i 6 N} with ci0l = xl, 1 6 l 6 N m. By solving the equation

M(1, . . . , N)c = 0, (1.4)

we get erased coefficients, where M(1, . . . , N) is a matrix satisfying TH=N (M(1, . . . , N)).

In the case that the received data is noise free, then both theory and numerical experiments tell us that

we can get perfect reconstruction of f with very high probability (see [12]). However, in real applications

the received data almost always carries noise. Denote the received coefficients by T i1,...,iN−mf + ε. Let

(i′1, . . . , i
′
N m)= argmin

j1<···<jN−m

∥M(j1, . . . , jN m)(T i1,...,iN−mf + ε)∥.

Here, we remark that due to the noise interference it might occur that (i′1, . . . , i
′
N m) ̸= (i1, . . . , iN m).

Since {φi}Ni=1 is almost robust, there is some N × (N m) matrix H(i′1, . . . , i
′
N m) such that

T = H(i′1, . . . , i
′
N m)T i′1,...,i

′
N−m , (1.5)

where T := T 1,...,N . Then the reconstructed signal in this way is given by

Rf = (T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)(T i1,...,iN−mf + ε).
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We say that the reconstruction algorithm is stable if there exists some constant C, which is independent

of choices of (i1, . . . , iN m), such that

∥Rf f∥2 6 C∥ε∥2. (1.6)

Note that the stability defined in this way is only theoretical, i.e., the reconstruction error tends to

zero as the input error does. In practice, if the constant C is large enough, then a small noise level ε

might result in a big reconstruction error. In this paper, we focus on the theoretical part, which ensures

exact reconstruction from noise free frame coefficients.

Numerical experiments indicate that for some choices of almost robust frames, the above algorithm

might be not stable. Our main result of this paper is to give a complete characterization of almost robust

frames that provide stable reconstructions. For this purpose we introduce the following definition.

Definition 1.3. Let A be an n × N matrix with column vectors {φi}16i6N . We say that A (or

{φi}16i6N ) is totally robust with respect to m-erasures if for any 1 6 i1 < · · · < iN m 6 N , 1 6 i′1 <

· · · < i′N m 6 N and x, x′ ∈ H satisfying ⟨x, φil⟩ = ⟨x′, φi′l
⟩, 1 6 l 6 N m, we have x = x′.

We show later that totally robust frames are automatically almost robust (see Lemma 4.2). The

following is one of the main results of this paper.

Theorem 1.4. The above reconstruction algorithm is stable, i.e., (1.6) holds, if and only if {φi}16i6N

is totally robust.

Totally robust frames can be explicitly constructed (see Sections 5 and 6). Moreover, we prove that

any randomly generated frame has probability one of being totally robust.

Theorem 1.5. Let A = (ai,j)16i6n,16j6N be an n × N matrix and N m > 2n, where ai,j are

independent continuous random variables. Then the probability for A being totally robust with respect to

m-erasures is one.

The rest of the paper is organized as follows. In Section 2, we give a proof of Theorem 1.4. In

Section 3, we provide a concrete method for constructing almost robust frames. Sections 4 and 5 are

devoted to totally robust frames. We first present some characterizations for totally robust frames in

Section 4 and use them to show that totally robust frames are automatically almost robust. On the basis

of characterizations of totally robust frames we provide in Section 5, an explicit construction method for

such frames, and show that Theorem 1.5 follows naturally from the construction method. In Section 6,

we use a set of different prime numbers to construct some explicit examples of frames that are either

almost robust or totally robust with respect to different number of erasures.

Notation. For a given matrix A, we adopt the following notation for convenience: Aj1,...,jk stands for

the submatrix of A consisting of the j1-th, . . . , jk-th columns, Ai1,...,ik
j1,...,jk

is the submatrix of A consisting of

the i1-th, . . . , ik-th rows and the j1-th, . . . , jk-th columns, and (Ai1,...,ik
j1,...,jk

)c stands for the submatrix of A

that results from removing the i1-th, . . . , ik-th rows and the j1-th, . . . , jk-th columns.

2 Stability of the reconstruction algorithm

In order to prove Theorem 1.4, we need the following lemma.

Lemma 2.1. Let {φi}Ni=1 be an almost robust frame for H with respect to m-erasures. For any i1 <

· · · < iN m and i′1 < · · · < i′N m with (i′1, . . . , i
′
N m) ̸= (i1, . . . , iN m), there exists some (n s) × (N

m n) matrix Q such that for any f ∈ H,

∥T i1,...,iN−m(f f0)∥2=∥QM(i′1, . . . , i
′
N m)T i1,...,iN−m(f f0)∥2,

where M(i′1, . . . , i
′
N m) is defined by (1.2), f0 ∈ H satisfies the condition that T i1,...,iN−mf0 is the orthogo-

nal projection of T i1,...,iN−mf on T i1,...,iN−mH∩T i′1,...,i
′
N−mH, and s := dim(T i1,...,iN−mH∩T i′1,...,i

′
N−mH).
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Proof. First, we consider the case of s > 1. Take an orthonormal basis {η1, . . . , ηs} of T i1,...,iN−mH
∩ T i′1,...,i

′
N−mH. Select some vectors ηs+1, . . . , ηn ∈ T i1,...,iN−mH and η′s+1, . . . , η

′
n ∈ T i′1,...,i

′
N−mH such

that {η1, . . . , ηs, ηs+1, . . . , ηn} and {η1, . . . , ηs, η′s+1, . . . , η
′
n} are orthonormal bases for T i1,...,iN−mH and

T i′1,...,i
′
N−mH, respectively.

Let W be an (N m n) × (N m n) matrix such that the row vectors of W 1M(i′1, . . . , i
′
N m)

are orthonormal. Denote

(W 1M(i′1, . . . , i
′
N m))∗ = (ξ1, . . . , ξN m n). (2.1)

Then η1, . . . , ηs, η
′
s+1, . . . , η

′
n, ξ1, . . . , ξN m n constitute an orthonormal basis for CN m. Consequent-

ly, for s + 1 6 i 6 n, ηi can be linearly represented by η′s+1, . . . , η
′
n, ξ1, . . . , ξN m n. Observe that

ηs+1, . . . , ηn, η
′
s+1, . . . , η

′
n are linearly independent. We conclude that the matrix

V =


⟨ηs+1, ξ1⟩ · · · ⟨ηn, ξ1⟩

...
. . .

...

⟨ηs+1, ξN m n⟩ · · · ⟨ηn, ξN m n⟩



=


ξ∗1
...

ξ∗N m n

 ( ηs+1 · · · ηn ) = W 1M(i′1, . . . , i
′
N m)( ηs+1 · · · ηn )

is of full column rank. Otherwise, there are constants c1, . . . , cn s, not all of which are zeros, such that

V


c1
...

cn s

 = 0,

i.e., 
ξ∗1
...

ξ∗N m n

 n s∑
t=1

ctηt+s = 0.

Consequently,

n s∑
t=1

ctηt+s =
N m n∑

u=1

⟨ n s∑
t=1

ctηt+s, ξu

⟩
ξu +

n s∑
v=1

⟨ n s∑
t=1

ctηt+s, η
′
v+s

⟩
η′v+s

=
n s∑
v=1

⟨ n s∑
t=1

ctηt+s, η
′
v+s

⟩
η′v+s,

which contradicts with the fact that ηs+1, . . . , ηn, η
′
s+1, . . . , η

′
n are linearly independent.

