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Abstract

Characterization of complex shapes embedded within volumetric data is an important step in a
wide range of applications. Standard approaches to this problem employ surface based methods
that require inefficient, time consuming, and error prone steps of surface segmentation and
inflation to satisfy the uniqueness or stability of subsequent surface fitting algorithms. Here we
present a novel method based on a spherical wave decomposition (SWD) of the data that
overcomes several of these limitations by directly analyzing the entire data volume, obviating the
segmentation, inflation, and surface fitting steps, significantly reducing the computational time
and eliminating topological errors while providing a more detailed quantitative description based
upon a more complete theoretical framework of volumetric data. The method is demonstrated and
compared to the current state-of-the-art neuroimaging methods for segmentation and
characterization of volumetric magnetic resonance imaging data of the human brain.
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1. Introduction

Characterization of complex shapes embedded within volumetric data is an important step in
a wide range of applications. In neuroimaging applications, for example, quantitative
descriptions of brain morphology play a critical role in the characterization of
neurodegenerative disease progression. Standard approaches to this problem employ surface
based methods that require an initial segmentation of a surface and often a subsequent
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inflation of this surface to satisfy the uniqueness or stability of subsequent surface fitting
algorithms. These methods are inefficient and time consuming because of the need for
segmentation prior to fitting and the computationally intensive inflation process, the latter of
which being also a significant source of errors due to creation of topological defects. Here
we present a novel method that overcomes several of these limitations by directly analyzing
the entire data volume, obviating the segmentation, inflation, and surface fitting steps,
significantly reducing the computational time and eliminating topological errors while
providing a more detailed quantitative description based upon a more complete theoretical
framework of volumetric data. The method is based on a spherical wave decomposition
(SWD) of the data and we present an application of this technique to volumetric magnetic
resonance imaging (MRI) data of the human brain.

This novel 3D signature-based method produces rotationally invariant compact shape
descriptors that can be efficiently computed over 3D datasets without the need for explicit
preliminary surface segmentation. The approach is appropriate for compact representation,
fast decomposition, and automated segmentation and morphometry analyses of volumetric
magnetic resonance imaging data. The SWD representation uses a direct expansion of
volumetric data in a linear combination of basis functions that include both angular
(spherical harmonics) and radial (spherical Bessel functions) parts. The 3D descriptors are
easily archived and facilitate statistical comparison at multiple spatial scales: low frequency
information describes gross shape, while high frequency information captures more detail as
well as internal structures.

Direct computation of the SWD over a full volume of data is computationally expensive,
and thus we developed several fast transforms applicable both to spherical harmonics and to
spherical Bessel functions that allowed a fast and robust numerical implementation of the
SWD that is applicable to a wide range of geometries, independent of affine transformations,
for large, noisy volumetric data sets. We demonstrate this method on a high resolution MRI
data set of a normal human brain by comparing it to the current state-of-the-art methods
employed in neuroimaging for segmentation of gray and white matter and shape
characterization of the cortical surface.

2. Background

Continuing progress in the development of advanced non-invasive imaging methods such as
MRI and CT have facilitated the acquisition of very high resolution, high contrast
volumetric data that offers the possibility of non-invasive highly informative assessment of
brain morphology. However, these more informative and complex data puts a greater burden
on the computational methods needed to analyze them. This is particularly true of MRI data
which has a wide range of contrast mechanisms by which it can produce very high contrast
between complex soft tissues of different types.

In concert with these advancements in imaging technologies, advances in computational
methods, particularly in volume graphics and computer vision has resulted in tremendous
increase in computational methods for morphology characterization and segmentation for
comparative morphometry for both basic neuroscience studies on brain anatomy and clinical
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studies of disease characterization and progression in humans, and for a broad range of
studies in comparative biology.

In comparative biology, geometric morphometrics has emerged as an important tool for
analysis, becoming commonly used to quantify morphology, wherein landmark points are
identified in photographic (2D) images and then are fit to a warped mesh that provides a
common coordinate system in which different specimens can be compared (Zelditch et al.,
2004). These methods allow users to define key points of known morphological interest and
statistically compare morphologies based on these points. However, the current predominant
methods are based on 2D digital images or on 3D surfaces and are not readily applied to
volumetric 3D data, such as those acquired by MRI or CT.

Recent advances in segmentation techniques were mostly originated from fuzzy logic and
supervised and non-supervised clustering (Barra and Boire, 2000; Lin et al., 2012) both in
2D (Barra and Boire, 2001; Cocuzzo et al., 2011; Pedoia and Binaghi, 2012; Razlighi et al.,
2012; Suri, 2001; Zavaljevski et al., 2000) and 3D (He et al., 2011; Kiebel et al., 2000;
Klauschen et al., 2009; Popuri et al., 2012; Wels et al., 2011). Unfortunately, in spite of all
advances none of these methods are able to provide truly robust and automated
segmentation.

The most straightforward approach to segmentation is thresholding, which involves finding
an intensity value, the threshold, that distinguishes features of interest. This method is most
frequently used to create a binary segmentation of an image, but it is also possible to
distinguish three or more intensity classes using multithresholding (Zavaljevski et al., 2000).
Thresholding works particularly well with imaging modalities such as CT data where
images are often essentially binary between bone (bright) and soft tissue (very dark) and
segmentation can be practically automated. Automated methods for MRI data, however, are
exceedingly difficult because of adjoining regions with similar values (i.e. low contrast),
partial voluming (multiple tissue types within a single voxel), image noise, and intensity
inhomogeneities, all of which are common to MR images (Atkins and Mackiewich, 2000;
Pham et al., 2000).

