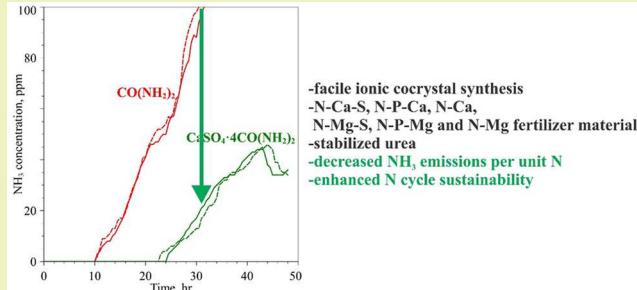


Mechanosynthesis of Magnesium and Calcium Salt–Urea Ionic Cocrystal Fertilizer Materials for Improved Nitrogen Management


Kenneth Honer, Eren Kalfaoglu, Carlos Pico, Jane McCann, and Jonas Baltrusaitis*

Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States

 Supporting Information

ABSTRACT: Only 47% of the total fertilizer nitrogen applied to the environment is taken up by the plants whereas approximately 40% of the total fertilizer nitrogen lost to the environment reverts back into unreactive atmospheric dinitrogen that greatly affects the global nitrogen cycle including increased energy consumption for NH_3 synthesis, as well as accumulation of nitrates in drinking water. In this letter, we provide a mechanochemical method of inorganic magnesium and calcium salt–urea ionic cocrystal synthesis to obtain enhanced stability nitrogen fertilizers. The solvent-free mechanochemical synthesis presented can result in a greater manufacturing process sustainability by reducing or eliminating the need for solution handling and evaporation. NH_3 emission testing suggests that urea ionic cocrystals are capable of decreasing NH_3 emissions to the environment when compared to pure urea, thus providing implications for a sustainable global solution to the management of the nitrogen cycle.

KEYWORDS: Fertilizers, Nitrogen, urea, Mechanochemistry, Cocrystal, pXRD, NH_3 Emissions, Stability

INTRODUCTION

Atmospheric dinitrogen, N_2 , fixation to synthesize ammonia, NH_3 , consumes more than 1% of the world's primary energy.¹ It is then converted into plant absorbable nitrogen fertilizers, such as urea, $\text{CO}(\text{NH}_2)_2$. According to the International Fertilizer Association (IFA), 183 million metric tons of $\text{CO}(\text{NH}_2)_2$ were produced in 2017, and its share within all nitrogen containing fertilizers was 62%.² However, it has been suggested that only 47% of the applied fertilizer nitrogen is taken up by the crops³ whereas as much as 40% of fertilizer nitrogen lost to the environment yields unreactive atmospheric N_2 .⁴ This is due to the inherent mismatch between the nutrient supply and plant demand,⁵ which leads to nutrient loss through leaching and/or volatilization and suboptimal plant growth. Enhanced efficiency fertilizers (EEF) were designed to circumvent this and rely on (a) physical $\text{CO}(\text{NH}_2)_2$ granule coating with elemental sulfur or sulfur containing polymers, (b) $\text{CO}(\text{NH}_2)_2$ reaction products with organics, such as low solubility urea–formaldehyde or isobutylidene–urea and (c) use of urease/nitrification inhibitors.⁶ The overall enhanced efficiency nitrogen fertilizer production is rather small (\sim 3 million metric tons a year) due to their high cost as it includes natural gas derived molecules, such as aldehydes.

