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It is known that the Naimark complementary frames for a given frame are not 
necessarily unique up to the similarity. In this paper we introduce the concept of 
joint complementary frame pairs for a given dual frame pair, and prove that they 
are unique up to the joint similarity. As an application, we give a necessary and 
sufficient condition under which two Naimark complementary frames are similar. 
For different pairs of dual frames, we present an operator parameterization for their 
joint complementary frame pairs.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The concept of frames first appeared in the late 40’s and early 50’s (see [1,11,12]) for the purpose of 
nonharmonic expansions, and the development of wavelet theory during the last couple of decades injected 
new ideas and led to extensive research to the theory of frames and related topics (cf. [4,5,8–10]). Recall 
that a sequence (xn)n∈N of elements in a Hilbert space H is called a frame for H if there are constants 
A, B > 0 so that

A‖f‖2 ≤
∑
n∈N

|〈f, xn〉|2 ≤ B‖f‖2, for all f ∈ H.

The constants A and B are called the lower and upper frame bounds, respectively. A frame is called tight
if A = B and normalized tight or Parseval if A = B = 1.

Let (xn) be a frame for H. Its frame operator S : H −→ H is the bounded invertible linear operator 
defined by Sf =

∑
n∈N 〈f, xn〉xn. It is easy to verify that S = θ∗XθX , where θX : H −→ l2(N ), θX(f) =
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∑
n∈N 〈f, xn〉en, is the analysis operator of (xn) and its adjoint θ∗X is the synthesis operator of (xn) (here 

(en) is the standard orthonormal basis of l2(N )). Let (xn, yn) be a pair of frames for H. If for any f ∈ H

we have that

f =
∑
n∈N

〈f, yn〉xn,

then we call (xn, yn) a pair of dual frames or dual frame pair for H. It is well-known that the positions 
of (xn) and (yn) are interchangeable. Dual frame pairs provide signal decomposition and reconstruction 
schemes and so they are important tools for applications. Usually, for a given frame (xn), there are infinite 
many frames (yn) such that (xn, yn) form a pair of dual frames, among which there is a special one called 
the canonical or standard dual frame (x∗

n) of (xn), where x∗
n = S−1xn. Clearly if T is a bounded invertible 

operator and wn = Txn, then θW = θXT ∗ and w∗
n = (T ∗)−1x∗

n.
Frames are generalizations of Riesz bases, and it is known that a frame is a Riesz basis if and only if 

its analysis operator is surjective. Moreover, there is a nice geometric interpretation of frames in terms 
of dilations: Normalized tight frames are precisely the orthogonal compressions of orthonormal bases, and 
frames are the orthogonal compressions of Riesz bases for larger Hilbert spaces. This geometric interpretation 
has many natural generalization to various setups (cf. [2,3,6,7]). Casazza, Han and Larson studied in [3] the 
dilations for pairs of dual frames and proved that (xn, yn) is a pair of dual frames for a Hilbert space H if 
and only if there exists a Hilbert space K ⊃ H and a pair of dual Riesz bases (zn, z∗n) such that xn = PHzn
and yn = PHz∗n, where PH is the orthogonal projection from K onto H, and (zn, z∗n) is called a dual Riesz 
basis pair dilation for the dual frame pair (xn, yn).