Region growing methods extract connected regions in images based on criteria that can
include both intensity and edges. These methods are susceptible to noise, which can create
artificial divisions between connected regions, and partial volume effects, which can merge
disconnected regions. These effects can be reduced by limiting growth to topology-
preserving deformations (Mangin et al., 1995), but user input is still required to select seed
regions. Clustering algorithms alternate between segmenting the image and characterizing
the properties of each segmented class, iterating until a stopping criterion is reached (Barra
and Boire, 2000, 2002; Liang et al., 1994; Pachai et al., 2001; Popuri et al., 2012).
Clustering is generally susceptible to both noise and image inhomogeneities, though
robustness to intensity inhomogeneities has been demonstrated (Pham and Prince, 1999).
Given a Bayesian prior model, Markov random field models can be incorporated in
clustering methods to minimize susceptibility to noise (Li, 1994).
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Atlas-guided approaches provide an option that may be feasible (Klein et al., 2009). In such
methods, a linear or non-linear transformation is found mapping the pre-segmented atlas
image to the target image. Thus the tissue classification problem is changed to a registration
or deformation problem. However, to effectively use atlas-guided methods very large and
detailed databases or atlases of reference objects are needed. This puts the onus of the
quantitation on an accurate and reproduceable method for atlas creation.

One important and rather successful direction in brain quantifying and characterization has
emerged from analyses of parameterization of surfaces for 3D shape description using
spherical harmonics (SPHARM) representation (Brechbiihler et al., 1995; Kazhdan et al.,
2003). Shape signatures can be created using the SPHARM decomposition at several
concentric spheres or just at a single surface that represents a highly convoluted geometry of
the cerebral cortex. In the SPHARM method any function f'is assumed to be defined on a
sphere, {6, ¢), and decomposed as the sum of its spherical harmonics:

0 l
f(9a¢)zz Z flm lem (9’¢) nH

1=0m=-—1

with low values of / corresponding to lower frequency information. Since Ly-norms of
spherical functions are not affected by rotations, a rotationallyinvariant shape signature may

l m
be given as SH() = {|lfo(8 o), |fi(8 @), ...}, where the f1 (6, ¢):Zm:4flmyi (6, ¢)
are the frequency components of f. We note that an alternate signature can be calculated
more quickly and directly from the coefficients, defining SH (f) = {Ag, A1, ...}, where the A;

are Ly-norms of all the coefficients fj,, at each [: Alzzlmzfﬂf lm\z. The spherical
harmonics Y;™ are continuous functions, but for computational applications, fis only
sampled at N, discrete angles. To create a shape signature for a 3D object, the shape is
sampled at N, angles and N, radii, SH is calculated at each radius up to [ = L,,,,, and the
result is represented as a 2D grid of size L, X N,. This SPHARM application described by
Kazhdan et al. (2003) was more general shape classification using “clean” data (e.g. a set of
1890 “household” objects), but in noisy MRI data the SPHARM deals with noise
automatically, since the noise does not appear in the lower frequencies that dominate shape
descriptions. Many internal structures remain visible in data reconstructed from the
signatures, while the signatures themselves require significantly less storage space than the
original data. This general method was improved further by appropriate filtering (i.e. using
exponentially weighted Fourier or spherical harmonics series, Chung et al. 2008a, 2007,
2008b). The weighting reduces a substantial amount of the so called ringing (or Gibbs)
phenomenon and aliasing (or Moiré) patterns (Gelb, 1997)), both appearing because of
relatively slow convergence of Fourier series when used for representing discontinuous or
rapidly changing measurements.

Overall these modifications of the SPHARM method with filtering or exponential weighting
(Chung et al., 2008a, 2007, 2008b) allowed successful parameterization of the cortical
surface including characterization of the local difference in gray matter concentration.
Nevertheless, techniques based on the SPHARM morphometry method — tensor-based
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morphometry — uses the cortical surface already segmented out of noisy MRI data and
quantifies the amount of gray matter only in a narrow layer along this surface via the
concept of a local area element. Hence, the analysis can not be directly used for volumetric
MRI data.

An extension of spherical harmonics decomposition that naturally allows incorporating of
complete 3D volume data has been known in various areas of physics for quite a long time,
i.e. in quantum physics for description of waveform solutions of the Shrédinger equation
(Gersten, 1971), in atomic and nuclear physics for approximation of Coulomb scattering
function (Barnett, 1996, 1981)), and in astrophysics for analyses of anisotropies of
microwave background, as well as for quantum gravity (Abbott and Schaefer, 1986; Binney
and Quinn, 1991; Leistedt et al., 2012).

In this paper we present the spherical wave decomposition (SWD) method, that combines
angular-only basis functions of the SPHARM with spherical Bessel functions as the radial
basis functions, forming the complete 3D basis. This basis is appropriate for expanding any
function f{r, 6, ¢) defined inside a sphere of radius a. The expansion coefficients have the
advantage of allowing characterization of the internal structure simultaneously with the
overall shape. Because they are not surface-based, there is no need to fix topological
discrepancies or to provide surface based segmentation first. Thus this approach offers a
more complete description of noisy volumetric data and is also more efficient to compute.
We present timings for our implementation of the SWD method that confirm computational
efficiency of the approach. We also describe further extension of the SWD approach to
address the need of automated 3D volume segmentation.

3. Spherical Wave Decomposition Method

The basis functions for the spherical wave decomposition are composed of radial and
angular parts. They can be obtained as eigensolutions of Laplace equation (or particular
solution of Helmholtz’s equation) V2 f+ k% f= 0 (Lebedev, 1972), where the Laplacian \,
is expressed in spherical coordinates as

v o= Vi+5Va

10 (20 L0 (g0 L2 O
r2 Or (7‘ 07“) +r2 sin 0 90 (sm&ae) +r2 sin? 0 0¢2 "

For a function f{r, 6, ¢) defined inside a solid sphere of radius r < a the following expansion,
obtained by separation of variables, is valid

co oo 1
f(T,0,¢)=ZZ Z flmn Rln (7) Yim (07¢) -3

n=11=0m=-I

where the angular dependency is contained in the spherical harmonics Y, (6, ¢) — the
eigensolution of the angular part of the Laplacian with the eigenvalues A; = —I(/ + 1):

VaY "=\ @
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The spherical harmonic ;™ of degree [ and order m allows separation of the fand ¢

variables when expressed using associated Legendre polynomials p/™ of order m as

Y™ (8, 8)=cm P (cos ) ™™, ()
where ¢; ,,, is the normalization constant

20—1(1—m)
4 (I4+m)!’

