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Abstract We consider the problem of characterizing the bounded linear operator multi-
pliers on L2(R) that map Gabor frame generators to Gabor frame generators. We prove
that a functional matrix M(t) = [fij (t)]m×m (where fij ∈ L∞(R)) is a multiplier for Parse-
val Gabor multi-frame generators with parameters a, b > 0 if and only if M(t) is unitary
and M∗(t)M(t + 1

b
) = λ(t)I for some unimodular a-periodic function λ(t). As a special

case (m = 1) this recovers the characterization of functional multipliers for Parseval Gabor
frames with single function generators.
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1 Introduction

Motivated by the characterization of functional wavelet multipliers in the Wutam Con-
sortium paper [11], Gu and Han [8] investigated the functional Gabor frame multipliers
and obtained the following characterization: a L∞-function h on R is a functional Gabor
frame multiplier for the time-frequency lattice aZ × bZ if and only if it is unimodular and
h(t)/h(t +1/b) is a-periodic, where by a functional Gabor frame multiplier h we mean that
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hg is a Parseval Gabor frame generator for L2(R) whenever g is a Parseval Gabor frame gen-
erator for L2(R). It is natural to ask if there is a similar characterization for Gabor frames
with multi-generators in view of many studies of Gabor multi-frames (cf. [3, 4, 6, 7, 9, 10]
and the references therein). The purpose of this note is to present such a generalization.

Given a, b > 0 and g ∈ L2(R). The Gabor (or Weyl-Heisenberg) family (g, a, b) is de-
fined to be the collection of functions:

{
e2πikbtg(t − na) : k,n ∈ Z

}
.

Definition 1.1 Let g1, . . . , gL ∈ L2(R). We say that G(t) = (g1(t), . . . , gL(t))τ is a Gabor
multi-frame generator of length L if {(gj , a, b), j = 1,2, . . . ,L} is a frame for L2(R), i.e.,
there exist A,B > 0, such that

A‖f ‖2 ≤
L∑

i=1

∑

k,n∈Z

∣∣〈f, e2πikbtgj (t − na)
〉∣∣2 ≤ B‖f ‖2

holds for all f ∈ L2(R). It is called a Parseval Gabor multi-frame generator if A = B = 1.

It is well-known that a single function Gabor frame generator exists if and only if ab ≤ 1
(cf. [2]). For the case L−1 < ab ≤ L, we need at least L functions to generate a Gabor frame
for L2(R) (cf. [5]). Therefore if there exists a Gabor multi-frame generator (g1, . . . , gm)

for L2(R) and L − 1 < ab ≤ L, then we have m ≥ L. Our goal is to characterize all the
m × m function matrices M(t) = (hij (t))m×m that send every Gabor multi-frame generator
(g1, . . . , gm) to a Gabor multi-frame generator.

Definition 1.2 Let fij ∈ L∞(R). Then the matrix M(t) = (fij (t))m×m is called a functional
matrix Gabor multi-frame multiplier if E(t) = (η1, η2, . . . , ηm)τ is a Parseval Gabor multi-
frame generator whenever G = (g1, g2, . . . , gm)τ is a Parseval Gabor multi-frame generator
for L2(R), where E(t) = M(t)G(t).

We will prove the following theorem:

Theorem 1.1 Let a, b > 0, and M(t) = (fij (t))m×m with fij ∈ L∞(R), i, j = 1, . . . ,m.
Then M(t) is a functional matrix Gabor multi-frame multiplier if and only if the following
three conditions are satisfied:

(1) M(t) is unitary for a.e. t ∈R,
(2) M∗(t)M(t + 1

b
) is a-periodic,

(3) M∗(t)M(t + 1
b
) = λ(t)I (a.e. t ∈R) for some unimodular function λ(t),

where I is the identity matrix and M∗ denotes the conjugate transpose of M .

The proof of this result will be presented in Sect. 2. The following lemmas will be needed
for the rest of the paper.

