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Abstract

The maximum entropy random walk in a disordered lattice is obtained as a consequence of the 

principle of maximum entropy for a particular type of prior information without restriction on the 

number of steps. This novel result demonstrates that transition probabilities defining the random 

walk represent a general characterization of information on a defective lattice and does not 

necessarily reflect a physical process. The localization phenomenon is shown to be a consequence 

of solution of the Laplacian on the lattice—hence it contradicts the previous interpretation as a 

spherical Lifshitz state—and naturally generalizes to multiple modes, whose order reflects the 

significance of information. The dynamics of information flow on the microscale is related to the 

macroscopic structure of the lattice through a Fokker-Planck formalism. This newly derived 

theoretical framework is opening doors for a wide range of applications in analysis of 

(information) flow in disordered systems. That includes potentially breakthrough resolution of the 

outstanding problem of inferring connectivity from discrete imaging (i.e., neural) data.

I. INTRODUCTION

Theories concerning the diffusive motion of particles have a long and storied history in 

physics [1], and have been applied to a wide range of physical systems. Of particular interest 

is diffusion in nonuniform media where particle pathways are obstructed by physical 

barriers or influenced by distributed sources of attractive or repulsive forces, which we will 

refer to collectively as “disordered” media. In such cases, characterization of preferable 

diffusion pathways arises as a problem of both theoretical and practical interest. Recently, 

this problem has been addressed for the specific case of a random walk on a regular lattice 

containing random defects (i.e., vertices inaccessible to the particles) by positing that, unlike 

the standard or generic random walk (GRW) (either uniform or Gaussian), all paths of equal 

length, regardless of the path details, should be equally probable [2]. It was shown that a 

transition matrix defining such a process can be constructed in the limit of a large number of 

steps whose resulting path has maximum entropy per unit step (i.e., maximum entropy 
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production rate). This transition probability is thus said to define the maximum entropy 

random walk, or MERW, [2]. The MERW was shown to exhibit an interesting localization 

phenomenon in regions free of defects, an effect explained by analogy with the potential 

theory of Lifshitz [3], and it was concluded that the localization occurs in the largest Lifshitz 

sphere in the lattice, i.e., the largest spherical region in the lattice free of defects.

In this paper, we revisit this problem with three specific goals in mind: (1) derive the 

MERW transition probability from first principles without the assumption of a large number 

of steps; (2) characterize the localization phenomenon; and (3) develop a theoretical model 

for the relationship between the microscopic dynamics of the particles trajectories and the 

macroscopic structure of the lattice.

The main claim of this paper is that the MERW solution can be viewed as a specific 

manifestation of a more general result concerning inference on a lattice which has nothing 

necessarily to do with diffusion, or any other physical process. The general approach results 

in a new theoretical framework suitable for application to a wide range of problems involved 

with analysis of disordered lattice systems. As a byproduct, we show that the previous 

interpretation of the localization phenomenon by the Lifshitz sphere argument is not true in 

general. Moreover, the correct general solution we derive elucidates the source of the 

localization phenomenon, demonstrates that it actually occurs on multiple scales, and paves 

the way for the classification of optimal pathways of information in a lattice. With these 

considerations in mind, we call this theory entropy spectrum pathways, or ESP.

II. THE DEFECTIVE LATTICE

In this paper we will consider the random walk on a defective lattice, a schematic of which 

is shown in Fig. 1. A random walk is defined by the simple rule that at each time step a 

particle at location (i, j) can move one step in either the i or j direction. In a regular lattice all 

lattice sites are available, as illustrated in Fig. 1(a). In a defective lattice, certain sites are 

inaccessible, as shown in Fig. 1(b).

III. RANDOM WALK TRANSITION PROBABILITY

Consider a two-dimensional (2D) Cartesian grid of equally spaced points at R spatial 

locations (x1, ⋯, xR) where each point can take on any one of s available values {v1, ⋯, vs}. 

To simplify the notation, we will equate the spatial path with the sequence of values and 

speak of the trajectory as the sequence of values along the spatial path 

, and compute the probability of this sequence 

 given our prior information I.