The study of dilations of frames involves the concepts of (strongly) complementary frames and joint com-
plementary frames, whose definitions will be given in the next section. In terms of (strongly) complementary 
frames, the dilation of a single frame can be rephrased as the existence of a (strongly) complementary frame, 
and the dilation of a pair of dual frames can be rephrased as the existence of a pair of joint complementary 
frames. It was pointed out in [8] that for a given frame, its strongly complementary frame is unique up to 
similarity. However, the complementary frames of a given frame are not necessarily similar anymore (see 
Example B in [8]). In this paper, we show that all the pairs of joint complementary frames for a given pair of 
dual frames are actually unique up to the joint similarity. In other words, we do have the uniqueness if take 
the dual frame into the consideration of the dilation. As an application of this result, we obtain a necessary 
and sufficient condition for two complementary frames of a given frame to be similar. By our uniqueness 
result of the joint complementary frame pairs for a given dual frame pair, we obtain that the joint similarity 
can be realized by a diagonal operator IH ⊕ T . This leads to the question of characterizing the operators 
which induce the joint similarity for different pairs of dual frame dilations. We will answer this question in 
Section 3 by presenting an operator parameterization of the Riesz basis dilation pairs for different pairs of 
dual frames (Theorem 3.7 and Theorem 3.6).

2. Joint similarity for complementary frame pairs

In this section, we classify the dilations of a fixed dual frame pair and examine the uniqueness of dual 
frame pair dilations in terms of joint similarity for their joint complementary frames.

Definition 2.1. Suppose that (xn) and (yn) are frames for Hilbert spaces H and M , respectively.

(i) If (xn ⊕ yn) is a frame for H ⊕ M , then we call (xn) and (yn) are disjoint or call (xn, yn) a pair of 
disjoint frames.

(ii) If (xn⊕ yn) is a Riesz basis for H ⊕M , then we call (xn, yn) a pair of complementary frames, and (yn)
is called an (Naimark) complementary frame of (xn).
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(iii) If there exist invertible operators A ∈ B(H), B ∈ B(M) such that (Axn ⊕ Byn) is a normalized tight 
frame for H ⊕ M , then we call (xn) and (yn) are strongly disjoint or call (xn, yn) a pair of strongly 
disjoint frames. If (Axn ⊕ Byn) is an orthonormal basis for H ⊕ M , then we call (xn, yn) a pair of 
strongly complementary frames and (yn) is called a strongly complementary frame of (xn).

(iv) If span{xn ⊕ yn} is dense in H ⊕M , then we call (xn) and (yn) are weakly disjoint or call (xn, yn) a 
pair of weakly disjoint frames.

The following lemma characterizes different kinds of disjoint frames in terms of the range space properties 
of their analysis operators [8]:

Lemma 2.2. Let (xn) and (yn) be frames for Hilbert spaces H and M respectively. Let θX and θY be the 
analysis operators of (xn) and (yn) respectively. Then

(i) (xn) and (yn) are strongly disjoint if and only if θX(H)⊥θY (M).
(ii) (xn, yn) is a pair of strongly complementary frames if and only if θX(H) ⊕ θY (M) = l2(N ).
(iii) (xn) and (yn) are disjoint if and only if θX(H) ∩ θY (M) = {0} and θX(H) + θY (M) is a closed set in 

l2(N ).
(iv) (xn) and (yn) are weakly disjoint if and only if θX(H) ∩ θY (M) = {0}.
(v) (xn, yn) is a pair of complementary frames if and only if θX(H) ∩θY (M) = {0} and θX(H) +θY (M) =

l2(N ).

The well-known (Naimark) dilation theorem (cf. [8]) tells us that every frame can be dilated (lifted) to a 
Riesz basis, and consequently complementary frames exist for every frame. Casazza, Han and Larson proved 
in [3] the following much stronger version of the dilation theorem by considering the dilations of dual frame 
pairs. This is also true for Banach space frames (framings) and so Banach space techniques are heavily 
involved in the proofs in [3]. Here we include a more transparent proof only for the case of Hilbert space 
frames since some of the ideas used in the proof will be needed in the sequel (e.g. Lemma 3.2).

Theorem 2.3. Suppose (xn, yn) is a pair of dual frames for a Hilbert space H. Then there exists a Hilbert 
space K ⊇ H and a Riesz basis (zn) for K such that xn = PHzn and yn = PHz∗n, where PH denotes the 
orthogonal projection from K onto H and (z∗n) denotes the dual Riesz basis of (zn).