Lemma 1.2 (Cf. [1]) Let a, b > 0, and g1, g2, . . . , gm ∈ L2(R). Then G = (g1, . . . , gm)τ is
a Parseval Gabor multi-frame generator for L2(R) if and only if the following equations are
satisfied (for a.e. t ∈R):

m∑

i=1

∑

n∈Z

∣∣gi(t − na)
∣∣2 = b, (1.1)
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m∑

i=1

∑

n∈Z
gi(t − na)gi

(
t − na − k

b

)
= 0, for any k ∈ Z \ {0}. (1.2)

Lemma 1.3 (Cf. [5]) Let a, b > 0. The following are equivalent:

(i) L2(R) admits a Parseval Gabor frame generator of length at least m,
(ii) m − 1 < ab ≤ m.

Moreover, in this case for each x ∈ R, there exist continuous disjoint intervals E1, . . . ,Em,
such that x ∈ ⋃m

i=1 Ei , gi = √
bχEi

, i = 1, . . . ,m with (g1, . . . gm) is a Parseval Gabor
multi-frame generator.

Suppose that M(t) = (fij (t))m×m is unitary for a.e. t ∈R. Then for every k ∈ Z we have

M∗(t)M
(

t + k

b

)
= M∗(t)M

(
t + k − 1

b

)
M∗

(
t + k − 1

b

)
M

(
t + k

b

)
.

Thus we immediately have the following:

Lemma 1.4 Assume that M(t) = (fij (t))m×m is unitary for a.e. t ∈ R. Then M∗(t)M(t +
1
b
) = λ(t)I for a.e t ∈ R if and only if M∗(t)M(t + k

b
) = λk(t)I for a.e. t ∈ R and every

k ∈ Z.

We also need following partition lemma:

Lemma 1.5 Assume that m − 1 < ab ≤ m and ∀c ∈ R. Then [c, c + a) can be partitioned
into 2m−1 subintervals in the form of (

⋃m

j=1 Ej)∪(
⋃m−1

j=1 Fj ), where E1 = [c, c+a+ 1−m
b

),

F1 = [c + a + 1−m
b

, c + 1
b
), Ej = E1 + j−1

b
for 2 ≤ j ≤ m and Fj = F1 + j−1

b
for 2 ≤ j ≤

m − 1.

2 Proof of the Main Theorem

While the proof of the sufficient part of Theorem 1.1 is straightforward, the proof of nec-
essary part is subtle and we divide it into several propositions. In what follows we will use
‖ · ‖ to denote the Euclidean norm of Cm.

In sequence, for any x ∈ R, by the properties of Parseval Gabor multi-frame generators,
we will show that the claims in the following propositions are valid for all t in a neighbor-
hood of x. It then follows that the claims are valid for a.e. x ∈R.

Proposition 2.1 If M(t) = (fij (t))m×m, with fij ∈ L∞(R), is a functional matrix Gabor
multi-frame multiplier, then M(t) is unitary for a.e. t ∈R.

Proof Let G(t) = (g1(t), . . . , gm(t))τ and E(t) = (η1(t), . . . , ηm(t))τ = M(t)G(t). Sup-
pose that G(t) is a Parseval Gabor multi-frame generator for L2(R). Then E(t) is also a
Parseval Gabor multi-frame generator for L2(R). Thus, by Lemma 1.2, we have

b =
m∑

i=1

∑

n∈Z

∣∣ηi(t − na)
∣∣2
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=
∑

n∈Z

∥∥E(t − na)
∥∥2 =

∑

n∈Z

∥∥M(t − na)G(t − na)
∥∥2

=
∑

n∈Z

〈
M(t − na)G(t − na),M(t − na)G(t − na)

〉

=
∑

n∈Z

〈
G(t − na),M(t − na)∗M(t − na)G(t − na)

〉

and

b =
m∑

i=1

∑

n∈Z

∣∣gi(t − na)
∣∣2 =

∑

n∈Z

〈
G(t − na),G(t − na)

〉
.