Therefore, we can find some (n s)× (N m n) matrix U such that

UV = I. (2.2)

Fix some vector f ∈ H. Then there exists some vector f0 ∈ H such that T i1,...,iN−mf0 is the orthogonal

projection of T i1,...,iN−mf on T i1,...,iN−mH ∩ T i′1,...,i
′
N−mH. It follows that

T i1,...,iN−m(f f0) ∈ span{ηs+1, . . . , ηn}.

Hence, we get

T i1,...,iN−m(f f0) = ( ηs+1 · · · ηn )×


⟨T i1,...,iN−m(f f0), ηs+1⟩

...

⟨T i1,...,iN−m(f f0), ηn⟩

 . (2.3)
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Therefore,

∥T i1,...,iN−m(f f0)∥2 = ∥{⟨T i1,...,iN−m(f f0), ηt⟩}nt=s+1∥2. (2.4)

By (2.1) and (2.3), we obtain that

M(i′1, . . . , i
′
N m)T i1,...,iN−m(f f0)

= W


ξ∗1
...

ξ∗N m n

 ( ηs+1 · · · ηn ) ·


⟨T i1,...,iN−m(f f0), ηs+1⟩

...

⟨T i1,...,iN−m(f f0), ηn⟩



= WV


⟨T i1,...,iN−m(f f0), ηs+1⟩

...

⟨T i1,...,iN−m(f f0), ηn⟩

 .

It follows from (2.2) that

UW 1M(i′1, . . . , i
′
N m)T i1,...,iN−m(f f0) =


⟨T i1,...,iN−m(f f0), ηs+1⟩

...

⟨T i1,...,iN−m(f f0), ηn⟩

 .

By setting Q = UW 1, we get the desired conclusion.

For the case of s = 0, the same arguments work with f0 = 0. This completes the proof.

Proof of Theorem 1.4. (i) First, we prove the sufficiency.

Fix some vector f ∈ H. Suppose that there are some (i′1, . . . , i
′
N m) ̸= (i1, . . . , iN m) such that

∥M(i′1, . . . , i
′
N m)(T i1,...,iN−mf + ε)∥2

6 ∥M(i1, . . . , iN m)(T i1,...,iN−mf + ε)∥2
= ∥M(i1, . . . , iN m)ε∥2. (2.5)

Let f0 ∈ H be such that T i1,...,iN−mf0 is the projection of T i1,...,iN−mf on T i1,...,iN−mH ∩ T i′1,...,i
′
N−mH.

By Lemma 2.1, there is a matrix Q such that

∥T i1,...,iN−m(f f0)∥2
= ∥QM(i′1, . . . , i

′
N m)T i1,...,iN−m(f f0)∥2

6 ∥Q∥ · ∥M(i′1, . . . , i
′
N m)T i1,...,iN−m(f f0)∥2. (2.6)

Since T i1,...,iN−mf0 ∈ T i′1,...,i
′
N−mH, we have

∥M(i′1, . . . , i
′
N m)(T i1,...,iN−m(f f0) + ε)∥2

= ∥M(i′1, . . . , i
′
N m)(T i1,...,iN−mf + ε)∥2

6 ∥M(i1, . . . , iN m)ε∥2.

Consequently,

∥M(i′1, . . . , i
′
N m)T i1,...,iN−m(f f0)∥2

6 (∥M(i1, . . . , iN m)∥+ ∥M(i′1, . . . , i
′
N m)∥)∥ε∥2.

By (2.6), we have

∥T i1,...,iN−m(f f0)∥2 6 ∥Q∥(∥M(i1, . . . , iN m)∥+ ∥M(i′1, . . . , i
′
N m)∥)∥ε∥2. (2.7)
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By the choice of f0, we have T i1,...,iN−mf0 = T i′1,...,i
′
N−mf0. Hence,

(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)T i1,...,iN−mf0 = f0. (2.8)

Recall that H(i′1, . . . , i
′
N m) is defined by (1.5). Since {φil}

N m
l=1 is a frame for H, there is some constant

C1 > 0 such that

∥f f0∥2 6 C1∥T i1,...,iN−m(f f0)∥2. (2.9)

Combining (2.7)–(2.9), we get

∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)(T i1,...,iN−mf + ε) f∥2

= ∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)(T i1,...,iN−m(f f0) + ε) (f f0)∥2

6 ∥f f0∥2 + ∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)∥ · ∥ε∥2

+ ∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)∥ · ∥T i1,...,iN−m(f f0)∥2

6 (C1 + ∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)∥)

× ∥T i1,...,iN−m(f f0)∥2 + ∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)∥ · ∥ε∥2

6 C∥ε∥2.

(ii) Next, we prove the necessity. Assume that there are f0 ̸= f ′0 such that T i1,...,iN−mf0 = T i′1,...,i
′
N−mf ′0.

Then we have f0 ̸= 0, f ′0 ̸= 0, (i1, . . . , iN m) ̸= (i′1, . . . , i
′
N m) and s := dim(T i1,...,iN−mH∩T i′1,...,i

′
N−mH)

> 1.

Let η1, . . . , ηs, ηs+1, . . . , ηn, and η′s+1, . . . , η
′
n be defined as in the proof of Lemma 2.1. Since {φi}Ni=1 is

almost robust, we have T i1,...,iN−mH ̸= T i′1,...,i
′
N−mH. Hence n s > 0.

Let f = f0 and ε = λη′s+1, where λ > 0. Since η′s+1 ∈ T i′1,...,i
′
N−mH \ T i1,...,iN−mH, we have

M(i′1, . . . , i
′
N m)ε = 0 and M(i1, . . . , iN m)ε ̸= 0. Consequently,

M(i′1, . . . , i
′
N m)(T i1,...,iN−mf0 + ε) = M(i′1, . . . , i

′
N m)T i′1,...,i

′
N−mf ′0 = 0

and

M(i1, . . . , iN m)(T i1,...,iN−mf0 + ε) = M(i1, . . . , iN m)ε ̸= 0. (2.10)

Hence, (i′1, . . . , i
′
N m) is a minimizer of argminj1<···<jN−m

∥M(j1, . . . , jN m)(T i1,...,iN−mf0 + ε)∥. By the

stability, there is some constant C such that

∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)(T i1,...,iN−mf0 + ε) f0∥2 6 C∥ε∥,

i.e.,

∥(T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)(T i1,...,iN−mf0 + λη′s+1) f0∥2 6 Cλ.

By letting λ→ 0, we get f0 = (T ∗T ) 1T ∗H(i′1, . . . , i
′
N m)T i1,...,iN−mf0 = f ′0, which contradicts with the

choice of f0 and f ′0. This completes the proof.

3 Construction of almost robust frames

In this section, we present a new characterization for almost robust frames with which we provide an algo-

rithm for constructing almost robust frames. Since frames and matrices are equivalent, for convenience,

we introduce the following definition.

Definition 3.1. Suppose that n and N are positive integers such that n+ 2 6 N . We call an n×N

matrix M almost robust if the frame consisting of its column vectors is almost robust with respect to

(N n 1)-erasures.

