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Abstract We consider the problem of characterizing the bounded linear operator multi-
pliers on L2(R) that map Gabor frame generators to Gabor frame generators. We prove
that a functional matrix M (t) = [ f;; (t)],nxm (Where f;; € L°(R)) is a multiplier for Parse-
val Gabor multi-frame generators with parameters a, b > 0 if and only if M(¢) is unitary
and M*(t)M (t + %) = A(¢)I for some unimodular a-periodic function A(#). As a special
case (m = 1) this recovers the characterization of functional multipliers for Parseval Gabor
frames with single function generators.
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1 Introduction

Motivated by the characterization of functional wavelet multipliers in the Wutam Con-
sortium paper [11], Gu and Han [8] investigated the functional Gabor frame multipliers
and obtained the following characterization: a L*°-function 4 on R is a functional Gabor
frame multiplier for the time-frequency lattice aZ x bZ if and only if it is unimodular and
h(t)/ h(t+1/b) is a-periodic, where by a functional Gabor frame multiplier h we mean that
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hg is a Parseval Gabor frame generator for L2(R) whenever g is a Parseval Gabor frame gen-
erator for L2(R). It is natural to ask if there is a similar characterization for Gabor frames
with multi-generators in view of many studies of Gabor multi-frames (cf. [3, 4, 6, 7, 9, 10]
and the references therein). The purpose of this note is to present such a generalization.

Given a,b > 0 and g € L*(R). The Gabor (or Weyl-Heisenberg) family (g, a, b) is de-
fined to be the collection of functions:

{ezmk}”g(l‘ —na):k,ne Z}.

Definition 1.1 Let g, ..., g, € L>(R). We say that G(¢) = (g:(¢), ..., g.(t))" is a Gabor
multi-frame generator of length L if {(g;,a,b), j=1,2,..., L} is a frame for L*(R), i.e.,
there exist A, B > 0, such that

L
ANFIP <Y D |(f. e gt — na))|* < BII£1?

i=1 k.neZ
holds for all f € L2(R). It is called a Parseval Gabor multi-frame generator if A = B = 1.

It is well-known that a single function Gabor frame generator exists if and only if ab < 1
(cf. [2]). For the case L — 1 < ab < L, we need at least L functions to generate a Gabor frame
for L2(R) (cf. [5]). Therefore if there exists a Gabor multi-frame generator (g, ..., gu)
for L>(R) and L — 1 < ab < L, then we have m > L. Our goal is to characterize all the
m x m function matrices M (t) = (h;;(t))uxm that send every Gabor multi-frame generator
(g1, .-, &n) to a Gabor multi-frame generator.

Definition 1.2 Let f;; € L°°(R). Then the matrix M (t) = (f;;(t))mxm is called a functional
matrix Gabor multi-frame multiplier if E(¢) = (11, 12, ..., )" is a Parseval Gabor multi-
frame generator whenever G = (g1, g2, ..., &n)" is a Parseval Gabor multi-frame generator
for L?(R), where E(t) = M(t)G(?).

We will prove the following theorem:

Theorem 1.1 Let a,b > 0, and M(t) = (fij(t)mxm With fij € L°(R), i,j=1,...,m.
Then M(t) is a functional matrix Gabor multi-frame multiplier if and only if the following
three conditions are satisfied:

(1) M () is unitary for a.e. t € R,
(2) M* ()M (t + 3) is a-periodic,
3) M*(t)M (t + %) =X(®)I (a.e. t € R) for some unimodular function A(t),

where 1 is the identity matrix and M* denotes the conjugate transpose of M.

The proof of this result will be presented in Sect. 2. The following lemmas will be needed
for the rest of the paper.

Lemma 1.2 (Cf. [1]) Leta,b>0,and g;,8>,...,8n € L*(R). Then G = (g1, ..., 8n)" is
a Parseval Gabor multi-frame generator for L*(R) if and only if the following equations are
satisfied (for a.e. t € R):

Y Y leit —na)|* =, (1.1)

i=1 neZ
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m

ZZg,-(t—na)gi(t—na— %) =0, foranykeZ\{0}. (1.2)

i=1 nezZ

Lemma 1.3 (Cf. [5]) Let a,b > 0. The following are equivalent:

(i) L*(R) admits a Parseval Gabor frame generator of length at least m,
(i) m—1<ab<m.