These two equations imply that

∑

n∈Z

〈
G(t − na),

(
I − M∗(t − na)M(t − na)

)
G(t − na)

〉 = 0. (2.3)

Our goal is to choose special Parseval Gabor multi-frame generators G(t) to force M(t)

to be unitary.
For m = L, L − 1 < ab ≤ L. By Lemma 1.3, we know that ab ≤ m and so a/m ≤ 1/b.

Now fix a fixed x ∈R, let [c, d) be an interval of length a and x ∈ (c, d). Let {Ei,Fj } as the
same as Lemma 1.5 for i = 1, ..,m, j = 1, . . . ,m − 1.

Now let α1 = (α11, . . . , α1m) be any vector in C
m with

∑m

i=1 |α1i |2 = 1. Then there ex-
ist vectors β1 = (β11, . . . , β1m),β2 = (β21, . . . , β2m), . . . , βm−1 = (βm−1,1, . . . , βm−1,m) ∈ C

m

with
∑m

i=1 |βji |2 = 1, j = 1,2, . . . ,m − 1 and α1⊥βj and βi⊥βj , i �= j . Define gi(t) by

g1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α11

√
b, t ∈ E1 ∪ F1,

β11

√
b, t ∈ E2 ∪ F2,

β21

√
b, t ∈ E3 ∪ F3,

...

βm−2,1

√
b, t ∈ Em−1 ∪ Fm−1,

βm−1,1

√
b, t ∈ Em,

0, otherwise,

g2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α12

√
b, t ∈ E1 ∪ F1,

β12

√
b, t ∈ E2 ∪ F2,

β22

√
b, t ∈ E3 ∪ F3,

...

βm−2,2

√
b, t ∈ Em−1 ∪ Fm−1,

βm−1,2

√
b, t ∈ Em,

0, otherwise,

· · · ,

gm(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1m

√
b, t ∈ E1 ∪ F1,

β1m

√
b, t ∈ E2 ∪ F2,

β2m

√
b, t ∈ E3 ∪ F3,

...

βm−2,m

√
b, t ∈ Em−1 ∪ Fm−1,

βm−1,m

√
b, t ∈ Em,

0, otherwise,

then it can be verified that (g1, g2, . . . , gm) satisfies (1.1) and (1.2). Thus (g1, g2, . . . , gm) is a
Parseval Gabor multi-frame by Lemma 1.2, and hence M(s)(g1, . . . , gm)τ is also a Parseval
Gabor multi-frame since M(t) is a functional matrix Gabor multi-frame multiplier. By the
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definition of gi , for any n �= 0, gi(t − na) = 0. So, for any t ∈ E1 ∪ F1, (2.3) becomes

〈⎛

⎜
⎝

α11
...

α1m

⎞

⎟
⎠ ,

(
I − M∗(t)M(t)

)
⎛

⎜
⎝

α11
...

α1m

⎞

⎟
⎠

〉

= 0. (2.4)

Because α1 is an arbitrary unit vector in C
m, we get that M(t) is unitary on E1 ∪ F1.

Now we revise the definition of (g1, g2, . . . , gm) as follows,

g1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β11

√
b, t ∈ E1 ∪ F1,

α11

√
b, t ∈ E2 ∪ F2,

β21

√
b, t ∈ E3 ∪ F3,

...

βm−2,1

√
b, t ∈ Em−1 ∪ Fm−1,

βm−1,1

√
b, t ∈ Em,

0, otherwise,

g2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β12

√
b, t ∈ E1 ∪ F1,

α12

√
b, t ∈ E2 ∪ F2,

β22

√
b, t ∈ E3 ∪ F3,

...

βm−2,2

√
b, t ∈ Em−1 ∪ Fm−1,

βm−1,2

√
b, t ∈ Em,

0, otherwise,

· · · , gm(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1m

√
b, t ∈ E1 ∪ F1,

α1m

√
b, t ∈ E2 ∪ F2,

β2m

√
b, t ∈ E3 ∪ F3,

...