The logical procedure for determining the path probabilities is the principle of maximum 

entropy [4] in which the Shannon information entropy [5]

(1)
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is maximized subject to the constraints imposed by the the basic rules of probability theory 

and by the s data points uk for k = 1, ⋯, s:

(2a)

(2b)

(2c)

where the Uk are the expected values of the data along the set of all possible paths {γ}. This 

is a variational problem solved by the method of Lagrange multipliers and has the general 

solution [4]

(3)

where

(4)

and the partition function is

(5)

The Lagrange multipliers {λk} are determined from the data by

(6)

for k = 1, ⋯, s, and the fluctuations are determined from

(7)

The entropy Eq. (1) of the maximum entropy distribution Eq. (3) is

(8)

The reformulation of the path probabilities in terms of the maximum entropy formalism, as 

expressed by Eqs. (3)–(8), allows the construction of path probabilities consistent with given 

prior information. We now consider two different sets of prior information and show how 

these lead to the GRW and MERW, respectively. We stress here the fact that the dependence 

of the derived distribution p(γ) on the prior information means that it is an expression of our 

processing of information, rather than of a physical effect. Moreover, while the specific 
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examples addressed in this paper are confined to prior information about nearest neighbor 

coupling, the formalism is very general and can incorporate prior information about more 

complex couplings.

A. Prior information about node degrees

Suppose that the known values vi represent the node degrees d and that the prior information 

consists of the frequency fi with which each value di occurs. If

Ni = number of times di appears along γ,

fi = expected frequencies of di,

then

(9)

where  is the total number of sites visited. The path probability p(γ) is then found 

by maximimizing Eq. (1) subject to Eqs. 2(a)–2(c) [in the form of Eq. (9)]. The solution to 

this is

(10)

where the partition function is

(11)

and

(12)

From Eqs. (6) and (9),

(13)

which, when substituted into Eq. (3) and properly normalized, gives the multinomial 

distribution [6]

(14)

For a 2D Cartesian lattice s = 4. The number of different paths for specified Ni is N!/(N1!⋯ 

Ns!).
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Equation (14) says that the probability of any path only depends on how many times the 

values {vi} appear along the path, but not on the order in which they appear. Thus the GRW 

can be viewed as the maximum entropy solution when the prior information is limited to the 

frequency of occurrences of the defects.

B. Prior information about the coupling of the available values {v}

Suppose now that our prior information consists of the frequency fij with which the pairs of 

value vivj occur together. At the end, we will consider the special case in which this 

information is reduced to whether or not location i and j are connected, so that the prior 

information is just the adjacency matrix. Now we consider the more general case where

Nij = number of times vivj appears along γ,

fij = expected frequencies of the pairs vivj,

and the fj are known (they are again the prior information), then

(15)

where  is the total number of jumps between sites, and thus the trajectory length, 

and again {γ} denotes the set of all possible paths γ. In the path γ the number of times the 

pair xixj appears is

(16)

where δ represents the Dirac delta function: δi,j = 1 if i = j and δi,j = 0 for i ≠ j.

This problem is logically identical to the problem of digram frequencies in communication 

theory addressed by Jaynes [7]. The path probability p(γ) that has maximum entropy subject 

to the constraint Eq. (15) has the solution

(17)

where the partition function is

(18)

This complicated sum over all the different paths γ is simplified by noting that this partition 

function can be rewritten in terms of a matrix product

(19)
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where the matrix Q is defined as

(20)

This matrix defines the interactions between locations on the lattice and so will be called the 

coupling matrix. As we show later, the Lagrange multiplier λij that define the interactions 

can be seen as local potentials that depend on some function of the spatial locations xij on 

the lattice. We will suppress the more complete notation λij(xij), and thus Q(xij), for clarity.

A useful trick to simplify the computation of the partition function [7] is to add the step 

(xn,x1) to the pathway, which adds another exp(−λij) to the partition function Eq. (18) and 

creates periodic boundary conditions. This modifies Eq. (19) to

(21)

where {qk} are the roots of |Qij − qδij|. This trick is justified in the limit of long trajectories n 

→ ∞. The probability of the entire path, Eq. (17) can be written using Eqs. (16) and (20),

(22)

where the periodic boundary conditions trick has been invoked.