A conceptually interesting approach in obtaining novel EEF is the alteration of urea's reactive properties by confining it in a single molecular crystal unit with the inorganic acids or their metal salts, such as Ca or Mg phosphates, sulfates and nitrates. Reports exist where a molecular crystals of urea and phosphoric or nitric acid was shown to result only 0.7% nitrogen loss as

ammonia as opposed to up to 61.1% of soil treated with urea only,^{7,8} which suggests that major improvements to the global nitrogen cycle are achievable.^{9,10} Additionally, urea molecular ionic cocrystals with inorganic Mg and Ca salts also contain other primary and secondary nutrients, such as P, Ca, Mg and S, which are necessary for a balanced nitrogen uptake.¹¹ The classical way of obtaining these crystalline Ca and Mg salt–urea ionic cocrystal materials is their precipitation from saturated aqueous solutions via heating and slow evaporation.^{12,13} Mechosynthesis, on the other hand, is a dry preparation method with plenty of opportunities in clean synthesis¹⁴ that have already been applied in EEF engineering,^{15–20} but very few compounds made were well-defined crystalline materials, such as KMgPO_4 , NH_4MgPO_4 ¹⁷ and layered double hydroxides (LDH), Mg-Al-NO_3 ($\text{Mg:Al} = 3:1$).¹⁶ In addition to examples of the formation of inorganics from milling, there are numerous examples of complex organometallic structures forming from ball milling, and the technology has rapidly advanced since the beginning of the 21st century.²¹ However, only one public domain literature reference exists where dry mechanochemical processing (grinding) of $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$ and $\text{CO}(\text{NH}_2)_2$ was used to obtain the $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ ionic cocrystal²² but the description of exact instrumental setup was not provided. Up to 72% conversion was achieved with the stoichiometric (1:4) reactant ratios in said experiments²² after

Received: July 31, 2017

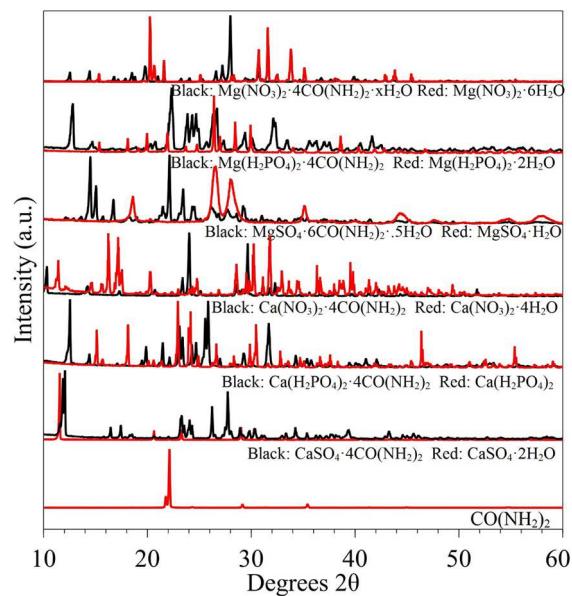
Revised: September 8, 2017

Published: September 13, 2017

an exceptionally long 180 min milling time with an additional 80 min “induction time”. It appears that the following technological concepts involved the use of fertilizer pulp, e.g., resorted back to solution based methods.^{23,24}

In this letter, we report a cleaner, solid state transformation based synthetic procedures for producing crystalline compounds of $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$, $\text{Ca}(\text{H}_2\text{PO}_4)_2 \cdot 4\text{CO}(\text{NH}_2)_2$, $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2$, $\text{MgSO}_4 \cdot 6\text{CO}(\text{NH}_2)_2 \cdot 0.5\text{H}_2\text{O}$, $\text{Mg}(\text{H}_2\text{PO}_4)_2 \cdot 4\text{CO}(\text{NH}_2)_2$ and $\text{Mg}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2 \cdot x\text{H}_2\text{O}$. The conversion of the parent materials took place to completion within 10 min of milling. Nitrogen release from urea via natural decomposition by soil enzymes to yield NH_3 is demonstrated to be significantly inhibited for $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ thus providing major implications for the global nitrogen management cycle.