Proof. Let θY be the analysis operator of (yn), Q : l2(N ) −→ θY (H) be the orthogonal projection from 
l2(N ) onto θY (H). Let K = H ⊕ θY (H)⊥ = H ⊕ M , zn = xn ⊕ Q⊥en, where (en) denotes the standard 
orthonormal basis of l2(N ). Now we verify that (zn) satisfies the requirements.

Firstly, we show that (zn) is a Riesz basis for K. Let Q⊥en = wn, let θX , θW be the analysis operators of 
(xn) and (wn) respectively. We want to show that θX(H) ∩ θW (M) = {0}. Since for any y ∈ M = θY (H)⊥, 
we have

θW (y) =
∑
n∈N

〈y, wn〉en =
∑
n∈N

〈y,Q⊥en〉en

=
∑
n∈N

〈Q⊥y, en〉en =
∑
n∈N

〈y, en〉en = y.

So θW (M) = M = θY (H)⊥ = Ker(θ∗Y ). Since (xn, yn) is a dual frame pair, we have

x =
∑

〈x, xn〉yn = θ∗Y θX(x).

n∈N
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If there exist x0 ∈ H, y0 ∈ M such that θX(x0) = θW (y0), then

x0 = θ∗Y θX(x0) = θ∗Y θW (y0) = 0.

Hence θX(x0) = 0. So θX(H) ∩ θW (M) = {0}. This tells us that (xn) and (wn) are weakly disjoint by 
Lemma 2.2. Now we show that the range space of the analysis operator of (xn ⊕ wn) is l2(N ), i.e.,

θX(H) + θW (M) = θX(H) + M = l2(N ).

Since for any ξ ∈ l2(N ), we have ξ = ξ − θXθ∗Y ξ + θXθ∗Y ξ. Note that

θ∗Y (ξ − θXθ∗Y ξ) = θ∗Y ξ − θ∗Y θXθ∗Y ξ = θ∗Y ξ − θ∗Y ξ = 0.

Thus ξ − θXθ∗Y ξ ∈ Ker(θ∗Y ) = M and so ξ ∈ θX(H) + M . This implies that θX(H) + M � l2(N ), and 
therefore we get θX(H) +M = l2(N ). By Lemma 2.2 we have that (xn⊕Q⊥en) is a Riesz basis for H ⊕M .

Secondly, we show that z∗n = yn ⊕ vn. Let z∗n = un ⊕ vn. We verify that un = yn. Since (zn, z∗n) is a dual 
Riesz basis pair for K = H ⊕M , for any y ∈ H we have

y ⊕ 0 =
∑
n∈N

〈y ⊕ 0, un ⊕ vn〉xn ⊕Q⊥en =
∑
n∈N

〈y, un〉xn ⊕Q⊥en

=
∑
n∈N

〈y, un〉xn ⊕
∑
n∈N

〈y, un〉Q⊥en.

So, for any y ∈ H, 
∑

n∈N 〈y, un〉Q⊥en = 0 and 
∑

n∈N 〈y, un〉xn = y. Hence, for any y ∈ H we have

y ⊕ 0 =
∑
n∈N

〈y, un〉(xn ⊕Q⊥en).

On the other hand, y =
∑

n∈N 〈y, yn〉xn and

∑
n∈N

〈y, yn〉Q⊥en = Q⊥(
∑
n∈N

〈y, yn〉en) = 0.

It follows that y⊕ 0 =
∑

n∈N 〈y, yn〉(xn ⊕Q⊥en). Since (xn⊕Q⊥en) is a Riesz basis, the expansion of y⊕ 0
is unique. Thus 〈y, un〉 = 〈y, yn〉 for any y ∈ H and so un = yn for any n ∈ N . �

Recall that two frame (xn) and (yn) for Hilbert spaces H and M are called similar or equivalent if there 
exists an invertible operator T ∈ B(H, M) such that yn = Txn.

