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Abstract

The maximum entropy random walk in a disordered lattice is obtained as a consequence of the
principle of maximum entropy for a particular type of prior information without restriction on the
number of steps. This novel result demonstrates that transition probabilities defining the random
walk represent a general characterization of information on a defective lattice and does not
necessarily reflect a physical process. The localization phenomenon is shown to be a consequence
of solution of the Laplacian on the lattice—hence it contradicts the previous interpretation as a
spherical Lifshitz state—and naturally generalizes to multiple modes, whose order reflects the
significance of information. The dynamics of information flow on the microscale is related to the
macroscopic structure of the lattice through a Fokker-Planck formalism. This newly derived
theoretical framework is opening doors for a wide range of applications in analysis of
(information) flow in disordered systems. That includes potentially breakthrough resolution of the
outstanding problem of inferring connectivity from discrete imaging (i.e., neural) data.

I. INTRODUCTION

Theories concerning the diffusive motion of particles have a long and storied history in
physics [1], and have been applied to a wide range of physical systems. Of particular interest
is diffusion in nonuniform media where particle pathways are obstructed by physical
barriers or influenced by distributed sources of attractive or repulsive forces, which we will
refer to collectively as “disordered” media. In such cases, characterization of preferable
diffusion pathways arises as a problem of both theoretical and practical interest. Recently,
this problem has been addressed for the specific case of a random walk on a regular lattice
containing random defects (i.e., vertices inaccessible to the particles) by positing that, unlike
the standard or generic random walk (GRW) (either uniform or Gaussian), all paths of equal
length, regardless of the path details, should be equally probable [2]. It was shown that a
transition matrix defining such a process can be constructed in the limit of a large number of
steps whose resulting path has maximum entropy per unit step (i.e., maximum entropy
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production rate). This transition probability is thus said to define the maximum entropy
random walk, or MERW, [2]. The MERW was shown to exhibit an interesting localization
phenomenon in regions free of defects, an effect explained by analogy with the potential
theory of Lifshitz [3], and it was concluded that the localization occurs in the largest Lifshitz
sphere in the lattice, i.e., the largest spherical region in the lattice free of defects.

In this paper, we revisit this problem with three specific goals in mind: (1) derive the
MERW transition probability from first principles without the assumption of a large number
of steps; (2) characterize the localization phenomenon; and (3) develop a theoretical model
for the relationship between the microscopic dynamics of the particles trajectories and the
macroscopic structure of the lattice.

The main claim of this paper is that the MERW solution can be viewed as a specific
manifestation of a more general result concerning inference on a lattice which has nothing
necessarily to do with diffusion, or any other physical process. The general approach results
in a new theoretical framework suitable for application to a wide range of problems involved
with analysis of disordered lattice systems. As a byproduct, we show that the previous
interpretation of the localization phenomenon by the Lifshitz sphere argument is not true in
general. Moreover, the correct general solution we derive elucidates the source of the
localization phenomenon, demonstrates that it actually occurs on multiple scales, and paves
the way for the classification of optimal pathways of information in a lattice. With these
considerations in mind, we call this theory entropy spectrum pathways, or ESP.

Il. THE DEFECTIVE LATTICE

In this paper we will consider the random walk on a defective lattice, a schematic of which
is shown in Fig. 1. A random walk is defined by the simple rule that at each time step a
particle at location (i, j) can move one step in either the i or j direction. In a regular lattice all
lattice sites are available, as illustrated in Fig. 1(a). In a defective lattice, certain sites are
inaccessible, as shown in Fig. 1(b).

lll. RANDOM WALK TRANSITION PROBABILITY

Consider a two-dimensional (2D) Cartesian grid of equally spaced points at R spatial
locations (xy, ---, xg) where each point can take on any one of s available values {vy, ---, vg}.
To simplify the notation, we will equate the spatial path with the sequence of values and
speak of the trajectory as the sequence of values along the spatial path

Vou={Vz0s Vays* *+ , Uz, J» and compute the probability of this sequence
P(Vpu| D) =P(Vags Vay s+ + 5 Vs, |I) given our prior information 1.