The following is a characterization of almost robust matrices.
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Theorem 3.2. An n × N matrix A is almost robust if and only if for any 1 6 j1 < · · · < jn+1 6 N

and 1 6 j′1 < · · · < j′n+1 6 N with (j1, . . . , jn+1) ̸= (j′1, . . . , j
′
n+1),

rank

(
Aj1,...,jn+1

Aj′1,...,j
′
n+1

)
= n+ 1.

Recall that Aj1,...,jn+1 is the submatrix of A consisting of the j1-th, . . . , jn+1-th columns.

Proof. The necessity is a consequence of Proposition 1.2. For the sufficiency, we only need to show

that for any 1 6 j1 < · · · < jn+1 6 N , rank (Aj1,...,jn+1) = n.

Assume that rank (Aj1,...,jn+1) < n for some 1 6 j1 < · · · < jn+1 6 N . Then we can find some

1 6 j′1 < · · · < j′n+1 6 N such that only one l satisfies jl ̸= j′l . Without loss of generality, we assume

j1 ̸= j′1 and jl = j′l for 2 6 l 6 n+ 1. Then we have

rank

(
Aj2,...,jn+1

Aj′2,...,j
′
n+1

)
= rank (Aj2,...,jn+1) 6 rank (Aj1,...,jn+1) 6 n 1.

Hence

rank

(
Aj1,...,jn+1

Aj′1,...,j
′
n+1

)
6 n,

which contradicts with the hypothesis. This completes the proof.

Construction of almost robust frames. (i) Take some (ai,1)16i6n ∈ Rn such that a1,1 ̸= 0.

(ii) Take some (ai,2)16i6n ∈ Rn such that a1,2 ̸∈ {0, a1,1} and∣∣∣∣∣a1,1 a1,2

a2,1 a2,2

∣∣∣∣∣ ̸= 0.

(iii) Assume that for some 2 6 k 6 N 1 the matrix (ai,j)16i6n,16j6k is well-defined such that for

any 1 6 t 6 min{k, n} and 1 6 j1 < · · · < jt 6 k,

rank


a1,j1 · · · a1,jt
...

. . .
...

at,j1 · · · at,jt

 = t, (3.1)

and for any 1 6 s 6 min{k 1, n}, 1 6 j1 < · · · < js 6 k and 1 6 j′1 < · · · < j′s 6 k with jl ̸= j′l , ∀ l,

rank


a1,j1 a1,j′1 · · · a1,js a1,j′s

...
. . .

...

as,j1 as,j′1 · · · as,js as,j′s

 = s.

We define a1,k+1, . . . , an,k+1 by induction. There are two cases.

Case 1. 2 6 k 6 n.

Take some a1,k+1 ̸∈ {0, a1,1, . . . , a1,k}. Suppose that a1,k+1, . . . , ap,k+1 are well-defined for some 1 6
p 6 n 1. For t = min{k, p} and 1 6 j1 < · · · < jt 6 k, there is a unique x such that∣∣∣∣∣∣∣∣∣∣∣

a1,j1 · · · a1,jt a1,k+1

...
. . .

...
...

at,j1 · · · at,jt at,k+1

at+1,j1 · · · at+1,jt x

∣∣∣∣∣∣∣∣∣∣∣
= 0.
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In addition, for s = min{k 1, p}, 1 6 j1 < · · · < js+1 6 k and 1 6 j′1 < · · · < j′s+1 = k + 1 with jl ̸= j′l ,

∀ 1 6 l 6 s+ 1, there is a unique y such that∣∣∣∣∣∣∣∣∣∣∣

a1,j1 a1,j′1 · · · a1,js+1 a1,j′s+1

...
. . .

...

as,j1 as,j′1 · · · as,js+1 as,j′s+1

as+1,j1 as+1,j′1
· · · as+1,js+1 y

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Let Bp+1,k be the set consisting of all such x and y when il, jl and j′l vary from all possible choices. Take

some ap+1,k+1 ̸∈ Bp+1,k.

Case 2. n+ 1 6 k 6 N 1.

For any 1 6 j1 6 · · · 6 jn+1 6 k, there exists a unique sequence c = (c1, . . . , cn) such that

n∑
l=1

clai,jl = ai,jn+1 , 1 6 i 6 n.

By (3.1), every n columns of (ai,j)16i6n,16j6k are linearly independent. Hence none of cl is zero. Denote

by Sk the set of all such sequences. Let

Ci,k = {0, ai,1, . . . , ai,k} ∪
{ n∑

l=1

clai,jl : c ∈ Sk, 1 6 j1 6 · · · 6 jn 6 k

}
.

Set a1,k+1 ̸∈ C1,k. Assume that a1,k+1, . . . , ap,k+1 are well-defined for some 1 6 p 6 n 1. Let Bp+1,k be

defined as in Case 1. Take some ap+1,k+1 ̸∈ Bp+1,k ∪ Cp+1,k.

Next, we show that frames consisting of column vectors of matrices constructed in this way are almost

robust. To see this, fix such a matrix A. Denote its column vectors by φ1, . . . , φN , respectively. By

Theorem 3.2, it suffices to show that for 1 6 j1 < · · · < jn+1 < N and 1 6 j′1 < · · · < j′n+1 < N with

(j1, . . . , jn+1) ̸= (j′1, . . . , j
′
n+1),

rank

(
Aj1,...,jn+1

Aj′1,...,j
′
n+1

)
= n+ 1. (3.2)

There are two cases.

Case 1. jl ̸= j′l , ∀ 1 6 l 6 n+ 1.

In this case, we see from the construction (ai,k+1 ̸∈ Ci,k) that the equations

Aj1,...,jn+1c = 0 and Aj′1,...,j
′
n+1

c = 0 (3.3)

have no common solution but zero. Hence (3.2) is true.

Case 2. There is some l such that jl = j′l .

Without loss of generality, we assume that jl = j′l for 1 6 l 6 s and jl ̸= j′l for s + 1 6 l 6 n + 1,

where s is an integer satisfying 1 6 s 6 n. Let c be a solution of (3.3). Then we have

n+1∑
i=s+1

cl(φjl φj′l
) = Aj1,...,jn+1c Aj′1,...,j

′
n+1

c = 0.

Since {φjl φj′l
}s+16l6n+1 is a sequence of independent vectors, we have cl = 0, s+1 6 l 6 n+1. Hence

s∑
l=1

clφjl = Aj1,...,jn+1c = 0.

Consequently, c1 = · · · = cs = 0. Hence c = 0. Therefore, (3.2) is true.
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4 Characterizations of totally robust frames

In this section, we present a characterization of totally robust frames with which we show that every

totally robust frame is automatically almost robust.