Clom=

chosen to guarantee the orthonormality condition

Jo STy Y sin 0d0dg=0,/ 6, .

The radial component Ry, (r) of Eqn 3 is obtained as the eigenfunction of the radial

Laplacian
A
VE Rln: - <k2+r_2l> Rl’n,a 6)
and can be expressed through the spherical Bessel function as

1.
Ry, (T)Z\/T—ljz (kmr)s (1)

The normalization constants N, as well as the discrete spectrum wave numbers ky, are
determined by the choice of boundary conditions. For Dirichlet boundary condition, i.e. f(r,
6, @) = 0 for r > a, they can be expressed as

a3

Nlnzgjl2+1 (xln) 5 kln— , 8

where {xy,} are ordered for n > 1 zeros of spherical Bessel function j;(x). With this choice of
the discrete spectral numbers &, and the normalization constants N, the orthonormality

conditions for Ry,(r) reads

n

ngln Rln/ 7‘2 d?":(sn ’.

Using these basis function R, (r)Y;™ (0, ¢) the spherical Fourier coefficients f},,, can be
obtained as

Fimn=J8 0 [ZTF (7,0,0) Ru (r) Y™ (,0)r? dr sin 0d6de. (9)
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As in SPHARM, a rotationally-invariant signature can be calculated directly from the
coefficients fj,,, by taking the L,-norm of all the f;,,, at each [ and n:

l
Spp= Z ‘flmn|2' (10)

m=—I

The resulting signature, represented again as a 2D grid, now of size L, X Ny, Where
Nyax 18 the number of spherical Bessel functions used in radial expansion, is purely in

frequency space.

Straightforward calculations of the multiple radial shell SPHARM decomposition requires

O (N, Nq L2,,.) operations. For calculation of volumetric SWD spectra a separation of
variables between the angular and the radial parts can be used. Still the brute force

calculation of integrals in (9) results in even higher computational toll for the SWD than in

the SPHARM - O (N, No L2, Nynae)-

maxr

Fortunately, when taken independently both the angular and the radial parts allow use of fast
O (N log N) transforms. The angular spherical harmonics decomposition was implemented
using a divide and conquer approach and a fast Legendre transform (Driscoll and Healy,
1994; Healy et al., 1996, 2004; Mohlenkamp, 1999; Rokhlin and Tygert, 2006). For the
radial spherical Bessel transform evaluation several different fast implementations are also
available (Bisseling and Kosloff, 1985; Koval and Talman, 2010; Pettitt et al., 1993;
Sharafeddin et al., 1992; Talman, 1978, 2009; Toyoda and Ozaki, 2010). In our
implementation we followed Toyoda and Ozaki (2010) but replaced their recurrence formula
with asymptotic expansion of the integral (see Appendix).

Volumetric MRI data are usually obtained on a Cartesian 3D grid. At the same time in order
to be able to use the fast transforms both angular and radial parts should be defined on
spherical grids with special grid placements. Therefore, the first step of a forward transform
(i.e. transform to the frequency domain) and the last step of a backward transform (from the
frequency domain) should provide a way of resampling the input and output 3D volume data
from or to Cartesian grid, that is the following convolutions should be computed

F @) =[[F (=) f(x) &,
FEO=T[[F (e =) fa)av",

where x = (x, y, z) and r = (r, §, @) are related through usual change of variables from
Cartesian to spherical system of coordinates,

r=rsinfcosp, y=rsinbsingo, z=cosb,

with the volume element dV = r2dr sin Gd@d. Different choice of resampling filters F, and
F, (from simple nearest neighbor to complex multipoint interpolation) allows for balance
between speed and quality.
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4. Accuracy and Bandwidth

Our method was tested on high resolution MRI anatomical data of a normal human brain
collected an a GE 3T MR750 Clinical Scanner using an inversion recovery 7T1-weighted 3D
fast spoiled gradient recalled echo pulse sequence with parameters: flip angle a = 12°, echo
time TE = 3 ms, repetition time TR = 8 ms, matrix size = (RL, AP, IS) = (172x256%256),
field of view FOV = (170 x 240 x 240) mm for a resolution of (1 X .938 x .938)mm.
Characterization of this data as a function of SWD degrees L, and N, is shown in
Figure 1 for progressively lower degrees of SWD transform. The largest degree (shown in
Figure 1b) to exceed the physical dimensions of the original brain in order to confirm that a
high degree SWD is capable of reconstructing all the details of the original dataset and
produce visually indistinguishable result, and to show that our implementation is able to
handle a large volume of frequency domain data (> 3003 modes). Significant reduction in
the degrees to L,,,x = Nyax = 100, also produces a virtually indistinguishable brain. Even a
relatively low resolution L, = N4 = 50 with roughly a hundred times less information
content than in the original volume is able to reproduce external as well as internal structure
of the original brain.

Finally, the last two low resolution reconstructions (with degrees equal to 25 and 10) show
the expected significant smoothing of both external and internal details. But even the lowest
degree result, which uses less than 1/10* of the original data, is able to capture and
reproduce some important low resolution features of the original brain.

To illustrate the computational effectiveness of our SWD implementation we included
timing of various stages of our implementation of SWD method for different degrees (L,
= Nyap) of transform (Table 1). These timings were obtained for the same brain dataset
using single thread Intel® Core™ i7-2760QM CPU 2.40GHz.

Simple nearest neighbor interpolation has been used for interpolation to Cartesian domain
for all results reported in Table 1 (last column F), : r = x) as well as for all transform
degrees reported in Figure 1. For interpolation to spherical domain (F, : x = r) we used an
averaging over all the neighbors in the box obtained by mapping local spherical unit volume
to Cartesian coordinates.