EXPERIMENTAL SECTION

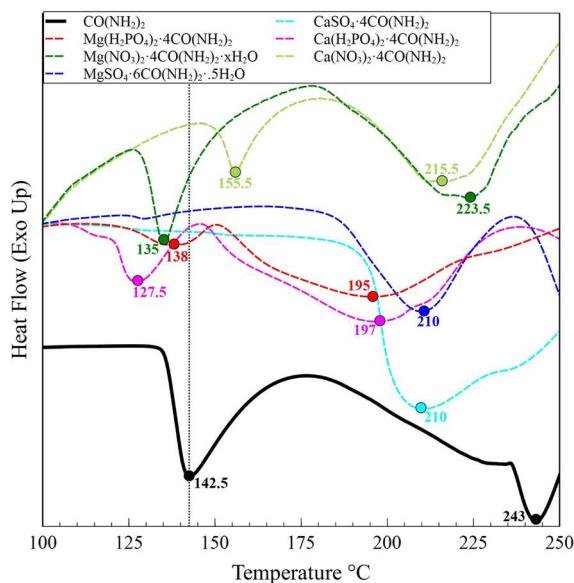

Mechanochemistry and Crystal Structure Property Testing.

In a typical procedure, a total of 200 mg of Ca or Mg salt and urea mixture with the corresponding molar ratios was loaded into a 15 mL stainless steel jar together with three individual 8 mm stainless steel balls and ground for 10 min at 26 Hz in a Retsch MM300 mixer mill. The crystalline nature of all reactants and products was confirmed using powder X-ray diffraction (Empyrean, PANalytical B.V.) whereas thermal stability was assessed using differential scanning calorimetry (DSC) analysis (SDT-Q600, TA Instruments). During DSC measurements, a heating rate of 10 °C/min was used under air flow of 100 mL/min. Chemicals were obtained from Sigma-Aldrich or Fischer Scientific and were of reagent or similar grade.

NH₃ Emission Testing. An ammonia testing chamber (2.32 L volume) was decontaminated with soap and water. The chamber was then placed in an oven at 80 °C to remove any moisture. The amount of silt loam soil used was 90 g and the amount of nitrogen applied as urea or $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ was 0.09 g, e.g., 1 mg nitrogen (N) per 1 g of soil.²⁵ The amount of urea and $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ used was 0.1929 and 0.3022 g, respectively, which was loaded on the surface of the soil in separate trials. NH_3 single gas detector (Gas Alert Extreme Ammonia, BW) was situated within the reaction chamber to measure NH_3 emissions over a 48 h period. The experiment was performed under static conditions in the sealed testing chamber at 23 °C and the relative humidity was 50–60%. Two sets of measurements for each urea and $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ were performed to check for reproducibility.

RESULTS AND DISCUSSION

We considered combinations of urea with other macronutrient containing compounds, such as $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$, $\text{Ca}(\text{H}_2\text{PO}_4)_2$, $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$, $\text{MgSO}_4 \cdot \text{H}_2\text{O}$, $\text{Mg}(\text{H}_2\text{PO}_4)_2 \cdot 2\text{H}_2\text{O}$ and $\text{Mg}(\text{NO}_3)_2 \cdot 2\text{H}_2\text{O}$. This would result in a unique single crystalline structure fertilizer material containing N–Ca–S, N–P–Ca, N–Ca, N–Mg–S, N–P–Mg and N–Mg macronutrients, respectively. As shown in Figure 1, there are very high reactant conversions near 100%. This was determined from the absence of the urea peak and the distinct new patterns that resulted. A detailed comparison of every reactant, product and simulated, of the corresponding crystal structures obtained from Cambridge Crystallographic Data Centre (CCDC),²⁶ XRD pattern of the reported molecular crystals in the literature is provided in the Supporting Information Figure S1. It can be seen that the XRD patterns obtained match those simulated of the crystals obtained using conventional solution based routes of $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$,²⁷ $\text{Ca}(\text{H}_2\text{PO}_4)_2 \cdot 4\text{CO}(\text{NH}_2)_2$,²⁸ $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2$,²⁹ $\text{MgSO}_4 \cdot 6\text{CO}(\text{NH}_2)_2 \cdot 0.5\text{H}_2\text{O}$ ³⁰ and $\text{Mg}(\text{H}_2\text{PO}_4)_2 \cdot 4\text{CO}(\text{NH}_2)_2$.²⁸ One notable exception was $\text{Mg}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2 \cdot 2\text{H}_2\text{O}$ (GEMDAF as obtained from CCDC).³¹