Theorem 4.1. Let A be an n × N matrix with column vectors {φi}16i6N . Then {φi}16i6N is a

totally robust frame for H with respect to m-erasures if and only if for any 1 6 j1 < · · · < jN m 6 N

and 1 6 j′1 < · · · < j′N m 6 N ,

n+ rank (Aj1,...,jN−m
Aj′1,...,j

′
N−m

) = rank

(
Aj1,...,jN−m

Aj′1,...,j
′
N−m

)
. (4.1)

Proof. (i) First, we prove the necessity. Fix some 1 6 j1 < · · · < jk 6 N and 1 6 j′1 < · · · < j′k 6 N ,

where k = N m. Let M = (A∗j1,...,jk A∗j′1,...,j′k
) and r = rank (M). Then we have

dim{x ∈ R2n : Mx = 0} = 2n r. (4.2)

Denote x = (
c
c′ ) ∈ Rn × Rn. Then Mx = 0 is equivalent to A∗j1,...,jkc A∗j′1,...,j′k

c′ = 0, i.e.,

⟨c, φjl⟩ = ⟨c′, φj′l
⟩, 1 6 l 6 k.

Since A is totally robust, we have c = c′. Hence,

(A∗j1,...,jk A∗j′1,...,j′k
)c = 0. (4.3)

On the other hand, if c is a solution of the above equation, then x = ( c
c ) is a solution of Mx = 0. Hence

2n r = n rank (Aj1,...,jk Aj′1,...,j
′
k
).

This proves (4.1).

(ii) Next, we prove the sufficiency. Suppose that (4.1) is true. Use the previous symbols. Let c be a

solution of (4.3). Then x = ( c
c ) is a solution of Mx = 0. By (4.1), every solution of Mx = 0 must be

of this form, i.e., if

⟨c, φjl⟩ = ⟨c′, φj′l
⟩, 1 6 l 6 k,

then c = c′. Hence {φi}16i6N is totally robust with respect to m-erasures.

The following result shows that a totally robust frame is always an almost robust frame.

Lemma 4.2. Let {φi}16i6N be a frame for H, where n = dimH and N > n + 2. Suppose that

{φi}16i6N is totally robust with respect to m-erasures. Then we have the following:

(i) {φi}16i6N is almost robust with respect to m-erasures.

(ii) N m > 2n 1.

Proof. Put k = N m and A = (φ1, . . . , φN ).

(i) First, we show that dimT j1,...,jkH = n for any j1 < · · · < jk, which is equivalent to rank (Aj1,...,jk)

= n. Assume on the contrary that it is not true. Then there is some x ̸= 0 such that

⟨x, φjl⟩ = 0 = ⟨0, φl⟩, 1 6 l 6 k,

which contradicts with the definition of total robustness.

Next, we show that T j1,...,jkH ≠ T j′1,...,j
′
kH for (j1, . . . , jk) ̸= (j′1, . . . , j

′
k). Assume on the contrary that

T j1,...,jkH = T j′1,...,j
′
kH. Then for any x ∈ H, there is some x′ ∈ H such that T j1,...,jkx = T j′1,...,j

′
kx′, i.e.,

⟨x, φjl⟩ = ⟨x′, φj′l
⟩, 1 6 l 6 k.

Since {φi}16i6N is totally robust, we have x = x′. Hence

⟨x, φjl⟩ = ⟨x, φj′l
⟩, ∀x ∈ H, 1 6 l 6 k,



Han D G et al. Sci China Math January 2018 Vol. 61 No. 1 161

which implies that jl = j′l for 1 6 l 6 k and therefore contradicts with the assumption.

(ii) Let M = (A∗1,...,k A∗2,...,k+1). Then rank (M) 6 k. By (4.1), we have

rank (A1,...,k A2,...,k+1) = rank (M) n 6 k n. (4.4)

Since rank (A1,...,k) = n, there exist some 1 6 j1 < · · · < jn 6 k such that φj1 , . . . , φjn are linearly

independent. Hence φj2 φj1 , . . . , φjn φjn−1
are linearly independent. Therefore,

rank (A1,...,k A2,...,k+1) > n 1. (4.5)

By (4.4), we have k > 2n 1.

Lemma 4.3. Suppose that N > 2n +m. Let A be an n × N matrix with column vectors {φi}16i6N

such that every n columns of A are linearly independent and for any j1 < · · · < j2n and j′1 < · · · < j′2n
with at least n+ 1 l’s satisfying jl ̸= j′l,

rank

(
Aj1,...,j2n

Aj′1,...,j
′
2n

)
= 2n.

Then {φi}16i6N is totally robust with respect to m-erasures.

Proof. Fix some 1 6 j1 < · · · < jN m 6 N and 1 6 j′1 < · · · < j′N m 6 N . Suppose that for some

c, c′ ∈ H and for all 1 6 l 6 N m,

⟨c, φjl⟩ = ⟨c′, φj′l
⟩. (4.6)

There are two cases.

Case 1. There are at least n l’s satisfying jl = j′l . Since every n elements of {φi} form a basis for H,

we have c = c′.

Case 2. There are at most n 1 l’s satisfying jl = j′l . In this case, there are at least n+1 l’s satisfying

jl ̸= j′l . We see from the hypothesis that

rank

(
Aj1,...,jN−m

Aj′1,...,j
′
N−m

)
= 2n.

By (4.6), we have

(A∗j1,...,jN−m
A∗j′1,...,j′N−m

)

(
c

c′

)
=

(
0

0

)
.

Hence c = c′ = 0. This completes the proof.

Lemma 4.4. Suppose that N > 2n+m 1. Let A be an n×N matrix such that

(i) a1,j = 1 for 1 6 j 6 N ,

(ii) every n columns of A are linearly independent, and

(iii) for any j1 < · · · < j2n 1 and j′1 < · · · < j′2n 1 with at least n l’s satisfying jl ̸= j′l,

rank

(
Aj1,...,j2n−1

Aj′1,...,j
′
2n−1

)
= 2n 1.

Then column vectors of A form a totally robust frame with respect to m-erasures.

Proof. As in the proof of Lemma 4.3, we fix some 1 6 j1 < · · · < jN m 6 N and 1 6 j′1 < · · ·
< j′N m 6 N . Suppose that for some c, c′ ∈ H and for all 1 6 l 6 N m, (4.6) holds.

We consider only Case 2. In this case, there are at least n l’s satisfying jl ̸= j′l . We see from the

hypothesis that

rank

(
Aj1,...,jN−m

Aj′1,...,j
′
N−m

)
= 2n 1. (4.7)
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By (4.6), we have

(A∗j1,...,jN−m
A∗j′1,...,j′N−m

)

(
c

c′

)
=

(
0

0

)
.

Since a1,j is equal to 1 for all j, (c, c′) = (c1, 0, . . . , 0, c1, 0, . . . , 0) is a solution of the above equation.

Now we see from (4.7) that every solution of the above equation must be of this form. Hence c = c′. This

completes the proof.

At the end of this subsection, we show that for N m = 2n 1, totally robust frames have a special

structure.

Theorem 4.5. Suppose that N = 2n 1+m. Let A be an n×N matrix with column vectors {φi}16i6N .

If {φi}16i6N is totally robust with respect to m-erasures, then there is some invertible matrix U such that

the first row of UA is (1, . . . , 1).

Proof. Since rank (A1,...,2n 1) = n, there exist some 1 6 j1 < · · · < jn 6 2n 1 such that φj1 , . . . , φjn

are linearly independent. Hence φj2 φj1 , . . . , φjn φjn−1 are linearly independent.