It is important to note that rows in Table 1 do not necessarily correspond to the work-flow of
the SWD method. For example, it is possible to produce spherical interpolation using one
resolution, then generate frequencies using a different degree, transform them back with yet
another degree of transform, and finally arrive at Cartesian volumetric data with a different
resolution. Hence, Table 1 is provided to illustrate scaling of various parts of the SWD
computation with a change of the degree of transform. The most computationally demanding
part of the method is the interpolation to spherical coordinates (F) : X = r) that uses box
averaging of neighbors. It took roughly 5.5 minutes to produce the largest 4003 resolution in
spherical domain. However, we emphasize that we are using double the reported resolution
for all internal calculations, i.e. in this case the actual resolution was 8003, that is 8 times
larger. But a change of the execution time with a change of the degree L,;,,, follows

o(L?

maxr

) pattern, i.e. it scales linearly with the total number of grid points processed.
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Overall, the performance of the SWD method looks very competitive in comparison with the
SPHARM, taking only on the order of seconds for L, = Ny;qr ~ 100, that is for calculation

of all 1,2

coefficients of SPHARM up to degree L,,,, =78 — that is L%mz /2 total coefficients — takes
more than few hours for direct numerical evaluation of integrals, and more than 5 minutes
for the iterative residual fitting (IRF) algorithm of Chung et al. (2008a, 2007, 2008b).

X N /2 spectral coefficients. In contrast, single surface calculations of all the

We emphasize that the reported performance boost of the SWD approach relative to the
fastest SPHARM implementation was not obtained at the expense of accuracy. On the
contrary, analysis of root-mean-square (RMS) errors presented in the next section clearly
shows that the SWD consistently produces several times lower RMS errors then the
SPHARM in the same range of parameters. This means that the volume decomposition
using complimentary radial and angular basis is clearly superior in term of accuracy to the
angular only SPHARM decomposition.

To include smoothing effects (in addition to smoothing that can be provided by appropriate
choice of resampling filters F, and F,) we also added the weighted Fourier series (WES)
representation in our spherical wave decomposition (Chung et al., 2007) by the inclusion of
exponential weighting factors exp (4;) in the original series (3):

oo o0 l
FE)=D 3" N fin Bin (1) Y™ (65,63), (11

n=1l=0m=-1

where A;=—I(l + 1) and ¢ is a parameter which may be used to control the bandwidth. The
results of the SWD with WES are shown in Figure 2 for /=0.0001, 0.0005, 0.001, 0.005,
0.01 as well as for no smoothing with 7 = 0. By comparing all of them with Figure 1, the
WES smoothing with 0.01 = #>0.001 from the visual standpoint resembles limiting the
degree of SWD transform somewhere below L,,,, = 50 level, whereas values of 0.001 > ¢ >
0.0001 correspond to L,,,,, values between 50 and 100.

To illustrate that the inclusion of WFS reduces the substantial amount of the Gibbs
phenomenon — ringing artifacts associated with the slow convergence of a Fourier series
(Gelb, 1997) — we applied the SWD both with and without the WES to a slowly converging
SWD representation of a 3-D step-like function (Figure 3). For comparison with Chung et
al. (2008a) we used the same set of parameters for the degree (L, = N;;0x=78) and the
bandwidth (¢ = 0.0001) of the SWD transform. The weighted SWD shown in Figure 3b
clearly has less ringing artifacts than the original SWD (Figure 3a), although the reduction is
not as profound as in the weighted SPHARM of the same degree and bandwidth, probably
due to higher overall accuracy of the SWD approach and additional smoothing provided by
the resampling filters F, and F,.

Analysis of quantitative procedure of finding optimal degree of SWD transform that is
characteristics of some particular level of smoothing is provided in the next section.
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5. Choice of Optimal Order of SWD Transform

To estimate how well the SWD with some preselected degrees L,,,,, and N, will represent
any particular dataset the root mean square deviation can be used. Because increasing the
angular L,,,, and the radial N,,,, degrees of SWD increases not only the goodness-of-fit, but
also the number of coefficients to be estimated, finding the optimal degree where this
increase in the number of parameters is warranted by the goodness-of-fit is very important.
This is even more important for the SWD than in the single surface SPHARM approach
(Chung et al., 2008a, 2007, 2008b), as the growth of coefficients now happens cubically, not
quadratically.

Although in the SWD the angular and the radial degrees can be changed independently, the
number of zeros of the spherical Bessel function that fall inside the sphere of radius a
corresponds to the number of zeros in latitudinal or longitudinal directions when L, ~
Nyax- Hence, for a purpose of finding the optimal degree order we will assume that N,,,, =

) D——

Following Chung et al. (2007) we will assume that distribution of the Fourier coefficients

fimn can be approximated to follow normal distribution N (4, o7) with equal variance o
within the same degree. This corresponds to the following k — 1 degree model

k—1k—1 I

Seer (x)=3"3" N ey Ry, (r) Y™ (63, 00)+e(ri) (12

n=11=0m=—1

where €is a zero mean isotropic Gaussian random field. Then we can test if increasing the
degree of the model above k — 1 is statistically significant by testing the null hypothesis

Ho:ppyn=0 for I=k,n=k,|m|<k. 13

For the construction of test statistic we use the residual sum of squares (RSS) for the (k — 1)
degree model f;—p, that is

N
RSS;1=RSS(;_y=y_ (f(r:) = fi-1(r:)®. a9)

i=1

In Figure 4 is plotted the root-mean-square-deviation ( RM SDjy= \/ RSS}./N) as a function
of k (that is the SWD degree L,;;x = N;uqy) for the brain reconstructions shown in Figure 2
obtained for different values of exponential smoothing parameter ¢. The overall behavior
seems consistent with the SPHARM, showing that initial fast decrease of the root mean
square deviation gradually slows down and flattens out. The value of error in the flat region
as well as the degree where the transition to the flat region occurs depends on the smoothing
parameter #, also consistent with the SPHARM. The important difference of the SWD is that
it consistently shows several times lower RMS errors then the SPHARM in the same range
of L4 and ¢ parameters. It means that volume decomposition using complimentary radial
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and angular basis is clearly superior in term of accuracy to the single surface only (or even
the shell of surfaces) angular SPHARM decomposition.

