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The signal for diffusion weighted magnetic resonance imaging has previously been represented analytically
and simulated numerically for a variety of model problems with idealized geometries. Numerical simulations
hold the promise of computing the diffusion weighted MR signal for more complex realistic tissue architec-
tures and physiological models. This paper investigates a white matter model consisting of a matrix of coated
cylinders with distinct diffusion coefficients and spin concentrations for each of the cylinder core, the coating,
and the surrounding bath and compares results with an the analytical solution developed by Sen and Basser
for the long diffusion time limit.
Numerical simulations of diffusion weighted imaging experiments are performed for the three-medium model
using aMonte Carlo diffusion simulation. Experiments are carried out formodel parameters representing normal
whitematter. Pulse sequence parameters range from a low b value, long time limit, short pulse approximation to
realistic clinical values.
For simulations in the short pulsewidth, long diffusion time limit, numerical simulations agreewith the Sen–Basser
analytical result. When tested with realistic pulse sequence parameters, numerical simulations show lower
anisotropy than the analytical model predicts.

Published by Elsevier Inc.

Introduction

Diffusion-weighted MRI (DWI) provides a non-invasive imaging
modality that offers the potential to probe tissue microstructure and
physiology and thus provide important and unique information that
informs a wide range of research and clinical applications. Its applica-
tion to white matter is of particular interest because of its central role
in neural connectivity and the devastating effects of the numerous
degenerative white matter diseases. However, the signal attenuation
caused by diffusion in the presence of magnetic field gradients provides
information only about the aggregate diffusion within an imaging
voxel. Unfortunately, the architectural and physiological complexity
of intravoxel tissues precludes a simple relationship between the
DWI signal and the underlying tissue structure and physiology. For
example, diffusion anisotropy is typically used as a proxy for tissue
integrity, but, in reality, inferring complex tissue characteristics from
this quantity is severely ill-posed.

Analytical models for the signal attenuation have long been
available for some simple geometries and idealized physiologies, such
as impermeable boundaries, and these models have been useful analogs
for biological structures, allowing some inferences about the structure

and physiological state of the imaged tissue. But in order to obtain
closed-form solutions, significant simplifications are typically employed.
Analytical models generally leave out complicating details such as com-
plex cellular structures and heterogeneous media, they frequently repre-
sent cellmembranes as impermeable boundaries, and they often focus on
simple pulse sequences. This disparity between simplified models and
imaging situations and actual neural tissues in realistic DTI acquisitions
makes inferences about tissue structure and integrity from real data
problematic.

Numerical modeling offers an alternative, allowing more complex
geometries, the inclusion of multiple tissue types and variable mem-
brane permeability, and the specification of arbitrary pulse sequences
in tractable ways. A versatile Monte Carlo based MR diffusion simulator
(DiffSim) capable of modeling diffusion within arbitrary triangulated
geometries and applying user-specified pulse sequence parameters
has been demonstrated previously (Balls and Frank, 2009). Other pack-
ages are also available for diffusion-weighted MRI simulations. Hwang
et al. (2003) developed a finite-difference method for simulating diffu-
sion using histological images. They compared their resultswith known
analytical solutions for impermeable cylinders. Camino (Cook et al., 2006;
Hall and Alexander, 2009), like the approach in DiffSim, uses a Monte
Carlo method to model diffusion. Differences between the DiffSim simu-
lation environment and other options and the relative strengths of each
approach have been discussed previously (Balls and Frank, 2009).

The critical importance of simulations becomes more evident as
increasingly realistic representations of neural tissues are investigated.
With the continuing development of more sensitive methods of DTI
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data acquisitions and the broadening scope of their applicability to awide
range of basic science and important clinical applications, the ability to
accurately infer quantitative information about tissue architecture, integ-
rity, and connectivity fromDTI should be enhanced. However, this goal is
significantly hampered by the inability of simplistic analytical models to
accurately parameterize complex neural tissues. One important applica-
tion in which this issue arises is in the characterization of white matter
changes—demyelination or other changes to white matter integrity—
which play a central role in many degenerative disorders (Kraus et al.,
2007; Kumra et al., 2004; Kutzelnigg et al., 2005; Madden et al., 2008;
Phillips et al., 2001; Stricker et al., 2009). This is precisely the type of
extension of an analytical model to a more realistic scenario where nu-
merical simulations are essential.

In this paper, we are interested in extending the proposed analytical
model of Sen and Basser (2005a,b), developed as an idealized, two-
dimensional diffusion model in cylindrical coordinates, into a more re-
alistic three-dimensional model of packed fibers within an actual DTI
experiment. The Sen–Basser model describes diffusion in myelinated
white matter consisting of an analytical solution for diffusion in an
array of permeable, coated cylinders in the long-time limit. This model
of multiple permeable media allows additional insight into the diffusion
properties of white matter, and in particular the role of myelin, but its
direct applicability to MR diffusion experiments with specific pulse se-
quence parameters remained an open question. Despite the potential im-
portance of this model to the experimental investigation of white matter
in both research and clinical applications, to our knowledge, there have
been no experimental studies—physical or numerical—to determine
how dependent their analytical model is on the assumption of a long dif-
fusion time or how results might vary in research or clinical settings with
realistic pulse sequences. One study did, however, examine some of the
effects of geometry in this model (Davoodi-Bojd and Soltanian-Zadeh,
2011).