Figure 1. Powder XRD patterns of urea, magnesium or calcium salt reactants and the corresponding magnesium or calcium–urea ionic cocrystal products, e.g., $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$, $\text{Ca}(\text{H}_2\text{PO}_4)_2 \cdot 4\text{CO}(\text{NH}_2)_2$, $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2$, $\text{MgSO}_4 \cdot 6\text{CO}(\text{NH}_2)_2 \cdot 0.5\text{H}_2\text{O}$, $\text{Mg}(\text{H}_2\text{PO}_4)_2 \cdot 4\text{CO}(\text{NH}_2)_2$ and $\text{Mg}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2 \cdot x\text{H}_2\text{O}$.

Though the peaks in the XRD pattern below 27 degrees (2θ) match between the experimental and simulated, major peaks between 27 and 35° (2θ) do not align with theoretical representation of GEMDAF.³¹ Although the powder XRD patterns are similar to the experimentally obtained and simulated of GEMDAF,³¹ we note that they are not identical and an alternative crystal form materialized; therefore, the possibility of the formation of an anhydrite, hemihydrate, or monohydrate form is very likely. Further investigation will focus on the structural characterization of this new crystal phase and structure labeled in this work as $\text{Mg}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2 \cdot x\text{H}_2\text{O}$.

Other salt reactants were also considered but either did not react or resulted in new materials with unidentifiable crystal structures, such as that for $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ derived cocrystal, as shown in Figure S1. In particular, CaSO_4 (anhydrous) did not produce any new compound, likely due to the absence of crystalline water as this has been observed with other organics in the pharmaceutical industry such as theophylline and citric acid.³² This is also consistent with previous observations where conversion of CaSO_4 via dry milling was negligible.²² The resulting product, $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$, contained no crystalline water whereas $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$ contained two. This suggests that mechanochemistry of these salts can be facilitated by crystalline water reaction. The excess of physical water added to perform liquid assisted grinding, however, did not facilitate $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ formation. Further, use of $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ resulted in a moist product which, upon drying, yielded a complex unknown crystalline pattern. This suggests that crystalline water in the reactant has a major role in the final product structure and that alternative polymorphs can be generated by selecting different precursors. This is in agreement with several compounds, especially with magnesium sulfate, where in addition to $\text{MgSO}_4 \cdot 6\text{CO}(\text{NH}_2)_2 \cdot 0.5\text{H}_2\text{O}$,³⁰ $\text{MgSO}_4 \cdot 6\text{CO}(\text{NH}_2)_2 \cdot \text{H}_2\text{O}$ has also been previously isolated.³³ Intermediate compounds, such as $\text{MgSO}_4 \cdot m\text{CO}(\text{NH}_2)_2 \cdot n\text{H}_2\text{O}$ and MgSO_4

$x\text{CO}(\text{NH}_2)_2 \cdot y\text{H}_2\text{O}$, where m and x range from 0.9 to 1.1, n ranges from 1.9 to 2.1 and y ranges from 2.9 to 3.1 and have also been isolated previously in a solid form.³⁴

Differential scanning calorimetry (DSC) curves of the ionic cocrystals obtained were obtained to provide first insights into how urea is stabilized within this hybrid organic–inorganic crystal. Urea melts with an onset at 132 °C and peak value in DSC curve of 142.5 °C, as shown in Figure 2. It is generally

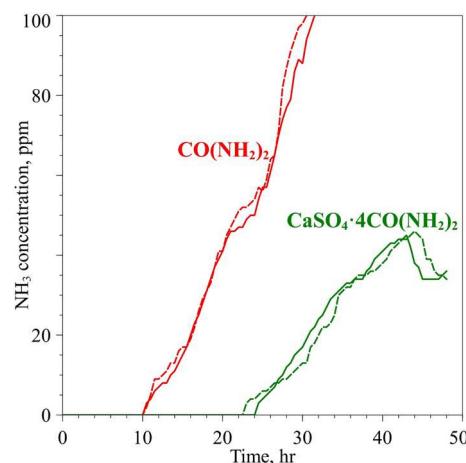


Figure 2. Differential scanning calorimetry (DSC) curves of urea and magnesium or calcium salt–urea ionic cocrystal products.

