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Abstract

Characterization of complex shapes embedded within volumetric data is an important step in a 

wide range of applications. Standard approaches to this problem employ surface based methods 

that require inefficient, time consuming, and error prone steps of surface segmentation and 

inflation to satisfy the uniqueness or stability of subsequent surface fitting algorithms. Here we 

present a novel method based on a spherical wave decomposition (SWD) of the data that 

overcomes several of these limitations by directly analyzing the entire data volume, obviating the 

segmentation, inflation, and surface fitting steps, significantly reducing the computational time 

and eliminating topological errors while providing a more detailed quantitative description based 

upon a more complete theoretical framework of volumetric data. The method is demonstrated and 

compared to the current state-of-the-art neuroimaging methods for segmentation and 

characterization of volumetric magnetic resonance imaging data of the human brain.
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1. Introduction

Characterization of complex shapes embedded within volumetric data is an important step in 

a wide range of applications. In neuroimaging applications, for example, quantitative 

descriptions of brain morphology play a critical role in the characterization of 

neurodegenerative disease progression. Standard approaches to this problem employ surface 

based methods that require an initial segmentation of a surface and often a subsequent 
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inflation of this surface to satisfy the uniqueness or stability of subsequent surface fitting 

algorithms. These methods are inefficient and time consuming because of the need for 

segmentation prior to fitting and the computationally intensive inflation process, the latter of 

which being also a significant source of errors due to creation of topological defects. Here 

we present a novel method that overcomes several of these limitations by directly analyzing 

the entire data volume, obviating the segmentation, inflation, and surface fitting steps, 

significantly reducing the computational time and eliminating topological errors while 

providing a more detailed quantitative description based upon a more complete theoretical 

framework of volumetric data. The method is based on a spherical wave decomposition 

(SWD) of the data and we present an application of this technique to volumetric magnetic 

resonance imaging (MRI) data of the human brain.

This novel 3D signature-based method produces rotationally invariant compact shape 

descriptors that can be efficiently computed over 3D datasets without the need for explicit 

preliminary surface segmentation. The approach is appropriate for compact representation, 

fast decomposition, and automated segmentation and morphometry analyses of volumetric 

magnetic resonance imaging data. The SWD representation uses a direct expansion of 

volumetric data in a linear combination of basis functions that include both angular 

(spherical harmonics) and radial (spherical Bessel functions) parts. The 3D descriptors are 

easily archived and facilitate statistical comparison at multiple spatial scales: low frequency 

information describes gross shape, while high frequency information captures more detail as 

well as internal structures.

Direct computation of the SWD over a full volume of data is computationally expensive, 

and thus we developed several fast transforms applicable both to spherical harmonics and to 

spherical Bessel functions that allowed a fast and robust numerical implementation of the 

SWD that is applicable to a wide range of geometries, independent of affine transformations, 

for large, noisy volumetric data sets. We demonstrate this method on a high resolution MRI 

data set of a normal human brain by comparing it to the current state-of-the-art methods 

employed in neuroimaging for segmentation of gray and white matter and shape 

characterization of the cortical surface.

2. Background

Continuing progress in the development of advanced non-invasive imaging methods such as 

MRI and CT have facilitated the acquisition of very high resolution, high contrast 

volumetric data that offers the possibility of non-invasive highly informative assessment of 

brain morphology. However, these more informative and complex data puts a greater burden 

on the computational methods needed to analyze them. This is particularly true of MRI data 

which has a wide range of contrast mechanisms by which it can produce very high contrast 

between complex soft tissues of different types.

In concert with these advancements in imaging technologies, advances in computational 

methods, particularly in volume graphics and computer vision has resulted in tremendous 

increase in computational methods for morphology characterization and segmentation for 

comparative morphometry for both basic neuroscience studies on brain anatomy and clinical 
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studies of disease characterization and progression in humans, and for a broad range of 

studies in comparative biology.