A critical step in investigating the efficacy of a model in providing
useful information in DWI experiments is to quantitate the interplay
of pulse sequence parameters and model parameters as they are ulti-
mately manifest in the DWI signal. However, the Sen–Basser model
depends only on properties of the material and not on pulse sequence
parameters, and thus the study presented here required redeveloping
the theory within the context of a DWI experiment, revealing the as-
sumptions implicit in the original formulation, and then extending
these results to realistic imaging scenarios.

This paper develops a numerical model of white matter DWI based
upon the physical model described by Sen and Basser, consisting of a
matrix of coated cylinders with distinct diffusion coefficients and spin
concentrations for each of the cylinder core, the coating, and the sur-
rounding bath. The primary significance of this work is our ability to
quantitatively assess how numerous physical variables contribute to
anisotropy in the DW signal, including packing density of the fibers
and the thickness, diffusion coefficient, and water concentration of
the myelin sheathing. In particular, two models of myelin changes
are considered in more detail: thinner myelin sheathing and higher
water concentration within the myelin.

Numerical simulation results are found to match the analytical so-
lution given by Sen and Basser in the low b-value, short pulse width,
long diffusion time limit. Using our extended theoretical analysis, the
numerical simulations are then extended over more realistic imaging
parameters, showing variation in the measured apparent diffusion as
a function of changes to pulse sequence parameters. We find that of
the two models we consider, changes to myelin water concentration
have a greater effect on signal anisotropy than thinning myelin. We
have thus developed a simulation environment capable of investigat-
ing the complex interplay of the DWI signal and myelination changes
in a model white matter system capable of capturing some of the es-
sential features of real white matter systems. This allows us to test
how myelination changes associated with white matter diseases
may manifest in DWI protocols.

Theory

A spin, j, diffusing in a time (t) dependent magnetic field gradient
G(t) accrues a phase, θj generated by the spin's displacement in the
direction of the magnetic field gradient

θj tð Þ ¼ ∫t
t0
G τð Þ⋅xj τð Þdτ: ð1Þ

where “⋅” represents the dot product. If time is discretized into Nt

time steps of length dt, such that the gradient and the displacement
are given at each time ti, the integral can be approximated by a dis-
crete sum:

θj tð Þ ¼
X

Nt

i¼0

G tið Þ⋅xj tið Þdt: ð2Þ

For a collection of Np diffusing spins, the complex signal attenua-
tion is given by

E ¼ 1
Np

X

Np

j¼1

e
iγθj : ð3Þ

where γ is the gyromagnetic ratio of water. The signal from a realistically
sized voxel represented by Eq. (3) involves the sum over a tremendous
number Np of spins, the phases of which must all be tracked. The MCell
Monte Carlo diffusion simulator (Stiles and Bartol, 2001) is a good
match for this formulation of diffusion-weighted MR (Balls and Frank,
2009).MCell tracks each diffusingmolecule, or spin, independently,mak-
ing the sum in Eq. (3) straightforward. More importantly, MCell does not
use a fixed diffusion step, but instead a random diffusion step chosen
from a distribution matching the probability distribution for unbounded
particles. As a result, an MR simulation based on MCell can respond
accurately to diffusion-weighting gradient changes within a single
time step, whereas fixed step length methods would require multiple
time steps to produce accurate results. Thus short pulses can be more
easily modeled, and longer pulses can potentially be modeled with
many fewer time steps.

Diffusion fundamentals

Both the numerical simulation and the analytical model discussed
here describe restricted diffusion, for which careful consideration of
boundary conditions is critical. The problem formulation involves
multiple diffusion coefficients and boundaries, but some details of
the more basic problem—diffusion within a single mediumwith con-
stant diffusion coefficient—need to be highlighted first because they
are critical to the details of the numerical implementation. Fick's first
law,

J x; tð Þ ¼ −D∇C x; tð Þ; ð4Þ

states that the flux of particles, J, is given as a function of the diffusion
coefficient, D, and the gradient of the particle concentration, C.
Adding a continuity equation,

∂C x; tð Þ
∂t þ∇⋅J x; tð Þ ¼ 0; ð5Þ

which states that the change in concentration at a point is balanced by the
gradient of the flux (andmass is conserved), we derive Fick's second law:

∂C x; tð Þ
∂t ¼ −∇⋅J x; tð Þ ¼ ∇⋅D∇C x; tð Þ: ð6Þ
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When the diffusion coefficient is not a function of space, Eq. (6)
can be written as

∂C x; tð Þ
∂t ¼ D∇2

C x; tð Þ: ð7Þ

The Green's function, the response of this partial differential equa-
tion to an initial condition given as δ(x − y) in an unbounded domain, is

G x−y; tð Þ ¼ 1

4πDtð Þn=2
exp

−jx−yj2
4Dt

 !