Moreover, in this case for each x € R, there exist continuous disjoint intervals E1, ..., E,,,
such that x € Ul’.":] E;, g = \/ZXE[, i=1,...,m with (g,...8n) is a Parseval Gabor
multi-frame generator.

Suppose that M (¢) = (fij (t))mxm is unitary for a.e. t € R. Then for every k € Z we have

M*tM(t—i—E)—M*tM(t—i—u)M*(t—i-k;l)M(t-i-E)
®) b @) b b b))

Thus we immediately have the following:

Lemma 1.4 Assume that M(t) = (fij () mxm is unitary for a.e. t € R. Then M*(t) M (t +
%) = A1) for aet € R if and only if M*(t)M (t + %) = M ()1 for a.e. t € R and every
keZ.

We also need following partition lemma:

Lemma 1.5 Assume that m — 1 < ab <m and V¢ € R. Then [c, ¢ + a) can be partitioned
into 2m — 1 subintervals in the form of(U';;l E]»)LJ(UT:_I1 F;),where E|; = [;, cta+ 1_Tm),
Fi=[cta+52 c+ 1), Ej=E + 47 for2<j<mand F;=F + 1 for2 < j <
m—1.

2 Proof of the Main Theorem

While the proof of the sufficient part of Theorem 1.1 is straightforward, the proof of nec-
essary part is subtle and we divide it into several propositions. In what follows we will use
|l - || to denote the Euclidean norm of C”.

In sequence, for any x € R, by the properties of Parseval Gabor multi-frame generators,
we will show that the claims in the following propositions are valid for all 7 in a neighbor-
hood of x. It then follows that the claims are valid for a.e. x € R.

Proposition 2.1 If M(t) = (fi;(t)mxm» with fij € L*(R), is a functional matrix Gabor
multi-frame multiplier, then M (t) is unitary for a.e. t € R.

Proof Let G(1) = (81(2), ..., gu(#))" and E@) = (01 (2), ..., 0 (1)) = M(#)G(t). Sup-
pose that G(¢) is a Parseval Gabor multi-frame generator for L>(R). Then E(¢) is also a
Parseval Gabor multi-frame generator for L2(R). Thus, by Lemma 1.2, we have

b= |nit —na)|’

i=1 neZ
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=Y |E¢—na)|* = "Mt - na)G(t —na)|’

neZ neZ
= Z(M(t —na)G(t —na), M(t —na)G(t — na))
nez

= (G(t —na), M(t —na)*M(t — na)G(t — na))

nez

and

b= ZZ!&'(I _na)|2 = Z(G(t —na), G(t — na)).

i=1 neZ nez

These two equations imply that

> (Gt —na), (I = M*(t —na)M(t — na))G(t — na))=0. (2.3)

neZ

Our goal is to choose special Parseval Gabor multi-frame generators G(¢) to force M (t)
to be unitary.

Form=L,L—1<ab<L.ByLemma 1.3, we know that ab <m and so a/m < 1/b.
Now fix a fixed x € R, let [c, d) be an interval of length a and x € (c,d). Let {E;, F;} as the

same as Lemma 1.5 fori=1,..,.m, j=1,...,m — 1.

Now let o = (ayy, ..., 1) be any vector in C™ with Z:"Zl |1;|*> = 1. Then there ex-
istvectors B1 = (Bi1, -5 Bim)» B2 = (Bats---s Bam)s -+ » Bu1= Bu-1.15 -+ > Bu—1.m) €C"
with 7, |,8j,-|2 =1,j=12,...,m—1and a; LB; and B; LB;,i # j. Define g;(t) by