accepted that urea thermal decomposition also commences at the same temperature even though melting is commonly reported to occur first.³⁵ The changes in this melting temperature can be related to the stabilization of urea within the new crystal structure as different types of bonds form. With this in mind, a series of interesting observations emerge from curves shown in Figure 2. Both metal sulfate ionic cocrystals, $\text{MgSO}_4 \cdot 6\text{CO}(\text{NH}_2)_2 \cdot 0.5\text{H}_2\text{O}$ and $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$, exhibit absence of the typical 132 °C peak and new melting peaks toward higher temperatures with the endothermal transition peaks at 210 °C. Metal phosphate ionic cocrystals also lack well-defined pure urea melting peaks at 132 °C with apparent new peaks at 195–197 °C although smaller peaks at 127.5 and 138 °C are apparent. These likely result from the melting of the corresponding urea phosphate fragments.^{10,36} Distinct endothermal peaks are apparent at 135 and 155 °C for $\text{Mg}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2 \cdot x\text{H}_2\text{O}$ and $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{CO}(\text{NH}_2)_2$, respectively. The former is due to the crystalline water melting whereas the latter is due to the boiling of the resulting liquid calcium nitrate.¹⁰ In all cases, however, absence of a strong endothermal transition with the onset at 132 °C can be observed suggesting that urea is incorporated into the new crystal structure leading to the stronger bonding.

Testing of the urea and $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ ionic cocrystal was performed to obtain additional insights on the stabilization of urea. This was done by dispersing either urea or $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ on top of the silt loam soil used at 1 mg nitrogen (N) per 1 g of soil concentration and by monitoring NH_3 emissions in the static environment. NH_3 arises from the action of the urease enzyme resulting in significant loss of valuable

plant absorbable nitrogen.¹⁰ We hypothesized that stronger molecular bonding and secondary reactions of NH_3 within the solid ionic cocrystal with strong acid anions may decrease emissions. Measurement results are shown in Figure 3. It can be

Figure 3. NH_3 emission testing from the soil containing 1 mg N/g of soil under static conditions for urea and $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$. Each experiment was performed and plotted twice to check for reproducibility.

seen that NH_3 emissions from urea were linear within 30 h. $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$, on the other hand, resulted in remarkably decreased emissions of NH_3 peaking at 40 ppm after 42 h of the experiment. $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$ NH_3 emissions were delayed by 10 h when compared to urea. We hypothesize that this is due to a series of factors, including particle size difference, acid anion inhibition of urease,^{37–40} decreased urea solubility due to the ionic cocrystal molecular structure, as well as the formation of secondary salts, such as $(\text{NH}_4)_2\text{SO}_4$.^{9,10} Altogether, data shown in Figure 3 shows a dramatic decrease in NH_3 emissions, as much as 4-fold after 30 h, for $\text{CaSO}_4 \cdot 4\text{CO}(\text{NH}_2)_2$.

CONCLUSIONS AND SUSTAINABILITY IMPLICATIONS

In this letter, we provide a mechanochemical method of magnesium and calcium salt–urea ionic cocrystal synthesis. NH_3 emission testing suggests that these ionic cocrystals are capable of decreasing nitrogen losses to the environment when compared to pure urea. To date, magnesium and calcium salt–urea ionic cocrystals chiefly have been synthesized from saturated aqueous solutions. A solvent-free mechanochemical synthesis would result in greater process sustainability by reducing or eliminating the need for solution handling and evaporation. Mechanochemical synthesis scale-up is well-known and has been addressed in many industries.^{41,42} If the fertilizer industry can adopt production of these urea ionic cocrystals, reduced nitrogen losses when fertilizers are applied to soil will result. If a reactive source of solid inorganic acid and urea can be utilized, such as urea phosphates,¹⁰ sulfates⁹ and nitrates,⁴³ a wide variety of natural Mg and Ca bearing virtually insoluble minerals,⁴⁴ including oxides (periclase), hydroxides (brucite) and carbonates (magnesite, calcite, dolomite), can be directly transformed using this method to obtain enhanced nitrogen efficiency fertilizers. The physicochemical properties of these ionic cocrystals, such as solubility, critical to understanding the enhanced nitrogen management, are largely absent in the literature and will be the focus of the future work. Measure-