; ð8Þ

where n is the number of spatial dimensions.
The Green's function can also be viewed as the distribution of dis-

placements from each spin’s position at time t = 0 due to diffusion.
In one dimension, the distribution of displacements is

G x; tð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p exp − x2

4Dt

 !

: ð9Þ

In the quasi-steady state case—when there is no concentration
gradient—the net flux is zero, but there is still diffusion at the molec-
ular level. The Green's function allows us to find the one-way flux
across a plane within the quasi-steady state case. Since the Green's
function represents the diffusion in an infinite space due to a point
source (delta function), we can find, for some time τ, the number of
spins diffused from the left past the origin since t = 0. In one dimen-
sion, the quantity diffused from points left of the origin (x b 0) past
x = 0 by time τ is

Q left x; τð Þ ¼ C xð Þ∫∞x G y; τð Þdy ¼ C xð Þ
2

1þ erf
x
ffiffiffiffiffiffiffiffiffi

4Dτ
p
� �� �

; ð10Þ

where C(x) is the initial concentration at point x. Integrated over all
space left of the origin, with a uniform concentration C(x) = C0, the
result simplifies to

∫0
−∞Q left x; τð Þdx ¼ C0

ffiffiffiffiffiffi

Dτ

π

r

: ð11Þ

This result is important in setting boundary conditions in a model
with multiple media, as discussed below.

Modeling multiple media

Following Sen and Basser (2005a,b), we implement a three-medium
model of coated cylinders. Each cylinder has a core (representing the
axon) with a radius of rc and a sheath (representing myelin) with an
outer radius of rs. These coated cylinders are arranged in a hexagonal
array, with a spacing from center to center of L, as shown in Fig. 1. The
packing density, f, of the array (the volume fraction of the coated cylin-
ders) can be calculated from the geometry of themodel: within the L by
L
ffiffiffi

3
p

box of Fig. 1, the area occupied by coated cylinders is equal to the
area of two circles of radius rs. Thus f is given by

f ¼ 2π
ffiffiffi

3
p rs

L

� �2
: ð12Þ

The three regions have distinct spin concentrations and diffusion co-
efficients. Inside the core, the spin concentration anddiffusion coefficient
areCc andDc, respectively. Similarly, the spin concentration anddiffusion
coefficient in the myelin sheath are Cs and Ds, while in the bath medium
those quantities are Cb and Db.

Media with different diffusion coefficients can be modeled by
representing each diffusing spin as a distinct particle. A three-medium
model requires three types of particles, each with its own diffusion co-
efficient, and with particles changing type at boundary transitions.

MCell sets the diffusion coefficient for each particle according to itsmol-
ecule type, but boundary transition probabilities need to be adjusted to
maintain quasi-steady-state spin concentrations.

Themodel implemented here, following themodel described by Sen
and Basser (2005a,b), includes no adjustable parameters for membrane
permeability and introduces no boundary transition probability beyond
what is required to maintain continuity and quasi-steady-state spin
concentrations throughout the model. The constraints of continuity
and quasi-steady-state-spin concentrations require the flux across me-
dium boundaries to be the same in both directions. For two adjacent
media, A and B, the flux from A to B must equal the flux from B to A.
From Eq. (11) we know that fluxes at the boundary of each medium
are proportional to C0

ffiffiffiffi

D
p

. The model allows the independent specifica-
tion of spin concentration and diffusion coefficient in each medium, so
the flux from A, C0;A

ffiffiffiffiffiffi

DA

p
, generally does not equal the flux from B,

C0;B
ffiffiffiffiffiffi

DB

p
. In these cases, spins are allowed to migrate unimpeded from

a low flux medium to a high flux medium: the probability of transition
at the boundary is 1. Transitions from a high flux medium, A, to a low
flux medium, B, are limited to occur at a probability

pAB ¼ C0;B

ffiffiffiffiffiffi

DB

p

� �

= C0;A

ffiffiffiffiffiffi

DA

p

� �

; ð13Þ

defined such that the flux from the high flux medium (pABC0;A

ffiffiffiffiffiffi

DA

p

)
matches the flux from the low flux medium (C0;B

ffiffiffiffiffiffi

DB

p

).
In one dimension, an estimate of the distribution due to diffusion

in multiple media can be given by linear combinations of the Green's
function (Eq. (8)). For the model evaluated here, the appropriate
combination is based on the relative volume fractions and spin con-
centrations of the various media. The bath medium occupies a volume
fraction of 1 − f, the core medium occupies frc

2/rs
2, and the sheath region

occupies f(1 − rc
2/rs

2). Using these volume fractions and the spin con-
centrations of each medium as the relative weights, we construct a
volume-fraction-based distribution for the three media:

Gvf x; tð Þ ¼ ∑
i∈ b;c;sf g

aiCi
ffiffiffiffiffiffiffiffiffiffiffiffi

4πDit
p exp − x2

4Dit

 !