Lemma 2.4. [8] Let (xn) and (yn) be normalized tight frames for Hilbert spaces H and M respectively. Let 
θX and θY be analysis operators for (xn) and (yn) respectively. Then (xn) and (yn) are unitary equivalent 
if and only if θX and θY have the same range. Likewise, two frames are similar if and only if their analysis 
operators have the same range.

For the purpose of classifying dual frame pair dilations we introduce the following definition:

Definition 2.5. Suppose that (xn, yn) and (un, vn) are two pairs of frames. If there exist bounded invertible 
operators T1 and T2 such that un = T1xn and vn = T2yn, then we call (xn, yn) and (un, vn) are joint similar
by (T1, T2).
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Lemma 2.6. (i) Suppose that (xn) is a frame for a Hilbert space H. Suppose M is a Hilbert space and 
T ∈ B(H, M) with T being bounded invertible. If yn = Txn, then (yn) is a frame for M and y∗n = (T ∗)−1x∗

n.
(ii) Suppose that (xn) and (yn) are frames for H. If (yn) is similar (xn) by T , then (yn, y∗n) is joint 

similar to (xn, x∗
n) by (T, (T ∗)−1).

Proof. Clearly (ii) follows from (i). To prove (i), suppose θX and θY are the analysis operators for (xn)
and (yn), respectively, and SX and SY are their frame operators. Then it is easy to check that θY = θXT ∗. 
Hence SY = θ∗Y θY = Tθ∗XθY T

∗ = TSXT ∗. So

y∗n = S−1
Y yn = (T ∗)−1S−1

X T−1Txn = (T ∗)−1S−1
X xn = (T ∗)−1x∗

n. �
Definition 2.7. Suppose (xn, yn) is a pair of dual frames for a Hilbert space H. If (un) and (vn) are frames 
for a Hilbert spaces M such that (zn, z∗n) is a pair of dual Riesz bases for H ⊕M with zn = xn ⊕ un and 
z∗n = yn ⊕ vn, then (un, vn) is called a pair of joint complementary frames of (xn, yn).

Our main result of this section is to operator parameterize all the dilations of a given dual frame pair 
and show that joint complementary frame pairs are unique up to joint similarity. We divide the proof into 
two lemmas.

Lemma 2.8. Assume (xn, yn) is a pair of dual frames for a Hilbert space H and (u1
n, v

1
n) is a pair of joint 

complementary frames of (xn, yn) for a Hilbert space M . If (u2
n, v

2
n) is a pair of frames for a Hilbert space 

N which is joint similar to (u1
n, v

1
n) by (T, (T ∗)−1) with T being an invertible operator in B(M, N), then 

(u2
n, v

2
n) is a pair of joint complementary frames of (xn, yn).

Proof. Let z1
n = xn ⊕ u1

n and (z1
n)∗ = yn ⊕ v1

n. Since (u1
n, v

1
n) is a pair of joint complementary frames 

of (xn, yn) for the Hilbert space M , by definition (z1
n, (z1

n)∗) is a pair of dual Riesz bases for H ⊕M . Let 
z2
n = xn⊕u2

n. Since (u2
n, v

2
n) is joint similar to (u1

n, v
1
n) by (T, (T ∗)−1), we have u2

n = Tu1
n and v2

n = (T ∗)−1v1
n. 

So

z2
n = xn ⊕ u2

n = (IH ⊕ T )(xn ⊕ u1
n) = (IH ⊕ T )z1

n,

which implies that (z2
n) is a Riesz basis for H ⊕N . Since (z2

n)∗ = (IH ⊕ (T ∗)−1)(z1
n)∗ by Lemma 2.6, hence

(z2
n)∗ = (IH ⊕ (T ∗)−1)(yn ⊕ v1

n) = yn ⊕ (T ∗)−1v1
n = yn ⊕ v2

n.