We modified the test statistic used in SPHARM to account for different number of ”groups”
and “observations” used in each of the methods:

e (RSSi_1 — RSS})/(3k%+k) P
© RSSi_1/(N — (k+1)%k)  oRERN=G)TE

s)

The resulting distribution is again the F-distribution, with different values of the degrees-of-
freedom (3k + 1)k and N — k(k + 1)2. The optimal SWDdegree can be obtained by computing
the F statistic for each degree k up to the point when the corresponding P-value becomes
bigger than the prespecified significance a. Our results for @ = 0.01 seem to be pretty close
to the SPHARM values, i.e. for the bandwidth # = 0.0001 the optimal SWD degree has been
determined to be k = 80 vs k = 78 for the SPHARM.

6. Using SWD for Volume Segmentation

One important difference between the SWD and the SPHARM methods lies in the
possibility of a relatively simple and straightforward modification of the SWD to naturally
and effectively handle the very complex task of volume segmentation. Segmentation is not
tractable by the SPHARM method itself because it requires processing of the whole
volumetric data but SPHARM is based on a partial decomposition valid only on the unit
sphere. Thus segmentation must be performed (either by hand or by using additional
specialized semi-automated segmentation tools) before the SPHARM method can even be

applied to new volumetric data.

On the other hand the SWD method is based on an expansion of the whole volume in a
series of orthogonal basis functions, therefore it can be reformulated to reconstruct not just
the internal volume of the input 3D data, but to produce and emphasize all the interfaces or
transitions that exist inside the volume. Mathematically this procedure can be described by
taking the square of the gradient of the expansion |V f(r, 6, @)|?, similar to the approach
taken by various edge detection techniques used in 2D image processing. This edge
detection is essentially the first and the most important step of almost any segmentation
technique used in 2D, and the quality of edge detection is crucial for overall success of
segmentation process. Using Fourier expansion of 2D images this gradient calculations can
be improved significantly (Gelb and Cates, 2009) both in accuracy and in computational
efficiency.

The SWD method is essentially a three-dimensional variant of a Fourier decomposition and
most of the results of conventional Fourier series analysis can be transferred (with
appropriate modifications) to the spherical wave series. Therefore, the SWD coefficients can
be used for interface detection in 3D by efficient and accurate computation of the gradient
square. In spherical coordinates the gradient has the following components
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and in order to efficiently compute |V f(r, 6, ¢)|? instead of the original volume function f
(r, 6 @) we have to apply each of these components to the expansion (3).

Using recurrence relations for derivatives of the associated Legendre polynomials P/ (z)

2P (2)=

1 . N
o Tz [Tl P (2)+(4+m) BTy (2)], a7

1 —
and for derivatives of the spherical Bessel function j;(x)
d +1
i @) =i (@) = i (@), a9

we can update the expansion coefficients and obtain expressions for the gradient
components as a new SWD series along each of the orthogonal coordinates:

1 oo oo 1
Vo £(r0,0)=——2> % > (=im) fimn Bin (1) Y™ (6,6)  (19)
n=11=0m=—1
0 oo oo 1
Vef (Taea ¢) = r??fn@ Z Z Z lflmn Rln (7") Yim (0, ¢)
- OOnflll:Om:fl (0)
ﬁnzz:llg) gfl (l+m) f(l+1)mn Ry, (T) 1/1m ('9’ ¢)
oo oo 1
Vrf (Ta o, ¢) = z E Z K, flm(n-l—l) Ry, (T))/}m (‘97 (b)
n;llz;)m:l—l @
- i1y > (n+1) fimn Bin (1) Y™ (6, 9)

1

~

Om=—1

n

The same SWD procedure described in the previous section can be used to transform these
coefficients to spherical and then Cartesian domain. Hence five SWD transforms will be

needed to compute the gradient square.

An example of the derivatives in human anatomical data is shown in Figure 5. The bottom
(derivative) panel clearly shows detection of interfaces between various tissues present in
the original anatomical volumetric data, including interfaces between gray and white matter.

This Fourier based approach for obtaining expressions for the gradient components has
several advantages over direct numerical differentiation in the spatial domain. First of all,
due to the multiscale nature of the SWD algorithm it easily allows controlling the scale of
the gradients involved in the edge detection process. Moreover, numerical differentiation of
noisy data in the spatial domain has inherently low accuracy, whereas the Fourier based
algorithm can significantly improve the accuracy by appropriate choice of filtering.
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In practice, fully automated segmentation requires a combination of methods that not only
characterizes the shapes of the internal structures, but incorporates some prior information
about their spectrum, spatial scales, and spatial distributions. This combination can include
the interfaces from the volume gradient to find an initial estimate for intensity thresholds
and number of intensity clusters. The low frequency interfaces (actually their positions) can
then be included in some sort of topological analysis. And finally the high frequency
interface data can be used to facilitate topological closure of found low frequency clusters
that is to update and generate detailed structures.

Such an analysis is beyond the scope of the current paper and so for the purpose of this
paper we did not analyze a topological structure of the gradient generated interface surface
yet. However, the potential our method holds for automatic segmentation can be
demonstrated using the derivative map surface for the brain volumetric data that we used in
the previous sections for analyses of the SWD accuracy and bandwidth (Figure 1a). We
assumed a bimodal structure of the volumetric intensities, but in contrast to most
classification techniques we did not make any assumptions about type of a distribution for
each of the modes (i.e. we did not ask it to be Gaussian). We only assumed that the modes
are well separated and applied the derivative map to estimate an intensity threshold /; by
calculating an average intensity inside all regions with large values of intensity gradient

L= > f@yz2)/ Y 1 22)

IVfI>V IVfI>Vy

where V ;=|V f|. This simplified illustrative procedure still allowed us to obtain in a
completely automatic manner accurate segmentation between gray and white matter,
independently shown in Figure 6 (gray matter) and Figure 7 (white matter).

