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an almost self-located robust frame, any signal except from a Lebesgue measure
zero subset can be recovered from its unordered partial frame coefficients. However,
the recovery is not necessarily stable with almost self-located robust frames. We
propose a new class of frames, namely self-located robust frames, that ensures
stable recovery for any input signal with unordered partial frame coefficients. In

MSC: particular, the recovery is exact whenever the received unordered partial frame

42C15 coefficients are noise-free. We also present some characterizations and constructions

46C05 for (almost) self-located robust frames. Based on these characterizations and
construction algorithms, we prove that any randomly generated frame is almost
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1. Introduction

Frames have been widely used in many applications, in particular, in signal and data analysis. Different
from orthogonal bases, one of the main features of frames is that they provide redundant representations of
signals which makes it possible to resolve many practical problems. For example, when the frame coefficients
of a signal are transferred in channels, it occurs often that some coefficients are erased. A lot of research
has been done in recent years dealing with the various problems of recovering the original signal from
erasure-corrupted frame coefficients. Before stating further results, we introduce the definition of frames.

Recall that {¢;}1<i<n is said to be a frame for some finite-dimensional Hilbert space  if there exist
constants C7 and Cy such that
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where C; and C; are called the lower and upper frame bounds, respectively. A frame {g;}1<;<n is said to
be of full spark if every n elements in the frame form a Riesz basis for H, where n = dim H.

Given a frame {¢;}1<i<n for H, one can find another frame {@;}1<i<n, called the dual of {¢;}1<i<n,
such that

N

F=>{f.00)@i VfEM.

i=1

A Parseval frame is a frame such that it is a dual of itself, or equivalently C; = C5 = 1. For more details
on frame theory, we refer to [7-9].

In this paper, we only consider frames with different real vectors. And H stands for the n-dimensional
real or complex space.

Suppose that some frame coefficients {(f, p;)}icr are erased in data transmission. If {p;}iecre is also a
frame for H, then we can recover f with a dual frame of {¢;};crc. However, since the index set for the
erased coefficients varies, it is time consuming to compute a new dual frame every time, and therefore
this recovery approach may not be suitable for real-time data processing applications. Another approach
is to treat the erased frame coefficients as zeros and then reconstruct the input signal with the original
reconstruction formula based on the canonical dual. Obviously, this will bring some reconstruction error.
This led to some recent research in the literature about characterizing optimal frames that minimize the
maximal reconstruction error for this approach (cf. [1-6,12-14,16-20,23] and references therein). For the
case of m-erasures with m < 2, the optimal frames or dual frames that minimize the maximal reconstruction
error can be characterized. However, not much is known if the number of erasures is greater than 2.

In [10], the first and the third named authors of this paper proposed a third approach to this problem.
With well designed full spark frames, we can recover the erased frame coeflicients by solving a very simple
system of linear equations with erasures as unknowns, and consequently it overcomes the shortcomings
of computing dual frames again and again and has no systematic error when comparing with the second
approach.

In data transmission, the locations of erased coefficients might be unknown, or the received data might
be disordered. To solve these problem, almost robust frames and almost self-located frames are introduced
in [10].

Definition 1.1. (See [10].) A frame for H is said to be almost robust with respect to m-erasures if we can
recover any f € H \ Ho from its frame coefficients with m-erasures at unknown locations, where H is the
union of finitely many proper subspaces of H.

A frame is said to be almost self-located if we can recover the sequence of frame coeflicients (and therefore
the corresponding signal) from any of its rearrangements for any signal in H \ Ho.

By the definitions, with almost robust frames, we can recover missing frame coefficients at unknown
locations for almost all signals. And with almost self-located frames, we can recover the correct order of frame
coefficients from any of their rearrangements for almost all signals. Characterizations and constructions for
both almost robust frames and almost self-located frames were obtained in [10,11]. See also [15] for some
explicitly given almost robust or almost self-located frames.

It is natural to ask if it is possible to recover the input signal if we only know unordered partial frame
coefficients? In this paper, we show that the answer is yes with well-chosen frames. For our purpose, we
introduce the following definition:
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Definition 1.2. A frame for H is called almost self-located robust with respect to m-erasures, if we can recover
any f € H\ Ho from any of its N —m unordered frame coefficients, where H is the union of finitely many
proper subspaces of H.

We see from the definition that almost self-located robust frames are automatically both almost self-
located and almost robust. It was shown in [10] that by choosing suitable rescaling constants, every full
spark frame can be modified to be an almost self-located or almost robust frame. One of our main results in
this paper is to show that the same is true for almost self-located robust frames. Moreover, we prove that
for N —m > n, where n is the dimension of the signal space, it is almost sure that the column vectors of
any randomly generated n x N matrix form an m-erasure almost self-located robust frame.

In practice, the measured signals are usually noisy. If a signal f is close to Hgp, the set consisting of
unrecoverable signals, then the existence of noises makes it possible to get wrong erasure locations, and
consequently we may not be able to recover f from its unordered partial frame coefficients. So almost
self-located robustness does not guarantee the stability for the signal recovering. Moreover, they only apply
to the recovery for almost all the input signals even in the noise-free case. One of the goals of this paper is
to find a new class of frames that not only guarantee the exact recovery for all signals in the noise-free case
but also provide stable recovery when the set of unordered partial frame coefficients carries noise.

For N > k, denote by Inj the set consisting of all rearrangements of k elements in {1,...,N}. We
propose the following definition:

Definition 1.3. A frame {p;}1<i<n for H is called self-located robust with respect to m-erasures, if for all
(i1, -y iN—m); (J1s--+,JN-m) € IN N—m and any signals f, g € H satisfying

<f7(piz>:<gvcpjz>7 ]-SZSN_mv
we have f = g.

We prove that with a self-located robust frame, we can reconstruct any signal from its unordered partial
frame coefficients. Moreover, the reconstruction algorithm is stable in the sense that small changes of input
signals only result in small changes of the output.

The rest of the paper is organized as follows. In Section 2, we obtain a characterization for almost
self-located robust frames. As a consequence of this characterization we obtain that the column vectors of
randomly generated matrices form almost self-located robust frames. Section 3 is devoted to the characteri-
zation/construction of self-located robust frames and the stability of our reconstruction algorithm. We give
two types of construction, one is based on random matrices, and the other is based on prime numbers.