While Eq. (17) is formally the solution of the path probability, we would like to determine 

the transition probability. In order to do this, we can consider the problem of how our 

estimates change as we move along a path. In other words, if we have moved part way along 

a path, what does this tell us about the remainder of the path? This is analogous to the partial 

message problem [7]. To address this question, imagine that we break the path γab from an 

initial point a to a final point b into two segments (Fig. 3) defined by some intermediate 

point c = xm−1 (i.e., a ≤ c ≤ b), so that the first segment is of length m − 1 and the second is 

of length n − m + 1:

(23a)

(23b)

The probability of the entire path is just the joint probability of the two path segments {γac, 

γcb} and from the basic rules of probability theory is equal to Eq. (17):

(24)

so the conditional probability of γcb, given γac, is

(25)
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The marginal distribution of initial part of the path, p(γac|I), is

(26)

which, from Eq. (22), is

(27)

where

(28)

Define the transition point from the initial path to the second path as ij, where i = xm−1 is the 

last point in the first path and j = xm is the first point in the second path. Just as in the step 

from Eqs. (18) to (19), the sum over paths in Eq. (27) can be written as a matrix product:

(29)

where

(30)

The conditional probability distribution of the second part of the path, given the first part 

[Eq. (25)] is then, from Eqs. (22) and (29),

(31)

since the common factor R cancels. This distribution represents a Markov chain because the 

probability for the second path {xm⋯xn} depends only on the previous location xm−1 and not 

on any of the details of the path the particle took to get to that point. From Eq. (31) we can 

determine the probability that the path switches from the first path at i = xm−1 to the second 

path at j = xm. This is called the transition probability and is found from the basic rules of 

probability by summing Eq. (31) over the locations that are not of interest:

(32)

(33)

where the term in parentheses is just Tj of Eq. (30). Thus the transition probability is
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(34)

where the superscript notation is to remind us of the dependency on both n and m. This 

result was previously derived in the context of communication theory.1 This represents the 

maximum entropy transition probability between location i = xm−1 and location j = xm for a 

path of length n.

Having derived the general case Eq. (34), the limiting case for n → ∞ can be determined 

[7]. The term containing both m and n is Tk [Eq. (30)], so we look at that first. The matrix Q 

can be reduced to block diagonal  form as there exists a nonsingular matrix B for which 

 so that the powers of the matrix Q can be expressed as

(35)

so as n → ∞ the element(s)  of Qn dominate all others. In general, the roots {q1,q2,⋯,qr} 

(assumed to be arranged in the order |q1| ≥ |q2| ≥ ⋯ ≥ |qr|) of the characteristic equation D(q) 

= det(Qij − qδij) can be degenerate and complex. However, if q1 is nondegenerate and real, 

then from Eqs. (30) and (35)

(36)

ψ1 ≡ B1 is an eigenvector of Q (the one with the largest eigenvalue) and ψ1i is the ith 

component of ψ1. The denominator of Eq. (34) then contains a term

(37)

Using this and canceling common factors, the transition probability Eq. (34) in the limit of 

large n becomes [7]

(38)

where q1 is the maximum eigenvalue of Q and ψ1i is the ith element of the eigenvector ψ1 of 

Q associated with the maximum eigenvalue.

It is useful at this junction to recall the parameter dependencies in Eq. (38). As noted above, 

the coupling matrix depends on the spatial locations Q(x) through the Lagrange multipliers. 

Thus, so do the eigenvectors ψ = ψ(x) and the associated eigenvalues q(x). In the examples 

shown below, the spatial dependence of these quantities is what produces the distribution 

maps directly from the eigenstructure of the lattice.

1In Ref. [7], note typographical error in Eq. 20–61 (22.74) for the transition probability.