ments to understand the interactions of these ionic cocrystals with biota that catalyzes the hydrolysis of urea into carbon dioxide and ammonia under various environmental conditions for various urea and its ionic cocrystal morphologies and particle sizes, need to be explored. Finally, interactions and stability in soil with other minerals with and without nutrients, as well as uptake of nutrients by the plants needs to be explored.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the [ACS Publications website](#) at DOI: [10.1021/acssuschemeng.7b02621](https://doi.org/10.1021/acssuschemeng.7b02621).

Powder XRD patterns of the inorganic salt and urea reactants, urea ionic cocrystal products as well as XRD patterns simulated for the urea ionic cocrystal using their available literature reported crystal structures ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

*J. Baltrusaitis: job314@lehigh.edu (email); +1-610-758-6836 (phone).

ORCID

Jonas Baltrusaitis: [0000-0001-5634-955X](https://orcid.org/0000-0001-5634-955X)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No. CHE 1710120. Lehigh University's Mountaintop project is acknowledged for providing student support. Prof. Mark Snyder and Megha Sharma are acknowledged for their help with DSC measurements. Dr. Ross Gilmour is acknowledged for useful discussions on urea molecular crystals and their importance as enhanced nitrogen management fertilizer materials.

REFERENCES

- (1) Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiarwter, W. How a century of ammonia synthesis changed the world. *Nat. Geosci.* **2008**, *1* (10), 636–639.
- (2) Prud'homme, M. Global Fertilizer Supply and Trade: 2016–2017. In *IFA Strategic Forum, Dubai*; Dubai, UAE, 2016.
- (3) Galloway, J. N.; Cowling, E. B. Reactive Nitrogen and The World: 200 Years of Change. *Ambio* **2002**, *31* (2), 64–71.
- (4) Galloway, J. N.; Dentener, F. J.; Capone, D. G.; Boyer, E. W.; Howarth, R. W.; Seitzinger, S. P.; Asner, G. P.; Cleveland, C. C.; Green, P. A.; Holland, E. A.; et al. Nitrogen Cycles: Past, Present, and Future. *Biogeochemistry* **2004**, *70* (2), 153–226.
- (5) Dave, A. M.; Mehta, M. H.; Aminabhavi, T. M.; Kulkarni, A. R.; Soppimath, K. S. A Review on Controlled Release of Nitrogen Fertilizers Through Polymeric Membrane Devices. *Polym.-Plast. Technol. Eng.* **1999**, *38* (4), 675–711.
- (6) Timilsena, Y. P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. *J. Sci. Food Agric.* **2015**, *95* (6), 1131–1142.
- (7) Moawad, H.; Enany, M. H.; El-Din, S. M. S. B.; Mahmoud, S. A. Z.; Gamal, R. F. Transformations and effects of urea derivatives in soil. *Z. Pflanzenernaehr. Bodenkd.* **1984**, *147* (6), 785–792.
- (8) Bremner, J. M.; Douglas, L. A. Decomposition of Urea Phosphate in Soils. *Soil Sci. Soc. Am. Proc.* **1971**, *35* (4), 575–578.
- (9) Baltrusaitis, J.; Sviklas, A. M.; Galekiene, J. Liquid and Solid Compound Granulated Diurea Sulfate-Based Fertilizers for Sustainable Sulfur Source. *ACS Sustainable Chem. Eng.* **2014**, *2* (10), 2477–2487.
- (10) Navizaga, C.; Boecker, J.; Sviklas, A. M.; Galekiene, J.; Baltrusaitis, J. Adjustable N:P2O5 Ratio Urea Phosphate Fertilizers for Sustainable Phosphorus and Nitrogen Use: Liquid Phase Equilibria via Solubility Measurements and Raman Spectroscopy. *ACS Sustainable Chem. Eng.* **2017**, *5* (2), 1747–1754.