2. Almost self-located robust frames

In this section, we give a characterization for almost self-located robust frames, with which we provide
construction method for such frames. We show that by choosing suitable parameters, every frame with full
spark can be rescaled to an almost self-located robust frame. Moreover, typical randomly generated n x N
matrix with n < IV corresponds to an almost self-located robust frame.

Let {;}1<i<n be a frame but not a basis for H. Define the analysis operator T" as

T : ,Hl—>(CNZ Tf:(<f7301>7-~-;<f,90N>)T-

Then there is some matrix M such that the null space of M is exact the range of the analysis operator 7'
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For (i1,...,i) € Ink, define

ﬂlwugikf = (<fa (JD’i1>’ RN <f7 (pik>)T‘

And we denote T ... n simply by T.
The following is a characterization of almost self-located robust frames.

Theorem 2.1. Suppose that dimH = n. Let {¢;}1<i<n be a frame for H. Then {p;}i<i<n is almost self-
located robust with respect to m-erasures if and only if {T5, . in .7 (41,...,iN—m) € IN N—m} consists

—m

of pairwise distinct n-dimensional subspaces.

Proof. Necessity. If there exists some (i1,...,iN—m) € INN—m such that dim(T;, . ;y_,.H) < n, then
{@i. }1<s<N—m is not a frame for H. Hence for almost all signals f € H, we can not recover f from
Tilw-,imef-

On the other hand, assume that there exist (i1,...,iN—m),(1,...,IN—m) € InnN—m such that

(il, ey iN—m) 7é (ll, N 7ZN—m) and
Tiroiiem =T, an_n H. (2.1)
Then there is some s € {1,..., N —m} such that i, # 5. Let

Hs:{fGH:<f790is>:<f79015>}'

Since ;. # 1., Hs is a proper subspace of H. For any f € H\ H,, we see from (2.1) that there exists some
g € Hsuch that T3, v . f =T, in_.g- Since f ¢ Hs, we have f # g. Hence for almost all f € H, we
can not recover f from 75, ;.. f.

Sufficiency. Since T;, . ‘H consists of different n-dimensional subspaces, we have N —m > n. Hence

<IN —m
for any (i1,...,inN—m) € IN N—m, {@i. F1<s<N—m is Dot a basis for H. Therefore, there exists some (N —
m —n) X (N —m) matrix M;, ;. , such that
N(Mi17--~7iN—m) = Tih---,iN—m’H'
Take some (i1,...,in—m) # (l1,--+,IN—m). Then we have

ﬂl:---;imeH # j—vllauwlemH'

Since dim(T3, ...
Ti.....in_m H. Hence

In_, H is a proper subspace of

..........

is a proper subspace of H. Let

Ho = U Til (Til ----- iN—mHmCZ-‘ll ..... lN_mH)-

i1, EN—m
(il;44-77;N7m)7(l1a<-~7lN7'm)eIN,N7'm
(’il ...,iN_m);é(ll,...,lN_m)

For any f € H\Ho, let & be the sequence of any unordered N —m frame coefficients of f,ie.,é=T;, in . f
for some unknown index sequence (i1,...,iN_ym). Since f ¢ Hg, the only index sequence (j1,...,JjN-m)
satisfying

M; =0

15 JN=—m
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is (j1,.--ydN—m) = (i1,...,in—m). Consequently, we can get the correct index sequence by the above test
condition. Since {¢;, }1<s<nN—m is a frame for H, we can recover f from its unordered partial frame coefficient
sequence ¢. 0O

Next we show that every full spark frame can be rescaled to an almost self-located robust frame.

Theorem 2.2. Let {¢;}1<i<n be a full spark frame for H, where N > n+2. Then there exist constants s;,1 <
i <N, such that {s;pi}1<i<n s an almost self-located robust frame with respect to (N —n — 1)-erasures.

Proof. Pick any n + 1 elements {¢;, }1<s<n+1 from {¢;}1<i<n. Then there exists a unique sequence
{as}1<s<n such that

n
E AsPis = Pipga-
=1

Since {¢;}1<i<n is of full spark, we conclude that as # 0,1 < s < n. Otherwise, there are n elements in
{i. }1<s<n+1 which are linearly dependent, which is impossible.

Denote by T, . the analysis operator of {¢;_}1<s<n+1. Define the vector

clnt1
— T
Qi iy = (al,ag,...,an,—l) .

Then for any f € H, we have

<Ti1,...,in+1f7 ail,...,in+1> = <f, (Zas%'s) - @in+1> = 0.
i=1

Hence ..., € (Tiy,..ins ®)". On the other hand, since {¢;, }1<s<ni1 is a frame for H, we have
dimT;, . .., = n. Hence dim(7}, .. ;,,, )" =n+1—n = 1. Consequently,

(E17~~-7in+1H)J— = Spa‘n{ai1,m,in+1}'
Let X3, ,...,i,,, be the set consisting of entries in «;, .., ,. Denote by Y the set of all X;, | ;.. corresponding

to all choices of indices. Let

|a’]
L = Imax {W . Cl,a/ c Xi1,..',7:n+17Xi1,~~-7in+1 c Y}

Then L > 1, and there exists some M > 0 such that 22" > L.