Frank and Galinsky Page 8

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 February 06.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Equation (38) looks similar to the expression for the transition matrix a priori introduced in 

Ref. [2] [Eq. (5)] but with several important differences. First of all, rather than being 

postulated, it was obtained as a limit n → ∞ from a more general expression, Eq. (34). The 

derivation of Eq. (34) itself is general and depends on the sequence length n and the 

transition point xm, both of which may be of arbitrary length (provided m < n). Moreover, it 

is not required that Q represent an adjacency matrix. If the Lagrange multipliers take the 

form

(39)

then Q becomes an adjacency matrix and Eq. (38) is identical to the expression [Eq. (5)] in 

Ref. [2]. Taking the Lagrange multipliers as “potentials” [8], Eq. (39) can be viewed as 

representing local potentials that are either completely attractive (λ = 0) or completely 

repulsive (λ = ∞).

The entropy of the maximum entropy distribution Eq. (8), in the limit n → ∞ can be 

obtained using the expression for the partition function [7],

(40)

where {qk} are the roots of |Qij − qδij|. Taking  and using Eq. (15), the 

entropy per step becomes, from Eq. (8),

(41)

From Eq. (39), for the connected components λij = 0, in which case Eq. (41) becomes S/n = 

ln q1, which is the same as the limit given by Burda et al. But we see that, in general, Eq. 

(41) is the correct limit.

IV. LOCALIZATION

In the special case that Q reduces to the adjacency matrix A [Eq. (39)], an interesting 

property of the transition probability  in the limit n → ∞ (the equilibrium transition 

probability) noted by Burda [2] is that it localizes in what appears to be the largest 

accessible region of a defective lattice. They explained this effect by reformulating the 

problem in terms of a Hamiltonian equation, then making the analogy with Lifshitz spheres 

[9], defined as the largest spherical region of the lattice that is free of defects [3]. We show 

here that this view is not correct in general.

A. Potential theory

It has been noted that the spatial distribution of the equilibrium probability density is 

described by the eigenvector ψ(1) associated with the maximum eigenvalue q1, and thus 

localization can be investigated by looking at the structure of ψ(1) [2]. While it is possible to 
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work directly in the eigencoordinates of the adjacency matrix Aψ(k) = qkψ
(k), it is useful and 

common to recast this in the form of a differential equation by noting that the adjacency 

matrix is related to the graph Laplacian by L = D − A. The elements of the diagonal degree 

matrix are Dii = di, where di is the vertex degree, and thus

(42)

In an undirected graph where edges have no orientation (which is all we will consider here) 

the degree is the number of edges incident to the vertex [10]. For graphs that in the absence 

of defects are regular every vertex has the same degree dmax. Then vertices with defects 

have d = 0 and those with d < dmax are adjacent to defects. Adding dmax ψ(k) to each side of 

Eq. (42), and noting that the graph Laplacian is the negative of the Laplacian operator Δ for 

the Dirichlet boundary conditions considered here [11], yields the differential equation

(43)

where Vj = dmax − dj is the potential and Ek = dmax − qk is the energy. The potential V is a 

vector of length n = length(ψ), and Vψ in Eq. (43) is an n-dimensional vector whose jth 

element is Vjψj. Spatial variations in the potential are thus encoded through the components 

Vj. Equation (43) has the familiar form of a Hamiltonian equation  where 

. The addition of dmaxψ to both sides of Eq. (42) allows the interpretation of 

ψ(1) in Eq. (43) as the ground state wave function [2], since E1 = dmax − q1 is the lowest 

energy because q1 is the largest eigenvalue.

B. Graph eigenstructure

While the spatial distribution of the equilibrium MERW probability is encoded in ψ1, the 

higher order MERW eigenfunctions convey important information, as we shall demonstrate. 

Thus while it is possible to examine Eq. (43) in the context of Lifshitz potentials ([2]), it is 

perhaps more illuminating to recognize that this equation expresses the fact that the 

eigenvectors of the adjacency matrix are the different energy modes of the Laplacian with 

boundary conditions determined by the potentials. This viewpoint permits a clear 

understanding of the localization phenomenon, and will further inform our understanding of 

the dynamics.