a1v/b, te E,;U Fy, a12v/b, te E,U Fy,
Bu~b, te E;UR,, Biav/b, te E;UR,,
Ba1+/b, te E3UF;, B/, te E3UF;,
g1t = : &) = : ,
Bu-21vb, t€E,_1UF,_,, Bu—22Vb, t€E,_UF,_,
5’”71,1\/5! te Em, ﬂmfl,2\/zv te Em!
0, otherwise, 0, otherwise,
Ol]m\/z, te EyUF,
ﬂlm\/g7 t€E2UF2’
ﬂZm\/E7 IGESUF3’
gm(t) =
:8m72,m\/z, te Emfl U Fm—l»
,Bmfl,m\/g, te Emv
0, otherwise,

then it can be verified that (g1, g, .. ., g») satisfies (1.1) and (1.2). Thus (g1, g2, ..., &n) 152
Parseval Gabor multi-frame by Lemma 1.2, and hence M (s)(gy, ..., gn)" is also a Parseval
Gabor multi-frame since M (¢) is a functional matrix Gabor multi-frame multiplier. By the
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definition of g;, for any n # 0, g;(t — na) =0. So, for any t € E| U Fy, (2.3) becomes

o] 11
(=M oM@) | =0. (2.4)

Aim Aim

Because «; is an arbitrary unit vector in C™, we get that M (¢) is unitary on E; U Fj.

Now we revise the definition of (g, g2, ..., gn) as follows,
Buvb, t € E{UFy,
a11vb, t € E;U By,
Baiv/b, t € E3 U F3,
gi1t) = :
IBm—Z,l\/Ea re Em—l U Fm—ls
Bu-1.1vb, t € E,,
0, otherwise,
Bian/b, t € E\UF,, BinNb, t € E{UF,,
apvb, t € EyU F, aiuv/b, t € Ey U F,
Bn/b, t € E3U Fs, Bam~/b, t € E3 U F3,
&) = : ey gm() = :
ﬂmfZ,Z\/Ea re Emfl ) meh ﬁmflm‘/gv te Emfl U melv
IBm—l.Z\/Es re Ema ﬂm—l.m\/gv te Ema
0, otherwise, 0, otherwise.
Similarly, (g1, g2, .-, &n) is also a Parseval Gabor multi-frame, and (2.3) becomes (2.4)

for any ¢t € E, U F,. This implies that M (¢) is unitary on E, U F,. Repeating the above
process, we can get that M (¢) is unitary on E3U Fs, ..., E,,_; U F,, and E,,. Thus M(¢) is
unitary on [c, ¢ +a), so M (x) is unitary. Since x is arbitrary, we get that M (¢) is unitary a.e.
tin R.

Finally, if the length m of a Parseval Gabor multi-frame G is bigger than L, then we
can divide E; into m — L subintervals and (g1, g2, - - -, &») can be defined similarly to force
M (t) to be unitary. O

We will need the following special examples in the proofs of the following two proposi-
tions.

Example 2.2 (i) Suppose that 1 <ab <2.ForceR,and x € (c,c+a — %), let

| 1 ) 1 a
El: c,c+a—g s Elz c+a-zvc+§ ,

E) g ] E} ey

=|lc+=,c+ -, =|c+—-,c+a).

2 27 b ? b

Then we have E11 + % :E%, Elz—i—%ﬂ(Ez] UE%) =, and Ez' —%H(E} UEf) = (). Define
§1(0) = Vbxp1ue (1),
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820 = Vbxg1us ®).

Then Gg = (g1(?), g2(¢))" is a Parseval Gabor multi-frame generator by Lemma 1.2.
Moreover for any ¢ € Ell, we have g (t) = Vb, 8@ =0, g1(t + }7) =0, go(t + %) = /b,
and for any n(#0) € Z, g1(t — na) =0, g,(t —na) =0.

Similarly if we define,

b b
\/;, teElUE?, \@ teElUE?,
(1) = \/g teElUE:, ~ hO= —\/g, te E)UEZ,

0, otherwise, 0, otherwise,

then G;(z) = (h1(1), h2(¢))" is a Parseval Gabor multi-frame generator, and for any ¢ € E!,
we have hy(1)hi(t + 1) = £, ho(t)ha(t + 1) = — 2. Moreover, h;(t —na) =0,i=1,2 and
n(#0) eZ.