Now we let s; = 2’2M+i, 1 <i < N. Denote by T° the analysis operator of {Si<,0i}1§i§N- Then

o 1 oM+iy oM+ip oM+ing1 T
(Til,...,in+1H) - Span{(Z a2 ag,...,2 an+1) }7
where (a1, as,...,a,+1)7 is chosen such that

(Ti1,~-,in+1H)J— = Span{(alv azy ..., anJrl)T}'

By Theorem 2.1, to finish the proof, it suffices to show that for T3 ; H=T; , M, we have

(i1, ying1) = (- lngn)-
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Since T i H = 7}517”“1%17-[, we have (Tfl,.__,ile)l = (Tl‘j,_”’lnHH)L. Let (a1,a2,...,a,41)7 and
(a},dh,...,al,1)" be such that
(7}-17,,,,1',,L+17-£)L = span{(a, az, ..., an+1)T}
and
(Tl1,~~-’ln+1/}'{)l = Span{(allv aIZ’ R a/n+1>T}7
respectively. Then we get that (22 'ay,22" 2ay,..., 22" " g, p1) and (227a, 22" %0,

92" 41 g 1) are linearly dependent. Picking the first two entries of both vectors, we have

M+iq M41q

22 227 )
QM +ig - oM+ly 4 °

2 az 2 ag

That is,

22A1+i1 _oM+iz f oM+l oM+l Clllag

ahay
By the definition of L and M, we have

oM+it _gM-ia | gM+ly oM+l _oMyo oMo
2 € (2 ,227 %),

Hence
M (i1 _oi lo ol oM M
g2 (21 —22 422 -2) ¢ (g-2Mx2 92Mx2y
On the other hand, since 41, ia, I; and Iy are positive integers, 20 — 22 4 2!2 — 21 € 27, Hence 271 — 2?2 4

2l _ 9l = (0. That is, 200 — 272 = 2l — 212 Without loss of generality we suppose that i; > 5. Then [; > Iy
and (217% — 1)2% = (2h=!z2 — 1)2!2. Hence (i1,i2) = (I1,l3). Similarly we can prove that

(il,is):(ll,ls), 3§s§n+1
Consequently (i1,...,%n+1) = (l1,...,{n+1). This completes the proof. O

We conclude this section by showing a density result of almost self-located robust frames, i.e., every
randomly generated n x N matrix with n < IV corresponds to an almost self-located robust frame.

Theorem 2.3. Let m, n and N be positive integers such that N —m > n. Then we have

(i). The set of all vectors (a11, -, Qn1y---y @1 Ny« -+, an N ) for which {p; == (a1, .-, an:)T }1<i<n is not
an m-erasure almost self-located robust frame is Zariski-closed. Consequently, it is of Lebesque measure
zero in R™ and its complement is open and dense in R™N .

(ii). Let A be an n X N matriz whose entries are independent continuous random variables. Then it is
almost sure that the column vectors of A form an m-erasure almost self-located robust frame.

The proof of Theorem 2.3 is mainly based on the following construction algorithm of almost self-located
robust frames. And we leave the details to interested readers.
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Construction of almost self-located robust frames:

First, we introduce a preliminary result.

Lemma 2.4. Let {¢;}1<i<n be a full spark frame for R™. Define

n - 1 - Cy
E, = U {ceR 1 #0 and chcpil = agojl +;a§0jl}7

(t15eyin)EIN R =1
(J1s--dn)€EIN

By = U {c eR™: ZCZSOn = ZCZS%}-
=1 =1

(ilv---ain)i(jl7-~-:jn)

Then we have |Ey| = |Es| = 0, where | - | denotes the Lebesgue measure of a set.
Proof. (i). Fix some cy, ..., ¢,—1 € R with ¢; ¢ {0,1}. We see from 37, cjp;, = o Lo+, 8 cLj, that

n— 1
1 1
Cn (‘Pin - a@jn) - a‘pjl < 90]1 Z ClPi; -

Since ¢;, — é(pjn # 0, there is at most one c¢,, satisfies the above equation. Hence
|E10{CER”Z C1 7&1}‘20
Observe that |Fy N{c € R": ¢; = 1}| = 0. We have |E;| = 0.

(ii). Since (i1, ...,%n) # (J1,- .., Jn), there is some Iy such that i;, # ji,. For fixed ¢1,...,¢1o—1,Clg41s-- -
Cn, there is at most one ¢, such that

Clo (@izo - 90]'10) = Z Cl(<10jz = Pir)-
1210

Hence |F2| =0. O
With the above lemma, we can construct ¢; inductively.

(i). Set p1 = (a1,1,-..,an1)T € R™ such that a; 1 # 0.

(ii). Assume that ¢y, ..., ¢; are well defined for some 1 < i < n — 1. Let ¢;41 = (@1441,---,anit1)" be
such that
a1 ce 1,441
. - |#0
Q41,1 0 Qi41,641

(iii). Assume that the full spark frame {p;}1<i<k is well defined for some n < k < N.
Let F1 and E5 be defined as in Lemma 2.4 with N being replaced by k. For k = n, let E5 = (. And for
k > n, fix some (i1,...,%n4+1) € Ignt1. Then there is a unique ¢ € R™ such that ¢;, ., = >, ;.
Let E5 be the set of all such ¢ when (i1,...,9,41) is varying from Iy ,11. It is easy to see that
|Ey U E; U Es| = 0.
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Denote
n
= U {ch% : ceEi}, 1<i<3.
(15erin ) €Tk ,n =1

b, = U {p € R" : det(viy,.--y0i,_,,¢) =0}

(815 eyin—1)€Elp n—1

Then we have | U?:1 ®;| = 0. Take any @r41 € R™\ (U?Zl D;).

It is obvious that frames constructed above are full spark. Moreover, we conclude that they are almost
self-located robust frames. By Theorem 2.2, it suffices to show that for (i1,...,%n+1), (J1,-- -, Jn+1) € INnt1

with (il’ R Z.7’L-|‘1) 7é (j17 o 7j7l+1)? E17"',ir,L+1Rn 7& Tj17~~,jrn+1Rn'

Assume on the contrary that T;, ;. ,R" =T}, ;  R™ Then there is some ¢ € R"*!\ {0} such that
n+1 n+1

> g, = ap; =0. (2.2)
1=1 =1

Since {w;}1<i<n is of full spark, we have ¢; # 0 for all [. Denote Ly = maxi<j<nt+1{#1} and Lj =

maxi<;<n+1{Ji}. There are two cases.
(i). Lo # Lj. Without loss of generality, assume that Lo < L = jn41. By (2.2), we have

n n

Cy Cl
Pipi1 — — E Piy and Pint1 — — § P>
=1 Cntl j=1 Cntl

which contradicts with the fact that ¢;,  , ¢ ®3.
(ii). Lo = Ly. Then there are some [y and Ij such that 4;, = Lo and j;; = L.
For Iy = I, it contradicts with the fact that ¢, ¢ Ps.
For lg # I, without loss of generality, we assume that o = 1, I = 2 and ¢; = 1. Then we have

n+1 1 n+1

C|
Piy = — E ¥y, = ——Pj1 —
1=2 c2

7@]1 )
C
1=3 "2

which contradicts with the fact that p;, ¢ ®;.
3. Stable recovery of signals from unordered partial frame coefficients

Based on the proofs from Section 2 we propose the following recovery algorithm.