In comparative biology, geometric morphometrics has emerged as an important tool for 

analysis, becoming commonly used to quantify morphology, wherein landmark points are 

identified in photographic (2D) images and then are fit to a warped mesh that provides a 

common coordinate system in which different specimens can be compared (Zelditch et al., 

2004). These methods allow users to define key points of known morphological interest and 

statistically compare morphologies based on these points. However, the current predominant 

methods are based on 2D digital images or on 3D surfaces and are not readily applied to 

volumetric 3D data, such as those acquired by MRI or CT.

Recent advances in segmentation techniques were mostly originated from fuzzy logic and 

supervised and non-supervised clustering (Barra and Boire, 2000; Lin et al., 2012) both in 

2D (Barra and Boire, 2001; Cocuzzo et al., 2011; Pedoia and Binaghi, 2012; Razlighi et al., 

2012; Suri, 2001; Zavaljevski et al., 2000) and 3D (He et al., 2011; Kiebel et al., 2000; 

Klauschen et al., 2009; Popuri et al., 2012; Wels et al., 2011). Unfortunately, in spite of all 

advances none of these methods are able to provide truly robust and automated 

segmentation.

The most straightforward approach to segmentation is thresholding, which involves finding 

an intensity value, the threshold, that distinguishes features of interest. This method is most 

frequently used to create a binary segmentation of an image, but it is also possible to 

distinguish three or more intensity classes using multithresholding (Zavaljevski et al., 2000). 

Thresholding works particularly well with imaging modalities such as CT data where 

images are often essentially binary between bone (bright) and soft tissue (very dark) and 

segmentation can be practically automated. Automated methods for MRI data, however, are 

exceedingly difficult because of adjoining regions with similar values (i.e. low contrast), 

partial voluming (multiple tissue types within a single voxel), image noise, and intensity 

inhomogeneities, all of which are common to MR images (Atkins and Mackiewich, 2000; 

Pham et al., 2000).

Region growing methods extract connected regions in images based on criteria that can 

include both intensity and edges. These methods are susceptible to noise, which can create 

artificial divisions between connected regions, and partial volume effects, which can merge 

disconnected regions. These effects can be reduced by limiting growth to topology-

preserving deformations (Mangin et al., 1995), but user input is still required to select seed 

regions. Clustering algorithms alternate between segmenting the image and characterizing 

the properties of each segmented class, iterating until a stopping criterion is reached (Barra 

and Boire, 2000, 2002; Liang et al., 1994; Pachai et al., 2001; Popuri et al., 2012). 

Clustering is generally susceptible to both noise and image inhomogeneities, though 

robustness to intensity inhomogeneities has been demonstrated (Pham and Prince, 1999). 

Given a Bayesian prior model, Markov random field models can be incorporated in 

clustering methods to minimize susceptibility to noise (Li, 1994).

Galinsky and Frank Page 3

Neuroimage. Author manuscript; available in PMC 2015 May 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Atlas-guided approaches provide an option that may be feasible (Klein et al., 2009). In such 

methods, a linear or non-linear transformation is found mapping the pre-segmented atlas 

image to the target image. Thus the tissue classification problem is changed to a registration 

or deformation problem. However, to effectively use atlas-guided methods very large and 

detailed databases or atlases of reference objects are needed. This puts the onus of the 

quantitation on an accurate and reproduceable method for atlas creation.

One important and rather successful direction in brain quantifying and characterization has 

emerged from analyses of parameterization of surfaces for 3D shape description using 

spherical harmonics (SPHARM) representation (Brechbühler et al., 1995; Kazhdan et al., 

2003). Shape signatures can be created using the SPHARM decomposition at several 

concentric spheres or just at a single surface that represents a highly convoluted geometry of 

the cerebral cortex. In the SPHARM method any function f is assumed to be defined on a 

sphere, f(θ, ϕ), and decomposed as the sum of its spherical harmonics:

(1)

with low values of l corresponding to lower frequency information. Since L2-norms of 

spherical functions are not affected by rotations, a rotationallyinvariant shape signature may 

be given as SH(f) = {∥f0(θ, ϕ)∥, ∥f1(θ, ϕ)∥, …}, where the 

are the frequency components of f. We note that an alternate signature can be calculated 

more quickly and directly from the coefficients, defining SH (f) = {A0, A1, …}, where the Al 

are L2-norms of all the coefficients flm at each l: . The spherical 

harmonics  are continuous functions, but for computational applications, f is only 

sampled at NΩ discrete angles. To create a shape signature for a 3D object, the shape is 

sampled at NΩ angles and Nr radii, SH is calculated at each radius up to l = Lmax, and the 

result is represented as a 2D grid of size Lmax × Nr. This SPHARM application described by 