The logical procedure for determining the path probabilities is the principle of maximum
entropy [4] in which the Shannon information entropy [5]

S(v)==>Y _p()inp(y)

1
o) M
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is maximized subject to the constraints imposed by the the basic rules of probability theory
and by the s data points u; for k=1, ---, s:

p(v) 20, (a

> p()=1,
o (20

> _p(Y)un(y)=(ur) = Uk,

2
I @

where the Uy are the expected values of the data along the set of all possible paths { y}. This
is a variational problem solved by the method of Lagrange multipliers and has the general

solution [4]
p(y)=Z texp[-A(y)], @)

where
A= M), @
k=1

and the partition function is

Z(A A=) exp[—A(Y)]-

5
I ®

The Lagrange multipliers {A;} are determined from the data by

d
(ur)==>—InZ(M ... As), ©

V&
for k=1, ---, s, and the fluctuations are determined from
32
— =— —InZ(A1...Ag).
(upwr) — (ug) (w) aon" (M ).

The entropy Eq. (1) of the maximum entropy distribution Eq. (3) is

S=in Z+» AUy
k

®

The reformulation of the path probabilities in terms of the maximum entropy formalism, as
expressed by Eqgs. (3)—(8), allows the construction of path probabilities consistent with given
prior information. We now consider two different sets of prior information and show how
these lead to the GRW and MERW, respectively. We stress here the fact that the dependence
of the derived distribution p(y) on the prior information means that it is an expression of our
processing of information, rather than of a physical effect. Moreover, while the specific
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examples addressed in this paper are confined to prior information about nearest neighbor
coupling, the formalism is very general and can incorporate prior information about more
complex couplings.

A. Prior information about node degrees

Suppose that the known values v; represent the node degrees d and that the prior information
consists of the frequency f; with which each value d; occurs. If

N; = number of times d; appears along ¥,
f; = expected frequencies of d,

then

9
o ®

where IV :Zi Ni is the total number of sites visited. The path probability p() is then found
by maximimizing Eq. (1) subject to Egs. 2(a)-2(c) [in the form of Eq. (9)]. The solution to
this is

1 S
p(y)=exp [_ZAiNi(V)} s (10)
where the partition function is

Z(Ai)zzeﬂfp [—zs:&Ni(”Y)} =y

o i1

and
z:Ze*Ai. (12)
i=1
From Egs. (6) and (9),

Xi=—In(zf;), 1<i<s, a3

which, when substituted into Eq. (3) and properly normalized, gives the multinomial
distribution [6]

n 1 S 1 Nj
p(7)=l__[d—:'l_[1 (dj) (14)
i j=

z;

For a 2D Cartesian lattice s = 4. The number of different paths for specified N; is N!/(N;!---
ND).
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Equation (14) says that the probability of any path only depends on how many times the
values {v;} appear along the path, but not on the order in which they appear. Thus the GRW
can be viewed as the maximum entropy solution when the prior information is limited to the
frequency of occurrences of the defects.

B. Prior information about the coupling of the available values {v}

Suppose now that our prior information consists of the frequency f;; with which the pairs of
value v;v; occur together. At the end, we will consider the special case in which this
information is reduced to whether or not location i and j are connected, so that the prior
information is just the adjacency matrix. Now we consider the more general case where

Nj; = number of times v;v; appears along y,
Jij = expected frequencies of the pairs v;vj,
and the f; are known (they are again the prior information), then

(Ng)=> Ny p(y)=(n— 1) fy4, {i,j}=1,...,s, as)
{7}

where n=ZU Nijis the total number of jumps between sites, and thus the trajectory length,
and again {y} denotes the set of all possible paths 7. In the path y the number of times the
pair x;x; appears is

n—1
Ni(M= 6 k8k+1  (16)
k=1
where drepresents the Dirac delta function: 6;; = 1 if i =j and &;; = 0 for i #j.

This problem is logically identical to the problem of digram frequencies in communication
theory addressed by Jaynes [7]. The path probability p(y) that has maximum entropy subject
to the constraint Eq. (15) has the solution

p(v)z%exp {— Z )\isz‘j(’V)} > (1)

ij=1
where the partition function is
Z(Ay)=) _exp - > A@-N@-(W)] - as)
{r [ =1 J

This complicated sum over all the different paths yis simplified by noting that this partition
function can be rewritten in terms of a matrix product

Z(p)=>_ 1" 1y o)

i,j=1
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where the matrix Q is defined as
Qy=e . (0)

This matrix defines the interactions between locations on the lattice and so will be called the
coupling matrix. As we show later, the Lagrange multiplier A;; that define the interactions
can be seen as local potentials that depend on some function of the spatial locations x;; on
the lattice. We will suppress the more complete notation A;;(x;;), and thus Q(x;), for clarity.