We would like to emphasize that all types of SWD based analyses described in the previous
sections (including weighted Fourier smoothing, optimal SWD order and volume
morphometry/complexity) are also applicable to these segmented out and independently
represented brain structures. Thus, the average gray matter density, the cortical thickness, as
well as various local abnormalities, can be accurately calculated directly from the volumetric
data on different scales (i.e. using different degrees of smoothness). This is in contrast to the
SPHARM, where both the gray matter density and the cortical thickness can only be
approximated through a distance map between independently fitted inner and outer cortical
surfaces (Chung et al., 2007), a process that is prone to various sources of errors (the most
important are errors from surface registration, mesh construction and discrete thickness
computation), and is very sensitive to presence of noise.

To test the efficacy of our approach in real life applications as well as to compare with the
current state-of-the-art methods we conducted a complete analysis work-flow of brain
segmentation/characterization task using our original 3D brain dataset (Figure 1a) as an
input to FreeSurfer/SPHARM combination. As the SPHARM on its own is unable to
analyze volumetric data, the typical analysis work-flow requires as a first step preprocessing
of the volumetric data with FreeSurfer (Dale et al., 1999). At this stage we extracted white
matter surface using all the required steps of the standard FreeSurfer processing, i.e
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segmentation, inflation, registration, fitting to sphere, etc. The total FreeSurfer processing
took more than 12 hours to obtain a single hemisphere white matter surface.

The resulting white matter surface of the left hemisphere has been used afterwards as an
input to several different stages of the SPHARM analysis using codes from http://
www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html. The
first SPHARM step is to construct the spherical harmonics representation and save it into a
hard drive (~ 2.86 GB). This step took around 7 minutes for generating all the harmonics up
to L, =85. (L,;,,,=85 has been chosen due to the inability of the SPHARM to produce
higher degree expansion giving us “matrix is singular to working precision” error for any
degree above 85). The WES smoothing step (SPHARMsmooth2) of the SPHARM took
about half an hour using the same degree L,,,,=85. And finally generation of the smoothed
white matter surface from a set of Fourier coefficients (SPHARMTrepresent2) took around 20
minutes. The overall processing of the left hemisphere white matter surface took close to 14
hours (the processing times are summarized in Table 2). The total FreeSurfer processing of
both hemispheres as well as the gray matter surfaces took almost a day (= 23 hours).

Figure 8 shows the 3D views of both the SPHARM and the SWD white matter extraction
results. The details as well as the quality of the segmentation seems to be comparable for the
SPHARM (a) and for the SWD (b), but topological defects produced by a single sphere
inflation procedure of FreeSurfer followed by smoothing of the SPHARM are clearly visible
in the SPHARM surface (Figure 8c) and absent in the SWD (Figure 8d).

The reason for these topological defects can become more obvious by looking at several
slices of the volumetric data with the SPHARM/FreeSurfer white matter surface overlaid.
Figures 9a and b show original FreeSurfer segmentation results (blue), and Figures 9c and d
show the final surface obtained with SPHARM smoothing (red). The yellow accented area
shows the same defect that was marked by yellow in the previous Figure 8a. Another defect
area, marked green, is located deep inside the volume. The bridging of both of these areas
results in topologically incorrect surface closure and produces convex region that actually
encompass hollow area inside this topologically closed white matter region. This erroneous
bridging is absent on slides of volumetric SWD white matter (Figures 9e and f).

To quantitatively characterize an amount of topological defects that are present in the
SPHARM/FreeSurfer white matter surface (Figure 8a) and in the isosurface of the
volumetric SWD white matter (Figure 8b) we estimated the Euler characteristic (sometimes
also called the Euler-Poincaré characteristic) for the trianlulated meshes obtained in both
analyses.

The Euler characteristic y was classically defined for the surfaces of polyhedra, according to
the formula (Spanier, 1994)

X=V — E+F (23

where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the
given polyhedron. Any convex polyhedron’s surface has Euler characteristic y = 2.
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The SPHARM/FreeSurfer white matter mesh shown in Figure 8a has 161532 vertices,
323060 (triangular) faces and 420506 edges, thus giving the Euler characteristic ¥r eesurfer
equals to 64086. The SWD mesh shown in Figure 8b has 166314 vertices, 332680 faces
(triangular as well) and 488207 edges. The Euler characteristic yswp is then equal to 10787.

An ideal regular white matter genus zero surface (that it is homologous to a sphere) should
have y=2, therefore, the SWD provides significant (almost 6-fold) decrease in overall

number of topological artifacts.

7. SWD Application to Clinical Brain Morphometry

To further validate our method as well as to show its competitiveness not only in research
but also in clinical settings, we used the work-flow entirely based on our SWD approach to
replicate the results of a recent analysis of differential effects of binge drinking on the brain
morphometry of adolescent males and females (Lisdahl et al., 2013; Squeglia et al., 2012).
These results establish links between cortical thickness in several areas of the brain to
repeated binge drinking, hence confirming the potentially deleterious effects of binge
drinking on adolescent brain development, as it is known that early adolescent cortical
thinning is related to better neuropsychological performance (Squeglia et al., 2013).

We used the same set of high-resolution anatomical images (Squeglia et al., 2012) collected
at the UCSD Keck fMRI Center from a 3-Tesla CXK4 short bore Excite-2 MR system
(General Electric, Milwaukee, WI) with an eight-channel phase-array head coil. Scan
sessions involved a 10-s scout scan with slice selection covering the whole brain, followed
by a sagittally acquired high-resolution 3D T1-weighted anatomical MRI that lasted 7 min
and 26 s (FOV 24 cm, 256 x 256 x 192 matrix, 0.94 x 0.94 x 1 mm voxels, 176 slices,
TR=20 ms, TE=4.8 ms; flip angle 12°). Two representative scans both from the study group
(14 female and 15 make binge drinkers) and from the healthy control group (15 females and
15 males) are shown in Figures 10a and b.