Signal Recovery Algorithm:

Let {®i}1<i<n be an m-erasure almost self-located robust frame. For every (i1,...,iN—m) € IN N—m.,
since {¢;, }1<i<N—m is a frame for H, there exists some matrix M, . ;. _,. such that
Tisovsin-mf =N(Miy g
In the following, we set
Miy,inom =1 =T (T i Titine )™ T i (3.1)
Let ¢ := (¢1,...,én—m)T be the N —m unordered frame coefficients of some signal f. Then we can recover

f with the following steps.
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(ii).

D. Han et al. / Appl. Comput. Harmon. Anal. 44 (2018) 38-58

. Let

(19, .. i) = arg min | M;
(i1, siN—m)EIN,N—m

- (3-2)

i). Set c={c;: 1<i< N} with Cip = ¢, 1 <1< N —m. By solving the equation

Mly,“’NC = 0, (33)

where ¢; with i ¢ {i) : 1 <1 < N —m} are considered as unknowns, we get the erased coefficients
with correct order.
Recover f with the formula

N
Rf = cidi, (3.4)
=1

where {(ﬁi}1§1§1\] is a dual frame of {@i}1§i§N~

Tt is obvious that the first step is an NP hard problem [24]. In this paper, we will not be focusing on how
to get an efficient and fast recovery algorithm, which we plan to investigate in some future work. Instead,

we only focus on the theoretical side of the investigation on the feasibility and stability of recovery of signals
from unordered partial frame coefficients.

As implied by the definition of almost self-located robustness, for signals coming from Hg, a subset of H

with Lebesgue measure zero, it might fail to be recovered properly. The reason is that for frame coefficients

corresponding to signals in Hg, the solution of (3.2) is not unique. As a result, signals recovered in this way

might not be the original ones. However, this problem can be resolved by using self-located robust frames.

That is, with such frames, even if we get a wrong index set of the unordered partial frame coefficients, the

recovered signal is still the correct one. Moreover, the reconstruction error can be controlled by the input

error. In other words, such frames provide a stable recovery.

To state the main result in this section, we introduce the following definitions.

For a matrix A, denote by omin(A) and omax(A) the minimal and maximal non-zero singular values of A,
respectively. Set

7= (iseryine I};E’ i )Umin(Mil’“"imenll"”’ilN‘m%
st N—m 19" N—m
_ . 2
Oy, = min ooin(T;
(41, iN—m)EIN,N—m

(415t N—m)EIN,N—m

l)~<-7iN—m.)7

17~~~aiN77n)'

Theorem 3.1. Let {y;}1<i<n be an m-erasure self-located robust frame for H. Then for any f € H and
e € RY, the reconstructed signal Rf with the above algorithm from any unordered N —m elements of T f +¢
satisfies that

I7s =11 < (3222 +1) + 2= ) el (35)

Moreover, if {p; }1<i<n s m-erasure almost self-located robust and the reconstruction algorithm is stable,
i.e., there is some constant C such that

IRf = Fl < Cllell;

then it must be m-erasure self-located robust.
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Remark 3.2. (3.5) implies that we can recover exactly every signal from its unordered partial frame coef-
ficients with a self-located robust frame provided the inputs are noise-free. In particular, the robustness
implies the almost robustness.

Before proving Theorem 3.1, we introduce a simple lemma, which is easy to prove with the singular value
decomposition of matrices.

Lemma 3.3. Let A be a k X n matriz. For any y in the orthogonal complement of {x € R" : Ax = 0}, we
have [[Ayll2 = owmin(A)||yll2-

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Fix some f € H, (i1,...,iN—m) € IN.N—m and € € RY. We only consider the case
that the solution (iJ,...,i_,,) of (3.2) is not equal to (i1, ...,4N—m), since the trivial case (i},...,i%_,,) =
(i1,...,iN—m) is easy to check.

Let Hy={h e H: T
robust, we have

h =T i g for some g}. Since {¢;}1<i<n is m-erasure self-located

cHIN—m N —m

Hy={heH: T, h=To . h}

15t N—m 1t N_m

h:

N —m

Consequently, Ho C {h € H: My 0
0, then there is some g € H such that T;,

Tiy....in—mh = 0}. On the other hand, if Mo, s Ty,

< UN—m

h=Tyo s, g.Henceh¢€ Hy. Therefore,

<IN —m 11t N_m

Hy={heH: My o T,

IR T ML tN—m

h = 0}.

Let Py be the orthogonal projection from H onto Hy. We abuse the symbol ¢ to stand also for the erased

vector (€5,,...,6in_,. ). We see from Lemma 3.3 that
(7~ Po)fl < 1 Mgy, Toosin o (F = Po)
_ o 0 - _
071 = Omin(Mig, o Tiy in_,,) 00 Nmm et 0
1
= _HMi?,-“,'LV?V_m/Tila'“yimef||
o
1 1
< WMy T f + )+ Mg g ]
1 1
< AMi i (T f )+ Mg, g€l
1 1
= ;HMil,.u,z‘meﬁH + ;HMi?,...,i?\_m‘fH' (3.6)
Let
QZlv IN—m TSZ[l)v N —m
where Sjo o = (T;Ff%?w Ti?v--,i?vfm>_1Tiy§’,...,i?v,m is the synthesis operator for the canonical dual of

{Wi?}lgzgzvfm. Then we have

Let T be the analysis operator for {@i}1<i<n. We see from the recovery algorithm that

Rf = T*Qi?,...,io (Tiyoin - [ )

N—m
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It follows that

|Rf— fll = ”T*Qi?,...,i?\,_ (Tiy,.in—m f €)= [l

= ||T*Qi(1),...,i?\,7mTi1,‘..7iN7m (f = PRof)+ T*Qi?,...,i%7m5
—(f = PRof)ll
= ' Sit it Tivsine o (f = Pof) +Si0 a0 e—(f— Pof)H
< St Tosveinn (F = Pof)|| +||Si5.is_ ]| + 115 = o
< (18w, a0, Tirin—m |l + DI = PofIl + 1S9, _ag,_ [+ llell