To illustrate this view, we revisit the localization examples presented in Ref. [6] of the disk 

and the ellipse. Interestingly, for a lattice containing multiple well separated connected 

regions, as in Fig. 4(a), the eigenvectors of the adjacency matrix are the eigenvectors of the 

individual connected regions, ranked according to eigenvalue. This is shown in Fig. 4 where 

we have specifically chosen the eigenvalues of the spherical region to be λ = 10 pixels, and 

those of the elliptical region to be {λ1,λ2} = {9, 14} so that the largest spherical region is the 

disk, but the largest eigenvalue of the adjacency matrix belongs to the lowest mode of the 

elliptical region. This contradicts the claim by Burda that the maximum entropy solution is 

the one in the largest spherical region [2]. The first eigenvalue [Fig. 4(b)] determines the 

maximum entropy solution p∞, which is evidently not determined by the largest spherical 

region [2] but rather the largest eigenvalue of the Laplacian.
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Thus there are in fact multiple localization regions within the lattice, ranked according to the 

corresponding eigenvalues. It is therefore the spectrum of the maximum entropy 

eigenvectors, in descending order of the associated eigenvalues, that describes the 

information flow in the lattice. This flow occurs via a multitude of paths over multiple 

spatial scales of the lattice. We call this characterization entropy spectrum pathways, or 

ESP. In practical applications, the lattice can be described in terms of m pathways 

constructed from the first m eigenvectors of the adjacency matrix (in decreasing order of the 

eigenvalues) which, from Eq. (38), is

(44a)

(44b)

For each transition matrix Eq. (44) there is a unique stationary distribution associated with 

each path k,

(45)

that satisfies

(46)

the first of which, , corresponds to the maximum entropy stationary distribution [2].

The localization phenomenon in a random lattice can now be made clear by combining a 

random lattice with the perfect disk and ellipse of Fig. 4(a), as shown in Fig. 5(a). The 

eigenvectors, shown in Fig. 5, are then distorted versions of the idealized lattice in Fig. 4 

caused by the alteration in the boundary conditions.

The transition probabilities Eqs. (38) and (44) determine the dynamics towards the 

equilibrium distribution  through the update formula

(47)

In the lattice Fig. 6(a) [with associated lattice degrees, Fig. 6(b)], a point distribution [Fig. 

6(c)] for the GRW [Figs. 6(e) and 6(f)] evolves into a relatively uniform spatial distribution, 

disrupted only locally by the defects. The MERW [Figs. 6(g) and 6(h)], on the other hand, 

“flows” to the equilibrium distribution. We emphasize that both sets of Figs. 6(e)–6(h) are 

generated by maximum entropy distributions, but with different prior information. The 

marked difference in these dynamics is purely a consequence of different prior information 

and, as such, can be viewed as a model of information flow, rather than the realization of a 

physical process. Moreover, while the dynamics in Fig. 6 were generated only from the 
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primary eigenvector [Fig. 7(a)], in lieu of Eq. (44b), there exist multiple levels of 

information and associated pathways, as demonstrated in Figs. 7(b)–7(d).

V. DYNAMICS

A. Dynamics of the most probable pathways

While Eq. (47) provides a method to compute the information flow in the lattice, it provides 

little insight into how the macroscopic structure of the pathways is related to the 

microscopic dynamics of the information flow. One possibility to introduce this relation 

(due to Jaynes albeit in a highly abbreviated form) is “bubble dynamics” [12], in which the 

spatial-temporal characteristics of a probability density P(x1⋯xm; t) of a set of macroscopic 

variables xi,i = 1,⋯,m is characterized by the conservation of probability

(48)

where the information flux JI is the sum of a diffusive component Jd = −D∇P and a 

convective component Jc = −LP∇S,

(49)

and S(x) = k ln W(x) is the entropy in which W(x) is the density of states, D is the diffusion 

coefficient (or, more generally, the diffusion tensor), and L = κD (where κ ≡ k−1 is the 

Onsager coefficient [13]). Here x refers to spatial coordinates, so k, which is Boltzmann’s 

constant in thermodynamics, just scales the entropy to the macroscopic variable space. 

