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In this paper, we study the feasibility and stability of recovering signals in finite-
dimensional spaces from unordered partial frame coefficients. We prove that with 
an almost self-located robust frame, any signal except from a Lebesgue measure 
zero subset can be recovered from its unordered partial frame coefficients. However, 
the recovery is not necessarily stable with almost self-located robust frames. We 
propose a new class of frames, namely self-located robust frames, that ensures 
stable recovery for any input signal with unordered partial frame coefficients. In 
particular, the recovery is exact whenever the received unordered partial frame 
coefficients are noise-free. We also present some characterizations and constructions 
for (almost) self-located robust frames. Based on these characterizations and 
construction algorithms, we prove that any randomly generated frame is almost 
surely self-located robust. Moreover, frames generated with cube roots of different 
prime numbers are also self-located robust.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Frames have been widely used in many applications, in particular, in signal and data analysis. Different 
from orthogonal bases, one of the main features of frames is that they provide redundant representations of 
signals which makes it possible to resolve many practical problems. For example, when the frame coefficients 
of a signal are transferred in channels, it occurs often that some coefficients are erased. A lot of research 
has been done in recent years dealing with the various problems of recovering the original signal from 
erasure-corrupted frame coefficients. Before stating further results, we introduce the definition of frames.

Recall that {ϕi}1≤i≤N is said to be a frame for some finite-dimensional Hilbert space H if there exist 
constants C1 and C2 such that
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C1‖f‖2 ≤
N∑
i=1

|〈f, ϕi〉|2 ≤ C2‖f‖2, ∀f ∈ H,

where C1 and C2 are called the lower and upper frame bounds, respectively. A frame {ϕi}1≤i≤N is said to 
be of full spark if every n elements in the frame form a Riesz basis for H, where n = dimH.

Given a frame {ϕi}1≤i≤N for H, one can find another frame {ϕ̃i}1≤i≤N , called the dual of {ϕi}1≤i≤N , 
such that

f =
N∑
i=1

〈f, ϕi〉ϕ̃i, ∀f ∈ H.

A Parseval frame is a frame such that it is a dual of itself, or equivalently C1 = C2 = 1. For more details 
on frame theory, we refer to [7–9].

In this paper, we only consider frames with different real vectors. And H stands for the n-dimensional 
real or complex space.

Suppose that some frame coefficients {〈f, ϕi〉}i∈I are erased in data transmission. If {ϕi}i∈Ic is also a 
frame for H, then we can recover f with a dual frame of {ϕi}i∈Ic . However, since the index set for the 
erased coefficients varies, it is time consuming to compute a new dual frame every time, and therefore 
this recovery approach may not be suitable for real-time data processing applications. Another approach 
is to treat the erased frame coefficients as zeros and then reconstruct the input signal with the original 
reconstruction formula based on the canonical dual. Obviously, this will bring some reconstruction error. 
This led to some recent research in the literature about characterizing optimal frames that minimize the 
maximal reconstruction error for this approach (cf. [1–6,12–14,16–20,23] and references therein). For the 
case of m-erasures with m ≤ 2, the optimal frames or dual frames that minimize the maximal reconstruction 
error can be characterized. However, not much is known if the number of erasures is greater than 2.

In [10], the first and the third named authors of this paper proposed a third approach to this problem. 
With well designed full spark frames, we can recover the erased frame coefficients by solving a very simple 
system of linear equations with erasures as unknowns, and consequently it overcomes the shortcomings 
of computing dual frames again and again and has no systematic error when comparing with the second 
approach.

In data transmission, the locations of erased coefficients might be unknown, or the received data might 
be disordered. To solve these problem, almost robust frames and almost self-located frames are introduced 
in [10].

Definition 1.1. (See [10].) A frame for H is said to be almost robust with respect to m-erasures if we can 
recover any f ∈ H \ H0 from its frame coefficients with m-erasures at unknown locations, where H0 is the 
union of finitely many proper subspaces of H.

A frame is said to be almost self-located if we can recover the sequence of frame coefficients (and therefore 
the corresponding signal) from any of its rearrangements for any signal in H \H0.

By the definitions, with almost robust frames, we can recover missing frame coefficients at unknown 
locations for almost all signals. And with almost self-located frames, we can recover the correct order of frame 
coefficients from any of their rearrangements for almost all signals. Characterizations and constructions for 
both almost robust frames and almost self-located frames were obtained in [10,11]. See also [15] for some 
explicitly given almost robust or almost self-located frames.

It is natural to ask if it is possible to recover the input signal if we only know unordered partial frame 
coefficients? In this paper, we show that the answer is yes with well-chosen frames. For our purpose, we 
introduce the following definition:
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Definition 1.2. A frame for H is called almost self-located robust with respect to m-erasures, if we can recover 
any f ∈ H \H0 from any of its N −m unordered frame coefficients, where H0 is the union of finitely many 
proper subspaces of H.

We see from the definition that almost self-located robust frames are automatically both almost self-
located and almost robust. It was shown in [10] that by choosing suitable rescaling constants, every full 
spark frame can be modified to be an almost self-located or almost robust frame. One of our main results in 
this paper is to show that the same is true for almost self-located robust frames. Moreover, we prove that 
for N −m > n, where n is the dimension of the signal space, it is almost sure that the column vectors of 
any randomly generated n ×N matrix form an m-erasure almost self-located robust frame.

In practice, the measured signals are usually noisy. If a signal f is close to H0, the set consisting of 
unrecoverable signals, then the existence of noises makes it possible to get wrong erasure locations, and 
consequently we may not be able to recover f from its unordered partial frame coefficients. So almost 
self-located robustness does not guarantee the stability for the signal recovering. Moreover, they only apply 
to the recovery for almost all the input signals even in the noise-free case. One of the goals of this paper is 
to find a new class of frames that not only guarantee the exact recovery for all signals in the noise-free case 
but also provide stable recovery when the set of unordered partial frame coefficients carries noise.

For N ≥ k, denote by IN,k the set consisting of all rearrangements of k elements in {1, . . . , N}. We 
propose the following definition:

Definition 1.3. A frame {ϕi}1≤i≤N for H is called self-located robust with respect to m-erasures, if for all 
(i1, . . . , iN−m), (j1, . . . , jN−m) ∈ IN,N−m and any signals f , g ∈ H satisfying

〈f, ϕil〉 = 〈g, ϕjl〉, 1 ≤ l ≤ N −m,

we have f = g.

We prove that with a self-located robust frame, we can reconstruct any signal from its unordered partial 
frame coefficients. Moreover, the reconstruction algorithm is stable in the sense that small changes of input 
signals only result in small changes of the output.

The rest of the paper is organized as follows. In Section 2, we obtain a characterization for almost 
self-located robust frames. As a consequence of this characterization we obtain that the column vectors of 
randomly generated matrices form almost self-located robust frames. Section 3 is devoted to the characteri-
zation/construction of self-located robust frames and the stability of our reconstruction algorithm. We give 
two types of construction, one is based on random matrices, and the other is based on prime numbers.

2. Almost self-located robust frames

In this section, we give a characterization for almost self-located robust frames, with which we provide 
construction method for such frames. We show that by choosing suitable parameters, every frame with full 
spark can be rescaled to an almost self-located robust frame. Moreover, typical randomly generated n ×N

matrix with n < N corresponds to an almost self-located robust frame.
Let {ϕi}1≤i≤N be a frame but not a basis for H. Define the analysis operator T as

T : H 	→ CN : Tf = (〈f, ϕ1〉, . . . , 〈f, ϕN 〉)T .