- (11) Ågren, G. I. Stoichiometry and Nutrition of Plant Growth in Natural Communities. *Annu. Rev. Ecol. Evol. Syst.* **2008**, *39* (1), 153–170.
- (12) Sulaimankulov, K. S. *Compounds of Urea with Inorganic Salts*; Ilim, 1971.
- (13) Sulaimankulov, K.; Abykeev, K.; Murzuibraimov, B.; Nogoev, K. *Atlas of Solubility Diagrams of Ternary Water-Salt Urea Systems*; Ilim, 1980.
- (14) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: opportunities for new and cleaner synthesis. *Chem. Soc. Rev.* **2012**, *41* (1), 413–447.
- (15) Yuan, W.; Solihin; Zhang, Q.; Kano, J.; Saito, F. Mechanochemical formation of K–Si–Ca–O compound as a slow-release fertilizer. *Powder Technol.* **2014**, *260*, 22–26.
- (16) Tongamp, W.; Zhang, Q.; Saito, F. Mechanochemical route for synthesizing nitrate form of layered double hydroxide. *Powder Technol.* **2008**, *185* (1), 43–48.
- (17) Solihin; Zhang, Q.; Tongamp, W.; Saito, F. Mechanochemical Route for Synthesizing KMgPO4 and NH4MgPO4 for Application as Slow-Release Fertilizers. *Ind. Eng. Chem. Res.* **2010**, *49* (5), 2213–2216.
- (18) Zhang, Q.; Solihin; Saito, F. Mechanochemical Synthesis of Slow-Release Fertilizers through Incorporation of Alumina Composition into Potassium/Ammonium Phosphates. *J. Am. Ceram. Soc.* **2009**, *92* (12), 3070–3073.
- (19) Makó, É.; Kristóf, J.; Horváth, E.; Vágvölgyi, V. Kaolinite–urea complexes obtained by mechanochemical and aqueous suspension techniques—A comparative study. *J. Colloid Interface Sci.* **2009**, *330* (2), 367–373.
- (20) Solihin; Zhang, Q.; Tongamp, W.; Saito, F. Mechanochemical synthesis of kaolin–KH2PO4 and kaolin–NH4H2PO4 complexes for application as slow release fertilizer. *Powder Technol.* **2011**, *212* (2), 354–358.
- (21) Braga, D.; Giaffreda, S. L.; Grepioni, F.; Pettersen, A.; Maini, L.; Curzi, M.; Polito, M. Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks. *Dalt. Trans.* **2006**, *10*, 1249–1263.
- (22) Malinowski, P.; Biskupski, A.; Głowinski, J. Preparation methods of calcium sulphate and urea adduct. *Pol. J. Chem. Technol.* **2007**, *9* (4), 111–114.
- (23) Malinowski, P.; Olech, M.; Sas, J.; Wantuch, W.; Biskupski, A.; Urbańczyk, L.; Borowik, M.; Kotowicz, J. Production of compound mineral fertilizers as a method of utilization of waste products in chemical company Alwernia S.A. *Pol. J. Chem. Technol.* **2010**, *12* (3), 6–9.
- (24) Malinowski, P.; Borowik, M.; Wantuch, W.; Urbanczyk, L.; Dawidowicz, M.; Biskupski, A. Utilization of waste gypsum in fertilizer production. *Pol. J. Chem. Technol.* **2014**, *16* (1), 45–47.
- (25) Sahrawat, K. L. Effects of temperature and moisture on urease activity in semi-arid tropical soils. *Plant Soil* **1984**, *78* (3), 401–408.
- (26) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. *Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.* **2016**, *72* (2), 171–179.
- (27) De Villiers, J. P. R.; Boeyens, J. C. A. Crystal structure of a calcium sulfate-urea complex. *J. Cryst. Mol. Struct.* **1975**, *5* (4), 215–226.
- (28) Hayden, T. D.; Kim, E. E.; Eriks, K. Crystal structures of bis(urea)bis(dihydrogenphosphato)calcium-bis(urea) and its isomorphous magnesium analog, $M[OC(NH_2)_2]_2(H_2PO_4)_2.2CO(NH_2)_2$ ($M = Ca, Mg$). *Inorg. Chem.* **1982**, *21* (11), 4054–4058.