A useful trick to simplify the computation of the partition function [7] is to add the step
(x;,x1) to the pathway, which adds another exp(—Xij) to the partition function Eq. (18) and
creates periodic boundary conditions. This modifies Eq. (19) to

Z(vi)= Y [Q";=Te(@")=>_d, (1)
k=1

,j=1

where {q} are the roots of |Q;; — qJ;l. This trick is justified in the limit of long trajectories n
— 00. The probability of the entire path, Eq. (17) can be written using Eqgs. (16) and (20),

p(’Yab|I):Z71Qz1,zzQx2,z3 e an_l,zn: (22)
where the periodic boundary conditions trick has been invoked.

While Eq. (17) is formally the solution of the path probability, we would like to determine
the transition probability. In order to do this, we can consider the problem of how our
estimates change as we move along a path. In other words, if we have moved part way along
a path, what does this tell us about the remainder of the path? This is analogous to the partial
message problem [7]. To address this question, imagine that we break the path y,, from an
initial point a to a final point b into two segments (Fig. 3) defined by some intermediate
point ¢ = x,,_; (i.e., a < ¢ £ b), so that the first segment is of length m — 1 and the second is

of lengthn—m+ 1:

-1
fygzl ):v$1U$2 Tt 'Uzm,l, (23a)
—m+1
E’Z m ):U:I:mvlm+] e Uzn . (23b)

The probability of the entire path is just the joint probability of the two path segments { y,,
ve»} and from the basic rules of probability theory is equal to Eq. (17):

p(PYab‘I):p(P)/ac’ch |I):p(7cb |7uca I)p(ﬂ)'u,c‘I% 24)
so the conditional probability of y,p, given y,, is

p(7a076b|1) p(’Yab|I)
p(’)/cb Yacs I): = - (25
| D) ol
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The marginal distribution of initial part of the path, p(y,.0), is

p(/Y(u:|I):Zp(7ab|I): Z co Z P(ml T -Tn|I) (26)

Vbe Tm=1 Tn=1

which, from Eq. (22), is

p(7a0|1):R Z T Z me,l,mm to anfl,mna 27

Tm=1 rn=1
where
-1
R:Z Q$17x2 o me—27$7n—1 . (28)

Define the transition point from the initial path to the second path as ij, where i = x,,,_| is the
last point in the first path and j = x,,, is the first point in the second path. Just as in the step
from Eqs. (18) to (19), the sum over paths in Eq. (27) can be written as a matrix product:

P(Yac|I)=R Z Qik[Q(nim)]kl:RzQika’ 29
k

k=1

where

:Z[Q(nfm)]kr (30)

=1

The conditional probability distribution of the second part of the path, given the first part
[Eq. (25)] is then, from Egs. (22) and (29),

QleIm,Ierl cee anfl,xn
> k=1QinTk

P(Yeb|Yac: I)= 31

since the common factor R cancels. This distribution represents a Markov chain because the
probability for the second path {x,, --x,} depends only on the previous location x,,—; and not
on any of the details of the path the particle took to get to that point. From Eq. (31) we can
determine the probability that the path switches from the first path at i = x,,,_; to the second

path at j = x,,,. This is called the transition probability and is found from the basic rules of
probability by summing Eq. (31) over the locations that are not of interest:

by = p(xm|$m—la Z Zp Vcbhla( 5 I) (32)

Tm41

Qi
Zk 1Q7 ka ( Z ZQ‘]’I"”d T anl@n) »  (33)

Tm41 Tn,

where the term in parentheses is just 7; of Eq. (30). Thus the transition probability is
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(n,m) o QZ]T]

s A (34

where the superscript notation is to remind us of the dependency on both n and m. This
result was previously derived in the context of communication theory.1 This represents the
maximum entropy transition probability between location i = x,,,_| and location j = x,, for a
path of length n.