Then there is some matrix M such that the null space of M is exact the range of the analysis operator T .
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For (i1, . . . , ik) ∈ IN,k, define

Ti1,...,ikf = (〈f, ϕi1〉, . . . , 〈f, ϕik〉)T .

And we denote T1,··· ,N simply by T .
The following is a characterization of almost self-located robust frames.

Theorem 2.1. Suppose that dimH = n. Let {ϕi}1≤i≤N be a frame for H. Then {ϕi}1≤i≤N is almost self-
located robust with respect to m-erasures if and only if {Ti1,...,iN−m

H : (i1, . . . , iN−m) ∈ IN,N−m} consists 
of pairwise distinct n-dimensional subspaces.

Proof. Necessity. If there exists some (i1, . . . , iN−m) ∈ IN,N−m such that dim(Ti1,...,iN−m
H) < n, then 

{ϕis}1≤s≤N−m is not a frame for H. Hence for almost all signals f ∈ H, we can not recover f from 
Ti1,...,iN−m

f .
On the other hand, assume that there exist (i1, . . . , iN−m), (l1, . . . , lN−m) ∈ IN,N−m such that 

(i1, . . . , iN−m) �= (l1, . . . , lN−m) and

Ti1,...,iN−m
H = Tl1,...,lN−m

H. (2.1)

Then there is some s ∈ {1, . . . , N −m} such that is �= ls. Let

Hs = {f ∈ H : 〈f, ϕis〉 = 〈f, ϕls〉}.

Since ϕis �= ϕls , Hs is a proper subspace of H. For any f ∈ H\Hs, we see from (2.1) that there exists some 
g ∈ H such that Ti1,...,iN−m

f = Tl1,...,lN−m
g. Since f /∈ Hs, we have f �= g. Hence for almost all f ∈ H, we 

can not recover f from Ti1,...,iN−m
f .

Sufficiency. Since Ti1,...,iN−m
H consists of different n-dimensional subspaces, we have N −m > n. Hence 

for any (i1, . . . , iN−m) ∈ IN,N−m, {ϕis}1≤s≤N−m is not a basis for H. Therefore, there exists some (N −
m − n) × (N −m) matrix Mi1,...,iN−m

such that

N (Mi1,...,iN−m
) = Ti1,...,iN−m

H.

Take some (i1, . . . , iN−m) �= (l1, . . . , lN−m). Then we have

Ti1,...,iN−m
H �= Tl1,...,lN−m

H.

Since dim(Ti1,...,iN−m
H) = dim(Tl1,...,lN−m

H) = n, Ti1,...,iN−m
H ∩ Tl1,...,lN−m

H is a proper subspace of 
Ti1,...,iN−m

H. Hence

T−1
i1,...,iN−m

(Ti1,...,iN−m
H ∩ Tl1,...,lN−m

H)

is a proper subspace of H. Let

H0 =
⋃

(i1,...,iN−m),(l1,...,lN−m)∈IN,N−m

(i1,...,iN−m) �=(l1,...,lN−m)

T−1
i1,...,iN−m

(Ti1,...,iN−m
H ∩ Tl1,...,lN−m

H).

For any f ∈ H\H0, let c̃ be the sequence of any unordered N−m frame coefficients of f , i.e., c̃ = Ti1,...,iN−m
f

for some unknown index sequence (i1, . . . , iN−m). Since f /∈ H0, the only index sequence (j1, . . . , jN−m)
satisfying

Mj1,...,jN−m
c̃ = 0
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is (j1, . . . , jN−m) = (i1, . . . , iN−m). Consequently, we can get the correct index sequence by the above test 
condition. Since {ϕis}1≤s≤N−m is a frame for H, we can recover f from its unordered partial frame coefficient 
sequence c̃. �

Next we show that every full spark frame can be rescaled to an almost self-located robust frame.

Theorem 2.2. Let {ϕi}1≤i≤N be a full spark frame for H, where N ≥ n +2. Then there exist constants si, 1 ≤
i ≤ N , such that {siϕi}1≤i≤N is an almost self-located robust frame with respect to (N − n − 1)-erasures.

Proof. Pick any n + 1 elements {ϕis}1≤s≤n+1 from {ϕi}1≤i≤N . Then there exists a unique sequence 
{as}1≤s≤n such that

n∑
i=1

asϕis = ϕin+1 .

Since {ϕi}1≤i≤N is of full spark, we conclude that as �= 0, 1 ≤ s ≤ n. Otherwise, there are n elements in 
{ϕis}1≤s≤n+1 which are linearly dependent, which is impossible.

Denote by Ti1,...,in+1 the analysis operator of {ϕis}1≤s≤n+1. Define the vector

αi1,...,in+1 = (a1, a2, . . . , an,−1)T .

Then for any f ∈ H, we have

〈Ti1,...,in+1f, αi1,...,in+1〉 =
〈
f,
( n∑

i=1
asϕis

)
− ϕin+1

〉
= 0.

Hence αi1,...,in+1 ∈ (Ti1,...,in+1H)⊥. On the other hand, since {ϕis}1≤s≤n+1 is a frame for H, we have 
dimTi1,...,in+1H = n. Hence dim(Ti1,...,in+1H)⊥ = n + 1 − n = 1. Consequently,

(Ti1,...,in+1H)⊥ = span{αi1,...,in+1}.

Let Xi1,...,in+1 be the set consisting of entries in αi1,...,in+1 . Denote by Y the set of all Xi1,...,in+1 corresponding 
to all choices of indices. Let

L = max
{ |a′|
|a| : a, a′ ∈ Xi1,...,in+1 , Xi1,...,in+1 ∈ Y

}
.

Then L ≥ 1, and there exists some M > 0 such that 22M

> L.
Now we let si = 2−2M+i

, 1 ≤ i ≤ N . Denote by T s the analysis operator of {siϕi}1≤i≤N . Then

(T s
i1,...,in+1

H)⊥ = span{(22M+i1
a1, 22M+i2

a2, . . . , 22M+in+1
an+1)T },

where (a1, a2, . . . , an+1)T is chosen such that

(Ti1,...,in+1H)⊥ = span{(a1, a2, . . . , an+1)T }.

By Theorem 2.1, to finish the proof, it suffices to show that for T s
i1,...,in+1

H = T s
l1,...,ln+1

H, we have

(i1, . . . , in+1) = (l1, . . . , ln+1).
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Since T s
i1,...,in+1

H = T s
l1,...,ln+1

H, we have (T s
i1,...,in+1

H)⊥ = (T s
l1,...,ln+1

H)⊥. Let (a1, a2, . . . , an+1)T and 
(a′1, a′2, . . . , a′n+1)T be such that

(Ti1,...,in+1H)⊥ = span{(a1, a2, . . . , an+1)T }

and

(Tl1,...,ln+1H)⊥ = span{(a′1, a′2, . . . , a′n+1)T },

respectively. Then we get that (22M+i1
a1, 22M+i2

a2, . . . , 22M+in+1
an+1) and (22M+l1

a′1, 22M+l2
a′2, . . . ,

22M+ln+1
a′n+1) are linearly dependent. Picking the first two entries of both vectors, we have

22M+i1
a1

22M+i2a2
= 22M+l1

a′1
22M+l2a′2

.

That is,

22M+i1−2M+i2+2M+l2−2M+l1 = a′1a2

a′2a1
.