βm−2,m

√
b, t ∈ Em−1 ∪ Fm−1,

βm−1,m

√
b, t ∈ Em,

0, otherwise.

Similarly, (g1, g2, . . . , gm) is also a Parseval Gabor multi-frame, and (2.3) becomes (2.4)
for any t ∈ E2 ∪ F2. This implies that M(t) is unitary on E2 ∪ F2. Repeating the above
process, we can get that M(t) is unitary on E3 ∪ F3, . . . ,Em−1 ∪ Fm and Em. Thus M(t) is
unitary on [c, c +a), so M(x) is unitary. Since x is arbitrary, we get that M(t) is unitary a.e.
t in R.

Finally, if the length m of a Parseval Gabor multi-frame G is bigger than L, then we
can divide E1 into m − L subintervals and (g1, g2, . . . , gm) can be defined similarly to force
M(t) to be unitary. �

We will need the following special examples in the proofs of the following two proposi-
tions.

Example 2.2 (i) Suppose that 1 < ab ≤ 2. For c ∈R, and x ∈ (c, c + a − 1
b
), let

E1
1 =

[
c, c + a − 1

b

)
, E2

1 =
[
c + a − 1

b
, c + a

2

)
,

E1
2 =

[
c + a

2
, c + 1

b

)
, E2

2 =
[
c + 1

b
, c + a

)
.

Then we have E1
1 + 1

b
= E2

2 , E2
1 + 1

b
∩ (E1

2 ∪ E2
2) = ∅, and E1

2 − 1
b
∩ (E1

1 ∪ E2
1) = ∅. Define

g1(t) = √
bχE1

1∪E2
1
(t),
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g2(t) = √
bχE1

2∪E2
2
(t).

Then G0
2 = (g1(t), g2(t))

τ is a Parseval Gabor multi-frame generator by Lemma 1.2.
Moreover for any t ∈ E1

1 , we have g1(t) = √
b, g2(t) = 0, g1(t + 1

b
) = 0, g2(t + 1

b
) = √

b,
and for any n(�= 0) ∈ Z, g1(t − na) = 0, g2(t − na) = 0.

Similarly if we define,

h1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 ,√

b
2 , t ∈ E1

2 ∪ E2
2 ,

0, otherwise,

h2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 ,

−
√

b
2 , t ∈ E1

2 ∪ E2
2 ,

0, otherwise,

then G1
2(t) = (h1(t), h2(t))

τ is a Parseval Gabor multi-frame generator, and for any t ∈ E1
1 ,

we have h1(t)h1(t + 1
b
) = b

2 , h2(t)h2(t + 1
b
) = − b

2 . Moreover, hi(t − na) = 0, i = 1,2 and
n(�= 0) ∈ Z.

We will also need another Parseval Gabor multi-frame generator G2
2(t) = (h1(t),

T−ah2(t))
τ = (h1(t), h

1
2(t))

τ which is derived from G1
2:

h1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 ,√

b
2 , t ∈ E1

2 ∪ E2
2 ,

0, otherwise,

T−ah2(t) = h2(t + a) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 + a,

−
√

b
2 , t ∈ E1

2 ∪ E2
2 + a,

0, otherwise.

In this case for t ∈ E1, we have h1(t)h1(t + 1
b
) = b

2 and h1
2(t + a)h1

2(t + a + 1
b
) = − b

2 .
(ii) If L−1 < ab ≤ L(L ≥ 3), then we have 2a

L
− 1

b
> 0. For c ∈R and x ∈ (c, c+ 2a

L
− 1

b
),

let

E1
1 =

[
c, c + 2a

L
− 1

b

)
, E2

1 =
[
c + 2a

L
− 1

b
, c + a

L

)
,

E1
2 =

[
c + a

L
, c + 1

b

)
, E2

2 =
[
c + 1

b
, c + 2a

L

)
,

E3 =
[
c + 2a

L
, c + 3a

L

)
, E4 =

[
c + 3a

L
, c + 4a

L

)
,

...