We will also need another Parseval Gabor multi-frame generator G%(t) = (hy(1),
T_oha ()" = (hy (1), hé(t))f which is derived from G%:

\/5, te ElUE?, \/Z teElUE? +a,
hy (1) = \/g te E)UE3, T_ha(t) = ha(t +a) = _\/g, te EJUE? +a,
0, otherwise, 0, otherwise.

In this case for ¢ € E;, we have hy(¢t)h(t + %) = % and hé(t +a)h;(t +a+ %) = —%.
(i) IfL—1 <ab < L(L > 3),then wehave 2 —; > 0.Forc e Rand x € (c,c+ 2 — 1),

b T
let
£l i +2a 1 g +2a 1 +a
=lcct+t——+), =|lct———,c+—),
| L b ! L b L
£l _+a +1 g2 +1 +2a
=|lc+—,c+-), =|c+—,c+—|,
L b 2 b L
E__+2a +3a £ +3a +4a
3—_6' L’C L) 4=|C L,C L)
_ _1 )
E,=|c+ a,c+al.
Define

81(t) = Vb1, (),
(1) = Vb (),
(1) = Vbyr, (1),
g4() = Vb, (0,
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gr(t) = Vbyg, ().

Then clearly G(z =(g1,82,---,8L)" is a Parseval Gabor multi-frame generator. Moreover,
for any ¢ € El', we have ¢ + % € E2, and thus we get

g1(t) = /b,

1
gZ(t):os < E)
g3(t) =0, < E) =

1
grL() =0, gL<t+b>:0.

Also g;(t —na) =0forn #0.
Similarly, if we define

b
\@, re ElUE?,

@ = \ﬁ t e EYUES,

0, otherwise,

\/E, te ElUE?,

hy(t) = _\/;, teE UE%,

otherwise,

then we also have that G}‘ =y, hy, ...,
We will use another Parseval Gabor multi-frame generator G2 = (hy, hl, ...,
is derived from G4 :

ha(t) = ﬁm,
ha(t) = Vb,

hi(t) = vVbxe,

\/E, teE'UE2,
h(t) = \/Z te E)UE2,

0, otherwise,

!l (1) = b
2 -3
0, otherwise,

\/Z, teEl'UEf—l-a,

te E}UE? +a,

hp )T is a Parseval Gabor multi-frame generator.
h1)T which
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ni(t) = Nbxe,,
hy(t) = Vb,

hy(t) = Nbx, -
Moreover for any r € E|, we have iy (t)hi(t + 1) = 2 and hy(t + @)h3(t +a+ 1) = —5.
Now we are ready to prove another two needed propositions.

Proposition 2.3 Assume that M (t) = (f;;(t))mxm, with fij € L*(R), is a functional matrix
Gabor multi-frame multiplier. Then M*(t — na) M (t —na + %) is a diagonal matrix for a.e.
t € R, and for each n € Z.

Proof Write

1 Bl (t) Bl - BLL(D)
M*(t—na)M(l—na—l—E):
B (1) B,() ... B (1)

mm

Case (i): 1 <ab<2,and m =2.

In this case we choose the Parseval Gabor multi-frame generator Gg from Example 2.2.
Then M,,»(1)(g1(t), g2(¢))" is also a Parseval Gabor multi-frame generator. Thus, Vz € E,

we have
0— (gl(t—na)) (B?l(f) Bf’z(f)) gt —na+3)
7\t =na) JIABL @) By )\ &t —na+3)
_ <(gl<t>> (B?l(t) B%(t)) (gl(r + ;>>>
&™)\ BY(1) BYL(1) ) \g+3)
_ <(JE> (Bﬂ(r) B?zm) ( 0 >>
Ao JTABN( BYL()) \ Vb
B 1 B (1)
=*{(0)- (et ) e
Thus we get BY,(#) = 0. Similarly, by using the Parseval Gabor multi-frame generator
(g2(1), g1(2))", we also get Bgl (t) = 0. Therefore M*(t)M (t + %) is a diagonal matrix for

ae. t eR.
For any ny # 0, we know that

T, G (1) = (g1(t — noa), g>(t — noa)) = («/EXE;UElz,noa, «/EXE;UEg,,,Oa)

is also a Parseval Gabor multi-frame generator. Moreover for any ¢ € E!, we have g (¢ —
noa) = v/b, g:(t —noa) =0, gt —noa + 1) =0, g2(t — nga + 1) = +/b. So for this
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(To 815 Tny82), (2.5) becomes