ð14Þ

where

ab; ac; asf g ¼ 1−fð Þ; f r
2
c

r2s
; f 1− r2c

r2s

 !( )

: ð15Þ

This equationwould hold exactly if all themedia were aligned along
the x-axis and isolated, with no transport of spins across boundaries.

rc

rs

t s

Fig. 1. The threemediummodel implemented in this study consists of coated cylinderswith
core (axon) radius rc and sheath (myelin) outer radius rs. The sheath thickness can be given
as ts = rs − rc. Cylinders are packed hexagonallywith spacing (from center to center) L. The
maximumvalue of rs is L/2, atwhich point the array reaches itsmaximumpacking density of
about 0.907. Themodel is simulatedwithin the boundingbox indicatedbydashed lines using
periodic boundary conditions.
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Sen and Basser's analytical model

Sen and Basser note that in the long-time limit, the diffusion char-
acteristics for the three-medium model described here, with cylin-
ders of one medium coated with a second medium and arrayed in a
third medium, are analogous to an electrostatics problem for coated
cylinders. Nicorovici et al. (1993, 1995) found a solution for the effec-
tive dielectric constant of coated cylinders as a multipolar expansion.
By a straightforward change of variables, setting = CD, Sen and Basser
are able to use the results of Nicorovici et al. directly.

The product of the effective transverse diffusion coefficient, Dt,eff,
and the effective spin concentration, Ceff, is then found in terms of the
products of the spin concentration and diffusion coefficient in each
region, i.e. c = Cc0Dc, s = Cs0Ds, and b = Cb0Db. The effective spin con-
centration is an average of the concentrations in the three media,
weighted by the volume fractions of each medium:

Ceff ¼ ∑
i∈ b;c;sf g

aiCi0 ð16Þ

where ai are given by Eq. (15). Truncating the multipole expansion to
fourth order, Sen and Basser found the following result for diffusion
transverse to an array of hexagonally packed cylinders:

Dt;effCeff ¼ DbCb 1−2f γ1 þ f− 0:07542f 6γ7

γ5γ7−1:06028f 12

 !−1" #

: ð17Þ

In this expression, γ2l − 1 is a term Nicorovici et al. identified as the
crucial quantity (the multipolar polarizability in their context of calcu-
lating effective dielectric constants for coated cylinders), defined as

γ2l−1 ¼ ð�b−�sÞð�s−�cÞr
2 2l−1ð Þ
c þ ð�b þ �sÞð�s þ �cÞr

2 2l−1ð Þ
s

ð�b þ �sÞð�s−�cÞr
2 2l−1ð Þ
c þ ð�b−�sÞð�s þ �cÞr

2 2l−1ð Þ
s

: ð18Þ

Sen and Basser represent the product of the effective longitudinal
diffusion coefficient and the effective spin concentration as an aver-
age of the diffusion coefficients in the three media, weighted by the
spin concentrations and volume fractions of each medium, i.e.

Dl;effCeff ¼ ∑
i∈ b;c;sf g

aiDiCi0 ð19Þ

where ai are given by Eq. (15). We note, however, that in the context
of MR imaging, Eq. (19) does not hold exactly. Dl,eff can be interpreted
as the diffusion coefficient necessary to give the measured signal at-
tenuation, according to

El ¼ e
−bDl;eff : ð20Þ

That is, given the longitudinal signal attenuation El, we calculate
Dl,eff as

Dl;eff ¼ −ln Elð Þ=b: ð21Þ

In the case of three isolated media, with no spins crossing media
boundaries, the signal attenuation responds according to

El ¼ ∑
i∈ b;c;sf g

aiCi0e
−bDi ð22Þ

so the effective longitudinal diffusion coefficient will be

Dl;eff ¼ −1
b
ln ∑

i∈ b;c;sf g
aiCi0e

−bDi

" #

: ð23Þ

The various media spin concentrations here are relative concen-
trations, scaled such that Ceff = 1. An expansion of Eq. (23) around
b = 0 gives Eq. (19) as the lowest order term. For clinically realistic

b values (typically b ≈ 1000 s/mm2), the use of Eq. (19) is problem-
atic, as we will show later.

Materials and methods

This work follows Sen and Basser, using the parameters they chose
to represent normal white brain tissue: Db = 20 × 10−4 mm2/s,
Dc = 7.5 × 10−4 mm2/s, Ds = 0.3 × 10−4 mm2/s, Cb0 = 0.95,
Cc0 = 0.88, and Cs0 = 0.5. Note that the concentrations given are
not absolute, but are scaled to represent the relative concentrations in
the various media. A base concentration of C0 = 100 particles per µm3

was used, so, Cb0 = 95 µm−3, Cc0 = 88 µm−3, and Cs0 = 50 µm−3.
Based on these diffusion coefficients and concentrations and using
Eq. (13), the transition probability of particle transitions from core to
sheath was set at 0.114 and the probability of particle transitions from
bath to sheath at 0.068. Note that all results below are for the general
Sen–Basser model with permeable membranes, unless it is explicitly
stated that impermeable membranes are being used (for comparison).