EL =
[
c + L − 1

L
a, c + a

)
.

Define

g1(t) = √
bχE1

1∪E2
1
(t),

g2(t) = √
bχE1

2∪E2
2
(t),

g3(t) = √
bχE3(t),

g4(t) = √
bχE4(t),

· · ·
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gL(t) = √
bχEL

(t).

Then clearly G0
L = (g1, g2, . . . , gL)τ is a Parseval Gabor multi-frame generator. Moreover,

for any t ∈ E1
1 , we have t + 1

b
∈ E2

2 , and thus we get

g1(t) = √
b, g1

(
t + 1

b

)
= 0,

g2(t) = 0, g2

(
t + 1

b

)
= √

b,

g3(t) = 0, g3

(
t + 1

b

)
= 0,

...

gL(t) = 0, gL

(
t + 1

b

)
= 0.

Also gi(t − na) = 0 for n �= 0.
Similarly, if we define

h1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 ,√

b
2 , t ∈ E1

2 ∪ E2
2 ,

0, otherwise,

h2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 ,

−
√

b
2 , t ∈ E1

2 ∪ E2
2 ,

0, otherwise,

h3(t) = √
bχE3 ,

h4(t) = √
bχE4 ,

...

hL(t) = √
bχEL

,

then we also have that G1
L = (h1, h2, . . . , hL)τ is a Parseval Gabor multi-frame generator.

We will use another Parseval Gabor multi-frame generator G2
L = (h1, h

1
2, . . . , h

1
L)τ which

is derived from G1
L:

h1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 ,√

b
2 , t ∈ E1

2 ∪ E2
2 ,

0, otherwise,

h1
2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

√
b
2 , t ∈ E1

1 ∪ E2
1 + a,

−
√

b
2 , t ∈ E1

2 ∪ E2
2 + a,

0, otherwise,
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h1
3(t) = √

bχE3 ,

h1
4(t) = √

bχE4 ,

...

h1
L(t) = √

bχEL
.

Moreover for any t ∈ E1
1 , we have h1(t)h1(t + 1

b
) = b

2 and h1
2(t + a)h1

2(t + a + 1
b
) = − b

2 .

Now we are ready to prove another two needed propositions.

Proposition 2.3 Assume that M(t) = (fij (t))m×m, with fij ∈ L∞(R), is a functional matrix
Gabor multi-frame multiplier. Then M∗(t − na)M(t − na + 1

b
) is a diagonal matrix for a.e.

t ∈ R, and for each n ∈ Z.

Proof Write

M∗(t − na)M

(
t − na + 1

b

)
=

⎛

⎜
⎝

Bn
11(t) Bn

12(t) · · · Bn
1m(t)

...
...

...
...

Bn
m1(t) Bn

m2(t) . . . Bn
mm(t)

⎞

⎟
⎠ .

Case (i): 1 < ab ≤ 2, and m = 2.

In this case we choose the Parseval Gabor multi-frame generator G0
2 from Example 2.2.

Then M2×2(t)(g1(t), g2(t))
τ is also a Parseval Gabor multi-frame generator. Thus, ∀t ∈ E1,

we have

0 =
∑

n∈Z

〈(
g1(t − na)

g2(t − na)

)
,

(
Bn

11(t) Bn
12(t)

Bn
21(t) Bn

22(t)

)(
g1(t − na + 1

b
)

g2(t − na + 1
b
)

)〉

=
〈(

g1(t)

g2(t)

)
,

(
B0

11(t) B0
12(t)

B0
21(t) B0

22(t)

)(
g1(t + 1

b
)

g2(t + 1
b
)

)〉

=
〈(√

b

0

)
,

(
B0

11(t) B0
12(t)

B0
21(t) B0

22(t)

)(
0√
b

)〉

= b

〈(
1
0

)
,

(
B0

12(t)

B0
22(t)

)〉
. (2.5)

Thus we get B0
12(t) = 0. Similarly, by using the Parseval Gabor multi-frame generator