Having derived the general case Eq. (34), the limiting case for n — oo can be determined
[7]. The term containing both m and n is T} [Eq. (30)], so we look at that first. The matrix Q

can be reduced to block diagonal ) form as there exists a nonsingular matrix B for which

Q=B~' QB so that the powers of the matrix Q can be expressed as
Q"=BQ"B™',

so as n — oo the element(s) ¢} of Q" dominate all others. In general, the roots {g1,42,"**,q,}
(assumed to be arranged in the order |g1| = || = --- 2 |q,]) of the characteristic equation D(g)
= det(Q;j — qJj) can be degenerate and complex. However, if g; is nondegenerate and real,
then from Egs. (30) and (35)

lim Ty=q{" g1, 3 (B o)
k=1

w| = By is an eigenvector of O (the one with the largest eigenvalue) and y; is the ith

component of ;. The denominator of Eq. (34) then contains a term

Y QRuTe=)> Quatri=q1v1- 37)
k=1

— k=1

Using this and canceling common factors, the transition probability Eq. (34) in the limit of

large n becomes [7]

where ¢ is the maximum eigenvalue of Q and y; is the ith element of the eigenvector y; of
Q associated with the maximum eigenvalue.

It is useful at this junction to recall the parameter dependencies in Eq. (38). As noted above,
the coupling matrix depends on the spatial locations Q(x) through the Lagrange multipliers.
Thus, so do the eigenvectors = y(x) and the associated eigenvalues g(x). In the examples
shown below, the spatial dependence of these quantities is what produces the distribution
maps directly from the eigenstructure of the lattice.

I1n Ref. [71], note typographical error in Eq. 20-61 (22.74) for the transition probability.
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Equation (38) looks similar to the expression for the transition matrix a priori introduced in
Ref. [2] [Eq. (5)] but with several important differences. First of all, rather than being
postulated, it was obtained as a limit # — oo from a more general expression, Eq. (34). The
derivation of Eq. (34) itself is general and depends on the sequence length n and the
transition point x,,, both of which may be of arbitrary length (provided m < n). Moreover, it
is not required that Q represent an adjacency matrix. If the Lagrange multipliers take the

form

Ao 0 connected
Y] oo mnot connected

a 1
= Q4=e A”—{ 0 39

then Q becomes an adjacency matrix and Eq. (38) is identical to the expression [Eq. (5)] in
Ref. [2]. Taking the Lagrange multipliers as “potentials” [8], Eq. (39) can be viewed as
representing local potentials that are either completely attractive (A = 0) or completely

repulsive (A = 0o).

The entropy of the maximum entropy distribution Eq. (8), in the limit 7 — oo can be
obtained using the expression for the partition function [7],

7= 1Q",=Tr(Q")=Y _ai w0
k=1

i,j=1

where {q;} are the roots of |Q;; — qJ;j|. Taking lim,, ., Z=¢} and using Eq. (15), the
entropy per step becomes, from Eq. (8),
S
E:ln Q1+Z)\7Ljf7'j- (41
i
From Eq. (39), for the connected components )\,-j =0, in which case Eq. (41) becomes S/n =

In gy, which is the same as the limit given by Burda er al. But we see that, in general, Eq.
(41) is the correct limit.

IV. LOCALIZATION
In the special case that Q reduces to the adjacency matrix A [Eq. (39)], an interesting

property of the transition probability psloo ) () in the limit 7 — oo (the equilibrium transition
probability) noted by Burda [2] is that it localizes in what appears to be the largest
accessible region of a defective lattice. They explained this effect by reformulating the
problem in terms of a Hamiltonian equation, then making the analogy with Lifshitz spheres
[9], defined as the largest spherical region of the lattice that is free of defects [3]. We show
here that this view is not correct in general.

A. Potential theory

It has been noted that the spatial distribution of the equilibrium probability density is
described by the eigenvector 7! associated with the maximum eigenvalue ¢;, and thus
localization can be investigated by looking at the structure of A1) [2]. While it is possible to
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work directly in the eigencoordinates of the adjacency matrix A g% = g, yA%), it is useful and
common to recast this in the form of a differential equation by noting that the adjacency
matrix is related to the graph Laplacian by L = D — A. The elements of the diagonal degree
matrix are D;; = d;, where d; is the vertex degree, and thus

Lw(k) — D/(/}(k): — ka(k)~ 42)

In an undirected graph where edges have no orientation (which is all we will consider here)
the degree is the number of edges incident to the vertex [10]. For graphs that in the absence
of defects are regular every vertex has the same degree dy,,,x. Then vertices with defects
have d = 0 and those with d < dp,x are adjacent to defects. Adding dp,x %% to each side of
Eq. (42), and noting that the graph Laplacian is the negative of the Laplacian operator A for
the Dirichlet boundary conditions considered here [11], yields the differential equation

—AY+Viy=Epp, 43)

where V; = diax — d; is the potential and Ej = dyax — gy is the energy. The potential Vis a
vector of length n = length(#), and Vyin Eq. (43) is an n-dimensional vector whose jth
element is V;y;. Spatial variations in the potential are thus encoded through the components
Vj. Equation (43) has the familiar form of a Hamiltonian equation HYp=E ) where

= — A+V . The addition of dp,,x % to both sides of Eq. (42) allows the interpretation of
¥V in Eq. (43) as the ground state wave function [2], since E| = dpayx — g1 is the lowest

energy because ¢ is the largest eigenvalue.