For the thickest sheaths simulated, the sheath spin concentration
given by Sen and Basser results in a higher myelin water fraction
(35%) than reported elsewhere (≈ 10–20%) (Lancaster et al., 2002;
Whittall et al., 1997). Additional simulations were performed with
Cs = 0.15, which corresponds to a myelin water fraction of 14% for
a sheath thickness of 3.0 μm.

MCell models diffusion of particles interacting with surfaces
represented by triangulated meshes. For this work, cylinders were
modeled as extruded regular 64-gons. In order to compare our method
with that of Sen and Basser, we use similar values of the core radius
(rc = 6.0 µm) along with a spacing between cylinders of L = 18.2 µm,
allowing a maximum possible sheath radius rs = 9.1 µm. The sheath
thickness (ts = rs − rc) varied from 0.2 µm to 3.0 µm. We note that
these values reflect the abnormal state of cytotoxic edema (Sen and
Basser, 2005a,b).

An infinite array was modeled by implementing a rectangular
space (outlined with a dashed line in Fig. 1) with periodic boundary
conditions. The dimensions of the simulated space were 18.2 µm by
32.5234 µm (18:2�

ffiffiffi

3
p

Ëcm) in the transverse plane, and 15.0 µm
along the axis of the cylinders. A spin that hits a periodic boundary
at position r is moved to the opposite boundary, and its original posi-
tion, r0, is translated by the difference between boundaries so that the
value of r − r0 is continuous through boundary transitions. The pur-
pose of the periodic boundary conditions is only to reduce the num-
ber of surfaces in the model: each particle still carries its absolute
location, which is necessary for calculating phase shifts due to applied
gradient fields.

For all simulations, a standard spin echo pulse sequence was used
with bipolar diffusion weighting gradients represented by square
pulses (no ramp time). The effects of diffusion through gradients
other than the diffusion weighting gradients were not considered.

Results

Displacement distributions

It was expected that longitudinal spin displacement distributions
given by numerical simulations would be similar to the isolated-media
approximation given in Eq. (14), but significant differences between
the longitudinal and transverse spin displacement distributions were
expected. Diffusion simulationswere performed for twodifferent sheath
thicknesses, 0.2 μm and 3.0 μm, near the minimum and maximum of
the range of possible thicknesses, given the core radius of 6.0 μm and
the spacing between cylinder centers of 18.2 μm. Histograms were
generated of the spin displacements in the longitudinal and transverse
(x and y, respectively) directions at three times, t = 0.2 rc

2/Dc, rc
2/Dc,

and 5.0 rc
2/Dc. These results are shown in Fig. 2.
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For the thin sheath, the isolated-media approximation of the dis-
placement distribution appears very much like a standard Gaussian
distribution, and the simulation results show only modest differences
when comparing the transverse and longitudinal distributions. The
transverse distribution is slightly narrower with a higher peak than
the longitudinal distribution, and the longitudinal distribution is
slightly broader with a lower peak than would be expected for isolat-
ed media.

For the thick sheath, the isolated-media approximation of the dis-
placement distribution appears distinctly non-Gaussian, with much
larger concentrations at very small displacements. This distribution
results from the high volume fraction of the sheath medium, which
has a much lower diffusion coefficient. Spins in the sheath medium
move very little relative to spins in the core. These are the same ef-
fects seen for the thin sheath, with a slightly narrower, more peaked
transverse distribution when compared with the longitudinal distri-
bution, but these effects are especially pronounced at longer times.

At the longest time (t = 5.0 rc
2/Dc), the peak concentration for the

transverse displacement is more than twice the peak concentration
for the longitudinal displacement. Thus, for the thick sheath, the
apparent anisotropy grows with time.

Verification of the Sen–Basser theory in the low b value, narrow

pulse, long diffusion time limit

The time regimes under which the original Sen–Basser analytical
approach is valid are somewhat restrictive. Since they avoided any in-
teraction with a pulse sequence, numerical simulations would be
expected to agree most closely to their results when the narrow
pulse approximation is valid, i.e. the pulse width, δ, is much less
than the diffusion time τ = Δ − δ/3, because this approximation dis-
regards effects due to finite pulse gradient widths. Furthermore, the
analytical estimate for the transverse diffusion coefficient (Eq. (17))
was derived in the long-time limit. In addition, their formulation
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Fig. 2. Spin displacement distributions given by numerical simulation are shown as histograms, while the distributions predicted by the isolated-media estimate of Eq. (14) are
indicated by the red line. For thin sheathing (left), the effects of the sheath are small, and the distribution appears similar to a standard Gaussian distribution. The simulations
show little difference between the longitudinal (x) and transverse (y) distributions. For thick sheaths (right), the effect of the sheathing is much more pronounced, even in the
isolated-media estimate.
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employs a low-order estimate of the longitudinal diffusion coefficient
(Eq. (19)) which will be most accurate for small b values, but be-
comes increasingly problematic for higher b values. Nevertheless,
these represent important limiting cases, and are just as easily simu-
lated in order to confirm (or not) the validity of their formulation.