Kazhdan et al. (2003) was more general shape classification using “clean” data (e.g. a set of 

1890 “household” objects), but in noisy MRI data the SPHARM deals with noise 

automatically, since the noise does not appear in the lower frequencies that dominate shape 

descriptions. Many internal structures remain visible in data reconstructed from the 

signatures, while the signatures themselves require significantly less storage space than the 

original data. This general method was improved further by appropriate filtering (i.e. using 

exponentially weighted Fourier or spherical harmonics series, Chung et al. 2008a, 2007, 

2008b). The weighting reduces a substantial amount of the so called ringing (or Gibbs) 

phenomenon and aliasing (or Moiré) patterns (Gelb, 1997)), both appearing because of 

relatively slow convergence of Fourier series when used for representing discontinuous or 

rapidly changing measurements.

Overall these modifications of the SPHARM method with filtering or exponential weighting 

(Chung et al., 2008a, 2007, 2008b) allowed successful parameterization of the cortical 

surface including characterization of the local difference in gray matter concentration. 

Nevertheless, techniques based on the SPHARM morphometry method – tensor-based 
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morphometry – uses the cortical surface already segmented out of noisy MRI data and 

quantifies the amount of gray matter only in a narrow layer along this surface via the 

concept of a local area element. Hence, the analysis can not be directly used for volumetric 

MRI data.

An extension of spherical harmonics decomposition that naturally allows incorporating of 

complete 3D volume data has been known in various areas of physics for quite a long time, 

i.e. in quantum physics for description of waveform solutions of the Shrödinger equation 

(Gersten, 1971), in atomic and nuclear physics for approximation of Coulomb scattering 

function (Barnett, 1996, 1981)), and in astrophysics for analyses of anisotropies of 

microwave background, as well as for quantum gravity (Abbott and Schaefer, 1986; Binney 

and Quinn, 1991; Leistedt et al., 2012).

In this paper we present the spherical wave decomposition (SWD) method, that combines 

angular-only basis functions of the SPHARM with spherical Bessel functions as the radial 

basis functions, forming the complete 3D basis. This basis is appropriate for expanding any 

function f(r, θ, ϕ) defined inside a sphere of radius a. The expansion coefficients have the 

advantage of allowing characterization of the internal structure simultaneously with the 

overall shape. Because they are not surface-based, there is no need to fix topological 

discrepancies or to provide surface based segmentation first. Thus this approach offers a 

more complete description of noisy volumetric data and is also more efficient to compute. 

We present timings for our implementation of the SWD method that confirm computational 

efficiency of the approach. We also describe further extension of the SWD approach to 

address the need of automated 3D volume segmentation.

3. Spherical Wave Decomposition Method

The basis functions for the spherical wave decomposition are composed of radial and 

angular parts. They can be obtained as eigensolutions of Laplace equation (or particular 

solution of Helmholtz’s equation) ∇2 f + k2 f = 0 (Lebedev, 1972), where the Laplacian ∇2 

is expressed in spherical coordinates as

(2)

For a function f(r, θ, ϕ) defined inside a solid sphere of radius r ≤ a the following expansion, 

obtained by separation of variables, is valid

(3)

where the angular dependency is contained in the spherical harmonics  – the 

eigensolution of the angular part of the Laplacian with the eigenvalues λl = −l(l + 1):

(4)
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The spherical harmonic  of degree l and order m allows separation of the θ and ϕ 

variables when expressed using associated Legendre polynomials  of order m as

(5)

where cl,m is the normalization constant

chosen to guarantee the orthonormality condition

The radial component Rln (r) of Eqn 3 is obtained as the eigenfunction of the radial 

Laplacian

(6)

and can be expressed through the spherical Bessel function as

(7)

The normalization constants Nln as well as the discrete spectrum wave numbers kln are 

determined by the choice of boundary conditions. For Dirichlet boundary condition, i.e. f(r, 