(g2(t), g1(t))
τ , we also get B0

21(t) = 0. Therefore M∗(t)M(t + 1
b
) is a diagonal matrix for

a.e. t ∈R.
For any n0 �= 0, we know that

Tn0G
0
2(t) = (

g1(t − n0a), g2(t − n0a)
) = (√

bχE1
1∪E2

1−n0a,
√

bχE1
2∪E2

2−n0a

)

is also a Parseval Gabor multi-frame generator. Moreover for any t ∈ E1
1 , we have g1(t −

n0a) = √
b, g2(t − n0a) = 0, g1(t − n0a + 1

b
) = 0, g2(t − n0a + 1

b
) = √

b. So for this
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(Tn0g1, Tn0g2), (2.5) becomes

0 =
∑

n∈Z

〈(
g1(t − na)

g2(t − na)

)
,

(
Bn

11(t) Bn
12(t)

Bn
21(t) Bn

22(t)

)(
g1(t − na + 1

b
)

g2(t − na + 1
b
)

)〉

=
〈(

g1(t − n0a)

g2(t − n0a)

)
,

(
B

n0
11 (t) B

n0
12 (t)

B
n0
21 (t) B

n0
22 (t)

)(
g1(t − n0a + 1

b
)

g2(t − n0a + 1
b
)

)〉

=
〈(√

b

0

)
,

(
B

n0
11 (t) B

n0
12 (t)

B
n0
21 (t) B

n0
22 (t)

)(
0√
b

)〉

= b

〈(
1
0

)
,

(
B

n0
12 (t)

B
n0
22 (t)

)〉
.

Thus we have B
n0
12 (t) = 0. Similarly, by using the Parseval Gabor multi-frame generator

(Tn0g2, Tn0g1) we can get B
n0
21 (t) = 0. Hence M∗(t − n0a)M(t − n0a + 1

b
) is a diagonal

matrix for a.e. t ∈R.

Case (ii): L − 1 < ab ≤ L, L ≥ 3 and m = L.

In this case we will use the Parseval Gabor multi-frame generator G0
L from Example 2.2.

Since M(t)(g1, . . . , gL)τ is a Parseval Gabor multi-frame generator, we obtain the following
equation:

0 =
∑

n∈Z

〈⎛

⎜⎜⎜
⎝

g1(t − na)

g2(t − na)
...

gL(t − na)

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎝

Bn
11(t) · · · Bn

1L(t)

Bn
21(t) · · · Bn

2L(t)
...

Bn
L1(t) · · · Bn

LL(t)

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

g1(t − na + 1
b
)

g2(t − na + 1
b
)

...

gL(t − na + 1
b
)

⎞

⎟⎟⎟
⎠

〉

= b

〈⎛

⎜⎜⎜
⎝

1
0
...

0

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎝

B0
11(t) · · · B0

1L(t)

B0
21(t) · · · B0

2L(t)
...

B0
L1(t) · · · B0

LL(t)

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

0
1
0
...

0

⎞

⎟⎟⎟⎟⎟
⎠

〉

= b

〈⎛

⎜
⎝

1
...

0

⎞

⎟
⎠ ,

⎛

⎜⎜⎜
⎝

B0
12(t)

B0
22(t)
...

B0
L2(t)

⎞

⎟⎟⎟
⎠

〉

= bB0
12(t).

Thus we get B0
12(t) = 0.

Similarly, if we use the Parseval Gabor multi-frame generator (g2, g1, g3, . . . , gL) by
interchanging g1, g2 in G0

L, then we can get B0
21(t) = 0. For i ≥ 3, we will use the Parseval

Gabor multi-frame generator (g1, g3, . . . , g2, . . . , gL), where g2 is the i(i ≥ 3) coordinate.
Then we can get B0

1i (t) = 0. By interchanging g1 and g2 in (g1, g3, . . . , g2, . . . , gm), we also
get B0

i1(t) = 0.
Repeating this argument we get B0

ij (t) = 0 for all i �= j (for example, by using
(g3, g1, g2, . . . , gL), we can get B0

23(t) = 0). Therefore M∗(t)M(t + 1
b
) is a diagonal ma-

trix for a.e. t ∈ R. With the same argument as in Case (i) we can also get that B
n0
ij (t) = 0
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for all i �= j and all n0 �= 0. Thus M∗(t − n0a)M(t − n0a + 1
b
) is a diagonal matrix for a.e.

t ∈ R.