As expected, with a b value of 0.01/Dc, τ of 5 times rc
2/Dc, and δ of

τ/1200 very good agreement is found between numerical simula-
tions and the Sen–Basser model. The longitudinal apparent diffusion
coefficient, Dl,eff, was within 1% of the value predicted by Eq. (19)
over the entire range of sheath thicknesses. The transverse ADC, Dt,

eff, showed more variation, deviating from Eq. (17) by 12% for the
thickest sheaths. For sheaths less than 2.5 μm thick, the results
agreed to within 5%. These results can be seen in Fig. 3.

Variations in longitudinal diffusion coefficient with increasing

b values

Application of the model to human DWI experiments requires
adapting the model to be valid for larger b values as Eq. (19) becomes
less accurate at predicting the longitudinal diffusion coefficient. We
proposed another formulation in Eq. (23), which holds independent
of b value for isolated media. This result was first verified for isolated
media by running simulations with impermeable boundaries between
media. The b values were varied over a range of values, scaled as a/Dc,
with a = [0.01,0.1,1.0], resulting in b values of 13.33, 133.3, and
1333 s/mm2. Whilemaintaining the long diffusion time and the narrow
pulse, with τ constant at 5 times rc

2/Dc and δ constant at τ/1200, the b

values were adjusted by varying the gradient strength. At the largest b
value simulated, the calculated longitudinal ADC,Dl,eff, was significantly
reduced, but in all cases the results agreed well with the extended ex-
pression for Dl,eff given in Eq. (23), as seen in Fig. 4.

When boundaries between media are made fully permeable, the
results fall between the predictions of Eqs. (19) and (23). The devia-
tions between the results from simulation and s 19 and are smaller,
but still significant at the largest b value, as seen in Fig. 4. It is interest-
ing to note that for permeable boundaries the exchange between
compartments results in an increase in the longitudinal diffusion co-
efficient relative to the case of impermeable boundaries, as seen in
Fig. 4. While this is clearly evident in the simulations, the analytical
model is incapable of explaining this effect and can only produce
the limiting ranges expressed by Eqs. (19) and (23).

Variations in transversediffusion coefficientwith changing b values,

diffusion times, and pulse widths

An extended analyticalmodel for the transverse diffusion coefficient
has not beendeveloped here, but in simulation results significant effects
were observed when simulations vary from the small b value, long dif-
fusion time limit of the original Sen–Basser formulation. A known con-
found in the analysis of clinical DWI experiments is the influence of the
finite width of the diffusion weighting gradients. Yeh et al. (2010)
recently examined these effects through both numerical simulations
and physical experiments of DWI of impermeable cylinders. They ex-
amined the effects of varying pulse widths, and presented their results
as graphs of signal vs. gradient direction (angle). Their results agreed
well with analytical solutions for cylinders, such as the matrix formal-
ism given by Grebenkov (2007). DiffSim likewise produces results
consistent with the analytical solution for impermeable cylinders (see
Fig. 5).

In order to isolate the combined influence of larger diffusion sensitiv-
ity through increased b value and diffusion times τ, b was varied from
0.01/Dc to 1/Dc and τ was varied from 0.2 to 5 times rc

2/Dc, but τ/δ was
kept constant at 1200 so that simulations remained in the range of the
narrowpulse approximation tomitigate confoundingeffects due tofinite
pulse widths (Yeh et al., 2010). At low b values, deviating from the long
diffusion time limit results in larger diffusion coefficients than predicted

by Eq. (17), with the difference being more pronounced as the sheath
thickness grows. At the largest b value simulated (b = 1333 s/mm2), it
was found that the calculated Dt,eff was lower than predicted by
Eq. (17) for thin sheaths, but higher (especially for short τ) for thick
sheaths. For the largest b value, the results did not converge to the ana-
lytical model even at the longest τ simulated. These results can be seen
in Fig. 6.

For completeness, the effects of varying the pulse width were then
included, and found to be much less pronounced than the effects of
varying either the b value or the diffusion time. Increasing pulse
width reduces the apparent transverse diffusion coefficient, but at
long diffusion times the differences are very small. The effects of vary-
ing pulse widths are shown in Fig. 6.

Short diffusion times significantly affect the ratio of Dl,eff/Dt,eff,
which can be viewed as a measure of anisotropy. The analytical
model given by Sen and Basser predicts that anisotropy grows gradu-
ally as sheath thickness increases but begins to grow much more rap-
idly for sheath thicknesses greater than about 2.5 μm as the bath
region becomes increasingly restricted. In numerical simulations the
anisotropy curve is greatly flattened when τ is short, as shown in
Fig. 7.