By the definition of L and M , we have

22M+i1−2M+i2+2M+l2−2M+l1 ∈ (2−2M×2, 22M×2).

Hence

22M (2i1−2i2+2l2−2l1 ) ∈ (2−2M×2, 22M×2).

On the other hand, since i1, i2, l1 and l2 are positive integers, 2i1 − 2i2 + 2l2 − 2l1 ∈ 2Z. Hence 2i1 − 2i2 +
2l2 − 2l1 = 0. That is, 2i1 − 2i2 = 2l1 − 2l2 . Without loss of generality we suppose that i1 ≥ i2. Then l1 ≥ l2
and (2i1−i2 − 1)2i2 = (2l1−l2 − 1)2l2 . Hence (i1, i2) = (l1, l2). Similarly we can prove that

(i1, is) = (l1, ls), 3 ≤ s ≤ n + 1.

Consequently (i1, . . . , in+1) = (l1, . . . , ln+1). This completes the proof. �
We conclude this section by showing a density result of almost self-located robust frames, i.e., every 

randomly generated n ×N matrix with n < N corresponds to an almost self-located robust frame.

Theorem 2.3. Let m, n and N be positive integers such that N −m > n. Then we have

(i). The set of all vectors (a1,1, . . . , an,1, . . . , a1,N , . . . , an,N ) for which {ϕi := (a1,i, . . . , an,i)T }1≤i≤N is not 
an m-erasure almost self-located robust frame is Zariski-closed. Consequently, it is of Lebesgue measure 
zero in RnN and its complement is open and dense in RnN .

(ii). Let A be an n × N matrix whose entries are independent continuous random variables. Then it is 
almost sure that the column vectors of A form an m-erasure almost self-located robust frame.

The proof of Theorem 2.3 is mainly based on the following construction algorithm of almost self-located 
robust frames. And we leave the details to interested readers.
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Construction of almost self-located robust frames:

First, we introduce a preliminary result.

Lemma 2.4. Let {ϕi}1≤i≤N be a full spark frame for Rn. Define

E1 =
⋃

(i1,...,in)∈IN,n

(j1,...,jn)∈IN,n

{
c ∈ Rn : c1 �= 0 and

n∑
l=1

clϕil = 1
c1

ϕj1 +
n∑

l=2

cl
c1

ϕjl

}
,

E2 =
⋃

(i1,...,in) �=(j1,...,jn)

{
c ∈ Rn :

n∑
l=1

clϕil =
n∑

l=1

clϕjl

}
.

Then we have |E1| = |E2| = 0, where | · | denotes the Lebesgue measure of a set.

Proof. (i). Fix some c1, . . ., cn−1 ∈ R with c1 /∈ {0, 1}. We see from 
∑n

l=1 clϕil = 1
c1
ϕj1 +

∑n
l=2

cl
c1
ϕjl that

cn

(
ϕin − 1

c1
ϕjn

)
= 1

c1
ϕj1 +

n−1∑
l=2

cl
c1

ϕjl −
n−1∑
l=1

clϕil .

Since ϕin − 1
c1
ϕjn �= 0, there is at most one cn satisfies the above equation. Hence

|E1 ∩ {c ∈ Rn : c1 �= 1}| = 0.

Observe that |E1 ∩ {c ∈ Rn : c1 = 1}| = 0. We have |E1| = 0.
(ii). Since (i1, . . . , in) �= (j1, . . . , jn), there is some l0 such that il0 �= jl0 . For fixed c1, . . . , cl0−1, cl0+1, . . . ,

cn, there is at most one cl0 such that

cl0(ϕil0
− ϕjl0

) =
∑
l �=l0

cl(ϕjl − ϕil).

Hence |E2| = 0. �
With the above lemma, we can construct ϕi inductively.

(i). Set ϕ1 = (a1,1, . . . , an,1)T ∈ Rn such that a1,1 �= 0.
(ii). Assume that ϕ1, . . ., ϕi are well defined for some 1 ≤ i ≤ n − 1. Let ϕi+1 = (a1,i+1, . . . , an,i+1)T be 

such that

∣∣∣∣∣∣
a1,1 · · · a1,i+1

...
...

ai+1,1 · · · ai+1,i+1

∣∣∣∣∣∣ �= 0.

(iii). Assume that the full spark frame {ϕi}1≤i≤k is well defined for some n ≤ k < N .
Let E1 and E2 be defined as in Lemma 2.4 with N being replaced by k. For k = n, let E3 = ∅. And for 
k > n, fix some (i1, . . . , in+1) ∈ Ik,n+1. Then there is a unique c ∈ Rn such that ϕin+1 =

∑n
l=1 clϕil . 

Let E3 be the set of all such c when (i1, . . . , in+1) is varying from Ik,n+1. It is easy to see that 
|E1 ∪ E2 ∪ E3| = 0.
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Denote

Φi =
⋃

(i1,...,in)∈Ik,n

{ n∑
l=1

clϕil : c ∈ Ei

}
, 1 ≤ i ≤ 3.

Φ4 =
⋃

(i1,...,in−1)∈Ik,n−1

{ϕ ∈ Rn : det(ϕi1 , . . . , ϕin−1 , ϕ) = 0}

Then we have 
∣∣⋃4

i=1 Φi

∣∣ = 0. Take any ϕk+1 ∈ Rn \ (
⋃4

i=1 Φi).

It is obvious that frames constructed above are full spark. Moreover, we conclude that they are almost 
self-located robust frames. By Theorem 2.2, it suffices to show that for (i1, . . . , in+1), (j1, . . . , jn+1) ∈ IN,n+1
with (i1, . . . , in+1) �= (j1, . . . , jn+1), Ti1,...,in+1R

n �= Tj1,...,jn+1R
n.

Assume on the contrary that Ti1,...,in+1R
n = Tj1,...,jn+1R

n. Then there is some c ∈ Rn+1 \ {0} such that

n+1∑
l=1

clϕil =
n+1∑
l=1

clϕjl = 0. (2.2)

Since {ϕi}1≤i≤N is of full spark, we have cl �= 0 for all l. Denote L0 = max1≤l≤n+1{il} and L′
0 =

max1≤l≤n+1{jl}. There are two cases.
(i). L0 �= L′

0. Without loss of generality, assume that L0 < L′
0 = jn+1. By (2.2), we have

ϕin+1 = −
n∑

l=1

cl
cn+1

ϕil and ϕjn+1 = −
n∑

l=1

cl
cn+1

ϕjl ,

which contradicts with the fact that ϕjn+1 /∈ Φ3.
(ii). L0 = L′

0. Then there are some l0 and l′0 such that il0 = L0 and jl′0 = L′
0.

For l0 = l′0, it contradicts with the fact that ϕL0 /∈ Φ2.
For l0 �= l′0, without loss of generality, we assume that l0 = 1, l′0 = 2 and c1 = 1. Then we have

ϕi1 = −
n+1∑
l=2

clϕil = − 1
c2

ϕj1 −
n+1∑
l=3

cl
c2

ϕjl ,

which contradicts with the fact that ϕi1 /∈ Φ1.

3. Stable recovery of signals from unordered partial frame coefficients

Based on the proofs from Section 2 we propose the following recovery algorithm.

Signal Recovery Algorithm:
Let {ϕi}1≤i≤N be an m-erasure almost self-located robust frame. For every (i1, . . . , iN−m) ∈ IN,N−m, 

since {ϕil}1≤l≤N−m is a frame for H, there exists some matrix Mi1,...,iN−m
such that

Ti1,...,iN−m
f = N (Mi1,...,iN−m

).