IN—m N—

1
< <;(||Si?,...,'° T i |+ D UMy i |+ (Mg, g, D

IS ||) lell (3.7)

We see from (3.1) that M, . iv_.
1My in_ |l < 1. Similarly, HMZ? 0
operator for the canonical dual of {goi?}lngN_m, we have

is self-adjoint and its eigenvalues are either 0 or 1. Hence
< 1. On the other hand, since Sj ;o is the synthesis

1see

1
I1Sig,..8, I < ==

LS RXER]
Qm

ﬁ

and

VBm

Elwu,iN—mH <

1180 N

0
i tN—m

Now we get (3.5) as desired.
Next we prove the second part. Assume that there exist some f,h € H with f # g such that

Tilw-,imef = lew"yij'rng'

Then we have f # 0, g # 0, dimT}, i HNT . inv o H > 0and (i1,...,i08-m) # (J1,-- -, IN=m)-
Moreover, it follows from Theorem 2.1 that T}, ..

Fix some ¢ € Tj, . jn_ "\ Tiy,....in_,, H. Then for any o > 0, we have M; ac = 0. Hence

1 N—m
Mjlw--»ijm, (7"7;17---;iN7mf + ac) = Mjl7---7jN7n111j17--<7jN7mg = 0'
Therefore, (i9,...,i%_,,) = (j1,---,jN-m) is a minimizer of

arg min | M, (Tis,oryin—m [+ ).

1‘//
., b <o UN—m
(175 siN —n JEIN, N—m

By the assumption, there is some constant C' such that

1T Qs vecciin—m (Tir i f + @€) = fI| < Cllac].

By letting @ — 0, we get

— ~* . . . . P ~* . . . . P
f =T QJl7-~,jN7mT%1,~-,lemf =T Q.]l7~~-5]N711LT.]1a~~-JN—7n.g =9,

which contradicts with the choice of f and g. This completes the proof. O
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In the rest of this section, we focus on the construction of self-located robust frames. We first give some
necessary and sufficient conditions for a sequence of vectors to be a self-located robust frame. Then we give
two types of construction, one is based on random matrices [22], and the other is based on prime numbers.
3.1. Characterization of self-located robust frames

First, we give a characterization of self-located robust frames.

Theorem 3.4. Let A be an n x N matriz with column vectors {¢; }1<i<n. Then {@;}1<i<n s a self-located

robust frame for H with respect to m-erasures if and only if for any (ji,....jN—m): (G, JN—m) €
IN N—m,
k A.jla“ijfm _ k(A A
rank | g A ) E ek e = Ay ), (3.8)
where Aj,  in_,. stands for the submatriz of A consisting of the ji-th, ..., jN—_m-th columns.
Proof. Necessity. Fix some (j1,...,0N-m), (i, siN_m) € INN—m. Since {p;}1<i<ny is a self-

located robust frame for H with respect to m-erasures, {¢;, 1i<i<n—m is complete in H. Consequently,
ra‘nk(Ajlv---vjN—m,) =n.

Let S1 and Sz be the linear spaces spanned by row vectors of Aj, v, and Ay 50— Aj e
respectively. Suppose that = (z1,...,TN—_m) € S1MN.Ss. Then there are constants c1,...,c, and ¢é1,..., ¢,
such that

n n
Xy = Zciai’jl = Zéi(aim — ai’j{), 1 S l S N —m.
i=1 i=1
Consequently,
n n
Z(Ei — ci)ai’jl = Zéiai’j{, 1 S l S N —m.
i=1 i=1
Let ¢ = (¢1,...,¢,) and é = (é1,...,G,). Then we have

(¢—c, )= (E,gojl/}, 1<I<N-m.

Since {¢; }1<i<n is m-erasure self-located robust, we have ¢ — ¢ = ¢é. Hence ¢ = 0. Therefore, © = 0. In other
words, S1 NSy = {0}. It follows that

A
rank J1s3JN—m
(Ajl,...,m_m - Aji,---u‘évm)
=rank(4;,,  jy_,.) + rank(A4

15 JN=m Aj{,...,j}\],m>
=n-+ ra’nk(Ajlv---;jN—m - Aj{,“.,j}\,_m)

Sufficiency. Fix some (j1,...,i8-m); (41s- s In—m) € IN.N—m. Let S and Ss be defined as previous.
Suppose that (3.8) is true. Since

Ajy
J1s-- 3 JN—m
rank A . —_ A-/ Y
J1s--3JN—m J1s I N—m

< rank(Aj17~--7jN—n1) + rank(Ajly---JN—m - Aj{,...,jj\,_m)a
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we see from (3.8) that

rank(Ajly---Jme) 2 n.

But the inverse inequality is obvious. Hence
rank(Aj, jy_,.) =n (3.9)

and Sl n SQ = {O}
Assume that f = (f1,..., fn) and g = (g1, ..., gn) satisfy

Then we have

<g_f7¢jz>:<gv¢jz_§0jl’> 1SZSN_m

That is,
Z(gi — fi)aij = Zgi(ai,jl —a;5) 1<I<N-—m.

i=1 i=1

Since S; NSz = {0}, both sides must be zero. Hence
(9—fps) =0 1<I<N-m.
By (3.9), we have f =¢. O
By Theorem 3.4, we get the following necessary condition for a frame to be self-located robust.

Corollary 3.5. Let {¢; }1<i<n be an m-erasure self-located robust frame for an n-dimensional Hilbert space H.
Then we have

N—-—m>2n—1.

Proof. We see from (3.9) that rank(A4; . n—_m) = n. Hence N —m > n and there is some (j1,...,Jn) €
In_m n such that ¢;,, ..., @;, arelinearly independent. Consequently, ¢, —¢js,, - - ., ©j,_, —®j, are linearly
independent. Choose N —m —n + 1 elements jnq1, ..., jN—m+1 from {1,..., N} \ {j1,...,Jn}. Then we
have rank(A; —A ) >n—1. By (3.8), we have

1 JN—m J25e 0 N—m+1

Ajlw"f.ijm ) > — 1.