For 2n 6 j 6 N , we see from Theorem 4.1 that

rank (A1,...,2n 1 A2,...,2n 1,j) 6 n 1.

On the other hand, since φj2 φj1 , . . . , φjn φjn−1 are linearly independent, we have

rank (A1,...,2n 1 A2,...,2n 1,j) > n 1.

Hence

rank (A1,...,2n 1 A2,...,2n 1,j) = n 1. (4.8)

Denote el = φjl φjl−1
, 2 6 l 6 n. Then we have el ∈ span({φi+1 φi}16i62n 2). By (4.8), we have

span({φi+1 φi}16i62n 2 ∪ (φj φ2n 1)) = span({el}26l6n). Hence

φj φ1 ∈ span({el}26l6n), 1 6 j 6 N.

Let V = (φ1, e2, . . . , en). Then we have A = V Ã, where Ã is a matrix whose first row is (1, . . . , 1). Since

rank (A) = n, V is nonsingular. Now we get the conclusion as desired by setting U = V 1.

5 Construction of totally robust frames

On the basis of characterizations of totally robust frames in Section 4, we provide an explicit construction

method for such frames. This construction method also yields the density property of totally robust

frames. We see from Lemma 4.2 that if an n × N matrix is totally robust with respect to m-erasures,

then we have N m > 2n 1. In this section, we give two methods to construct totally robust frames,

one for the case N m > 2n and the other for the case N m > 2n 1.

A: Construction of totally robust frames with N − m >>> 2n. Suppose that N > 2n. Let

A = (φ1, . . . , φN ). We define φi by induction.

First, set k = n + 1. As in the construction of almost robust frames, we can get an n × k matrix

A = (ai,j)16i6n,16j6k satisfying the following:

(P1) every n columns of A are linearly independent;

(P2) for any 1 6 s 6 n, 1 6 j1 < · · · < js 6 k and 1 6 j′1 < · · · < j′s 6 k with jl ̸= j′l , ∀ l,

rank


a1,j1 a1,j′1 · · · a1,js a1,j′s

...
. . .

...

as,j1 as,j′1 · · · as,js as,j′s

 = s;
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(P3) for any n + 1 6 t 6 min{k, 2n}, 1 6 j1 < · · · < jt 6 k and 1 6 j′1 < · · · < j′t 6 k with at least

t n l’s satisfying jl ̸= j′l ,

rank

(
Aj1,...,jt

Aj′1,...,j
′
t

)
= t.

Note that (P3) is nothing for k = n+ 1.

Now we assume that the matrix A = (ai,j)16i6n,16j6k is well-defined for some k > n+1 which satisfies

(P1)–(P3). Next, we add the (k + 1)-th column φk+1 to A such that the new matrix also satisfies these

properties.

Fix some n + 1 6 t 6 min{k + 1, 2n}, 1 6 j1 < · · · < jt 6 k + 1 and 1 6 j′1 < · · · < j′t = k + 1 such

that at least t n l’s satisfy jl ̸= j′l . There are two cases.

Case 1. jt < j′t.

In this case, there are at least t n 1 l’s satisfying jl ̸= j′l and 1 6 l 6 t 1. By the assumption,

rank

(
Aj1,...,jt−1

Aj′1,...,j
′
t−1

)
= t 1

for t > n + 2. In addition for t = n + 1, the above equation is also true since every n columns of A are

linearly independent.

If rank (
Aj1,...,jt

Aj′1,...,j′t
) < t, then there exists some c ∈ Rt 1 such that

Aj1,...,jt−1c = φjt , (5.1)

Aj′1,...,j
′
t−1

c = φj′t
. (5.2)

Since the rank of Aj1,...,jt−1 is no less than n, the dimension of the set consisting of all c satisfying (5.1) is

no greater than t 1 n 6 n 1. Therefore, the dimension of the set F1 := {Aj′1,...,j
′
t−1

c : Aj1,...,jt−1c = φjt}

is no greater than n 1. In addition for φj′t
∈ Rn \ F1, rank (

Aj1,...,jt

Aj′1,...,j′t
) = t.

Case 2. jt = j′t.

In this case, there are at least t n l’s satisfying jl ̸= j′l and 1 6 l 6 t 1. If rank (
Aj1,...,jt

Aj′1,...,j′t
) < t, then

there exists again some c ∈ Rt 1 such that

Aj1,...,jt−1c = φjt , Aj′1,...,j
′
t−1

c = φjt .

Consequently,

(Aj1,...,jt−1 Aj′1,...,j
′
t−1

)c = 0. (5.3)

By (P2), we have rank (Aj1,...,jt−1 Aj′1,...,j
′
t−1

) > t n. Hence the dimension of the set consisting

of solutions of (5.3) is no greater than t 1 (t n) = n 1. Therefore, the dimension of the set

F2 := {Aj′1,...,j
′
t−1

c : (Aj1,...,jt−1 Aj′1,...,j
′
t−1

)c = 0} is no greater than n 1. And for φj′t
∈ Rn \ F2,

rank (
Aj1,...,jt

Aj′1,...,j′t
) = t.

In both cases, we find a set F of dimension no greater than n 1 such that for φj′t
∈ Rn \ F ,

rank (
Aj1,...,jt

Aj′1,...,j′t
) = t. Let E1 be the union of all such F when t, jl and j′l vary from all possible choices.

Then E1 is of measure 0 in Rn.

Define Bi,k and Ci,k as in the construction of almost robust matrices. Then there are finitely many

functions fi,j such that

Bi,k ∪ Ci,k = {fi,j(a1,1, . . . , an,k, a1,k+1, . . . , ai 1,k+1) : 1 6 j 6 ni}.

Let

E2 =
n∪

i=1

{x ∈ Rn : xi = fi,j(a1,1, . . . , an,k, x1, . . . , xi 1)}.
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Then E2 is of measure 0 in Rn.

Take some φk+1 ∈ Rn \ (E1 ∪E2). Then (P1)–(P3) hold with k being replaced by k+1. By induction,

we can construct an n ×N matrix with these properties. It follows from Lemma 4.3 that {φi}16i6N is

a totally robust frame with respect to N 2n erasures.

Remark 5.1. We point out that frames constructed in this way are not totally robust with respect to

(N 2n+ 1)-erasures.

To see this, set

(j1, . . . , j2n 1) = (1, . . . , n, n+ 2, . . . , 2n),

(j′1, . . . , j
′
2n 1) = (2, . . . , n+ 1, n+ 2, . . . , 2n).

Then there exists some (x, x′) ∈ Rn × Rn \ {(⃗0, 0⃗)} such that

(A∗j1,...,j2n−1
A∗j′1,...,j′2n−1

)

(
x

x′

)
=

(
0

0

)
.

Hence

A∗j1,...,j2n−1
x A∗j′1,...,j′2n−1

x′ = 0. (5.4)

Therefore,

⟨x, φjl⟩ = ⟨x′, φj′l
⟩, 1 6 l 6 2n 1.

By (P2), rank (A∗j1,...,j2n−1
A∗j′1,...,j′2n−1

) = n. It follows from (5.4) that x ̸= x′. Otherwise, x = x′ = 0,

which contradicts with the choice of (x, x′). Hence A is not totally robust with respect to (N 2n+ 1)-

erasures.