Onsager coefficients are thus diffusion coefficients scaled to the spatial coordinates. 

Substitution of Eq. (49) into Eq. (48) gives

(50)

This is the Fokker-Planck equation with the potential equal to the entropy: V = S, and 

connects the global structure of the probability with the local structure of the lattice through 

the local structure of the entropy. Equation (50) was previously derived (in a slightly 

different form) in Ref. [14]. It can be shown that Eq. (50) accurately describes the dynamics 

of the ESP, such as that illustrated in Fig. 6, reproducing not only the accurate final ESP 

distribution but the flow of information through the lattice from an initial point distribution. 

This formulation can show that information flow occurs not only over different spatial 

scales, but over different temporal scales as well.

B. Construction of path entropy

In order to investigate the dynamics via Eq. (50) we need to construct the entropy S. Having 

determined the maximum entropy transition matrix  [Eq. (38)] between an initial point i 

and a final point j on the lattice, we want to construct the entropy map by calculating the 

entropy for every path xij between these two points. This amounts to calculating the matrix

(51)
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We then utilize a theorem by Ekroot [15] to construct the entropy map for all paths between 

a specified initial and final lattice locations. This theorem demonstrates that the matrix Eq. 

(51) can be computed directly from the transition matrix pij and the equilibrium distribution 

µ from the expression

(52)

where K = (I − P + B)−1(S* − SΔ) in which I is the identity matrix, P is the transition matrix, 

and , Bij = µj, , and

(53)

where h is the entropy per step in the limit n → ∞,

(54)

and S(pi) is the entropy of the first step of a trajectory initially at location i, given by

(55)

The columns of S correspond to spatial maps of maximal entropy pathways from each point 

in the image to the target points and thus reveal preferred pathways throughout the image 

volume. This procedure can be done for any other of the k modes using  [Eq. (44)].

Using this construction, the path entropy S(x, y) [Eq. (51)] from the initial distribution 

location, Fig. 6(c), to every other location can be determined [Fig. 8(a)] and from this can be 

determined the first and second spatial derivatives [Eqs. (8b) and (8c)].

The time-varying distribution P(x, y, t) for the path entropy in Fig. 8 is shown in Fig. 9. The 

starting distribution follows the maximum entropy path shown in Eq. (6). The initially 

localized distribution moves and spreads in accordance with the local entropy field structure, 

then stalls and tightens at the maximum entropy location [the dark red region in Fig. 8(a)], 

and the location of the highest probability concentration of  [Fig. 6(d)]. Further details of 

this formulation will be presented elsewhere.

VI. APPLICABILITY

The presented formalism can be used for finding static relations and for assessing dynamical 

information flow in many real world situations. With the ever-increasing number of 

applications in which connectivity plays a critical role (social networks, brain function and 

structure, etc.), methods for quantitative assessment of connectivity measures will play an 

increasingly significant role in a wide range of applications.

As an illustration of possible applications, we have included one practical example of ESP 

processing of magnetic resonance diffusion tensor imaging (MR-DTI) data. DTI data is 
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often used for neural fiber tractography in the studies of brain connectivity. This is a 

complex and severely ill-posed problem. Within an imaging volume, local (voxel) DTI data 

measurements are used to reconstruct a (possibly high dimensional) tensor in each voxel that 

is able to capture some broad aspects of the underlying tissue microstructure, but on a scale 

much greater than the fibers themselves. From these tensor estimates are reconstructed the 

purported pathways of neural fiber bundles throughout the brain that produced the 

underlying variations in the diffusion signal. Imaging resolution is never (currently) fine 

enough to resolve individual fibers, and thus individual voxel measurements are degraded by 

averaging over fiber bundles, possibly at different orientations, and other tissue 

compartments. Given the great complexity of the neural structure of the human brain, 

reconstruction of the macroscopic neural pathways from large volumes of noisy, highly 

multidimensional tensors derived from measurements of microscopic signal variations poses 

a significant theoretical and computational challenge.