B. Graph eigenstructure

While the spatial distribution of the equilibrium MERW probability is encoded in ¢, the
higher order MERW eigenfunctions convey important information, as we shall demonstrate.
Thus while it is possible to examine Eq. (43) in the context of Lifshitz potentials ([2]), it is
perhaps more illuminating to recognize that this equation expresses the fact that the
eigenvectors of the adjacency matrix are the different energy modes of the Laplacian with
boundary conditions determined by the potentials. This viewpoint permits a clear
understanding of the localization phenomenon, and will further inform our understanding of
the dynamics.

To illustrate this view, we revisit the localization examples presented in Ref. [6] of the disk
and the ellipse. Interestingly, for a lattice containing multiple well separated connected
regions, as in Fig. 4(a), the eigenvectors of the adjacency matrix are the eigenvectors of the
individual connected regions, ranked according to eigenvalue. This is shown in Fig. 4 where
we have specifically chosen the eigenvalues of the spherical region to be A = 10 pixels, and
those of the elliptical region to be {A{,A>} = {9, 14} so that the largest spherical region is the
disk, but the largest eigenvalue of the adjacency matrix belongs to the lowest mode of the
elliptical region. This contradicts the claim by Burda that the maximum entropy solution is
the one in the largest spherical region [2]. The first eigenvalue [Fig. 4(b)] determines the
maximum entropy solution p°°, which is evidently not determined by the largest spherical
region [2] but rather the largest eigenvalue of the Laplacian.

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 February 06.



1duosnuely Joyiny vd-HIN 1duosnuey Joyiny d-HIN

1duosnuely Joyiny Vd-HIN

Frank and Galinsky

Page 11

Thus there are in fact multiple localization regions within the lattice, ranked according to the
corresponding eigenvalues. It is therefore the spectrum of the maximum entropy
eigenvectors, in descending order of the associated eigenvalues, that describes the
information flow in the lattice. This flow occurs via a multitude of paths over multiple
spatial scales of the lattice. We call this characterization entropy spectrum pathways, or
ESP. In practical applications, the lattice can be described in terms of m pathways
constructed from the first m eigenvectors of the adjacency matrix (in decreasing order of the
eigenvalues) which, from Eq. (38), is

(50) =, (o0)
p; _Zpijk’ (44a)
k=1

2I . (44b)

For each transition matrix Eq. (44) there is a unique stationary distribution associated with
each path &,
uO=[pBr’, @)

)

that satisfies

(k) _ (k), (0)
Hi —Z/‘j Pij > (46)
J

the first of which, #Ek)’ corresponds to the maximum entropy stationary distribution [2].
The localization phenomenon in a random lattice can now be made clear by combining a
random lattice with the perfect disk and ellipse of Fig. 4(a), as shown in Fig. 5(a). The
eigenvectors, shown in Fig. 5, are then distorted versions of the idealized lattice in Fig. 4
caused by the alteration in the boundary conditions.

The transition probabilities Eqgs. (38) and (44) determine the dynamics towards the

equilibrium distribution pg*° through the update formula
Pi+1=DijPt-  (47)

In the lattice Fig. 6(a) [with associated lattice degrees, Fig. 6(b)], a point distribution [Fig.
6(c)] for the GRW [Figs. 6(e) and 6(f)] evolves into a relatively uniform spatial distribution,
disrupted only locally by the defects. The MERW [Figs. 6(g) and 6(h)], on the other hand,
“flows” to the equilibrium distribution. We emphasize that both sets of Figs. 6(e)-6(h) are
generated by maximum entropy distributions, but with different prior information. The
marked difference in these dynamics is purely a consequence of different prior information
and, as such, can be viewed as a model of information flow, rather than the realization of a
physical process. Moreover, while the dynamics in Fig. 6 were generated only from the
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primary eigenvector [Fig. 7(a)], in lieu of Eq. (44b), there exist multiple levels of
information and associated pathways, as demonstrated in Figs. 7(b)-7(d).