θ, ϕ) ≡ 0 for r ≥ a, they can be expressed as

(8)

where {xln} are ordered for n ≥ 1 zeros of spherical Bessel function jl(x). With this choice of 

the discrete spectral numbers kln and the normalization constants Nln the orthonormality 

conditions for Rln(r) reads

Using these basis function  the spherical Fourier coefficients flmn can be 

obtained as

(9)
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As in SPHARM, a rotationally-invariant signature can be calculated directly from the 

coefficients flmn by taking the L2-norm of all the flmn at each l and n:

(10)

The resulting signature, represented again as a 2D grid, now of size Lmax × Nmax, where 

Nmax is the number of spherical Bessel functions used in radial expansion, is purely in 

frequency space.

Straightforward calculations of the multiple radial shell SPHARM decomposition requires 

 operations. For calculation of volumetric SWD spectra a separation of 

variables between the angular and the radial parts can be used. Still the brute force 

calculation of integrals in (9) results in even higher computational toll for the SWD than in 

the SPHARM – .

Fortunately, when taken independently both the angular and the radial parts allow use of fast 

O (N log N) transforms. The angular spherical harmonics decomposition was implemented 

using a divide and conquer approach and a fast Legendre transform (Driscoll and Healy, 

1994; Healy et al., 1996, 2004; Mohlenkamp, 1999; Rokhlin and Tygert, 2006). For the 

radial spherical Bessel transform evaluation several different fast implementations are also 

available (Bisseling and Kosloff, 1985; Koval and Talman, 2010; Pettitt et al., 1993; 

Sharafeddin et al., 1992; Talman, 1978, 2009; Toyoda and Ozaki, 2010). In our 

implementation we followed Toyoda and Ozaki (2010) but replaced their recurrence formula 

with asymptotic expansion of the integral (see Appendix).

Volumetric MRI data are usually obtained on a Cartesian 3D grid. At the same time in order 

to be able to use the fast transforms both angular and radial parts should be defined on 

spherical grids with special grid placements. Therefore, the first step of a forward transform 

(i.e. transform to the frequency domain) and the last step of a backward transform (from the 

frequency domain) should provide a way of resampling the input and output 3D volume data 

from or to Cartesian grid, that is the following convolutions should be computed

where x = (x, y, z) and r = (r, θ, ϕ) are related through usual change of variables from 

Cartesian to spherical system of coordinates,

with the volume element dV = r2dr sin θdθdϕ. Different choice of resampling filters Fx and 

Fr (from simple nearest neighbor to complex multipoint interpolation) allows for balance 

between speed and quality.
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4. Accuracy and Bandwidth

Our method was tested on high resolution MRI anatomical data of a normal human brain 

collected an a GE 3T MR750 Clinical Scanner using an inversion recovery T1-weighted 3D 

fast spoiled gradient recalled echo pulse sequence with parameters: flip angle α = 12°, echo 

time TE = 3 ms, repetition time TR = 8 ms, matrix size = (RL, AP, IS) = (172×256×256), 

field of view FOV = (170 × 240 × 240) mm for a resolution of (1 × .938 × .938)mm. 

Characterization of this data as a function of SWD degrees Lmax and Nmax is shown in 

Figure 1 for progressively lower degrees of SWD transform. The largest degree (shown in 

Figure 1b) to exceed the physical dimensions of the original brain in order to confirm that a 

high degree SWD is capable of reconstructing all the details of the original dataset and 

produce visually indistinguishable result, and to show that our implementation is able to 

handle a large volume of frequency domain data (> 3003 modes). Significant reduction in 

the degrees to Lmax = Nmax = 100, also produces a virtually indistinguishable brain. Even a 

relatively low resolution Lmax = Nmax = 50 with roughly a hundred times less information 

content than in the original volume is able to reproduce external as well as internal structure 

of the original brain.

Finally, the last two low resolution reconstructions (with degrees equal to 25 and 10) show 

the expected significant smoothing of both external and internal details. But even the lowest 

degree result, which uses less than 1/104 of the original data, is able to capture and 

reproduce some important low resolution features of the original brain.