O_Z <g1(t—na)) <B?1([) Bf’z(t)> gt —na+3)
a gt —na) )"\ By BLO )\ gat —na+ 1)

nez

_ (gmt—noa)) (B??(r) B?§<r>> gt —noa+ 1)
T \\&et—ma) )\ B0 BR® ) \ g2t = noa+ 1)
_<<ﬁ> (Bf’?m B;’§<r>>< 0 >>
“\o J\Boe BRw)\ Vo
(0G0}

0 B3 (1)

Thus we have Bjj(¢) = 0. Similarly, by using the Parseval Gabor multi-frame generator

(Th082, Tnog1) we can get B3 (1) = 0. Hence M*(t — noa)M(t — noa + 3) is a diagonal
matrix for a.e. r € R.
Case (ii): L—1<ab<L,L>3andm=0L.

In this case we will use the Parseval Gabor multi-frame generator G9 from Example 2.2.

Since M(t)(g1, ..., gr)" is a Parseval Gabor multi-frame generator, we obtain the following
equation:
g1t — na) B!(t) - B! () g1t —na+3)
g2(t —na) Bl () --- BL() et —na+ 1)
0=Y" . g7 ! !
nez : . :
gL(t_na) le(t) BZL(I) gL(t—na-f—%)
1\ (BY©® - BLON [°
11 1L 1
_, 0 BY(t) --- BY () 0
o/ \Bo» - B0\,
1 B, (1)
BY() ——
=b s ) = bB?2 ).
0 :
BY, (1)
Thus we get BY,(t) = 0.
Similarly, if we use the Parseval Gabor multi-frame generator (g», g1, &3, ---,8L) by
interchanging gy, g, in G(z, then we can get Bgl (t) =0. For i > 3, we will use the Parseval
Gabor multi-frame generator (g1, g3, .-, 8&2,---,8L), Where g; is the i (i > 3) coordinate.

Then we can get B?[ (t) =0. By interchanging g, and g, in (g1, g3, ---, 82, .-, &mn), We also
get BY (1) =0.

Repeating this argument we get Bioj (t) =0 for all i # j (for example, by using
(g3, 81,82, ...,8L), we can get B%(t) = 0). Therefore M*(t)M (t + %) is a diagonal ma-
trix for a.e. t+ € R. With the same argument as in Case (i) we can also get that BZO t)=0
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forall i # j and all ny # 0. Thus M*(t — npa) M (t — noa + %) is a diagonal matrix for a.e.
teR.

Case (iii): m > L.

In this case we insert zero functions into (g, ..., g,) to make it a Parseval Gabor multi-
frame generator of length m. Then the same argument implies that for any ng € Z,
M*(t — noa) M (t — noa + %) is a diagonal matrix for a.e. t € R. O

Proposition 2.4 Assume that M (t) = (fij ) mxm, with fij € L°(R), i,j=1,....misa
matrix functional Gabor multi-frame multiplier. Then M* ()M (¢ + é) =A()] fora.e.t e R,

where A(t) is a unimodular (i.e. |A(t)| =1 for a.e. t € R) a-periodic function.

Proof By Proposition 2.3, we have that

Bj, (1) 0 0
1 0 By(t) --- 0
M*(t —na)M t—na—i—z = . )
0 0 B! @®

and | B (¢)| = 1. Again we divide the proof into three cases.
Case (i): 1 <ab<2andm =2.