The reconstruction of the macroscopic neural fiber pathways from the microscopic 

measurements of the local diffusion from DTI data is precisely the type of problem suited 

for the ESP formalism. The goal is to determine the most probable global pathways (neural 

fibers) consistent with measured values (diffusion tensors) based upon the available prior 

information. The ESP formalism provides a general method for the incorporation of prior 

information regarding the relationship between voxels. For the current paper, we limit the 

demonstration to the nearest neighborhood coupling discussed in detail above, though we 

stress that this is but one possible realization of the method. For the nearest neighbor 

coupling, the local potential can be derived from the interaction of the tensors, which is 

chosen here to be their inner product.

A complete details of implementation, including computation of diffusion tensors, 

generation of fractional anisotropy (F A) map, assignment of the potential matrix [Eq. (20)] 

with an appropriate choice of coefficients and thresholds will be deferred to a more 

specialized publication. We include here only a short comparison of the final trajectory 

generated between two chosen points by ESP [Fig. 10(c)] and GRW [Fig. 10(b)] (using the 

same number of time steps nt = 500). A composite map of F A overlayed with the principal 

eigenvectors is shown for a single slice in Fig. 10(a).

The presented example clearly shows a “global” nature of the ESP method, in the sense that 

it probes the most probable of all possible paths between the two points and the optimization 

is based on the entropy of the entire path, which depends upon all of the possible 

connections in all of the possible paths. One important advantage as demonstrated here is 

that the neighborhood of the path is explicitly taken into account. Different coupling 

schemes can produces different trajectory calibers. The method is quite general and can 

incorporate more sophisticated models of both intervoxel diffusion anisotropy, such as high 

angular resolution reconstruction [20], and intravoxel coupling schemes, such as long range 

correlations. An initial implementation of this method was presented in Ref. [21] and a more 

detailed paper is forthcoming.
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VII. CONCLUSION

In this paper we have demonstrated that logical inference concerning the spatial-temporal 

characteristics of probabilities on a defective lattice provides a theoretical justification for 

both the uniform random walk and the so-called maximum entropy random walk [2,6]. 

Within this framework, both are maximum entropy distributions, but with different prior 

information.

We derived from first principles the transition probability for probabilities on a defective 

lattice with a known coupling matrix for the general case of any partial path length m within 

a path of total length n. This was shown to be expressed in terms of a potential theory 

through the coupling matrix Q. It was then shown in the limit of a large number of step and 

a binary coupling scheme, where Q becomes the adjacency matrix, to reduce to the so-called 

maximum entropy random walk of Burda et al. [2,6].

We then demonstrated that the localization phenomena can be understood in terms of the 

graph Laplacian and the eigenstructure of the adjacency matrix, and depends upon the 

ranking of the eigenvalues of the adjacency matrix, and thus does not (necessarily) localize 

in the largest Lifshitz sphere, as previously claimed [2]. Moreover, the complexity of the 

graph eigenstructure in a lattice with random defects may possess several close localization 

modes.

Finally, we sketched a theoretical framework within which to understand the relationship 

between the microscopic (local) transition probabilities and the macroscopic prediction of 

the lattice structure, the probability concentration, and dynamics governing the infiltration 

and flow of information through the lattice. The general nature of the results may prove 

useful for the investigation of a variety of experimental situations where data can be 

modeled as a grid of discrete measurements from which one seeks to reconstruct an 

underlying continuous structure or understand how information flows within complex 

networks.

The presented framework has potential application in a wide area of problems dealing with 

analysis of disordered systems. In particular, it is ideally suited for addressing two 

challenging problems related to understanding the form and function of the human brain: 

inferring neural structural connectivity from the local (voxel) data provided by diffusion 

tensor (DT) MRI data, and inferring functionally connected regions from spatial-temporal 

activations from functional MRI (fMRI) data. Both techniques offer the potential for 

providing unique data to elucidate the structure and function of the human brain, but are 

hampered by the great difficulty in inferring global connectivity from local measurements in 

such a highly complex structural and functional system. The numerical implementation of 

the theory presented here provides a means by which to infer such connections and thus 

offers the possibility of providing unique insights into the structure and function of the 

human brain. These applications are currently being pursued in our laboratory.
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FIG. 1. 