Thus (u2
n, v

2
n) is a pair of joint complementary frames of (xn, yn). �

Lemma 2.9. Assume (xn, yn) is a pair of dual frames for a Hilbert space H. If (u1
n, v

1
n) and (u2

n, v
2
n) are two 

pairs of joint complementary frames of (xn, yn) for a Hilbert space M and N , respectively, then there exists 
an invertible operator T ∈ B(M, N) such that (u2

n, v
2
n) is joint similar to (u1

n, v
1
n) by (T, (T ∗)−1).

Proof. Suppose z1
n = xn ⊕ u1

n, (z1
n)∗ = yn ⊕ v1

n and z2
n = xn ⊕ u2

n, (z2
n)∗ = yn ⊕ v2

n such that (z1
n, (z1

n)∗)
and (z2

n, (z2
n)∗) are pairs of Riesz basis dilations of (xn, yn) on H ⊕ M and H ⊕ N respectively. Let 

θX , θY , θU1 , θU2 , θV 1 , θV 2 , θZ1 , θZ2 be the analysis operators of (xn), (yn), (u1
n), (u2

n), (v1
n), (v2

n), (z1
n) and 

(z2
n) respectively. Since (z1

n, (z1
n)∗) is a dual Riesz basis pair on H ⊕M , for any y ∈ H we have

y ⊕ 0 =
∑
n∈N

〈y ⊕ 0, (z1
n)∗〉z1

n =
∑
n∈N

〈y ⊕ 0, yn ⊕ v1
n〉xn ⊕ u1

n

=
∑

〈y, yn〉xn ⊕ u1
n =

∑
〈y, yn〉xn ⊕

∑
〈y, yn〉u1

n.

n∈N n∈N n∈N
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So 
∑

n∈N 〈y, yn〉u1
n = 0. Hence (yn, u1

n) are strongly disjoint and so θY (H)⊥θU1(M) by Lemma 2.2. This 
implies that θU1(M) � θY (H)⊥.

Next we show that θY (H)⊥ � θU1(M). If there exists ξ ∈ θY (H)⊥ = Kerθ∗Y , but ξ /∈ θU1(M), we claim 
that ξ /∈ θX(H) + θU1(M). In fact, if there exists x0 ∈ H, y0 ∈ M such that ξ = θX(x0) + θU1(y0), then

0 = θ∗Y (ξ) = θ∗Y θX(x0) + θ∗Y θU1(y0) = x0

So ξ = θX(x0) + θU1(y0) = θU1(y0) ∈ θU1(M), which contradicts with the assumption that ξ /∈ θ1
U (M). 

Thus ξ /∈ θX(H) + θU1(M). On the other hand, since (z1
n) is a Riesz basis for H ⊕M , we get

θZ1(H ⊕M) = θX(H) + θU1(M1) = l2(N ).

This shows that ξ ∈ θX(H) + θU1(M), which leads to the contradiction. Thus we have θY (H)⊥ � θU1(M), 
and so θY (H)⊥ = θU1(M). Similarly, we have θY (H)⊥ = θU2(N). Therefore, θU1(M) = θU2(N). Hence (u1

n)
is similar to (u2

n) by Lemma 2.4. Let T ∈ B(M, N) be the bounded invertible operator such that u2
n = Tu1

n. 
Since

z2
n = xn ⊕ u2

n = (IH ⊕ T )(xn ⊕ u1
n) = (IH ⊕ T )z1

n,

we have

(z2
n)∗ = (IH ⊕ (T ∗)−1)(z1

n)∗ = (IH ⊕ (T ∗)−1)(yn ⊕ v1
n) = yn ⊕ (T ∗)−1v1

n,

which implies that v2
n = (T ∗)−1v1

n. So (u2
n, v

2
n) is joint similar to (u1

n, v
1
n) by (T, (T ∗)−1). �

Remark 2.10. (1). By Lemma 2.8 and Lemma 2.9 we get that all the dilations of a given dual frame pair 
can be parameterized by diagonal operators IH ⊕T with T be invertible operators from some Hilbert space 
to another.