In this case we choose the frame Gé in Example 2.2. Then M (t)zXz(Gé)T is also Parseval
Gabor multi-frame generator, and so it satisfies the following condition:

0= <h1(t—na)) (B’fl(t) 0 > hy(t —na+ 3)
=\t —na) )"\ 0 By ) \ ha(t —na+p)
_ <h1(t)) B (Oh (1 + 3)
ha(t) )\ BY,(Oha(t + 1)
0 1 0 1
= @OBYOh |1+ 7 ) +ha(0)By0Oha| 14+ ). (2.6)
By the definition of G} we obtain that BY, (1) = B, ().
To prove the a-periodic property, it is enough to prove that B?l (t) = B;ZI (t) and
-1 — no
B (1) = BY%(1).

By using the Parseval Gabor multi-frame generator G% = (h(2), h;(z))’ from Exam-
ple 2.2, we obtain that

I 1 S 1
0="> hit— na)Bfl(t)m(z —na + 5) NG —na)Bgz(t)@(r —na + E)

nez nez

— B0 2+ B0 <—9>.
2 T® 2

Thus we get B?l ) = B2_21 (t). Similarly, by using the Parseval Gabor multi-frame generator
(hi (1), hy (1)) in above equation, we can get B;,' (t) = BY(1).
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Case (ii): L—1<ab<LforL>3andm=L.

In this case we use the Parseval Gabor multi-frame generator GlL from Example 2.2.
Then

MO (i @), ha (@), B3 (@), .. b (D))

is a Parseval Gabor multi-frame generator, which implies that BY,(t) = BY,(t). By using
the Parseval Gabor multi-frame generator (4(¢), ]’l’;(t) Lho(t), ..., h, (1)), where h, (1)
is the i-coordinate with i = 3,...,m, we get B (@) = Bo(t) Thus we obtain B”(t) =
BY(t)---=BY, (1).

To prove the a-periodic property, we use the Parseval Gabor multi-frame generator G7
in Example 2.2. This implies that

0= hy(t —na)B; 1(z)h.( —na+ é)

nez

+ > hy(t —na)B; (t)hl( —na+ é)

nez

1
+ Y h),(t —na)By,, (Oh), ( —na + E)

nez
b= b\Z=T
== EBII(I) + —z B22 (t)

Thus B?, )= B{z ().
By using the followmg Parseval Gabor multi-frame generators (hz,hl, TR m)

(hy, By, B, ... kL), (R, R, by, ... h)) and so on, we can get BY, (1) = By, (1) = BY, (1) =
By (1) = B,?lm (t) = B, (t). Thus M*(1)M (¢ + 3) is a-periodic.

Case (iii): m > L.

This case can be dealt with by inserting m — L zero functions into (g, ..., g,) to make it a
Parseval Gabor multi-frame generator of length m. O

Proof of Theorem 1.1 The necessity part follows from Proposition 2.1 and Proposition 2.4.
For the sufficiency part, by Lemma 1.2, it enough to show that for any Parseval Ga-
bor multi-frame (g1, ..., gm), M(s)(g1,.-.,8m)" = (N1, ..., Nm)" satisfies the equations in
Lemma 1.2.
Since M () is unitary, we obtain that

. n(t —na) m(t —na)

PDILIGEEDIED S N

i=1 neZ nez N (t —na) Nm(t — na)
g1t —na)

:Z M(t — na)

nez

8m (t - l’lll)
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2
gi(t —na)

8m (t na)

Zg,(z—na>|
€Z

IIM§

Thus (1.1) holds.
Now we verify (1.2).

m —k
At k)= ZZ(ni(t —na))ni (t —na — E)

i=1 neZ
g1t —na) ' gt —na—1%)
=Z M(t — na) : ,M(t—na—z>
ne gm(t - na) gm(t na — _)
g1t —na) g1t —na— %)
= Z ,M*(r—na)M(t—na—E>
"<\ \gn(t — na) gt —na — )

By Proposition 1.4, and condition (iii), we obtain that

g1(t —na) gt —na—%)
A =20)) : , : =0
ne gm(t - na) gm(t na — _)
for a.e. t € R and k # 0. Hence M (¢) is a Parseval Gabor multi-frame multiplier. O
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