Case (iii): m > L.

In this case we insert zero functions into (g1, . . . , gL) to make it a Parseval Gabor multi-
frame generator of length m. Then the same argument implies that for any n0 ∈ Z,
M∗(t − n0a)M(t − n0a + 1

b
) is a diagonal matrix for a.e. t ∈R. �

Proposition 2.4 Assume that M(t) = (fij (t))m×m, with fij ∈ L∞(R), i, j = 1, . . . ,m is a
matrix functional Gabor multi-frame multiplier. Then M∗(t)M(t + 1

b
) = λ(t)I for a.e. t ∈R,

where λ(t) is a unimodular (i.e. |λ(t)| = 1 for a.e. t ∈R) a-periodic function.

Proof By Proposition 2.3, we have that

M∗(t − na)M

(
t − na + 1

b

)
=

⎛

⎜⎜⎜
⎝

Bn
11(t) 0 · · · 0
0 Bn

22(t) · · · 0
...

0 · · · 0 Bn
mm(t)

⎞

⎟⎟⎟
⎠

,

and |Bn
ii(t)| = 1. Again we divide the proof into three cases.

Case (i): 1 < ab ≤ 2 and m = 2.

In this case we choose the frame G1
2 in Example 2.2. Then M(t)2×2(G

1
2)

τ is also Parseval
Gabor multi-frame generator, and so it satisfies the following condition:

0 =
∑

n∈Z

〈(
h1(t − na)

h2(t − na)

)
,

(
Bn

11(t) 0
0 Bn

22(t)

)(
h1(t − na + 1

b
)

h2(t − na + 1
b
)

)〉

=
〈(

h1(t)

h2(t)

)
,

(
B0

11(t)h1(t + 1
b
)

B0
22(t)h2(t + 1

b
)

)〉

= h1(t)B
0
11(t)h1

(
t + 1

b

)
+ h2(t)B

0
22(t)h2

(
t + 1

b

)
. (2.6)

By the definition of G1
2 we obtain that B0

11(t) = B0
22(t).

To prove the a-periodic property, it is enough to prove that B0
11(t) = B−1

22 (t) and
B−1

11 (t) = B0
22(t).

By using the Parseval Gabor multi-frame generator G2
2 = (h1(t), h

1
2(t))

τ from Exam-
ple 2.2, we obtain that

0 =
∑

n∈Z
h1(t − na)Bn

11(t)h1

(
t − na + 1

b

)
+

∑

n∈Z
h1

2(t − na)Bn
22(t)h

1
2

(
t − na + 1

b

)

= B0
11(t) · b

2
+ B−1

22 (t) ·
(

−b

2

)
.

Thus we get B0
11(t) = B−1

22 (t). Similarly, by using the Parseval Gabor multi-frame generator
(h1

2(t), h1(t)) in above equation, we can get B−1
11 (t) = B0

22(t).
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Case (ii): L − 1 < ab ≤ L for L ≥ 3 and m = L.

In this case we use the Parseval Gabor multi-frame generator G1
L from Example 2.2.

Then

M(t)
(
h1(t), h2(t), h3(t), . . . , hm(t)

)τ

is a Parseval Gabor multi-frame generator, which implies that B0
11(t) = B0

22(t). By using
the Parseval Gabor multi-frame generator (h1(t), h3(t), . . . , h2(t), . . . , hm(t))τ , where h2(t)

is the i-coordinate with i = 3, . . . ,m, we get B0
11(t) = B0

ii (t). Thus we obtain B0
11(t) =

B0
22(t) · · · = B0

mm(t).
To prove the a-periodic property, we use the Parseval Gabor multi-frame generator G2

L

in Example 2.2. This implies that

0 =
∑

n∈Z
h1(t − na)Bn

11(t)h1

(
t − na + 1

b

)

+
∑

n∈Z
h1

2(t − na)Bn
22(t)h

1
2

(
t − na + 1

b

)

...