(29) Lebioda, L. Calcium nitrate tetraurea. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* **1977**, *33* (5), 1583–1586.

(30) Todorov, T.; Petrova, R.; Kossev, K.; Macícek, J.; Angelova, O. Magnesium Sulfate Hexaurea Hemihydrate. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1998**, *54* (12), 1758–1760.

(31) Frolova, E. A.; Palkina, K. K.; Kochetov, A. N.; Danilov, V. P. Crystal structure of magnesium(II) diaquatetracarbamidenitrate. *Russ. J. Inorg. Chem.* **2012**, *57* (3), 416–419.

(32) Karki, S.; Frisčić, T.; Jones, W.; Motherwell, W. D. S. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. *Mol. Pharmaceutics* **2007**, *4* (3), 347–354.

(33) Todorov, T.; Petrova, R.; Kossev, K.; Macícek, J.; Angelova, O. Magnesium Sulfate Tetraurea Monohydrate. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1998**, *54* (4), 456–458.

(34) Dietrich, A.; Baucke, G.; Thenert, S.; Kleine-Kleffmann, U.; Walczyk, W.; Dressel, S.; Waldmann, L. Composition of a magnesium sulphate-urea compound. Patent US 20160046534 A1, February 18, 2016.

(35) Jones, J. M.; Rollinson, A. N. Thermogravimetric evolved gas analysis of urea and urea solutions with nickel alumina catalyst. *Thermochim. Acta* **2013**, *565*, 39–45.

(36) McCullough, J. F.; Sheridan, R. C.; Frederick, L. L. Pyrolysis of urea phosphate. *J. Agric. Food Chem.* **1978**, *26* (3), 670–675.

(37) Bremner, J. M.; Douglas, L. A. Inhibition of urease activity in soils. *Soil Biol. Biochem.* **1971**, *3* (4), 297–307.

(38) Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Mangani, S.; Ciurli, S. Molecular details of urease inhibition by boric acid: insights into the catalytic mechanism. *J. Am. Chem. Soc.* **2004**, *126* (12), 3714–3715.

(39) Harmon, K. M.; Niemann, C. The competitive inhibition of the urease-catalyzed hydrolysis of urea by phosphate. *J. Biol. Chem.* **1948**, *177* (2), 601–605.

(40) Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Ciurli, S.; Mangani, S. Structure-based rationalization of urease inhibition by phosphate: novel insights into the enzyme mechanism. *JBIC, J. Biol. Inorg. Chem.* **2001**, *6* (8), 778–790.

(41) Boldyrev, V. V. Mechanochemistry and mechanical activation of solids. *Solid State Ionics* **1993**, *63–65* (1–4), 537–543.

(42) Boldyrev, V. V. Mechanochemistry and mechanical activation of solids. *Russ. Chem. Rev.* **2006**, *75* (3), 177–189.

(43) Worsham, J. E.; Busing, W. R. The crystal structure of uronium nitrate (urea nitrate) by neutron diffraction. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* **1969**, *25* (3), 572–578.

(44) Baltrusaitis, J.; Sviklas, A. M. From insoluble minerals to liquid fertilizers: magnesite as a source of magnesium (Mg) nutrient. *ACS Sustainable Chem. Eng.* **2016**, *4* (10), 5404–5408.