~IN—m 253 JN—m+1

k

ran ( A
Hence N —-m>2n—1. O

3.2. Randomly generated self-located robust frames

Let (92, P) be a probability space, where 2 is the space of samples and P is the probability measure. The
second result in this section is the following.
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Theorem 3.6. Suppose that N, m and n are positive integers. Let A be an n x N matriz whose entries
are independent continuous random variables. Then it is almost sure that the column vectors of A form an
m-erasure self-located robust frame if any one of the following two conditions is satisfied,

(i). N—m > 2n, or
(ii). N —m > 2n —1 and the first row of A is replaced by (1,...,1).

Before proving this theorem, we present some preliminary results. The following simple lemma is useful
in the proof of the main result.

Lemma 3.7. Let ag, ..., a, and x be a sequence of continuous random variables. Suppose that x and
(ag,...,an) are independent. If a, # 0 almost surely, then we have

n
E apz® #£0,  a.s.
k=0

Proof. For fixed (ao,...,a,) with a, # 0, the equation > ,_; axz® = 0 has at most n solutions. Since =
is a continuous random variable and z is independent with (ao,...,a,), we have >°;'_ arz® # 0 almost
surely. 0O

The following is an immediate consequence, which can be proved with induction over n.

Lemma 3.8. Let A be an n X N matriz whose entries are independent continuous random variables, where
N > n. Then it is almost sure that every n X n submatriz of A is nonsingular.

Next we show that for a randomly generated matrix A, if the rows of A; . ; — A

ji.....j. are linearly

dependent, then it remains this property whenever we add more rows to A.

Lemma 3.9. Let A be an n x N matriz whose entries are independent continuous random variables, where
N > n. Suppose that (ju, ..., jk), (41,---+Jr) € INk, k > n. If vank(Ay, 5, — Ay 1) <n almost surely,
then for any m > 1 and m x N matriz B whose entries are independent continuous random variables, which
are also independent with entries of A, we have

A A
J1s--50k J1se ke — . A
rank = rank(A — Ay ), as
) C_ B ; J1seesdk VI R
(Bh,--mc Bji....j; ! prek
Proof. Denote A = (ai,j)lgigmlgjgj\r and B = (bi,j)lgigm,1§j§N~
For 0 <r < n, let
E, ={weQ: rank(A4;, _, — Ajiv---»j;'c) =r}.
Then we have P(Q\ U'_, E,) = 0. For w € E,, we have
ai,j, — a1, s AL jrpr — AL,57 4,
: : =0. (3.10)
Ar41g1 = Qr41,50 o0 Qrtlgeys = Grdlgry,

Expanding the determinant along the first row, we get
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r4+1

> (a1, —a13)Di =0,

=1

where D; is the (1,1) minor.

Observe that a; ; are independent continuous random variables. If j; ¢ {77 : 1 < s < r+1}, then we have
D; = 0 almost surely on F,. And if j, = j. for some [ # s, then we have D; — D; = 0 almost surely on F,..
Consequently, (3.10) remains true if we replace a; ; and ay j; by b1j, and by j;, respectively. That is,

b1 — b

blajl - bl’j{ Jr1 vj:~+1
az,j; — A2,j; e 2,541 — 02,5, 0 5
= a.s. on .
. X , -
Ar+11 = Qr41,50 o0 Grtlgegn = Grdlgly,

Similarly we can prove that for any 1 <s1 < ... < 8,41 <kand1<i; <...<i, <n, we have

— b

bijo, =bujy, o bige, —bug

iy jsy — ai17j§1 s ai1»jsr+1 - ai17j§T+1
=0, a.s.onFE,.

a'irajsl - airngl A a’ir»jsr+1 - airvj‘;T+1

Hence the rank of Aj, . j, — Aj; . j remains unchanged if we add the first row of B to A. By induction

on m, we get the conclusion as desired. O

In order to prove the main result (Theorem 3.6), we also need the following lemma, which itself is also
interesting.

Denote by A;llzj’; the submatrix of A consisting of the i;-th, ... i,-th rows and the ji-th,..., j,-th
columns.

Lemma 3.10. Let A be an n x N matriz whose entries are independent continuous random variables, where
N > 2n. Then for any (j1,---,J2n), (G1- -3 7%,) € INan with i # j/, 1 <1< 2n, we have
rank(Aj, ., — Ay gy ) =N,  a.s.
Proof. We prove this lemma by induction on n. For n = 1, the conclusion is obvious.
Now we assume that it is true for n = k, where k > 1. Let us consider the case of n = k + 1.

By rearranging column vectors of Aj,  j, —Aj i we may assume that j; # jo, forall 1 <1 <2n—2.
By the assumption, for almost all w € €, there is some k x k submatrix of A;ijzk — Aglgkjék which
is of rank k. Hence there is a partition {E; : 1 < i < m} of Q satisfying that P(U",E;) = 1 and for
each 1 < ¢ <m, there is some sequence (ji,...,jr) € Ini such that for almost all w € E;, rank(A}i‘;‘_’_’fjk —

Aj,’ ’ j,) = k. Since aj,, is an n = k + 1 dimensional continuous random variable and it is independent
Loeesdh

with (aj,,...,a;5,), (aj,...,a; ), and a;, , we see from Lemma 3.7 that

det(ALRHL AL-EAl )20, as on B

ST . A
15--5JksJ2n J1s-dkd2n

Hence

rank(A;, . — Ay g )=k+1, as.

SJ2n

This completes the proof. O
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We are now ready to prove the density of self-located robust frames.

Proof of Theorem 3.6. We only prove (i). And (ii) can be proved similarly. By Theorem 3.4, it suffices to
show that for any (j1,...,72n), (J1,-- - Jon) € IN2n,

A i
Jl’;"ﬁ’f ) ) =n+rank(A;, . — Ajiv---ajén)’ a.s. (3.11)

3 /
-J2n J1s--302n

k
ran (Ajl,..