V. DYNAMICS

A. Dynamics of the most probable pathways

While Eq. (47) provides a method to compute the information flow in the lattice, it provides
little insight into how the macroscopic structure of the pathways is related to the
microscopic dynamics of the information flow. One possibility to introduce this relation
(due to Jaynes albeit in a highly abbreviated form) is “bubble dynamics” [12], in which the
spatial-temporal characteristics of a probability density P(x;---x,,; t) of a set of macroscopic
variables x;,i = 1,---,m is characterized by the conservation of probability

W P+V J,=0, @s)

where the information flux J; is the sum of a diffusive component J; = —DVP and a

convective component J. = ~LPVS,

JIIJd+JC7 (49)

and S(x) = k In W(x) is the entropy in which W(x) is the density of states, D is the diffusion
coefficient (or, more generally, the diffusion tensor), and L = xD (where x = k™! is the
Onsager coefficient [13]). Here x refers to spatial coordinates, so k, which is Boltzmann’s
constant in thermodynamics, just scales the entropy to the macroscopic variable space.
Onsager coefficients are thus diffusion coefficients scaled to the spatial coordinates.
Substitution of Eq. (49) into Eq. (48) gives

& P+LV - (PVS)=DV?P. (50

This is the Fokker-Planck equation with the potential equal to the entropy: V=, and
connects the global structure of the probability with the local structure of the lattice through
the local structure of the entropy. Equation (50) was previously derived (in a slightly
different form) in Ref. [14]. It can be shown that Eq. (50) accurately describes the dynamics
of the ESP, such as that illustrated in Fig. 6, reproducing not only the accurate final ESP
distribution but the flow of information through the lattice from an initial point distribution.
This formulation can show that information flow occurs not only over different spatial

scales, but over different temporal scales as well.

B. Construction of path entropy

In order to investigate the dynamics via Eq. (50) we need to construct the entropy S. Having

determined the maximum entropy transition matrix p;’f [Eq. (38)] between an initial point i
and a final point j on the lattice, we want to construct the entropy map by calculating the
entropy for every path x;; between these two points. This amounts to calculating the matrix

Sij: — {Z}p(x,7)lnp(x,7) 51)
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We then utilize a theorem by Ekroot [15] to construct the entropy map for all paths between
a specified initial and final lattice locations. This theorem demonstrates that the matrix Eq.
(51) can be computed directly from the transition matrix p;; and the equilibrium distribution

4 from the expression
S=K — K+Sx, (52)

where K= - P + B)_l(S"< — Sa) in which [ is the identity matrix, P is the transition matrix,

and K y=Kj;. By = 1, S5=>5(py). and

(SA)qgj:{ /0 i # 7, (53)

where 7 is the entropy per step in the limit n — oo,

h=— Z.Uipijln Pijs (s
1,j

and S(p;) is the entropy of the first step of a trajectory initially at location i, given by

S(pij): - Zpijlnpij- (55)
)

The columns of S correspond to spatial maps of maximal entropy pathways from each point
in the image to the target points and thus reveal preferred pathways throughout the image

volume. This procedure can be done for any other of the k modes using p3;, [Eq. (44)].

Using this construction, the path entropy S(x, y) [Eq. (51)] from the initial distribution
location, Fig. 6(c), to every other location can be determined [Fig. 8(a)] and from this can be
determined the first and second spatial derivatives [Egs. (8b) and (8c)].

The time-varying distribution P(x, y, f) for the path entropy in Fig. 8 is shown in Fig. 9. The
starting distribution follows the maximum entropy path shown in Eq. (6). The initially
localized distribution moves and spreads in accordance with the local entropy field structure,
then stalls and tightens at the maximum entropy location [the dark red region in Fig. 8(a)],
and the location of the highest probability concentration of p¢° [Fig. 6(d)]. Further details of
this formulation will be presented elsewhere.

VI. APPLICABILITY

The presented formalism can be used for finding static relations and for assessing dynamical
information flow in many real world situations. With the ever-increasing number of
applications in which connectivity plays a critical role (social networks, brain function and
structure, etc.), methods for quantitative assessment of connectivity measures will play an
increasingly significant role in a wide range of applications.