To illustrate the computational effectiveness of our SWD implementation we included 

timing of various stages of our implementation of SWD method for different degrees (Lmax 

= Nmax) of transform (Table 1). These timings were obtained for the same brain dataset 

using single thread Intel® Core™ i7-2760QM CPU 2.40GHz.

Simple nearest neighbor interpolation has been used for interpolation to Cartesian domain 

for all results reported in Table 1 (last column Fr : r ⇒ x) as well as for all transform 

degrees reported in Figure 1. For interpolation to spherical domain (Fx : x ⇒ r) we used an 

averaging over all the neighbors in the box obtained by mapping local spherical unit volume 

to Cartesian coordinates.

It is important to note that rows in Table 1 do not necessarily correspond to the work-flow of 

the SWD method. For example, it is possible to produce spherical interpolation using one 

resolution, then generate frequencies using a different degree, transform them back with yet 

another degree of transform, and finally arrive at Cartesian volumetric data with a different 

resolution. Hence, Table 1 is provided to illustrate scaling of various parts of the SWD 

computation with a change of the degree of transform. The most computationally demanding 

part of the method is the interpolation to spherical coordinates (Fx : x ⇒ r) that uses box 

averaging of neighbors. It took roughly 5.5 minutes to produce the largest 4003 resolution in 

spherical domain. However, we emphasize that we are using double the reported resolution 

for all internal calculations, i.e. in this case the actual resolution was 8003, that is 8 times 

larger. But a change of the execution time with a change of the degree Lmax follows 

 pattern, i.e. it scales linearly with the total number of grid points processed. 
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Overall, the performance of the SWD method looks very competitive in comparison with the 

SPHARM, taking only on the order of seconds for Lmax = Nmax ~ 100, that is for calculation 

of all  spectral coefficients. In contrast, single surface calculations of all the 

coefficients of SPHARM up to degree Lmax =78 – that is  total coefficients – takes 

more than few hours for direct numerical evaluation of integrals, and more than 5 minutes 

for the iterative residual fitting (IRF) algorithm of Chung et al. (2008a, 2007, 2008b).

We emphasize that the reported performance boost of the SWD approach relative to the 

fastest SPHARM implementation was not obtained at the expense of accuracy. On the 

contrary, analysis of root-mean-square (RMS) errors presented in the next section clearly 

shows that the SWD consistently produces several times lower RMS errors then the 

SPHARM in the same range of parameters. This means that the volume decomposition 

using complimentary radial and angular basis is clearly superior in term of accuracy to the 

angular only SPHARM decomposition.

To include smoothing effects (in addition to smoothing that can be provided by appropriate 

choice of resampling filters Fx and Fr) we also added the weighted Fourier series (WFS) 

representation in our spherical wave decomposition (Chung et al., 2007) by the inclusion of 

exponential weighting factors exp (λlt) in the original series (3):

(11)

where λl = −l(l + 1) and t is a parameter which may be used to control the bandwidth. The 

results of the SWD with WFS are shown in Figure 2 for t=0.0001, 0.0005, 0.001, 0.005, 

0.01 as well as for no smoothing with t = 0. By comparing all of them with Figure 1, the 

WFS smoothing with 0.01 ≥ t ≥ 0.001 from the visual standpoint resembles limiting the 

degree of SWD transform somewhere below Lmax = 50 level, whereas values of 0.001 > t ≥ 

0.0001 correspond to Lmax values between 50 and 100.

To illustrate that the inclusion of WFS reduces the substantial amount of the Gibbs 

phenomenon – ringing artifacts associated with the slow convergence of a Fourier series 

(Gelb, 1997) – we applied the SWD both with and without the WFS to a slowly converging 

SWD representation of a 3-D step-like function (Figure 3). For comparison with Chung et 

al. (2008a) we used the same set of parameters for the degree (Lmax = Nmax=78) and the 

bandwidth (t = 0.0001) of the SWD transform. The weighted SWD shown in Figure 3b 

clearly has less ringing artifacts than the original SWD (Figure 3a), although the reduction is 

not as profound as in the weighted SPHARM of the same degree and bandwidth, probably 

due to higher overall accuracy of the SWD approach and additional smoothing provided by 

the resampling filters Fx and Fr.