Signal as a function of gradient angle for clinically realistic pulse

sequence parameters

Up to this point, we have considered independently varied pulse se-
quence parameters over a wide range of values. In clinical experiments,
however, the pulse sequence parameters are rarely chosen independent-
ly. In order to reduce scan time and cost, scans are typically performed
with gradients set to the maximum possible for the scanner, the time
between pulses minimized, and the pulse width long enough to produce
the desired b value. To assess the model under more clinically realistic
conditions, a set of simulations with clinically realistic pulse sequence
parameters was performed by setting the time between pulses, Δ − δ,
to 3 ms and the gradient strength to 4.0 G/cm, and varying δ to achieve
b values of 1000, 4000, and 8000 s/mm2.

The three-medium simulations were repeated for two sheath
thicknesses: an intermediate thickness (1.6 μm) which is approximately
half the maximum possible thickness, and a near-maximal thickness
(3.0 μm). The simulationswere also repeated for two sheath spin concen-
trations: a high concentration (0.5, used by Sen and Basser) and a lower
concentration (0.15) which, for the thickest sheath, better matches the
normal myelin water fraction given elsewhere (Lancaster et al., 2002;
Whittall et al., 1997).

Signal for the low spin concentration, thick myelin sheath model
takes on the familiar “peanut” shape (Fig. 8a), similar to the signal
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Fig. 3. The effective longitudinal ADC, Dl,eff, and the effective transverse ADC, Dt,eff, cal-
culated from simulations both agree well with the analytical models for a small b value
(b = 0.01/Dc), a long diffusion time (τ = 5 rc

2/Dc), and a narrow pulse (δ = τ/1200).
Results from simulations are shown with symbols, and analytical models are shown
with lines.
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generated for the idealized impermeable cylinder model (Fig. 5). The
model with low spin concentration in a thinner myelin sheath
(Fig. 8b) shows similar anisotropy: Dl,eff/Dt,eff = 3.6 for the thinnermy-
elinmodel at a b value of 8000 s/mm2, slightly greater than for the thick
myelin model's anisotropy of 3.2. The most visible difference between
the results for the two models is the reduced signal for the thinner my-
elinmodel, corresponding to a highermean diffusivity. This is a result of
averaging over a volume that contains a larger volume fraction of spins
outside the myelin whose diffusion coefficients are larger. The model
with higher spin concentration in a thickmyelin sheath results in signif-
icantly reduced anisotropy (Fig. 8c). Dl,eff/Dt,eff falls to 2.1 asmore signal
is retained in the longitudinal direction because of the greater density of
spins with a low diffusion coefficient in the myelin sheath. The

increased spin density in the myelin sheath also leads to a slightly
lower mean diffusivity.

Discussion

The combination of multiple media with differing diffusion char-
acteristics within a single imaging voxel leads to non-Gaussian diffu-
sion behavior. These differences arise even when the media are
isolated from one another. The non-Gaussian diffusion behavior is
predicted by the analytical model for the effective longitudinal diffu-
sion coefficient, Dl,eff (Eq. (23)). As a result of this non-Gaussian diffu-
sion, the effective diffusion coefficient varies as a function of the b

value, as can be seen in simulated results (Fig. 4).
The transverse effective diffusion coefficient,Dt,eff, and the anisotropy,

Dl,eff/Dt,eff, are quite sensitive to pulse sequence parameters. Numerical
simulations reproduce the results given by Sen and Basser only for exper-
iments at very low b values and fairly long values of τ. Differences are
most pronounced at high b values, such that the dependence of Dt,eff

and especially anisotropy on sheath thickness is greatly reduced or elim-
inated entirely.

We note that significant differences appear between the analytical
formulation given by Sen and Basser and results from numerical simu-
lations at a b value of only 1333 s/mm2. As a result, using the analytical
formulation to predict precise values for apparent diffusion coefficients
or anisotropy may be inappropriate for many clinically relevant pulse
sequences. The largest differences occur for short τ, but the shortest
values simulated, τ = 0.2 rc

2/Dc and τ = 1.0 rc
2/Dc, are 9.6 ms and

48 ms, respectively. These values are within the range commonly seen
in clinical applications, whereas the longest τ, 5.0 rc

2/Dc or 240 ms, is
longer than would generally be used. For small bore, high field systems
where very large b values and short τ's are attainable, these effects will
become more pronounced.

Theweak relationship between sheath thickness andanisotropy seen
in Fig. 7, most especially at shorter τ, was unexpected. Plots of signal vs.
gradient angle (Fig. 8) highlighted this effect for models with a high spin
concentration in the myelin sheath. Simulations with a lower spin con-
centration in the myelin sheath—matching myelin water fraction values
for normal adults (Lancaster et al., 2002;Whittall et al., 1997)—produced
results with greater anisotropy, even for thinner myelin sheaths.