As an illustration of possible applications, we have included one practical example of ESP
processing of magnetic resonance diffusion tensor imaging (MR-DTTI) data. DTI data is
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often used for neural fiber tractography in the studies of brain connectivity. This is a
complex and severely ill-posed problem. Within an imaging volume, local (voxel) DTI data
measurements are used to reconstruct a (possibly high dimensional) tensor in each voxel that
is able to capture some broad aspects of the underlying tissue microstructure, but on a scale
much greater than the fibers themselves. From these tensor estimates are reconstructed the
purported pathways of neural fiber bundles throughout the brain that produced the
underlying variations in the diffusion signal. Imaging resolution is never (currently) fine
enough to resolve individual fibers, and thus individual voxel measurements are degraded by
averaging over fiber bundles, possibly at different orientations, and other tissue
compartments. Given the great complexity of the neural structure of the human brain,
reconstruction of the macroscopic neural pathways from large volumes of noisy, highly
multidimensional tensors derived from measurements of microscopic signal variations poses
a significant theoretical and computational challenge.

The reconstruction of the macroscopic neural fiber pathways from the microscopic
measurements of the local diffusion from DTI data is precisely the type of problem suited
for the ESP formalism. The goal is to determine the most probable global pathways (neural
fibers) consistent with measured values (diffusion tensors) based upon the available prior
information. The ESP formalism provides a general method for the incorporation of prior
information regarding the relationship between voxels. For the current paper, we limit the
demonstration to the nearest neighborhood coupling discussed in detail above, though we
stress that this is but one possible realization of the method. For the nearest neighbor
coupling, the local potential can be derived from the interaction of the tensors, which is
chosen here to be their inner product.

A complete details of implementation, including computation of diffusion tensors,
generation of fractional anisotropy (¥ A) map, assignment of the potential matrix [Eq. (20)]
with an appropriate choice of coefficients and thresholds will be deferred to a more
specialized publication. We include here only a short comparison of the final trajectory
generated between two chosen points by ESP [Fig. 10(c)] and GRW [Fig. 10(b)] (using the
same number of time steps n; = 500). A composite map of F' A overlayed with the principal
eigenvectors is shown for a single slice in Fig. 10(a).

The presented example clearly shows a “global” nature of the ESP method, in the sense that
it probes the most probable of all possible paths between the two points and the optimization
is based on the entropy of the entire path, which depends upon all of the possible
connections in all of the possible paths. One important advantage as demonstrated here is
that the neighborhood of the path is explicitly taken into account. Different coupling
schemes can produces different trajectory calibers. The method is quite general and can
incorporate more sophisticated models of both intervoxel diffusion anisotropy, such as high
angular resolution reconstruction [20], and intravoxel coupling schemes, such as long range
correlations. An initial implementation of this method was presented in Ref. [21] and a more
detailed paper is forthcoming.
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VIl. CONCLUSION

In this paper we have demonstrated that logical inference concerning the spatial-temporal
characteristics of probabilities on a defective lattice provides a theoretical justification for
both the uniform random walk and the so-called maximum entropy random walk [2,6].
Within this framework, both are maximum entropy distributions, but with different prior
information.

We derived from first principles the transition probability for probabilities on a defective
lattice with a known coupling matrix for the general case of any partial path length m within
a path of total length n. This was shown to be expressed in terms of a potential theory
through the coupling matrix Q. It was then shown in the limit of a large number of step and
a binary coupling scheme, where Q becomes the adjacency matrix, to reduce to the so-called

maximum entropy random walk of Burda et al. [2,6].

We then demonstrated that the localization phenomena can be understood in terms of the
graph Laplacian and the eigenstructure of the adjacency matrix, and depends upon the
ranking of the eigenvalues of the adjacency matrix, and thus does not (necessarily) localize
in the largest Lifshitz sphere, as previously claimed [2]. Moreover, the complexity of the
graph eigenstructure in a lattice with random defects may possess several close localization
modes.

Finally, we sketched a theoretical framework within which to understand the relationship
between the microscopic (local) transition probabilities and the macroscopic prediction of
the lattice structure, the probability concentration, and dynamics governing the infiltration
and flow of information through the lattice. The general nature of the results may prove
useful for the investigation of a variety of experimental situations where data can be
modeled as a grid of discrete measurements from which one seeks to reconstruct an
underlying continuous structure or understand how information flows within complex
networks.