(2). Lemma 2.9 also show that joint complementary frame pairs are unique up to joint similarity. For 
more clarity we rephrase it as the following theorem.

Theorem 2.11. Suppose that (xn, yn) is a dual frame pair for a Hilbert space H. Then the joint complemen-
tary frame pairs of (xn, yn) are unique up to joint similarity.

As we pointed out in the introduction the complementary frames for a given frame is not unique up 
to the similarity. However, Theorem 2.11 tells us that when taking its dual frame into the consideration, 
then we do have the uniqueness for the dilations. Moreover, from Theorem 2.11 we obtain the following 
conditions under which two complementary frames are similar.

Corollary 2.12. Suppose (xn) is a frame for a Hilbert space H and (un), (u′
n) are two complementary frames 

for (xn) on a Hilbert space M and N respectively, i.e., (zn) = (xn ⊕ un) and (z′n) = (xn ⊕ u′
n) are Riesz 

bases for H ⊕M and H ⊕N respectively. Then (un) and (u′
n) are similar if and only if PHz∗n = PH(z′n)∗.

3. Operator parameterizations of dilations of dual frame pairs

While Section 2 is focused on the classifications of dilations when a dual frame pair is fixed, in this section 
we work on the case with different dual frame pairs. By building the connections of joint complementary 
frame pairs for a dual frame pair (xn, yn) with the joint complementary frame pairs for the canonical dual 
frame pair (xn, x∗

n), we establish an operator parameterization for all the complementary frame pairs.
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Lemma 3.1. [3] Suppose (xn, yn) is a dual frame pair for a Hilbert space H and (zn, wn) is a dual frame pair 
for a Hilbert space M . If (xn, wn) and (yn, zn) are pairs of strongly disjoint frames, then (xn ⊕ zn, yn ⊕wn)
is a dual frame pair for H ⊕M . Hence, if (xn ⊕ zn) is a Riesz basis, then (yn ⊕ wn) is a Riesz basis.

Lemma 3.2. Suppose that (xn, x∗
n) is a canonical dual frame pair for a Hilbert space H. Let Q be the 

orthogonal projection from l2(N ) onto θX(H) and zn = xn ⊕ Q⊥en, z∗n = x∗
n ⊕ Q⊥en. Then (zn, z∗n) is a 

dual Riesz basis pair for K = H ⊕ θX(H)⊥, hence (zn, z∗n) is a dual Riesz basis dilation for (xn, x∗
n).

Proof. By the proof of Theorem 2.3, we know that both (zn) and (z∗n) are Riesz bases for K. It is clear 
that (xn, Q⊥en) and (x∗

n, Q
⊥en) are pairs of strongly disjoint frames. Thus, by Lemma 3.1, we have that 

(zn, z∗n) is a pair of dual Riesz basis dilation of (xn, x∗
n). �

For our convenience, the dual Riesz basis pair constructed in Lemma 3.2 will be refereed as the natural 
pair of dual Riesz basis dilation for (xn, x∗

n).

Lemma 3.3. Suppose that (xn, x∗
n) is a canonical dual frame pair for a Hilbert space H and (zn, z∗n) is the 

natural pair of dual Riesz basis dilation of (xn, x∗
n) on the Hilbert space K = H ⊕ M which is defined in 

Lemma 3.2. Suppose (xn, yn) is another dual frame pair for H. Then, there exists A ∈ B(H, M) such that 

(z1
n, (z1

n)∗) is a pair of dual Riesz basis dilation of (xn, yn) on K, where z1
n = Tzn, for T =

(
IH 0
A IM

)
∈

B(K).