+
∑

n∈Z
h1

m(t − na)Bn
mm(t)h1

m

(
t − na + 1

b

)

= b

2
B0

11(t) +
(

−b

2

)
B−1

22 (t).

Thus B0
11(t) = B−1

22 (t).
By using the following Parseval Gabor multi-frame generators (h1

2, h1, h
1
3, . . . , h

1
m),

(h1, h
1
3, h

1
2, . . . , h

1
m), (h1

2, h
1
3, h1, . . . , h

1
m) and so on, we can get B0

11(t) = B−1
11 (t) = B0

22(t) =
B−1

22 (t) = · · · = B0
mm(t) = B−1

mm(t). Thus M∗(t)M(t + 1
b
) is a-periodic.

Case (iii): m > L.

This case can be dealt with by inserting m − L zero functions into (g1, . . . , gL) to make it a
Parseval Gabor multi-frame generator of length m. �

Proof of Theorem 1.1 The necessity part follows from Proposition 2.1 and Proposition 2.4.
For the sufficiency part, by Lemma 1.2, it enough to show that for any Parseval Ga-

bor multi-frame (g1, . . . , gm), M(s)(g1, . . . , gm)τ = (η1, . . . , ηm)τ satisfies the equations in
Lemma 1.2.

Since M(t) is unitary, we obtain that

m∑

i=1

∑

n∈Z

∣∣ηi(t − na)
∣∣2 =

∑

n∈Z

〈⎛

⎜
⎝

η1(t − na)
...

ηm(t − na)

⎞

⎟
⎠ ,

⎛

⎜
⎝

η1(t − na)
...

ηm(t − na)

⎞

⎟
⎠

〉

=
∑

n∈Z

∥∥∥∥∥∥∥
M(t − na)

⎛

⎜
⎝

g1(t − na)
...

gm(t − na)

⎞

⎟
⎠

∥∥∥∥∥∥∥

2
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=
∑

n∈Z

∥∥
∥∥
∥∥
∥

⎛

⎜
⎝

g1(t − na)
...

gm(t − na)

⎞

⎟
⎠

∥∥
∥∥
∥∥
∥

2

=
m∑

i=1

∑

n∈Z

∣∣gi(t − na)
∣∣2 = b.

Thus (1.1) holds.
Now we verify (1.2).

	(t, k) : =
m∑

i=1

∑

n∈Z

(
ηi(t − na)

)
ηi

(
t − na − k

b

)

=
∑

n∈Z

〈

M(t − na)

⎛

⎜
⎝

g1(t − na)
...

gm(t − na)

⎞

⎟
⎠ ,M

(
t − na − k

b

)
⎛

⎜
⎝

g1(t − na − k
b
)

...

gm(t − na − k
b
)

⎞

⎟
⎠

〉

=
∑

n∈Z

〈⎛

⎜
⎝

g1(t − na)
...

gm(t − na)

⎞

⎟
⎠ ,M∗(t − na)M

(
t − na − k

b

)
⎛

⎜
⎝

g1(t − na − k
b
)

...

gm(t − na − k
b
)

⎞

⎟
⎠

〉

.

By Proposition 1.4, and condition (iii), we obtain that

	(t, k) = λ(t)
∑

n∈Z

〈⎛

⎜
⎝

g1(t − na)
...

gm(t − na)

⎞

⎟
⎠ ,

⎛

⎜
⎝

g1(t − na − k
b
)

...

gm(t − na − k
b
)

⎞

⎟
⎠

〉

= 0

for a.e. t ∈R and k �= 0. Hence M(t) is a Parseval Gabor multi-frame multiplier. �
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