A parameterized model capable of predicting the influences of physi-
ological and architectural parameters on the DWI signal frommyelinated
white matter opens up the possibility of developing and testing

x

0.2 0.4 0.6 0.8 1.0

y

Fig. 5. In a simulation of an isolated cylinder of a single medium with D =
7.5 × 10−4 mm2/s (the value of Dc used in other simulations) andfinite-width gradient
pulses, results from DiffSim show the standard “peanut” shape for the signal. For these
simulations, G = 4.0 G/cm and Δ − δ = 3 ms. Pulse widths were selected to produce
three different b values: b = 1000 s/mm2, with δ = 22.2 ms (outermost line, shown in
blue); b = 4000 s/mm2, with δ = 36.0 ms (intermediate line, shown in green); and
b = 8000 s/mm2, with δ = 45.7 ms (innermost line, shown in red). The cylinders are ori-
ented parallel to the x axis.
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quantitative clinicalmetrics forwhitematter disorders. Models described
here focused on two possible changes to myelinated white matter: a re-
duction in myelin thickness and an increase in myelin water concentra-
tion. Thinning myelin did not reduce anisotropy but did result in
greater mean diffusivity. An increase in myelin water concentration de-
creased anisotropy significantly, even without a change in myelin thick-
ness. Recent clinical research (Laule et al., 2008; Sirrs et al., 2007)
involving T2 relaxation measurements has demonstrated that, at least in
multiple sclerosis and phenylketonuria, myelin water concentration is
unchanged by disease processes and that myelin water fraction changes
can be attributed to changes in myelination. Numerical simulations of
T2 relaxation would be an important adjunct to the current research.
While the goal of validation and extension of the Sen–Basser model in
this paper required the use of the physical dimensions used in their
work (Sen and Basser, 2005a,b) based on cytotoxic edema, our future
work will involve the application of this simulationmodel to a wide vari-
ety of both normal and pathological conditions.

Though we recognize that this model is ultimately a significantly
simplified model of true myelinated white matter, the computational
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Fig. 6. The effective transverse ADC, Dt,eff, calculated from simulations agrees well with the analytical model given by Sen and Basser for long values of diffusion time, τ, and small b
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platform is flexible enough to incorporate a wide range of more com-
plex refinements. Moreover, numerical simulations could be used to
test further clinical hypotheses in situations where analytical formu-
lations are not available.

Conclusion

A theoretical and numerical investigation of amyelinated axonmodel
was developed based upon the analytical three-mediummodel described
by Sen and Basser. The ability to test a wide range of effects relatively
quickly and inexpensively makes numerical simulation a useful adjunct
to theory and physical experiments. By simulating diffusion MRI experi-
ments on this model we were able to confirm their theoretical results in
the long diffusion time limit and to investigate the effects ofmore clinical-
ly relevant parameters involving shorter diffusion times and other varia-
tions in pulse sequence parameters. The simulations highlight deviations
from the analytical model for realistic pulse sequence parameters. Specif-
ically, measured anisotropy may be significantly reduced from the value
predicted by the long diffusion time analytical model. Further, our nu-
merical experiments demonstrated greater changes in anisotropy due
to changes in myelin water concentration than due to changes in sheath
thickness. The ability to investigate quantitative relationships between
parameterizedmodels ofmyelinated axons and the resultant DWI signals
opens the possibility of using DWI to derive clinically relevantmetrics for
white matter diseases.
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Fig. 8. Signal vs. gradient angle for the three-medium model with Db = 20 × 10−4 mm2/s, Dc = 7.5 × 10−4 mm2/s, Ds = 0.3 × 10−4 mm2/s, Cb0 = 0.95 and Cc0 = 0.88. For all
simulations G = 4.0 G/cm and Δ − δ = 3.0 ms. As in the isolated cylinder simulations shown in Fig. 5, these simulations were performed at three b values: b = 1000 s/mm2

(δ = 22.2 ms, outermost line, shown in blue); b = 4000 s/mm2 (δ = 36.0 ms, intermediate line, shown in green); and b = 8000 s/mm2 (δ = 45.7 ms, innermost line, shown
in red). The cylinders are oriented parallel to the x axis. a) Simulation with ts = 3.0 μm and Cs0 = 0.15: the signal takes on a “peanut” shape at high b values. b) Simulation
with ts = 1.6 μm and Cs0 = 0.15: reduced myelin thickness does not significantly change the shape of the signal, but noticeably reduces its magnitude. c) Simulation with ts = 3.0 μm
and Cs0 = 0.5: increased spin density in the myelin sheath (increased myelin water concentration) greatly reduces the anisotropy as more signal is retained in the longitudinal direction.

212 G.T. Baxter, L.R. Frank / NeuroImage 75 (2013) 204–212


	A computational model for diffusion weighted imaging of myelinated white matter
	Introduction
	Theory
	Diffusion fundamentals
	Modeling multiple media
	Sen and Basser's analytical model


	Materials and methods
	Results
	Displacement distributions

	Verification of the Sen–Basser theory in the low b value, narrow pulse, long diffusion time limit
	Variations in longitudinal diffusion coefficient with increasing b values
	Variations in transverse diffusion coefficient with changing b values, diffusion times, and pulse widths
	Signal as a function of gradient angle for clinically realistic pulse sequence parameters
	Discussion
	Conclusion
	Conflict of interest statement
	Acknowledgments
	References