Proof. Let ξn = x∗
n − yn. Then (ξn) is a Bessel sequence (i.e., a sequence satisfies the right-hand side 

inequality in the definition of frames). It is easy to check that for any x ∈ H, θξ(x) ∈ M . Let A = θξ ∈
B(H, M). Since zn = xn ⊕Q⊥en, we have

Tzn =
(
IH 0
A IM

)(
xn

Q⊥en

)
=

(
xn

Axn + Q⊥en

)
.

So PH(Tzn) = xn. Since

(T ∗)−1 =
(
IH 0
0 IM

)
−
(

0 A∗

0 0

)
=

(
IH −A∗

0 IM

)
,

we have

(T ∗)−1z∗n =
(
IH −A∗

0 IM

)(
x∗
n

Q⊥en

)
=

(
x∗
n −A∗Q⊥en

Q⊥en

)

Thus for any x, y ∈ H we have
∑
n∈N

〈x, ξn〉〈xn, y〉 =
∑
n∈N

〈x, x∗
n − yn〉〈xn, y〉

= 〈(
∑
n∈N

〈x, x∗
n〉xn −

∑
n∈N

〈x, yn〉xn), y〉

= 〈x− x, y〉 = 0.

This shows that θξ(H)⊥θX(H) and so Range(A) = Range(θξ) ⊂ θX(H)⊥. Thus Q⊥A = A, and so A∗Q⊥ =
A∗ = θ∗ξ . Therefore,

A∗Q⊥en = θ∗ξen = ξn = x∗
n − yn.
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So x∗
n − A∗Q⊥en = yn, which implies that PH((Tzn)∗) = yn. Therefore (z1

n, (z1
n)∗) is a pair of dual Riesz 

basis dilation of (xn, yn) on K. �
We need the following slightly more general statement and its proof is almost identical to the proof of 

Lemma 3.3.

Lemma 3.4. Suppose that (xn, x∗
n) is a canonical dual frame pair for a Hilbert space H and (zn, z∗n) is the 

natural pair of dual Riesz basis dilation of (xn, x∗
n) on the Hilbert space K = H ⊕ M which is defined in 

Lemma 3.2. Suppose (xn, yn) is another dual frame pair for H and N is a Hilbert space and B is invertible 
in B(M, N). Then, there exists A ∈ B(H, N) such that (z1

n, (z1
n)∗) is a pair of dual Riesz basis dilation of 

(xn, yn) on H ⊕N , where z1
n = Tzn, for T =

(
IH 0
A B

)
∈ B(H ⊕M, H ⊕N).

Proof. Let ξn = x∗
n − yn and A = Bθξ. Then the rest of the proof is just a simple modification for the 

corresponding parts of proofs in Lemma 3.3. �
The following lemma shows that a bounded linear operator that maps the natural dual Riesz basis dilation 

pair for the canonical dual frames pair to a Riesz basis dilation pair for another pair of dual frames has to 
be in the form in Lemma 3.4.

Lemma 3.5. Suppose (xn, x∗
n) is a canonical dual frame pair and (xn, yn) is another dual frame pair for a 

Hilbert space H. Suppose (zn, z∗n) is the natural pair of dual Riesz basis dilation of (xn, x∗
n) on K = H ⊕M

which is defined in Lemma 3.2, (z′n, (z′n)∗) is a dual Riesz basis dilations of (xn, yn) on K ′ = H ⊕ N . If 

z′n = Tzn, where T ∈ B(H ⊕ M, H ⊕ N) is invertible, then T =
(
IH 0
A B

)
for some A ∈ B(H, N) and 

B ∈ B(M, N).