B: Construction of totally robust frames with N −m >>> 2n− 1. Suppose that N > 2n. As in

the case of N m > 2n, we can construct an n× k matrix A = (ai,j)16i6n,16j6k inductively such that

(Q1) a1,j = 1 for 1 6 j 6 k,

(Q2) every n columns of A are linearly independent,

(Q3) for any 2 6 s 6 n, 1 6 j1 < · · · < js 6 k and 1 6 j′1 < · · · < j′s 6 k with jl ̸= j′l , ∀ l,

rank


1 · · · 1

a2,j1 a2,j′1 · · · a2,js a2,j′s
...

. . .
...

as,j1 as,j′1 · · · as,js as,j′s

 = s,

and

(Q4) for any n 6 t 6 min{k, 2n 1}, 1 6 j1 < · · · < jt 6 k and 1 6 j′1 < · · · < j′t 6 k with at least

t n+ 1 l’s satisfying jl ̸= j′l ,

rank

(
Aj1,...,jt

Aj′1,...,j
′
t

)
= t.

In addition, the proof is almost the same as that for the case of N m > 2n except that (5.3) is

replaced by {
(Aj1,...,jt−1 Aj′1,...,j

′
t−1

)c = 0,

c1 + · · ·+ ct 1 = 1.

The following shows that totally robust frames are abundant.

Theorem 5.2. Let A = (ai,j)16i6n,16j6N be an n×N matrix, where ai,j are independent continuous

random variables, n 6 N . Denote column vectors of A by {φi}16i6N . Then the following assertions are

true with probability 1:

(i) {φi}16i6N is almost robust with respect to m-erasures whenever N m > n+ 1.
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(ii) {φi}16i6N is totally robust with respect to m-erasures whenever N m > 2n.

(iii) {φi}16i6N is totally robust with respect to m-erasures whenever N m > 2n 1 and the first row

of A is replaced by (1, . . . , 1).

Proof. We prove only the first conclusion. The other two can be proved with the similar arguments.

We see from the construction that {φi}16i6N is almost robust if φi is not a solution of finitely many

systems of linear equations which depend on φ1, . . . , φi 1. Consequently, if {φi}16i6N is not almost

robust for some sample point, it must be contained in one of the following sets:

Fi = {φi ∈ Ei},

where Ei ⊂ Rn is of measure 0 and Ei depends on φ1, . . . , φi 1. For example, E1 = {x ∈ Rn : x1 = 0}
and E2 = {x ∈ Rn : x1 = 0 or x1 = a1,1 or a1,1x2 a2,1x1 = 0}.

Since entries of A are continuous random variables, we have P (F1) = 0.

Suppose that for some s > 1, P (Fi) = 0, ∀ 1 6 i 6 s. Then we have

P (Fs+1) = P (Fs+1F
c
1 · · ·F c

s ) = P (F c
1 · · ·F c

s )P (Fs+1 |F c
1 · · ·F c

s ) = 0.

By induction, we see that P (Fi) = 0 for any 1 6 i 6 N . This completes the proof.

The following is another statement on the density of robust frames, which can be proved similarly to

Theorem 5.2.

Theorem 5.3. For N m > n (resp. N m > 2n), the set of all vectors (a1,1, . . . , an,1, . . . , a1,N ,

. . . , an,N ) for which {φi := (a1,i, . . . , an,i)
∗}16i6N is not an m-erasure almost robust (resp. totally almost)

frame is of measure zero in RnN .

6 Examples

In this section, we present some concrete examples. First, we give two simple examples of almost robust

frames among which one is not totally robust and hence provides unstable reconstruction, and the other

one is totally robust and hence provides stable reconstruction.

Example 6.1. Consider the frame consisting of column vectors of

A =

(
1 0 1 1

0 1 1 3

)
.

It is easy to check that

T 2,3,4 =


0 1

1 1

1 3

 , T 1,3,4 =


1 0

1 1

1 3

 ,

T 1,2,4 =


1 0

0 1

1 3

 , T 1,2,3 =


1 0

0 1

1 1

 ,

and the corresponding matrices M(i1, i2, i3) (see (1.2)) are

M(2, 3, 4) = ( 2 1 1 ), M(1, 3, 4) = ( 2 3 1 ),

M(1, 2, 4) = ( 1 3 1 ), M(1, 2, 3) = ( 1 1 1 ).
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SinceM(2, 3, 4), M(1, 3, 4), M(1, 2, 4) andM(1, 2, 3) are pairwise linearly independent, A is almost robust

with respect to 1-erasure. But

T 2,3,4

(
1

2

)
= T 1,2,4

(
2

1

)
=


2

1

5

 ,

which implies that the frame consisting of column vectors of A is not totally robust and so the corre-

sponding reconstruction algorithm is not stable.

Example 6.2. Consider the frame consisting of column vectors of

A =

(
1 1 1 1

1 2 3 6

)
.

In this case, we have

T 2,3,4 =


1 2

1 3

1 6

 , T 1,3,4 =


1 1

1 3

1 6

 ,

T 1,2,4 =


1 1

1 2

1 6

 , T 1,2,3 =


1 1

1 2

1 3

 ,

and

M(2, 3, 4) = ( 3 4 1 ), M(1, 3, 4) = ( 3/2 5/2 1 ),

M(1, 2, 4) = ( 4 5 1 ), M(1, 2, 3) = ( 1 2 1 ).

Again, M(2, 3, 4), M(1, 3, 4), M(1, 2, 4) and M(1, 2, 3) are pairwise linearly independent. Hence A is

almost robust with respect to 1-erasure.

For any 1 6 i1 < i2 < i3 6 4 and 1 6 j1 < j2 < j3 6 4 with (i1, i2, i3) ̸= (j1, j2, j3), we have

T i1,i2,i3R2 ∩ T j1,j2,j3R2 = span{(1, 1, 1)∗}.

Observe that

T 2,3,4

(
1

0

)
= T 1,3,4

(
1

0

)
= T 1,2,4

(
1

0

)
= T 1,2,3

(
1

0

)
=


1

1

1

 .

This implies that the frame consisting of column vectors of A is totally robust and so the corresponding

reconstruction algorithm is stable.

Next, we present a class of examples of totally robust frames constructed from a set of prime num-

bers. For a1, . . . , ak ∈ R, denote by Q(a1, . . . , ak) the minimal field containing all rational numbers and

a1, . . . , ak.

The following result may be well-known and the proof can be found in [23].

Proposition 6.3. If pi1 , . . . , pim , pj1 , . . . , pjn are m+ n different prime numbers, then

√
pj1 . . . pjn /∈ Q({√pik}mk=1).

To present concrete examples of robust frames, we need the following lemma.
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Lemma 6.4. Let A = (
√
pi,j)16i,j6n be an n×n matrix, where pi,j are different prime numbers. Then

we have det(A) ̸= 0.

Moreover, if the first row of A is replaced by (1, . . . , 1), we also have det(A) ̸= 0.

Proof. By Laplace’s formula, we have

det(A) =

n∑
k=1

√
pn,k( 1)n+k det((An

k )
c).