Analysis of quantitative procedure of finding optimal degree of SWD transform that is 

characteristics of some particular level of smoothing is provided in the next section.
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5. Choice of Optimal Order of SWD Transform

To estimate how well the SWD with some preselected degrees Lmax and Nmax will represent 

any particular dataset the root mean square deviation can be used. Because increasing the 

angular Lmax and the radial Nmax degrees of SWD increases not only the goodness-of-fit, but 

also the number of coefficients to be estimated, finding the optimal degree where this 

increase in the number of parameters is warranted by the goodness-of-fit is very important. 

This is even more important for the SWD than in the single surface SPHARM approach 

(Chung et al., 2008a, 2007, 2008b), as the growth of coefficients now happens cubically, not 

quadratically.

Although in the SWD the angular and the radial degrees can be changed independently, the 

number of zeros of the spherical Bessel function that fall inside the sphere of radius a 

corresponds to the number of zeros in latitudinal or longitudinal directions when Lmax ~ 

Nmax. Hence, for a purpose of finding the optimal degree order we will assume that Nmax = 

Lmax.

Following Chung et al. (2007) we will assume that distribution of the Fourier coefficients 

flmn can be approximated to follow normal distribution N (µlmn, ) with equal variance σl 

within the same degree. This corresponds to the following k − 1 degree model

(12)

where ε is a zero mean isotropic Gaussian random field. Then we can test if increasing the 

degree of the model above k − 1 is statistically significant by testing the null hypothesis

(13)

For the construction of test statistic we use the residual sum of squares (RSS) for the (k − 1) 

degree model fk−1, that is

(14)

In Figure 4 is plotted the root-mean-square-deviation ( ) as a function 

of k (that is the SWD degree Lmax = Nmax) for the brain reconstructions shown in Figure 2 

obtained for different values of exponential smoothing parameter t. The overall behavior 

seems consistent with the SPHARM, showing that initial fast decrease of the root mean 

square deviation gradually slows down and flattens out. The value of error in the flat region 

as well as the degree where the transition to the flat region occurs depends on the smoothing 

parameter t, also consistent with the SPHARM. The important difference of the SWD is that 

it consistently shows several times lower RMS errors then the SPHARM in the same range 

of Lmax and t parameters. It means that volume decomposition using complimentary radial 
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and angular basis is clearly superior in term of accuracy to the single surface only (or even 

the shell of surfaces) angular SPHARM decomposition.

We modified the test statistic used in SPHARM to account for different number of ”groups” 

and ”observations” used in each of the methods:

(15)

The resulting distribution is again the F-distribution, with different values of the degrees-of-

freedom (3k + 1)k and N − k(k + 1)2. The optimal SWDdegree can be obtained by computing 

the F statistic for each degree k up to the point when the corresponding P-value becomes 

bigger than the prespecified significance α. Our results for α = 0.01 seem to be pretty close 

to the SPHARM values, i.e. for the bandwidth t = 0.0001 the optimal SWD degree has been 

determined to be k = 80 vs k = 78 for the SPHARM.

6. Using SWD for Volume Segmentation

One important difference between the SWD and the SPHARM methods lies in the 

possibility of a relatively simple and straightforward modification of the SWD to naturally 

and effectively handle the very complex task of volume segmentation. Segmentation is not 

tractable by the SPHARM method itself because it requires processing of the whole 

volumetric data but SPHARM is based on a partial decomposition valid only on the unit 

sphere. Thus segmentation must be performed (either by hand or by using additional 

specialized semi-automated segmentation tools) before the SPHARM method can even be 

applied to new volumetric data.

On the other hand the SWD method is based on an expansion of the whole volume in a 

series of orthogonal basis functions, therefore it can be reformulated to reconstruct not just 

the internal volume of the input 3D data, but to produce and emphasize all the interfaces or 

transitions that exist inside the volume. Mathematically this procedure can be described by 

taking the square of the gradient of the expansion |∇ f (r, θ, ϕ)|2, similar to the approach 

taken by various edge detection techniques used in 2D image processing. This edge 

detection is essentially the first and the most important step of almost any segmentation 

technique used in 2D, and the quality of edge detection is crucial for overall success of 

segmentation process. Using Fourier expansion of 2D images this gradient calculations can 

be improved significantly (Gelb and Cates, 2009) both in accuracy and in computational 

efficiency.