Proof. Let T0 =
(
IH 0
θξ IM

)
, where θξ is the analysis operator of Bessel sequence (x∗

n − yn) and let z′′n =

T0zn. Then (z′′n, (z′′n)∗) is a pair of Riesz basis dilation of (xn, yn) on K = H ⊕M by Lemma 3.3. Suppose 
z′n = xn⊕u′

n and z′′n = xn⊕u′′
n. Since (z′n, (z′n)∗) is a pair of Riesz basis dilation of (xn, yn) on H⊕N , there 

exists an invertible operator B ∈ B(M, N) such that Bu′′
n = u′

n for any n ∈ N by Lemma 2.9. It follows 
that

(
IH 0
0 B

)
z′′n =

(
IH 0
0 B

)(
xn

u′′
n

)
=

(
xn

u′
n

)
= z′n = Tzn.

Since z′′n = T0zn, we have

(
IH 0
0 B

)
T0zn =

(
IH 0
0 B

)
z′′n = Tzn.

Since (zn) is a Riesz basis for H ⊕M , it implies that

T =
(
IH 0
0 B

)
T0 =

(
IH 0
0 B

)(
IH 0
θξ IM

)
=

(
IH 0
Bθξ B

)
. �

Now we are ready to state and prove our main results of this section.

Theorem 3.6. Let (xn, yn) and (xn, vn) be two dual frame pairs for a Hilbert space H, and N1, N2 are be 
two Hilbert spaces. Suppose (un, u∗

n) is a pair of Riesz basis dilation of (xn, yn) on H ⊕ N1 and B is an 
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invertible operator in B(N1, N2). Then, there exists A ∈ B(H, N2) such that (wn, w∗
n) is a pair of Riesz 

basis dilation of (xn, vn) on H ⊕N2, where, wn = Tun, for T =
(
IH 0
A B

)
∈ B(H ⊕N1, H ⊕N2).

Proof. By Lemma 3.5, there exists A1 ∈ B(H, N1) and B ∈ B(M, N1) such that un = T1zn, where 

T1 =
(
IH 0
A1 B1

)
and (zn, (zn)∗) is the natural pair of Riesz basis dilation of (xn, x∗

n) on H ⊕ M . Define 

B2 ∈ B(M, N2) by B2 = BB1. Then, by Lemma 3.4, there exists A2 ∈ B(H, N2) such that (wn, w∗
n) is a 

Riesz basis dilation of (xn, vn), where wn = T2zn, and T2 =
(
IH 0
A2 B2

)
. Finally, wn = T2zn = T2(T1)−1un =(

IH 0
A2 −BA1 B

)
, so the invertible A ∈ B(H, N2) is A = A2 −BA1. �

Theorem 3.7. Suppose that (xn, yn) and (xn, vn) are two dual frame pairs for a Hilbert space H. Let (un, u∗
n)

be a pair of Riesz basis dilation of (xn, yn) on H ⊕ N1 and (wn, w∗
n) be a pair of Riesz basis dilation of 

(xn, vn) on H ⊕N2. If T is the invertible operator such that wn = Tun for all n ∈ N , then T =
(
IH 0
A B

)

for some A ∈ B(H, N2) and B ∈ B(N1, N2).

Proof. Let ξ1
n = x∗

n−yn, ξ2
n = x∗

n−vn. Then (ξ1
n) and (ξ2

n) are Bessel sequences for H and θξ1 , θξ2 ∈ B(H, M). 
Let (zn, z∗n) be the natural pair of dual Riesz basis dilation of (xn, x∗

n) on H ⊕Q⊥l2(N ) = H ⊕M which is 
defined in Lemma 3.2. By Lemma 3.5, there exists invertible operator A1 in B(M, N1), invertible operator 
A2 in B(M, N2) and

T1 =
(

IH 0
A1θξ1 A1

)
, T2 =

(
IH 0

A2θξ2 A2

)

such that un = T1zn, wn = T2zn. So for any n ∈ N we have

T2zn = wn = Tun = TT1zn.

Thus T2 = TT1. So

T = T2T
−1
1 =

(
IH 0

A2θξ2 A2

)(
IH 0
−θξ1 A−1

1

)

=
(

IH 0
A2(θξ2 − θξ1) A2A

−1
1

)
. �
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