In the following, we set

Mi1,...,iN−m
= I − Ti1,...,iN−m

(T ∗
i1,...,iN−m

Ti1,...,iN−m
)−1T ∗

i1,...,iN−m
. (3.1)

Let c̃ := (c̃1, . . . , ̃cN−m)T be the N −m unordered frame coefficients of some signal f . Then we can recover 
f with the following steps.
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(i). Let

(i01, . . . , i0N−m) = arg min
(i1,...,iN−m)∈IN,N−m

‖Mi1,...,iN−m
c̃‖. (3.2)

(ii). Set c = {ci : 1 ≤ i ≤ N} with ci0l = c̃l, 1 ≤ l ≤ N −m. By solving the equation

M1,...,Nc = 0, (3.3)

where ci with i /∈ {i0l : 1 ≤ l ≤ N − m} are considered as unknowns, we get the erased coefficients 
with correct order.

(iii). Recover f with the formula

Rf :=
N∑
i=1

ciϕ̃i, (3.4)

where {ϕ̃i}1≤i≤N is a dual frame of {ϕi}1≤i≤N .

It is obvious that the first step is an NP hard problem [24]. In this paper, we will not be focusing on how 
to get an efficient and fast recovery algorithm, which we plan to investigate in some future work. Instead, 
we only focus on the theoretical side of the investigation on the feasibility and stability of recovery of signals 
from unordered partial frame coefficients.

As implied by the definition of almost self-located robustness, for signals coming from H0, a subset of H
with Lebesgue measure zero, it might fail to be recovered properly. The reason is that for frame coefficients 
corresponding to signals in H0, the solution of (3.2) is not unique. As a result, signals recovered in this way 
might not be the original ones. However, this problem can be resolved by using self-located robust frames. 
That is, with such frames, even if we get a wrong index set of the unordered partial frame coefficients, the 
recovered signal is still the correct one. Moreover, the reconstruction error can be controlled by the input 
error. In other words, such frames provide a stable recovery.

To state the main result in this section, we introduce the following definitions.
For a matrix A, denote by σmin(A) and σmax(A) the minimal and maximal non-zero singular values of A, 

respectively. Set

σ = min
(i1,...,iN−m) �=(i′1,...,i′N−m)

σmin(Mi1,...,iN−m
Ti′1,...,i

′
N−m

),

αm = min
(i1,...,iN−m)∈IN,N−m

σ2
min(Ti1,...,iN−m

),

βm = max
(i1,...,iN−m)∈IN,N−m

σ2
max(Ti1,...,iN−m

).

Theorem 3.1. Let {ϕi}1≤i≤N be an m-erasure self-located robust frame for H. Then for any f ∈ H and 
ε ∈ RN , the reconstructed signal Rf with the above algorithm from any unordered N−m elements of Tf +ε

satisfies that

‖Rf − f‖ ≤
(

2
σ

(√
βm√
αm

+ 1
)

+ 1√
αm

)
‖ε‖. (3.5)

Moreover, if {ϕi}1≤i≤N is m-erasure almost self-located robust and the reconstruction algorithm is stable, 
i.e., there is some constant C such that

‖Rf − f‖ ≤ C‖ε‖,

then it must be m-erasure self-located robust.
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Remark 3.2. (3.5) implies that we can recover exactly every signal from its unordered partial frame coef-
ficients with a self-located robust frame provided the inputs are noise-free. In particular, the robustness 
implies the almost robustness.

Before proving Theorem 3.1, we introduce a simple lemma, which is easy to prove with the singular value 
decomposition of matrices.

Lemma 3.3. Let A be a k × n matrix. For any y in the orthogonal complement of {x ∈ Rn : Ax = 0}, we 
have ‖Ay‖2 ≥ σmin(A)‖y‖2.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Fix some f ∈ H, (i1, . . . , iN−m) ∈ IN,N−m and ε ∈ RN . We only consider the case 
that the solution (i01, . . . , i0N−m) of (3.2) is not equal to (i1, . . . , iN−m), since the trivial case (i01, . . . , i0N−m) =
(i1, . . . , iN−m) is easy to check.

Let H0 = {h ∈ H : Ti1,...,iN−m
h = Ti01,...,i

0
N−m

g for some g}. Since {ϕi}1≤i≤N is m-erasure self-located 
robust, we have

H0 = {h ∈ H : Ti1,...,iN−m
h = Ti01,...,i

0
N−m

h}.

Consequently, H0 ⊂ {h ∈ H : Mi01,...,i
0
N−m

Ti1,...,iN−m
h = 0}. On the other hand, if Mi01,...,i

0
N−m

Ti1,...,iN−m
h =

0, then there is some g ∈ H such that Ti1,...,iN−m
h = Ti01,...,i

0
N−m

g. Hence h ∈ H0. Therefore,

H0 = {h ∈ H : Mi01,...,i
0
N−m

Ti1,...,iN−m
h = 0}.

Let P0 be the orthogonal projection from H onto H0. We abuse the symbol ε to stand also for the erased 
vector (εi1 , . . . , εiN−m

). We see from Lemma 3.3 that

‖(I − P0)f‖ ≤ 1
σmin(Mi01,...,i

0
N−m

Ti1,...,iN−m
)‖Mi01,...,i

0
N−m

Ti1,...,iN−m
(f − P0f)‖

≤ 1
σ
‖Mi01,...,i

0
N−m

Ti1,...,iN−m
f‖

≤ 1
σ
‖Mi01,...,i

0
N−m

(Ti1,...,iN−m
f + ε)‖ + 1

σ
‖Mi01,...,i

0
N−m

ε‖

≤ 1
σ
‖Mi1,...,iN−m

(Ti1,...,iN−m
f + ε)‖ + 1

σ
‖Mi01,...,i

0
N−m

ε‖

= 1
σ
‖Mi1,...,iN−m

ε‖ + 1
σ
‖Mi01,...,i

0
N−m

ε‖. (3.6)

Let

Qi01,...,i
0
N−m

= TSi01,...,i
0
N−m

,

where Si01,...,i
0
N−m

:= (T ∗
i01,...,i

0
N−m

Ti01,...,i
0
N−m

)−1T ∗
i01,...,i

0
N−m

is the synthesis operator for the canonical dual of 
{ϕi0l

}1≤l≤N−m. Then we have

T = Qi01,...,i
0
N−m

Ti01,...,i
0
N−m

.