The complete processing of high-resolution anatomical volumetric datasets was done by our
SWD framework and no other preprocessing steps were necessary. The spherical wave
gradient approach described above was used for the automated skull stripping as well as for
the white/gray matter segmentation (Figures 10c,d,e and f). No time consuming surface
fitting/ topology correction steps were required for the cortical thickness calculations. The
average cortical thickness for the left frontal poles (Figures 10e and f) have been derived
from the volumetric gray matter data as a ratio of a number of all gray matter voxels (G) to a
number of boundary voxels in gray/white matter boundary (9G),

H ortica= Z 1/ Z 1 ) (24)

f(z.y,2)€G  f(2,y,2)€0G

where the gray/white matter boundary dG is defined by all voxels in G that has at least one
neighbor from the white matter region. The angular extent of left frontal pole has been
specified by a common for all datasets range of spherical coordinates (6) < #< 6, and ¢ < ¢

< ).
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The cortical thickness obtained from our analysis seems to correlate well with the results of
the original study but our approach produces slightly better mean separation between study
and control groups (~ 0.1mm). For example, the two left frontal pole samples shown in
Figures 10e and f, were found to have the cortical thickness of 2.80mm and 3.52mm (vs
2.96mm and 3.51mm) and were correctly placed in normal and abnormal female groups
(with the mean cortical thickness and the standard deviation of 3.24+0.19mm and 3.00+0.23
respectively). Analysis of each sample using the SWD framework takes on the order of
minutes, rather than the tens of hours required for the original approach.

We would like to emphasize that the original analysis, presented in Squeglia et al. (2012),
using FreeSurfer for independent left and right hemispheres white matter segmentation,
required a significant amount of both computer and human inspection time spent fixing the
topology of the segmentation, in order for it to be homologous to a sphere. The volumetric
based filtering provided by the SWD using interrelated scales in both radial (spherical
Bessels) and tangential (spherical harmonics) parts is able to reduce a number of simple
geometrical artifacts (e.g. needles), that can be further minimized by filtering out the high-
frequency terms with, for example, a simple Fourier transformation low-pass filter (of
course, at the expense of creating a convolved image, where edges are also blurred).

More importantly, the volumetric SWD based analysis is able to reduce the true topological
defects, i.e. those defects that prevent the surface that has genus zero to be inflated to a
sphere due to spurious handles and holes, resulting is relatively regular surface borders of
both white and gray matter volumes (as can be seen from Figures 10c,d,e and f). Thus, in
contrast to a simple Fourier transformation, the volumetric SWD transform method favors
the spherical nature of the cortical band. As a result there was no need for the topology
fixing step anywhere in our analysis, as our expression for the cortical thickness directly
involves volumetric data that are “regularized” in some sense by the volumetric SWD
reconstruction and does not require the expensive surface fitting/inflation step.

8. Conclusion

We have presented a novel spherical wave decomposition (SWD) method that allows
compact representation, characterization, automatic segmentation and morphometry analysis
of complex shapes embedded within volumetric data. The method is very general and thus
applicable to a wide range of applications. In particular, the method is appropriate for
efficient quantitative analysis of volumetric magnetic resonance imaging data.

The SWD representation uses a direct expansion of volumetric data in a linear combination
of basis functions that include both angular (spherical harmonics) and radial (spherical
Bessel functions) parts. The 3D descriptors are easily archived and facilitate statistical
comparison at multiple spatial scales: low frequency information describes gross shape,
while high frequency information captures more detail as well as internal structures.

In contrast to surface based methods, the SWD approach does not require an initial
segmentation of a surface and a subsequent inflation of this surface to satisfy the uniqueness
or stability of subsequent surface fitting algorithms. The surface methods are inefficient and
time consuming because of the need for segmentation prior to fitting and the
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computationally intensive inflation process, the latter of which being also a significant
source of errors due to creation of topological defects.

Our implementation of the SWD method is based on several fast transforms for spherical
harmonics and spherical Bessel functions and, therefore, is significantly faster than the
surface based methods, but at the same time provides significantly higher accuracy. The fast
transforms for spherical Bessel functions are based on our novel expression for asymptotic
expansion as 1/k" series of the standard sine and cosine Fourier transforms and
rearrangement of coefficients obtained by the standard FFTs afterwards.

Overall, the SWD method seems to be uniquely positioned to provide an effective, accurate
and robust approach for morphology characterization, segmentation, and comparative
morphometry for both basic neuroscience studies on comparative brain anatomy and clinical
studies of disease characterization and progression in humans, and for a broad range of
studies in comparative biology.
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Appendix A. Fast spherical Bessel transform

The integral representation of the spherical Bessel function is given by

. 1 1z
g1 (2) =57 [Le™ P (1) dt,

where P/(?) is the Legendre polynomials. By substituting Eqn A.1 into radial part of the
SWD transform

£ (k,0,0) =[5 g1 (kr) f(r,0,0) rdr, (a2)
and integrating by parts, the transform can be rewritten as follows:
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As derivative Pl(N ) (t) vanishes for N > [, the summation in Eqn A.3 only goes to N = [, that

is

—n IKTT 1
f 0,9 zllz k)n—i—l (t) 80 - drek ff (Ta0a¢) |,1~ (A.4)

n()

The integrals in Eqn A.4 evaluated at ¢ = £1 represent the one dimensional half plane
Fourier transforms of f{r, 6, ¢) multiplied by various powers of r. Using the parity property

of the Legendre polynomials Pl(") (—t):(—l)”” Pl(m (t) the Fourier integrals in Eqn A.4

can be rewritten through the standard sine and cosine Fourier series instead:

p(") (1)

l
f(k70>¢):¥0WX
)L Jfoo =ndr sin (kr) f(r,0,¢), l+niseven (*A5)
ln+1Jf001nd,rcos(k,r,)f(r0¢)’ I+nis odd

()L

where | x| denotes floor (x), i.e. the largest integer that does not exceed x.