Denote A = (a; j)1<i<n,1<j<n. By Lemma 3.8, we have

A, .
rank A, }jl’;"ﬁf A
J15--572n jiw“ajén
<rank(Aj, . j,,) +rank(Aj G, — Ay )

=n + ra’nk(Aj11~~7j2n - A]{vvjén% a.8.
Hence (3.11) is equivalent to
rank (A‘ Ajl,;-,j%: } > >n+rank(Aj, ., — Ay ), as. (3.12)
J1s--502n J1s--3d2n

We prove (3.11) or (3.12) by induction over n.

To avoid complicated symbols, we use the same term “almost surely” or its abbreviation “a.s.” for different
probability measures, which in many cases are conditional ones. The exact meaning can be seen with the
context.

First, we consider the case of n = 1. If rank(Aj;, j, — Aj ;) = 0, then we have (j1,j2) = (j1,75)-
Consequently, rank (A» Aji’jZ o > = 1. Hence (3.11) is true.
142 71,02
If rank(A;, j, —Aj j,) = 1, then we have (j1, j2) # (j1,J2)- Since a; ; are independent continuous random
variables. By Lemma 3.7, (3.11) is also true.
Now assume that (3.11) is true for 1 <n < k. We consider the case of n = k + 1. Since different a; ; are
independent, we have

A, ; Ajiding
rank <A~ ‘h’;"ﬁ" > rank A2pm
J15--4502n I d%n ]1; 7]2n gl,...,jén
=1+ rank 2,. J1, 7J2
A% _
jla 7]2n jl, ’J2n
Z 1+ rank 2,. sz 7J2
A% _
T 7.7271 13, Jhn
_ 2,.. n _A2,.m
=1+ rank(A. ) + rank(Ajg’ jom AJ37 i
_ 2,. 2,..n
=n +rank(A;"", Aj§7...,jén)’ a.s., (3.13)

where we use the inductive assumption in the second last step. If

rank(A;"— A ) =rank(ATT - A% )

’ ;! /
~J2n J1s--3d2n -J2n J3sedan’’

we see from (3.13) that (3.12) is true. Next we assume that

rank(Aj " = AT ) > rank (AT - AT ) (3.14)

/ ’ .
~J2n T 7]271 J3s5--3J2n
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There are two cases.
(i). There is some ! such that j; = jj.
First, we assume that {ji,...,J5,} is a rearrangement of {ji,...,j2,}. If j; = j] for all 1 <1 < 2n,

L . . Al

then the conclusion is obvious. For other cases, by rearranging columns of A Tl |, we may
J15-0372n J1s3J2n

assume that j; = j5.

Since the sum of all the column vectors of A; .. — A, . is zero, we have
J1y--5]2n J1s--3d2n ’

rank(A;, ) =rank(A4;, - Aiéa~~7jén)' (3.15)

e — Adi i o

_ 2,...,n A2,
Let r = rank(A3"" Ajg,...,jgn .

If r <n — 1, we see from Lemma 3.9 that

1,....n _q4lm _
rank (A" Ajg,,..,jgn)_n a.s.

Hence

rank(A}""’" — AL )Y <147, as.

; 51 4
253020 J25302n

By (3.15), we have

1,....,n 1,...,n
‘7 £ ) — -7 El X <
rank (A" Ag{,...,ggn) <l+r as. (3.16)
On the other hand, if r =n — 1, (3.16) is obvious.
2,...,n
By the inductive assumption, there is some (n—147) X (n—1+7) submatrix of A2 js’;7325,~..,n 7
J35--]2n jé"“’jén
2,...m
say 91 TR Ly , which is of rank n — 1 + r.
J3see o dntrtl Tt
1,...,n
In the expansion of the determinant | 1. r41 Toodmatt , the coefficient of aijl is
Il dndr+l j{,...,j,’L_*_r_*_1
2,...,n
n J3seodndrtl
(-1) 2,1 ’_"AE,...,r+1 ;
J3sodngral Fhoe Tttt

which is not zero almost surely. By Lemma 3.7, we have

1,...,n
J1y s Jntrtl 7& 0 a.s
Loordl o 7 glertl po e
J1y s Jntrt1 Tl odngrst
Hence
1, s
J15--572
rank 1,...,n _’An7 1
J1s--5J2n J1sesdbm
1,....,n
> k J1seesdntr+1
> ran 1.,...,7"}‘1 _pler+l
J1seesJntrt1 Jlsesdntrt1
=n+r+1
1....n 1,....,n
> Haeeen Tl — o .S.
= n+ra‘nk(A.]1r~~>]2n A]iw“i]én), a.8 ’

where (3.16) is used in the last step. This proves that (3.12) is true.
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Next we consider the case that {ji,...,J5,} is not a rearrangement of {ji, ..., jan}. Since there is some

Ajy,..jon

s
) we may assume that j; = j1 and
1y--+5J2n 19 :J2n

I such that j; = jj, by rearranging columns of A

]é ¢ {j2a v th’ﬁ,}' If

O ) A2, _
rank(AJS o Ajg,...,jgn)<n 1, as.onF

for some E C 2 with P(E) > 0, then we see from Lemma 3.9 that

1,...,n _glean 2,. A2,
rank (A" Aj§,~-7jén) = rank(Aj" Ajé)m’jén), a.s.on E.
Hence
1,. 1,...,n 1,. 1,...,n
rnkA — A" _rnkA — A"
ank(A; 77, ]i,mJén) ank(A; 7, = Ay )
2,. 2,...,n
< — A" .S. )
1+ rank(A o A]éa“w]én)’ a.s.on B

On the other hand, if

2,. 2,...,n o
rank (A5~ Ajg,...,jgn) =n-—1,
we also have
rank(ALom AL ) <14 mnk(A2 — A% ). (3.17)
Jise- 7]2n Jlse-som Jzn I35 d2m

Hence (3.17) is true almost surely. By (3.14), we have

1, 1,....,n _ 2,. A2,

rank(A; " Aj{,...,jén) 1+ rank(A7 " Ajé,m,jén)’ a.s. (3.18)

2,. 2,. . . . .
Let r = rank(A5 " — A ", ). By the inductive assumption, there is some (n —1+7) x (n—1+7)

9 331 2n
2,...,n A2 LN
submatrix of 2 Jsﬁ;ﬂziu_’n vsay | o I3 ’_]"+§T1 1 , which is of rank n — 1 + r.
735+ 7]271. 55 dm J3s-dntrt1 Jhseesdntrt1

1,....,n

Consequently, the coefficient of a; j, a1 j; in the determinant PR T ’_J"”l,“ 41 is not zero almost
J1sedntr+1 J1s- ’]n+7‘+1

surely. By Lemma 3.7, we get (3.11).
(ii). g1 # j, forall 1 <1 < 2n.
If {41, .., Jont N {41, -, Jont = 0, we see from Lemma 3.8 that

rank Aj11~~7j2n — rank A 152720 — 2n a.s
. . — . . . b .
Ajiyiion AJi,-u,Jén AJ’, csJhn

Hence (3.12) is true.