Let T̃ be the analysis operator for {ϕ̃i}1≤i≤N . We see from the recovery algorithm that

Rf = T̃ ∗Qi0,...,i0 (Ti1,...,iN−m
f + ε).
1 N−m
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It follows that

‖Rf − f‖ = ‖T̃ ∗Qi01,...,i
0
N−m

(Ti1,...,iN−m
f + ε) − f‖

= ‖T̃ ∗Qi01,...,i
0
N−m

Ti1,...,iN−m
(f − P0f) + T̃ ∗Qi01,...,i

0
N−m

ε

− (f − P0f)‖

=
∥∥∥Si01,...,i

0
N−m

Ti1,...,iN−m
(f − P0f) + Si01,...,i

0
N−m

ε− (f − P0f)
∥∥∥

≤
∥∥∥Si01,...,i

0
N−m

Ti1,...,iN−m
(f − P0f)

∥∥∥ +
∥∥∥Si01,...,i

0
N−m

ε
∥∥∥ + ‖f − P0f‖

≤ (‖Si01,...,i
0
N−m

Ti1,...,iN−m
‖ + 1)‖f − P0f‖ + ‖Si01,...,i

0
N−m

‖ · ‖ε‖

≤
(

1
σ

(‖Si01,...,i
0
N−m

Ti1,...,iN−m
‖ + 1)(‖Mi1,...,iN−m

‖ + ‖Mi01,...,i
0
N−m

‖)

+ ‖Si01,...,i
0
N−m

‖
)
‖ε‖. (3.7)

We see from (3.1) that Mi1,...,iN−m
is self-adjoint and its eigenvalues are either 0 or 1. Hence 

‖Mi1,...,iN−m
‖ ≤ 1. Similarly, ‖Mi01,...,i

0
N−m

‖ ≤ 1. On the other hand, since Si01,...,i
0
N−m

is the synthesis 
operator for the canonical dual of {ϕi0l

}1≤l≤N−m, we have

‖Si01,...,i
0
N−m

‖ ≤ 1√
αm

and

‖Si01,...,i
0
N−m

Ti1,...,iN−m
‖ ≤

√
βm√
αm

.

Now we get (3.5) as desired.
Next we prove the second part. Assume that there exist some f, h ∈ H with f �= g such that

Ti1,...,iN−m
f = Tj1,...,jN−m

g.

Then we have f �= 0, g �= 0, dimTi1,...,iN−m
H ∩ Tj1,...,jN−m

H > 0 and (i1, . . . , iN−m) �= (j1, . . . , jN−m). 
Moreover, it follows from Theorem 2.1 that Tj1,...,jN−m

H �= Ti1,...,iN−m
H.

Fix some c ∈ Tj1,...,jN−m
H \ Ti1,...,iN−m

H. Then for any α > 0, we have Mj1,...,jN−m
αc = 0. Hence

Mj1,...,jN−m
(Ti1,...,iN−m

f + αc) = Mj1,...,jN−m
Tj1,...,jN−m

g = 0.

Therefore, (i01, . . . , i0N−m) := (j1, . . . , jN−m) is a minimizer of

arg min
(i′1,...,i′N−m)∈IN,N−m

‖Mi′1,...,i
′
N−m

(Ti1,...,iN−m
f + αc)‖.

By the assumption, there is some constant C such that

‖T̃ ∗Qj1,...,jN−m
(Ti1,...,iN−m

f + αc) − f‖ ≤ C‖αc‖.

By letting α → 0, we get

f = T̃ ∗Qj1,...,jN−m
Ti1,...,iN−m

f = T̃ ∗Qj1,...,jN−m
Tj1,...,jN−m

g = g,

which contradicts with the choice of f and g. This completes the proof. �
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In the rest of this section, we focus on the construction of self-located robust frames. We first give some 
necessary and sufficient conditions for a sequence of vectors to be a self-located robust frame. Then we give 
two types of construction, one is based on random matrices [22], and the other is based on prime numbers.

3.1. Characterization of self-located robust frames

First, we give a characterization of self-located robust frames.

Theorem 3.4. Let A be an n ×N matrix with column vectors {ϕi}1≤i≤N . Then {ϕi}1≤i≤N is a self-located 
robust frame for H with respect to m-erasures if and only if for any (j1, . . . , jN−m), (j′1, . . . , j′N−m) ∈
IN,N−m,

rank
(

Aj1,...,jN−m

Aj1,...,jN−m
−Aj′1,...,j

′
N−m

)
= n + rank(Aj1,...,jN−m

−Aj′1,...,j
′
N−m

), (3.8)

where Aj1,...,jN−m
stands for the submatrix of A consisting of the j1-th, . . ., jN−m-th columns.

Proof. Necessity. Fix some (j1, . . . , jN−m), (j′1, . . . , j′N−m) ∈ IN,N−m. Since {ϕi}1≤i≤N is a self-
located robust frame for H with respect to m-erasures, {ϕjl}1≤l≤N−m is complete in H. Consequently, 
rank(Aj1,...,jN−m

) = n.
Let S1 and S2 be the linear spaces spanned by row vectors of Aj1,...,jN−m

and Aj1,...,jN−m
−Aj′1,...,j

′
N−m

, 
respectively. Suppose that x = (x1, . . . , xN−m) ∈ S1 ∩S2. Then there are constants c1, . . . , cn and c̃1, . . . , ̃cn
such that

xl =
n∑

i=1
ciai,jl =

n∑
i=1

c̃i(ai,jl − ai,j′l ), 1 ≤ l ≤ N −m.

Consequently,

n∑
i=1

(c̃i − ci)ai,jl =
n∑

i=1
c̃iai,j′l , 1 ≤ l ≤ N −m.

Let c = (c1, . . . , cn) and c̃ = (c̃1, . . . , ̃cn). Then we have

〈c̃− c, ϕjl〉 = 〈c̃, ϕj′l
〉, 1 ≤ l ≤ N −m.

Since {ϕi}1≤i≤N is m-erasure self-located robust, we have c̃− c = c̃. Hence c = 0. Therefore, x = 0. In other 
words, S1 ∩ S2 = {0}. It follows that

rank
(

Aj1,...,jN−m

Aj1,...,jN−m
−Aj′1,...,j

′
N−m

)
= rank(Aj1,...,jN−m

) + rank(Aj1,...,jN−m
−Aj′1,...,j

′
N−m

)

= n + rank(Aj1,...,jN−m
−Aj′1,...,j

′
N−m

).

Sufficiency. Fix some (j1, . . . , jN−m), (j′1, . . . , j′N−m) ∈ IN,N−m. Let S1 and S2 be defined as previous. 
Suppose that (3.8) is true. Since

rank
(

Aj1,...,jN−m

Aj1,...,jN−m
−Aj′1,...,j

′
N−m

)
≤ rank(Aj1,...,jN−m

) + rank(Aj1,...,jN−m
−Aj′ ,...,j′ ),
1 N−m



50 D. Han et al. / Appl. Comput. Harmon. Anal. 44 (2018) 38–58
we see from (3.8) that

rank(Aj1,...,jN−m
) ≥ n.

But the inverse inequality is obvious. Hence

rank(Aj1,...,jN−m
) = n (3.9)

and S1 ∩ S2 = {0}.
Assume that f = (f1, . . . , fn) and g = (g1, . . . , gn) satisfy

〈f, ϕjl〉 = 〈g, ϕj′l
〉 1 ≤ l ≤ N −m.

Then we have

〈g − f, ϕjl〉 = 〈g, ϕjl − ϕj′l
〉 1 ≤ l ≤ N −m.

That is,

n∑
i=1

(gi − fi)ai,jl =
n∑

i=1
gi(ai,jl − ai,j′l ) 1 ≤ l ≤ N −m.

Since S1 ∩ S2 = {0}, both sides must be zero. Hence

〈g − f, ϕjl〉 = 0 1 ≤ l ≤ N −m.

By (3.9), we have f = g. �
By Theorem 3.4, we get the following necessary condition for a frame to be self-located robust.

Corollary 3.5. Let {ϕi}1≤i≤N be an m-erasure self-located robust frame for an n-dimensional Hilbert space H. 
Then we have

N −m ≥ 2n− 1.