Let P be the set consisting of all entries of A except
√
pn,n. Observe that

det((An
k )

c) ∈ Q(P ), 1 6 k 6 n

and
√
pn,j ∈ Q(P ), 1 6 j 6 n 1.

By Proposition 6.3, it suffices to prove that det((An
n)

c) ̸= 0. Using Proposition 6.3 again and again, we

reduce it to show that
√
p1,1 ̸= 0, which is obviously correct. Hence det(A) ̸= 0.

The second conclusion can be proved similarly. This completes the proof.

We say that a frame for Rn is of uniform excess if any of its n elements form a basis for Rn.

Theorem 6.5. Let {pi}16i6nN be a sequence of different prime numbers. Set

φi = (
√
p(i 1)n+1,

√
p(i 1)n+2, . . . ,

√
pin)

∗, 1 6 i 6 N.

Then {φi}16i6N is an almost robust frame with respect to m-erasures whenever m 6 N n 1.

Proof. Let A = (φ1, . . . , φN ). For any 1 6 i1 < · · · < in 6 N , we see from Lemma 6.4 that

det(Ai1,...,in) ̸= 0. Hence {φi}16i6N is of uniform excess.

Next, we show that {φi}16i6N is almost robust with respect to (N n 1) erasures. Fix some

1 6 i1 < · · · < in+1 6 N and 1 6 i′1 < · · · < i′n+1 6 N with

(i1, i2, . . . , in+1) ̸= (i′1, i
′
2, . . . , i

′
n+1).

Then there is some 1 6 s 6 n+ 1 such that i′s /∈ {il}16l6n+1.

Consider the matrix Ã consisting of rows of Ai1,...,in+1 and the first row of Ai′1,...,i
′
n+1

, i.e.,

Ã =



√
p(i1 1)n+1

√
p(i2 1)n+1 · · ·

√
p(in+1 1)n+1

√
p(i1 1)n+2

√
p(i2 1)n+2 · · ·

√
p(in+1 1)n+2

...
...

. . .
...

√
pi1n

√
pi2n · · · √

pin+1n

√
p(i′1 1)n+1

√
p(i′2 1)n+1 · · ·

√
p(i′n+1 1)n+1


.

We conclude that det(Ã) ̸= 0. To see this, expanding det(Ã) along the last row, we get

det(Ã) =
n+1∑
k=1

√
p(i′k 1)n+1 ( 1)n+1+k det((Ãn+1

k )c).

Denote by P the set consisting of all entries of Ai1,...,in+1 . Since i
′
s /∈ {i1, . . . , in+1}, we have√p(i′s 1)n+1

/∈ P . By Proposition 6.3, to show that det(Ã) ̸= 0, it suffices to prove that the (n+ 1, s) cofactor of Ã is

not equal to zero. Observe that

det(Ãn+1
s )c = det(Ai1,...,is−1,is+1,...,in+1).

We see from Lemma 6.4 that det(Ãn+1
s )c ̸= 0. Hence det(Ã) ̸= 0. Therefore,

rank

(
Ai1,...,in+1

Ai′1,...,i
′
n+1

)
= n+ 1.

By Theorem 3.2, we get the conclusion as desired.
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Next, we show that the frame defined in Theorem 6.5 is totally robust whenever N m > 2n.

Theorem 6.6. Let {φi}16i6N be defined as in Theorem 6.5. Then it is totally robust with respect to

m-erasures whenever N m > 2n.

Proof. Fix some 1 6 i1 < · · · < iN m 6 N and 1 6 i′1 < · · · < i′N m 6 N with (i1, . . . , iN m)

̸= (i′1, . . . , i
′
N m). It suffices to show that for any x, y ∈ H, if

T i1,...,iN−mx = T i′1,...,i
′
N−my, (6.1)

then x = y. There are two cases.

Case 1. #{l : il = i′l} > n. In this case, there exist 1 6 s1 < · · · < sn 6 N m such that isl = i′sl for

1 6 l 6 n. By (6.1), we have

T is1 ,...,isn (x y) = 0.

Since {φi}16i6N is of uniform excess, {φisl
}16l6n is a basis for H. Hence x = y.

Case 2. #{l : il = i′l} < n. In this case, there exist some 0 6 k 6 n 1, 1 6 s1 < · · · < sk 6 N m

and 1 6 r1 < · · · < r2n k 6 N m such that {r1, . . . , r2n k} ∩ {s1, . . . , sk} = ∅, isl = i′sl for 1 6 l 6 k

and irl ̸= i′rl for 1 6 l 6 2n k. By (6.1), we have(
T is1 ,...,isk

T ir1 ,...,ir2n−k

)
x =

(
T i′s1 ,...,i

′
sk

T
i′r1

,...,i′r2n−k

)
y. (6.2)

Let

L =

(
T is1 ,...,isk T is1 ,...,isk

T ir1 ,...,ir2n−k T
i′r1

,...,i′r2n−k

)
.

Then (6.2) is equivalent to

L

(
x

y

)
= 0.

To prove x = y = 0, it suffices to show that det(L) ̸= 0.

By definition, we have

L = (A B),

where

A =



√
p(is1 1)n+1 · · · √

pis1n
...

. . .
...

√p(isk 1)n+1 · · · √
piskn√

p(ir1 1)n+1 · · · √
pir1n

...
. . .

...√
p(ir2n−k

1)n+1 · · ·
√
pir2n−k

n


,

B =



√
p(is1 1)n+1 · · · √

pis1n
...

. . .
...

√p(isk 1)n+1 · · · √
piskn√

p(i′r1 1)n+1 · · · √
pi′r1n

...
. . .

...√
p(i′r2n−k

1)n+1 · · ·
√
pi′r2n−k

n


.
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Expanding det(L) along the last row, we get

det(L) =

n∑
l=1

√
p(ir2n−k

1)n+l( 1)2n+l det((L2n
l )c)

+
n∑

l=1

√
p(i′r2n−k

1)n+l( 1)3n+l det((L2n
n+l)

c).

If ir2n−k
< i′r2n−k

, then
√

pi′r2n−k
n appears only once in the entries of L. In addition for the case of

ir2n−k
> i′r2n−k

,
√
p(ir2n−k

1)n+1 appears only once in the entries of L. By Proposition 6.3, to prove

det(L) ̸= 0, it suffices to show that det((L2n
2n)

c) ̸= 0 or det((L2n
1 )c) ̸= 0.

Assume that ir2n−k
< i′r2n−k

. Then we only need to show that det((L2n
2n)

c) ̸= 0. Expanding det((L2n
2n)

c)

along the last row and repeat the previous procedure, we can reduce the problem to prove a smaller

matrix to be nonsingular. Obviously, the procedure can be repeated many times.

Set n0 = #{u : iu > i′u, u = r1, r2, . . . , r2n k}. There are three cases.

(i) n0 6 n and 2n k n0 6 n. In this case, the previous procedure can be executed 2n k 1 times

and we reduce the problem to prove that

det((Lk+2,...,2n
1,...,n0,n0+k+2,...,2n)

c) ̸= 0, if ir1 < i′r1 ,

or

det((Lk+2,...,2n
1,...,n0 1,n0+k+1,...,2n)

c) ̸= 0, if ir1 > i′r1 ,

i.e.,

det(L1,...,k+1
n0+1,...,n0+k+1) ̸= 0 or det(L1,...,k+1

n0,...,n0+k) ̸= 0. (6.3)

Since k + 1 6 n, it is easy to see that entries of L1,...,k+1
n0+1,...,n0+k+1 and L1,...,k+1

n0,...,n0+k are pairwise different,

respectively. By Lemma 6.4, both inequalities in (6.3) are true.