A defective two-dimensional lattice. White squares are accessible, black squares (defects) 

are not (a) A defective lattice. (b) The lattice degree d at each site.
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FIG. 2. 

(Color online) Random walk on a lattice. Allowed steps from the location (i, j). (a) Generic 

random walk on a regular lattice. All adjacent locations are accessible. (b) Random walk on 

a defective lattice. Allowable steps are shown in green (from white to white square), 

disallowed steps are in red (from white to black square).
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FIG. 3. 

(Color online) Paths on a defective lattice. (a) How many ways are there to get from a to b 

in 4 steps? Blue paths (visiting only white squares) are allowed, red (visiting at least one 

black square) are not. (b) The transition probability can be found by splitting the path into 

two segments,  and  at the point m (Eq. 23).
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FIG. 4. 

(Color online) The adjacency matrix Qij (a) and eigenvectors ei (b)–(e) for a periodic square 

lattice of size L × L (L = 64) containing both a disk and an ellipse arranged in decreasing 

order of their eigenvalues λi. The eigenvectors distinguish separately the two regions and 

rank their relative modes according to their eigenvalues, and are the eigenvectors for the 

individual shapes. The first eigenvalue (b) determines the maximum entropy solution p∞, 

which is evidently not determined by the largest spherical region [2] but rather the largest 

eigenvalue of the Laplacian for these bounded regions (i.e., the ellipse). White and black 

regions denote accessible and inaccessible sites, respectively.
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FIG. 5. 

(Color online) The adjacency matrix Qij (a) and eigenvectors ei (b)–(e) for a periodic square 

lattice of size L × L (L = 64) containing both a disk and an ellipse and random defects at a 

density of ρ = 0.05, arranged in decreasing order of their eigenvalues λi.

Frank and Galinsky Page 21

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 February 06.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



FIG. 6. 

Dynamic evolution of the generic random walk [GRW: (e) and (f)] and the maximum 

entropy random walk [MERW: (g) and (h)] for the lattice shown in (a) with a starting 

distribution shown in (c). The lattice “defects” are, unlike in Ref. [2], inaccessible regions.
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FIG. 7. 

(Color online) Entropy spectrum pathways (ESP): the first four eigenvectors of the lattice in 

Fig. 6(a).
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FIG. 8. 

(Color online) The path entropy S(x, y), Eq. (51), from the initial distribution location Fig. 

6(c) to every other location and its spatial first and second derivatives. Note that the map has 

the characterstics of a source (at the low entropy blue starting region) and a sink (at the high 

entropy red destination region).
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FIG. 9. 

(Color online) The time-varying distribution P(x, y, t) for the path entropy Fig. 8 at three 

successive time points. The starting distribution follows the maximum entropy path shown 

in Eq. (6). The initially localized distribution moves and spreads in accordance with the 

local entropy field structure, then stalls and tightens at the maximum entropy location [the 

dark red region in Fig. 8(a)], and the location of the highest probability concentration of 

[Fig. 6(d)].
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FIG. 10. 

(Color online) The application of ESP to neural fiber tractography using diffusion tensor 

magnetic resonance imaging (DT-MRI) and comparison with the generic uniform random 

walk (GRW). Data were collected on a normal human subject on a 3T GE Excite MR 

system with an eight-channel phase-array head coil using a spin echo echo-planar 

acquisition optimized for minimum echo time and the reduction of eddy current artifacts 

[16]. Diffusion weighted images were collected along 61 gradient directions distributed 

according to the electrostatic repulsion model [17] at a b value of b = 1500 s/mm2. The 

acquisition parameters were TE/TR = 93/10,900 ms, FOV = 240 mm, NEX = 1, matrix = 

128 × 128 with 34 contiguous 3 mm slices. Two field maps were collected for unwarping to 

correct for signal loss and geometric distortion due to B0 field inhomogeneities [18,19]. 

Total scan time including field maps was approximately 16 minutes.
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