Proof. We see from (3.9) that rank(A1,...,N−m) = n. Hence N − m ≥ n and there is some (j1, . . . , jn) ∈
IN−m,n such that ϕj1 , . . ., ϕjn are linearly independent. Consequently, ϕj1−ϕj2 , . . ., ϕjn−1−ϕjn are linearly 
independent. Choose N −m − n + 1 elements jn+1, . . ., jN−m+1 from {1, . . . , N} \ {j1, . . . , jn}. Then we 
have rank(Aj1,...,jN−m

−Aj2,...,jN−m+1) ≥ n − 1. By (3.8), we have

rank
(

Aj1,...,jN−m

Aj1,...,jN−m
−Aj2,...,jN−m+1

)
≥ 2n− 1.

Hence N −m ≥ 2n − 1. �
3.2. Randomly generated self-located robust frames

Let (Ω, P ) be a probability space, where Ω is the space of samples and P is the probability measure. The 
second result in this section is the following.
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Theorem 3.6. Suppose that N , m and n are positive integers. Let A be an n × N matrix whose entries 
are independent continuous random variables. Then it is almost sure that the column vectors of A form an 
m-erasure self-located robust frame if any one of the following two conditions is satisfied,

(i). N −m ≥ 2n, or
(ii). N −m ≥ 2n − 1 and the first row of A is replaced by (1, . . . , 1).

Before proving this theorem, we present some preliminary results. The following simple lemma is useful 
in the proof of the main result.

Lemma 3.7. Let a0, . . ., an and x be a sequence of continuous random variables. Suppose that x and 
(a0, . . . , an) are independent. If an �= 0 almost surely, then we have

n∑
k=0

akx
k �= 0, a.s.

Proof. For fixed (a0, . . . , an) with an �= 0, the equation 
∑n

k=0 akx
k = 0 has at most n solutions. Since x

is a continuous random variable and x is independent with (a0, . . . , an), we have 
∑n

k=0 akx
k �= 0 almost 

surely. �
The following is an immediate consequence, which can be proved with induction over n.

Lemma 3.8. Let A be an n ×N matrix whose entries are independent continuous random variables, where 
N ≥ n. Then it is almost sure that every n × n submatrix of A is nonsingular.

Next we show that for a randomly generated matrix A, if the rows of Aj1,...,jk − Aj′1,...,j
′
k

are linearly 
dependent, then it remains this property whenever we add more rows to A.

Lemma 3.9. Let A be an n ×N matrix whose entries are independent continuous random variables, where 
N ≥ n. Suppose that (j1, . . . , jk), (j′1, . . . , j′k) ∈ IN,k, k ≥ n. If rank(Aj1,...,jk −Aj′1,...,j

′
k
) < n almost surely, 

then for any m ≥ 1 and m ×N matrix B whose entries are independent continuous random variables, which 
are also independent with entries of A, we have

rank
(
Aj1,...,jk −Aj′1,...,j

′
k

Bj1,...,jk −Bj′1,...,j
′
k

)
= rank(Aj1,...,jk −Aj′1,...,j

′
k
), a.s.

Proof. Denote A = (ai,j)1≤i≤n,1≤j≤N and B = (bi,j)1≤i≤m,1≤j≤N .
For 0 ≤ r < n, let

Er = {ω ∈ Ω : rank(Aj1,...,jk −Aj′1,...,j
′
k
) = r}.

Then we have P (Ω \ ∪n−1
r=0Er) = 0. For ω ∈ Er, we have

∣∣∣∣∣∣∣
a1,j1 − a1,j′1 . . . a1,jr+1 − a1,j′r+1

...
...

ar+1,j1 − ar+1,j′1 . . . ar+1,jr+1 − ar+1,j′r+1

∣∣∣∣∣∣∣ = 0. (3.10)

Expanding the determinant along the first row, we get
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r+1∑
l=1

(a1,jl − a1,j′l )Dl = 0,

where Dl is the (1, l) minor.
Observe that ai,j are independent continuous random variables. If jl /∈ {j′s : 1 ≤ s ≤ r+1}, then we have 

Dl = 0 almost surely on Er. And if jl = j′s for some l �= s, then we have Dl −Ds = 0 almost surely on Er. 
Consequently, (3.10) remains true if we replace a1,jl and a1,j′l by b1,jl and b1,j′l , respectively. That is,

∣∣∣∣∣∣∣∣∣

b1,j1 − b1,j′1 . . . b1,jr+1 − b1,j′r+1
a2,j1 − a2,j′1 . . . a2,jr+1 − a2,j′r+1

...
...

ar+1,j1 − ar+1,j′1 . . . ar+1,jr+1 − ar+1,j′r+1

∣∣∣∣∣∣∣∣∣
= 0, a.s. on Er.

Similarly we can prove that for any 1 ≤ s1 < . . . < sr+1 ≤ k and 1 ≤ i1 < . . . < ir ≤ n, we have

∣∣∣∣∣∣∣∣∣

b1,js1 − b1,j′s1 . . . b1,jsr+1
− b1,j′sr+1

ai1,js1 − ai1,j′s1 . . . ai1,jsr+1
− ai1,j′sr+1

...
...

air,js1 − air,j′s1 . . . air,jsr+1
− air,j′sr+1

∣∣∣∣∣∣∣∣∣
= 0, a.s. on Er.

Hence the rank of Aj1,...,jk − Aj′1,...,j
′
k

remains unchanged if we add the first row of B to A. By induction 
on m, we get the conclusion as desired. �

In order to prove the main result (Theorem 3.6), we also need the following lemma, which itself is also 
interesting.

Denote by Ai1,...,in
j1,...,jn

the submatrix of A consisting of the i1-th, . . . , in-th rows and the j1-th, . . . , jn-th
columns.

Lemma 3.10. Let A be an n ×N matrix whose entries are independent continuous random variables, where 
N ≥ 2n. Then for any (j1, . . . , j2n), (j′1, . . . , j′2n) ∈ IN,2n with jl �= j′l, 1 ≤ l ≤ 2n, we have

rank(Aj1,...,j2n −Aj′1,...,j
′
2n

) = n, a.s.

Proof. We prove this lemma by induction on n. For n = 1, the conclusion is obvious.
Now we assume that it is true for n = k, where k ≥ 1. Let us consider the case of n = k + 1.
By rearranging column vectors of Aj1,...,j2n−Aj′1,...,j

′
2n

, we may assume that j′l �= j2n for all 1 ≤ l ≤ 2n −2.
By the assumption, for almost all ω ∈ Ω, there is some k × k submatrix of A1,...,k

j1,...,j2k
− A1,...,k

j′1,...,j
′
2k

which 
is of rank k. Hence there is a partition {Ei : 1 ≤ i ≤ m} of Ω satisfying that P (∪m

i=1Ei) = 1 and for 
each 1 ≤ i ≤ m, there is some sequence (j1, . . . , jk) ∈ IN,k such that for almost all ω ∈ Ei, rank(A1,...,k

j1,...,jk
−

A1,...,k
j′1,...,j

′
k
) = k. Since aj2n is an n = k + 1 dimensional continuous random variable and it is independent 

with (aj1 , . . . , aj2k), (aj′1 , . . . , aj′2k), and aj′2n , we see from Lemma 3.7 that

det(A1,...,k+1
j1,...,jk,j2n

−A1,...,k+1
j′1,...,j

′
k,j

′
2n

) �= 0, a.s. on Ei.

Hence

rank(Aj1,...,j2n −Aj′1,...,j
′
2n

) = k + 1, a.s.

This completes the proof. �
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We are now ready to prove the density of self-located robust frames.