The presented framework has potential application in a wide area of problems dealing with
analysis of disordered systems. In particular, it is ideally suited for addressing two
challenging problems related to understanding the form and function of the human brain:
inferring neural structural connectivity from the local (voxel) data provided by diffusion
tensor (DT) MRI data, and inferring functionally connected regions from spatial-temporal
activations from functional MRI (fMRI) data. Both techniques offer the potential for
providing unique data to elucidate the structure and function of the human brain, but are
hampered by the great difficulty in inferring global connectivity from local measurements in
such a highly complex structural and functional system. The numerical implementation of
the theory presented here provides a means by which to infer such connections and thus
offers the possibility of providing unique insights into the structure and function of the
human brain. These applications are currently being pursued in our laboratory.
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A defective two-dimensional lattice. White squares are accessible, black squares (defects)
are not (a) A defective lattice. (b) The lattice degree d at each site.
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(a)

(b)

(Color online) Random walk on a lattice. Allowed steps from the location (i, j). (a) Generic
random walk on a regular lattice. All adjacent locations are accessible. (b) Random walk on
a defective lattice. Allowable steps are shown in green (from white to white square),

disallowed steps are in red (from white to black square).
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FIG. 3.
(Color online) Paths on a defective lattice. (a) How many ways are there to get from a to b

in 4 steps? Blue paths (visiting only white squares) are allowed, red (visiting at least one
black square) are not. (b) The transition probability can be found by splitting the path into

two segments, (™~ and ﬂ/gj_m“) at the point m (Eq. 23).
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(a) Qij (b) e (c) es (d) ey () ey

FIG. 4.
(Color online) The adjacency matrix Qij (a) and eigenvectors ¢; (b)—(e) for a periodic square

lattice of size L X L (L = 64) containing both a disk and an ellipse arranged in decreasing
order of their eigenvalues A;. The eigenvectors distinguish separately the two regions and
rank their relative modes according to their eigenvalues, and are the eigenvectors for the
individual shapes. The first eigenvalue (b) determines the maximum entropy solution p*°,
which is evidently not determined by the largest spherical region [2] but rather the largest
eigenvalue of the Laplacian for these bounded regions (i.e., the ellipse). White and black
regions denote accessible and inaccessible sites, respectively.
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FIG. 5.

(Color online) The adjacency matrix Q;; (a) and eigenvectors ¢; (b)—(e) for a periodic square
lattice of size L X L (L = 64) containing both a disk and an ellipse and random defects at a
density of p=0.05, arranged in decreasing order of their eigenvalues \;.
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FIG. 6.
Dynamic evolution of the generic random walk [GRW: (e) and (f)] and the maximum

entropy random walk [MERW: (g) and (h)] for the lattice shown in (a) with a starting
distribution shown in (c). The lattice “defects” are, unlike in Ref. [2], inaccessible regions.
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FIG.7.
(Color online) Entropy spectrum pathways (ESP): the first four eigenvectors of the lattice in
Fig. 6(a).
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(@) S(z,y) (c) VVS(z,y)

FIG. 8.
(Color online) The path entropy S(x, y), Eq. (51), from the initial distribution location Fig.

6(c) to every other location and its spatial first and second derivatives. Note that the map has
the characterstics of a source (at the low entropy blue starting region) and a sink (at the high

entropy red destination region).
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(a) (c) t3

FIG. 9.
(Color online) The time-varying distribution P(x, y, f) for the path entropy Fig. 8 at three

successive time points. The starting distribution follows the maximum entropy path shown
in Eq. (6). The initially localized distribution moves and spreads in accordance with the
local entropy field structure, then stalls and tightens at the maximum entropy location [the
dark red region in Fig. 8(a)], and the location of the highest probability concentration of p£°
[Fig. 6(d)].
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L
(a) DT-MRI data (b) Fiber tracking with GRW (c) Fiber tracking with ESP

FIG. 10.
(Color online) The application of ESP to neural fiber tractography using diffusion tensor

magnetic resonance imaging (DT-MRI) and comparison with the generic uniform random
walk (GRW). Data were collected on a normal human subject on a 3T GE Excite MR
system with an eight-channel phase-array head coil using a spin echo echo-planar
acquisition optimized for minimum echo time and the reduction of eddy current artifacts
[16]. Diffusion weighted images were collected along 61 gradient directions distributed
according to the electrostatic repulsion model [17] at a b value of b = 1500 s/mm?. The
acquisition parameters were TE/TR = 93/10,900 ms, FOV = 240 mm, NEX = 1, matrix =
128 x 128 with 34 contiguous 3 mm slices. Two field maps were collected for unwarping to
correct for signal loss and geometric distortion due to B field inhomogeneities [18,19].
Total scan time including field maps was approximately 16 minutes.
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