It is clear from Eqn A.5 that all the coefficients of the spherical Bessel transform can be
obtained by rearrangement of coefficients of sine and cosine Fourier transforms of f{(r, 6, ¢)
multiplied by powers of radius r* with integer exponent & decreasing from 1 to 1 — /.

However, for the purpose of efficient numerical implementation we do not compute all the
terms in summation of Eqn A.S. Instead, we choose rather low upper limit of summation (N
=0 or 1) and evaluate the residual (the last term in Eqn A.3) using numerical integration,
progressively evaluating the terms until they are smaller than some prescribed threshold.
Because the Fourier expansion decreases not slower than k_; (even for discontinuous
functions) and taking into account an additional multiplication by a factor 1/kV*!, this seems
to be always possible even despite the presence of large derivative of the Legendre

polynomials PZ(N + although the rigorous mathematical verification of this behavior lies
beyond the scope of this paper.
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Figure 1.

Series of 3D brain reconstructions obtained with different degrees of SWD (different L,
and N,,,, parameters): a) original brain, b)-f) decreasing L,,,, and N,,,, from 300 to 10.
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t=20 t = 0.0001 t = 0.0005

t = 0.001 t = 0.005 t=0.01

Figure 2.
Weighted Fourier smoothing (WFS) applied to the same 3D brain obtained using SWD with

L. = 300, (b-f) for several different values of exponential smoothing factor ¢ from 0.0001
to 0.01, (a) for no smoothing ¢ = 0.
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=0 t = 0.0001

Figure 3.
The SWD representation of a discontinuous (3D step function) shape with L, = Ny;;0 =78

(a) without the WES (z = 0) and (b) with the WES (¢ =0.0001)

Neuroimage. Author manuscript; available in PMC 2015 May 15.



1duosnuely Joyiny vd-HIN 1duosnuey Joyiny d-HIN

1duosnuely Joyiny Vd-HIN

Galinsky and Frank

Page 26

7 T T
6r _
t=0.01
5F _
‘S t=0.005
= t=0.001
x
3 t=0.0005 |
ol t=0.0001 |
S
t=0
1 L L
0 50 100 150
Degree L (N =L )
max max max
Figure 4.

Plot of root-mean-square-deviation (RMSD) for each of 6 volumes shown in Figure 2 as a
function of the SWD degree L, = N;;4x- The correspondent exponential smoothing
parameters ¢ are printed for each of the RMSD curves.
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Figure 5.
Anatomical data (top) and derivative (bottom) calculated from the SWD coefficients.
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Figure 6.
Gray matter 2D slices (a-c) and 3D view (d) segmented out from the full 3D brain (Figure

la).
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Figure 7.
White matter 2D slices (a-c) and 3D view (d) segmented out from the full 3D brain (Figure

la)
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Figure 8.
3D view of white matter left hemisphere obtained from the full 3D brain (Figure 1a) using

(a) SPHARM and (b) SWD. The white matter surface used for the SPHARM analysis has
been obtained using FreeSurfer (Dale et al., 1999), following all the standard surface
extraction steps (segmentation, inflation, fitting, etc.). In addition to 12+ hours total
processing time, the SPHARM results clearly show topology related problems (i.e. yellow
highlighted bridging, zoomed in panels (c) and (d) for the SPHARM and the SWD
respectively). Both SPHARM and SWD results were obtained with 85 degree expansion
(due to inability of the SPHARM to process higher degree spherical harmonics).
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FreeSurfer

SPHARM

SWD

Figure 9.
Two slices of the white matter surface obtained by the FreeSurfer/SPHARM (blue —

FreeSurfer, red — SPHARM-+FreeSurfer) and overlaid on the gray scale images of the
original volumetric data (panels a,b,c and d); and two slices of the white matter volume
obtained by the SWD (e and f). Both FreeSurfer and SPHARM slices show incorrect
topological bridging in two areas that accented by yellow and green ellipses.
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Figure 10.
Various processing stages of two subjects used for cortical thickness measurements in left

frontal pole region, that include (1) original anatomical scans (panels a and b), (2) high
resolution (L, = Nyqx = 300) segmented white matter volume (panels ¢ and d) with the left
frontal pole shown in blue, (3) gray matter volumetric layer (panel e and f) shown in its
entirety in gray on the right hemisphere, and for the left frontal pole (in blue) on the left
hemisphere. The average cortical thickness in the left frontal pole region of the control
sample is 2.80mm vs 3.52mm for the study sample.
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Timing of different stages of SWD method for various degrees of the transform: interpolation to spherical

coordinates (Fy : x = r), forward transform to frequency domain (f(r) = fj;,,), backward transform to

spherical domain (f},,, = f(r)), and interpolation to Cartesian coordinates (F, : r = x). All results are for
single thread Intel® Core ™ i7-2760QM CPU 2.40GHz.

Order L,,,, Timings (sec)
FX:X:>I‘ f(r)=>flmn flmn:>f(r) F,ZI'=>X
400 338.8 56.26 51.95 2.65
300 143.6 20.01 19.22 242
200 43.97 4.68 4.99 2.17
100 5.53 0.45 0.46 1.82
50 0.71 0.05 0.05 1.61
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Table 2

Timing of different processing steps involved in the SPHARM analysis work-flow vs the overall processing
time of the SWD method. All results are for single thread Intel® Core ™ i7-2760QM CPU 2.40GHz.

SPHARM? SWD
FreeSurfer 12 hours 50 min?
SPHARMCconstruct 420 sec
Steps
SPHARMsmooth2 1064 sec
SPHARMrepresent2 740 sec€
Total time ~ 14 hours <10 sec?

“SPHARM only works for Ly;qx up to 85, hence in all timings Ly = 85 is used
b L . . .

FreeSurfer time is for the left hemisphere only, add 4.5 hours for both
“SPHARMsmooth2 step also includes the SPHARMTrepresent2 step

d
SWD total time includes both the expansion and the derivative calculations for Ly;gx = 100 (5.34 sec) and the segmentation step for Lyqx = 85
(3.55 sec)
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