Proof of Theorem 3.6. We only prove (i). And (ii) can be proved similarly. By Theorem 3.4, it suffices to 
show that for any (j1, . . . , j2n), (j′1, . . . , j′2n) ∈ IN,2n,

rank
(

Aj1,...,j2n
Aj1,...,j2n −Aj′1,...,j

′
2n

)
= n + rank(Aj1,...,j2n −Aj′1,...,j

′
2n

), a.s. (3.11)

Denote A = (ai,j)1≤i≤n,1≤j≤N . By Lemma 3.8, we have

rank
(

Aj1,...,j2n
Aj1,...,j2n −Aj′1,...,j

′
2n

)
≤ rank(Aj1,...,j2n) + rank(Aj1,...,j2n −Aj′1,...,j

′
2n

)

= n + rank(Aj1,...,j2n −Aj′1,...,j
′
2n

), a.s.

Hence (3.11) is equivalent to

rank
(

Aj1,...,j2n
Aj1,...,j2n −Aj′1,...,j

′
2n

)
≥ n + rank(Aj1,...,j2n −Aj′1,...,j

′
2n

), a.s. (3.12)

We prove (3.11) or (3.12) by induction over n.
To avoid complicated symbols, we use the same term “almost surely” or its abbreviation “a.s.” for different 

probability measures, which in many cases are conditional ones. The exact meaning can be seen with the 
context.

First, we consider the case of n = 1. If rank(Aj1,j2 − Aj′1,j
′
2
) = 0, then we have (j1, j2) = (j′1, j′2). 

Consequently, rank
(

Aj1,j2
Aj1,j2 −Aj′1,j

′
2

)
= 1. Hence (3.11) is true.

If rank(Aj1,j2 −Aj′1,j
′
2
) = 1, then we have (j1, j2) �= (j′1, j′2). Since ai,j are independent continuous random 

variables. By Lemma 3.7, (3.11) is also true.
Now assume that (3.11) is true for 1 ≤ n ≤ k. We consider the case of n = k + 1. Since different ai,j are 

independent, we have

rank
(

Aj1,...,j2n
Aj1,...,j2n −Aj′1,...,j

′
2n

)
≥ rank

(
Aj1,...,j2n

A2,...n
j1,...,j2n

−A2,...n
j′1,...,j

′
2n

)

= 1 + rank
(

A2,...n
j1,...,j2n

A2,...n
j1,...,j2n

−A2,...n
j′1,...,j

′
2n

)

≥ 1 + rank
(

A2,...n
j3,...,j2n

A2,...n
j3,...,j2n

−A2,...n
j′3,...,j

′
2n

)

= 1 + rank(A2,...n
j3,...,j2n

) + rank(A2,...n
j3,...,j2n

−A2,...n
j′3,...,j

′
2n

)

= n + rank(A2,...n
j3,...,j2n

−A2,...n
j′3,...,j

′
2n

), a.s., (3.13)

where we use the inductive assumption in the second last step. If

rank(A1,...n
j1,...,j2n

−A1,...n
j′1,...,j

′
2n

) = rank(A2,...n
j3,...,j2n

−A2,...n
j′3,...,j

′
2n

),

we see from (3.13) that (3.12) is true. Next we assume that

rank(A1,...n
j ,...,j −A1,...n

′ ′ ) > rank(A2,...n
j ,...,j −A2,...n

′ ′ ). (3.14)

1 2n j1,...,j2n 3 2n j3,...,j2n
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There are two cases.
(i). There is some l such that jl = j′l .
First, we assume that {j′1, . . . , j′2n} is a rearrangement of {j1, . . . , j2n}. If jl = j′l for all 1 ≤ l ≤ 2n, 

then the conclusion is obvious. For other cases, by rearranging columns of 
(

Aj1,...,j2n
Aj1,...,j2n −Aj′1,...,j

′
2n

)
, we may 

assume that j1 = j′2.
Since the sum of all the column vectors of Aj1,...,j2n −Aj′1,...,j

′
2n

is zero, we have

rank(Aj1,...,j2n −Aj′1,...,j
′
2n

) = rank(Aj2,...,j2n −Aj′2,...,j
′
2n

). (3.15)

Let r = rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

).
If r < n − 1, we see from Lemma 3.9 that

rank(A1,...,n
j3,...,j2n

−A1,...,n
j′3,...,j

′
2n

) = r, a.s.

Hence

rank(A1,...,n
j2,...,j2n

−A1,...,n
j′2,...,j

′
2n

) ≤ 1 + r, a.s.

By (3.15), we have

rank(A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

) ≤ 1 + r, a.s. (3.16)

On the other hand, if r = n − 1, (3.16) is obvious.

By the inductive assumption, there is some (n −1 +r) ×(n −1 +r) submatrix of 
(

A2,...,n
j3,...,j2n

A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

)
, 

say 

(
A2,...,n

j3,...,jn+r+1

A2,...,r+1
j3,...,jn+r+1

−A2,...,r+1
j′3,...,j

′
n+r+1

)
, which is of rank n − 1 + r.

In the expansion of the determinant 

∣∣∣∣∣ A1,...,n
j1,...,jn+r+1

A1,...,r+1
j1,...,jn+r+1

−A1,...,r+1
j′1,...,j

′
n+r+1

∣∣∣∣∣, the coefficient of a2
1,j1 is

(−1)n
∣∣∣∣∣ A2,...,n

j3,...,jn+r+1

A2,...,r+1
j3,...,jn+r+1

−A2,...,r+1
j′3,...,j

′
n+r+1

∣∣∣∣∣ ,
which is not zero almost surely. By Lemma 3.7, we have∣∣∣∣∣ A1,...,n

j1,...,jn+r+1

A1,...,r+1
j1,...,jn+r+1

−A1,...,r+1
j′1,...,j

′
n+r+1

∣∣∣∣∣ �= 0, a.s.

Hence

rank
(

A1,...,n
j1,...,j2n

A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

)

≥ rank
(

A1,...,n
j1,...,jn+r+1

A1,...,r+1
j1,...,jn+r+1

−A1,...,r+1
j′1,...,j

′
n+r+1

)

= n + r + 1

≥ n + rank(A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

), a.s.,

where (3.16) is used in the last step. This proves that (3.12) is true.
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Next we consider the case that {j′1, . . . , j′2n} is not a rearrangement of {j1, . . . , j2n}. Since there is some 

l such that jl = j′l , by rearranging columns of 
(

Aj1,...,j2n
Aj1,...,j2n −Aj′1,...,j

′
2n

)
, we may assume that j1 = j′1 and 

j′2 /∈ {j2, . . . , j2n}. If

rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

) < n− 1, a.s. on E

for some E ⊂ Ω with P (E) > 0, then we see from Lemma 3.9 that

rank(A1,...,n
j3,...,j2n

−A1,...,n
j′3,...,j

′
2n

) = rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

), a.s. on E.

Hence

rank(A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

) = rank(A1,...,n
j2,...,j2n

−A1,...,n
j′2,...,j

′
2n

)

≤ 1 + rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

), a.s. on E.

On the other hand, if

rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

) = n− 1,

we also have

rank(A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

) ≤ 1 + rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

). (3.17)

Hence (3.17) is true almost surely. By (3.14), we have

rank(A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

) = 1 + rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

), a.s. (3.18)

Let r = rank(A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

). By the inductive assumption, there is some (n − 1 + r) × (n − 1 + r)

submatrix of 
(

A2,...,n
j3,...,j2n

A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

)
, say 

(
A2,...,n

j3,...,jn+r+1

A2,...,r+1
j3,...,jn+r+1

−A2,...,r+1
j′3,...,j

′
n+r+1

)
, which is of rank n − 1 + r. 