Next we assume that there is some [ # I’ such that j; = jj,. Without loss of generality, we assume that
J1 = Ja-

By Lemma 3.10, we have rank(A2 — A%™ ) = n —1 almost surely. It follows from the inductive

’]271 J35-Jd2n
assumption that

2,...,n
k Ajs J2 2 )
ran 2., ER = 2n — a.s.
Aj7 1 — A% ;1 ’

; - -/ 1y
35-]2n J3532n
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Observe that the coefficient of ai j, in the expansion of the determinant

1,....n
J1seend2
Al,...,n ’_’ T,...,n
J1s-02n J1sesdbm

is

2,...,mn
J35--502

A A

; 4 S/
3503020 555 Jom

(="

)

which is not equal to zero almost surely. By Lemma 3.7, we have

Al
rank Lo Jl’;”ﬁiﬂ...m = 2n.
J1s--5J2n G4 dbn
Hence (3.12) is true. This completes the proof. O

3.8. Explicitly given self-located robust frames

In this subsection, we give some explicit construction of self-located robust frames. The main result is
the following.

Theorem 3.11. Let N, m and n be positive integers and {p; ;}1<i<ni1<j<n be a sequence of different prime
numbers. Define

pi =m0 1<i < N.

» P,y

Then {¢;ti<j<n is a self-located robust frame with respect to m-erasures whenever N —m > 2n.
Moreover, {¢;}1<j<n remains a self-located robust frame with respect to m-erasures if N —m > 2n — 1
and the first entry of y; is replaced by 1 for all1 < j < N.

To prove Theorem 3.11, we need some preliminary results. First, we introduce a result on prime numbers
[21].

Proposition 3.12. (See [21, Theorem 1.1].) Let K and L be two fields such that K C L C R. Let A be a
subset of L satisfying the following conditions:

(i) 4] > 2.
(ii). For every a € A there is some n, € N with a™ € K. In what follows we always assume n, is minimal.
(iii). A s pairwise linearly independent over K.

(iv). If char (K) > 0, then (ng,char (K)) =1 for all a € A.

Then A is linearly independent over K.

With Proposition 3.12, we have the following lemma, which can be considered as a generalization of [21,
Proposition 4.1].

1/3

Lemma 3.13. Let {p;}1<i<s be a sequence of different prime numbers and r; = p;’”,1 < i < s. Then the

equation
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E o il 2 is _
Ciyig,.isT1Te - Tg =0 (3.19)
i1,...,is€{0,1,2}

with ¢y 4y, i, a5 unknowns has no nonzero solution in the field Q.

Proof. Let K =Q, L =R and A = {rilr? st iy oo is € {0,1,2}}. By Proposition 3.12, it suffices to

S

show that A is pairwise linearly independent over Q. Suppose on the contrary that there exist ril r? corls £

iy i i i1, i ; iy i i . .
Tyt .. rs® such that ri'ri? .. .rls and ri'ry?...7¢" are linearly dependent over Q. Then there exist two
nonzero rational numbers u; and us such that

. . -/

i1 .02 1s

is _ iy iy
UITITSE LTl = uaTy et LT

That is,
o g
R I
U1
Hence
o o w
i1 —1] i2—1iy Ts—ly 2\3
protpy eeps = (2)”
U1
Since the right side is the cube of some rational number, for each d € {1,2,..., s} we have 3|(iq — i}).
. . . A )
On the other hand, since ri'rs?>...res £ ri'r? ... rg, there exists some dy € {1,2,...,s} such that

idy 7 1y,- Note that ig,, i, € {0,1,2}. So iq, — i) € {-2,—1,1,2}, which contradicts with 3|(iq, — 7, )-
This completes the proof. O

The following are two immediate consequences.

Lemma 3.14. Let {p; }1<i<s be a sequence of different prime numbers and r; = p}/g, 1<i<s. Let f,g and
h be some multivariate polynomials of ro, T3, ..., s with rational coefficients. Then

fri4gri+h=0
if and only if f=g=h=0.

Lemma 3.15. Let {p;}1<i<s be a sequence of different prime numbers and r; = p;/g, 1<i<s. Letf,g, h

and u be multivariate polynomials of r3, 714, ...,rs with rational coefficients. Then
frira+gri+hrao+u=20
ifand only if f=g=h=u=0.
And the following is a counterpart of Lemma 3.8, which is a consequence of Lemma 3.13.

Lemma 3.16. Let A = (p;7/7-3)1§i§n,1§j§N be an n x N matriz, where p; ; are pairwise different prime
numbers. Then every n X n submatriz of A is nonsingular.

Observe that Lemmas 3.9 and 3.10 also remain true if we replace independent continuous random variables
by cube roots of different prime numbers, thanks to Lemma 3.13.

For example, let A be an n x N matrix whose entries are cube roots of different prime numbers, where
N > n. Suppose that (j1,...,Jk), (41,---,Jr) € INk, k > n. If rank(A4;,  ; — Ajia--wj;’q) < n, then for any



58 D. Han et al. / Appl. Comput. Harmon. Anal. 44 (2018) 38-58

m > 1 and m X N matrix B whose entries are cube roots of different prime numbers, which are also different
from entries of A, we have

A o= A
F10eesdk Flaeendh | — A
rank (B- Lol rank(Aj, g — Ajp )

1 seeesin — Bt

By Lemma 3.13, the above conclusion can be proved using almost the same arguments as that in the proof
of Lemma 3.9 except that the probability is removed.

With similar arguments as in the proof of Theorem 3.6 we can prove Theorem 3.11. We leave the details
to interested readers.
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