(ii) n0 > n. In this case, there is an integer n1 > 2 such that irn1
> i′rn1

and #{u : iu > i′u, u =

rn1 , rn1+1, . . . , r2n k} = n. By repeating the procedure 2n k n1 + 1 times, we reduce the problem

to show that det((Ln1+k,...,2n
1,...,n,n1+n+k,...,2n)

c) ̸= 0, which is equivalent to det(L1,...,n1+k 1
n+1,...,n+n1+k 1) ̸= 0. Since

n1 + k 1 6 n, entries of L1,...,n1+k 1
n+1,...,n+n1+k 1 are pairwise different. Similar to Case (i), we can prove that

the above inequality is true.

(iii) 2n k n0 > n. In this case, we can find some integer n2 > 2 such that irn2
< i′rn2

and

#{u : iu < i′u, u = rn2 , rn2+1, . . . , r2n k} = n. By repeating the procedure 2n k n2 + 1 times, we

reduce the problem to show that det((Ln2+k,...,2n
1,...,n k n2+1,n+1,...,2n)

c) ̸= 0, which can be proved similarly to

Case (ii). This completes the proof.

For the case of N m > 2n 1, we get a similar result.

Theorem 6.7. Let {pi}16i6(n 1)N be a sequence of different prime numbers, where N > 2n and n > 2.

For 1 6 i 6 N , let φi = (1,
√
p(i 1)(n 1)+1,

√
p(i 1)(n 1)+2, . . . ,

√
pi(n 1))

∗. Then

(i) {φi}16i6N is an almost robust frame with respect to m-erasures whenever N m > n+ 1.

(ii) {φi}16i6N is a totally robust frame with respect to m-erasures whenever N m > 2n 1.

Proof. (i) First, we show that {φi}16i6N is of uniform excess. To see this, fix some 1 6 i1 < · · ·
< in 6 N . We see from Lemma 6.4 that the matrix (φi1 , . . . , φin) is nonsingular. Hence {φil}16l6n is a

basis for H. Therefore, {φi}16i6N is of uniform excess.

Similar to Theorem 6.5 we can prove that {φi}16i6N is almost robust with respect to m-erasures

whenever m 6 N n 1. We leave the details to interested readers.

(ii) Fix some 1 6 i1 < · · · < iN m 6 N and 1 6 i′1 < · · · < i′N m 6 N with

(i1, . . . , iN m) ̸= (i′1, . . . , i
′
N m).

It suffices to show that for any x, y ∈ H, if

T i1,...,iN−mx = T i′1,...,i
′
N−my, (6.4)
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then x = y. There are two cases.

Case 1. #{l : il = i′l} > n. Similar to Theorem 6.6, we can prove that x = y.

Case 2. #{l : il = i′l} < n. In this case, there exist some 0 6 k 6 n 1, 1 6 s1 < · · · < sk 6 N m

and 1 6 r1 < · · · < r2n 1 k 6 N m such that {r1, . . . , r2n 1 k} ∩ {s1, . . . , sk} = ∅, isl = i′sl for

1 6 l 6 k and irl ̸= i′rl for 1 6 l 6 2n 1 k. By (6.4), we have(
T is1 ,...,isk

T ir1 ,...,ir2n−1−k

)
x =

(
T i′s1

,...,i′sk

T
i′r1

,...,i′r2n−1−k

)
y. (6.5)

Let

L =

(
T is1 ,...,isk T is1 ,...,isk

T ir1 ,...,ir2n−1−k T
i′r1 ,...,i

′
r2n−1−k

)
.

Then (6.5) is equivalent to

L

(
x

y

)
= 0. (6.6)

Denote the column vectors of L by ζi, 1 6 i 6 2n. Then we have ζ1 = ζn+1 = (1, . . . , 1)∗. We

rewrite (6.6) as

ζ1x1 + ζ2x2 + · · ·+ ζnxn (ζn+1y1 + ζn+2y2 + · · ·+ ζ2nyn) = 0,

i.e.,

ζ2x2 + · · ·+ ζnxn + ζn+1(x1 y1) ζn+2y2 · · · ζ2nyn = 0.

If ζ2, . . . , ζ2n are linearly independent, then the above equation implies that

x2 = · · · = xn = x1 y1 = y2 = · · · = yn = 0.

Hence x = y.

Now it remains to prove that ζ2, . . . , ζ2n are linearly independent. Let K = (ζ2, ζ3, . . . , ζ2n). Then K

is a (2n 1)× (2n 1) matrix. It suffices to prove that det(K) ̸= 0. Observe that K = (A e B) , where

A =



√
p(is1 1)(n 1)+1 · · · √

pis1 (n 1)

...
. . .

...
√p(isk 1)(n 1)+1 · · · √pisk (n 1)

√
p(ir1 1)(n 1)+1 · · · √

pir1 (n 1)

...
. . .

...√
p(ir2n−1−k

1)(n 1)+1 · · ·
√
pir2n−1−k

(n 1)


,

e = (1, . . . , 1)∗,

B =



√
p(is1 1)(n 1)+1 · · · √

pis1 (n 1)

...
. . .

...
√p(isk 1)(n 1)+1 · · · √pisk (n 1)√
p(i′r1 1)(n 1)+1 · · · √

pi′r1 (n 1)

...
. . .

...√
p(i′r2n−1−k

1)(n 1)+1 · · · √pi′r2n−1−k
(n 1)


.

Let n0 = #({u : iu > i′u, u = r1, r2, . . . , r2n 1 k}). There are three cases.

(i) n0 6 n 1 and 2n 1 k n0 6 n 1.



Han D G et al. Sci China Math January 2018 Vol. 61 No. 1 171

As Case (i) in the proof of Theorem 6.6, we reduce the problem to prove that

det(K1,...,k+1
n0+1,...,n0+k+1) ̸= 0 or det(K1,...,k+1

n0,...,n0+k) ̸= 0. (6.7)

Since k 6 n 1, n0 + 1 6 n and n0 + k > n, one column of K1,...,k+1
n0+1,...,n0+k+1 or K1,...,k+1

n0,...,n0+k is (1, . . . , 1)∗

and entries in other columns consist of different numbers. By Lemma 6.4, both inequalities in (6.7) are

true.

(ii) n0 > n 1.

In this case, there is an integer n1 > 2 such that

irn1
> i′rn1

and #({u : iu > i′u, u = rn1 , rn1+1, . . . , r2n 1 k}) = n 1.

As Case (ii) in the proof of Theorem 6.6, we reduce the problem to prove that det(L1,...,n1+k 1
n,...,n+n1+k 2) ̸= 0.

Since n1 + k 1 6 n, we see from Lemma 6.4 that the above inequality is true.

(iii) 2n 1 k n0 > n 1.

Again, the conclusion can be proved similarly to Case (iii) in the proof of Theorem 6.6. We omit the

details.
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