Consequently, the coefficient of a1,j1a1,j′2 in the determinant 

∣∣∣∣∣ A1,...,n
j1,...,jn+r+1

A1,...,r+1
j1,...,jn+r+1

−A1,...,r+1
j′1,...,j

′
n+r+1

∣∣∣∣∣ is not zero almost 

surely. By Lemma 3.7, we get (3.11).
(ii). jl �= j′l for all 1 ≤ l ≤ 2n.
If {j1, . . . , j2n} ∩ {j′1, . . . , j′2n} = ∅, we see from Lemma 3.8 that

rank
(

Aj1,...,j2n
Aj1,...,j2n −Aj′1,...,j

′
2n

)
= rank

(
Aj1,...,j2n
Aj′1,...,j

′
2n

)
= 2n, a.s.

Hence (3.12) is true.
Next we assume that there is some l �= l′ such that jl = j′l′ . Without loss of generality, we assume that 

j1 = j′2.
By Lemma 3.10, we have rank(A2,...,n

j3,...,j2n
−A2,...,n

j′3,...,j
′
2n

) = n − 1 almost surely. It follows from the inductive 
assumption that

rank
(

A2,...,n
j3,...,j2n

A2,...,n −A2,...,n
′ ′

)
= 2n− 2, a.s.
j3,...,j2n j3,...,j2n
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Observe that the coefficient of a2
1,j1 in the expansion of the determinant

∣∣∣∣∣ A1,...,n
j1,...,j2n

A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

∣∣∣∣∣
is

(−1)n
∣∣∣∣∣ A2,...,n

j3,...,j2n

A2,...,n
j3,...,j2n

−A2,...,n
j′3,...,j

′
2n

∣∣∣∣∣ ,
which is not equal to zero almost surely. By Lemma 3.7, we have

rank
(

A1,...,n
j1,...,j2n

A1,...,n
j1,...,j2n

−A1,...,n
j′1,...,j

′
2n

)
= 2n.

Hence (3.12) is true. This completes the proof. �
3.3. Explicitly given self-located robust frames

In this subsection, we give some explicit construction of self-located robust frames. The main result is 
the following.

Theorem 3.11. Let N , m and n be positive integers and {pi,j}1≤i≤n,1≤j≤N be a sequence of different prime 
numbers. Define

ϕj = (p1/3
1,j , . . . , p

1/3
n,j )T , 1 ≤ i ≤ N.

Then {ϕj}1≤j≤N is a self-located robust frame with respect to m-erasures whenever N −m ≥ 2n.
Moreover, {ϕj}1≤j≤N remains a self-located robust frame with respect to m-erasures if N −m ≥ 2n − 1

and the first entry of ϕj is replaced by 1 for all 1 ≤ j ≤ N .

To prove Theorem 3.11, we need some preliminary results. First, we introduce a result on prime numbers 
[21].

Proposition 3.12. (See [21, Theorem 1.1].) Let K and L be two fields such that K ⊆ L ⊆ R. Let A be a 
subset of L satisfying the following conditions:

(i). |A| ≥ 2.
(ii). For every a ∈ A there is some na ∈ N with ana ∈ K. In what follows we always assume na is minimal.
(iii). A is pairwise linearly independent over K.
(iv). If char (K) > 0, then (na, char (K)) = 1 for all a ∈ A.

Then A is linearly independent over K.

With Proposition 3.12, we have the following lemma, which can be considered as a generalization of [21, 
Proposition 4.1].

Lemma 3.13. Let {pi}1≤i≤s be a sequence of different prime numbers and ri = p
1/3
i , 1 ≤ i ≤ s. Then the 

equation
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∑
i1,...,is∈{0,1,2}

ci1,i2,...,isr
i1
1 ri22 . . . riss = 0 (3.19)

with ci1,i2,...,is as unknowns has no nonzero solution in the field Q.

Proof. Let K = Q, L = R and A = {ri11 ri22 . . . riss : i1, . . . , is ∈ {0, 1, 2}}. By Proposition 3.12, it suffices to 
show that A is pairwise linearly independent over Q. Suppose on the contrary that there exist ri11 ri22 . . . riss �=
r
i′1
1 r

i′2
2 . . . r

i′s
s such that ri11 ri22 . . . riss and ri

′
1

1 r
i′2
2 . . . r

i′s
s are linearly dependent over Q. Then there exist two 

nonzero rational numbers u1 and u2 such that

u1r
i1
1 ri22 . . . riss = u2r

i′1
1 r

i′2
2 . . . r

i′s
s .

That is,

r
i1−i′1
1 r

i2−i′2
2 . . . r

is−i′s
s = u2

u1
.

Hence

p
i1−i′1
1 p

i2−i′2
2 . . . p

is−i′s
s = (u2

u1
)3.

Since the right side is the cube of some rational number, for each d ∈ {1, 2, . . . , s} we have 3|(id − i′d).
On the other hand, since ri11 ri22 . . . riss �= r

i′1
1 r

i′2
2 . . . r

i′s
s , there exists some d0 ∈ {1, 2, . . . , s} such that 

id0 �= i′d0
. Note that id0 , i

′
d0

∈ {0, 1, 2}. So id0 − i′d0
∈ {−2, −1, 1, 2}, which contradicts with 3|(id0 − i′d0

). 
This completes the proof. �

The following are two immediate consequences.

Lemma 3.14. Let {pi}1≤i≤s be a sequence of different prime numbers and ri = p
1/3
i , 1 ≤ i ≤ s. Let f, g and 

h be some multivariate polynomials of r2, r3, . . . , rs with rational coefficients. Then

fr2
1 + gr1 + h = 0

if and only if f = g = h = 0.

Lemma 3.15. Let {pi}1≤i≤s be a sequence of different prime numbers and ri = p
1/3
i , 1 ≤ i ≤ s. Let f , g, h

and u be multivariate polynomials of r3, r4, . . . , rs with rational coefficients. Then

fr1r2 + gr1 + hr2 + u = 0

if and only if f = g = h = u = 0.

And the following is a counterpart of Lemma 3.8, which is a consequence of Lemma 3.13.

Lemma 3.16. Let A = (p1/3
i,j )1≤i≤n,1≤j≤N be an n × N matrix, where pi,j are pairwise different prime 

numbers. Then every n × n submatrix of A is nonsingular.

Observe that Lemmas 3.9 and 3.10 also remain true if we replace independent continuous random variables 
by cube roots of different prime numbers, thanks to Lemma 3.13.

For example, let A be an n ×N matrix whose entries are cube roots of different prime numbers, where 
N > n. Suppose that (j1, . . . , jk), (j′1, . . . , j′k) ∈ IN,k, k ≥ n. If rank(Aj1,...,jk − Aj′ ,...,j′ ) < n, then for any 
1 k
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m ≥ 1 and m ×N matrix B whose entries are cube roots of different prime numbers, which are also different 
from entries of A, we have

rank
(
Aj1,...,jk −Aj′1,...,j

′
k

Bj1,...,jk −Bj′1,...,j
′
k

)
= rank(Aj1,...,jk −Aj′1,...,j

′
k
).

By Lemma 3.13, the above conclusion can be proved using almost the same arguments as that in the proof 
of Lemma 3.9 except that the probability is removed.

With similar arguments as in the proof of Theorem 3.6 we can prove Theorem 3.11. We leave the details 
to interested readers.
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