The SWD method is essentially a three-dimensional variant of a Fourier decomposition and 

most of the results of conventional Fourier series analysis can be transferred (with 

appropriate modifications) to the spherical wave series. Therefore, the SWD coefficients can 

be used for interface detection in 3D by efficient and accurate computation of the gradient 

square. In spherical coordinates the gradient has the following components
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(16)

and in order to efficiently compute |∇ f (r, θ, ϕ)|2 instead of the original volume function f 

(r, θ, ϕ) we have to apply each of these components to the expansion (3).

Using recurrence relations for derivatives of the associated Legendre polynomials 

(17)

and for derivatives of the spherical Bessel function jl(x)

(18)

we can update the expansion coefficients and obtain expressions for the gradient 

components as a new SWD series along each of the orthogonal coordinates:

(19)

(20)

(21)

The same SWD procedure described in the previous section can be used to transform these 

coefficients to spherical and then Cartesian domain. Hence five SWD transforms will be 

needed to compute the gradient square.

An example of the derivatives in human anatomical data is shown in Figure 5. The bottom 

(derivative) panel clearly shows detection of interfaces between various tissues present in 

the original anatomical volumetric data, including interfaces between gray and white matter.

This Fourier based approach for obtaining expressions for the gradient components has 

several advantages over direct numerical differentiation in the spatial domain. First of all, 

due to the multiscale nature of the SWD algorithm it easily allows controlling the scale of 

the gradients involved in the edge detection process. Moreover, numerical differentiation of 

noisy data in the spatial domain has inherently low accuracy, whereas the Fourier based 

algorithm can significantly improve the accuracy by appropriate choice of filtering.
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In practice, fully automated segmentation requires a combination of methods that not only 

characterizes the shapes of the internal structures, but incorporates some prior information 

about their spectrum, spatial scales, and spatial distributions. This combination can include 

the interfaces from the volume gradient to find an initial estimate for intensity thresholds 

and number of intensity clusters. The low frequency interfaces (actually their positions) can 

then be included in some sort of topological analysis. And finally the high frequency 

interface data can be used to facilitate topological closure of found low frequency clusters 

that is to update and generate detailed structures.

Such an analysis is beyond the scope of the current paper and so for the purpose of this 

paper we did not analyze a topological structure of the gradient generated interface surface 

yet. However, the potential our method holds for automatic segmentation can be 

demonstrated using the derivative map surface for the brain volumetric data that we used in 

the previous sections for analyses of the SWD accuracy and bandwidth (Figure 1a). We 

assumed a bimodal structure of the volumetric intensities, but in contrast to most 

classification techniques we did not make any assumptions about type of a distribution for 

each of the modes (i.e. we did not ask it to be Gaussian). We only assumed that the modes 

are well separated and applied the derivative map to estimate an intensity threshold It by 

calculating an average intensity inside all regions with large values of intensity gradient

(22)

where . This simplified illustrative procedure still allowed us to obtain in a 

completely automatic manner accurate segmentation between gray and white matter, 

independently shown in Figure 6 (gray matter) and Figure 7 (white matter).

We would like to emphasize that all types of SWD based analyses described in the previous 

sections (including weighted Fourier smoothing, optimal SWD order and volume 

morphometry/complexity) are also applicable to these segmented out and independently 

represented brain structures. Thus, the average gray matter density, the cortical thickness, as 

well as various local abnormalities, can be accurately calculated directly from the volumetric 

data on different scales (i.e. using different degrees of smoothness). This is in contrast to the 

SPHARM, where both the gray matter density and the cortical thickness can only be 

approximated through a distance map between independently fitted inner and outer cortical 

surfaces (Chung et al., 2007), a process that is prone to various sources of errors (the most 

important are errors from surface registration, mesh construction and discrete thickness 

computation), and is very sensitive to presence of noise.

To test the efficacy of our approach in real life applications as well as to compare with the 

current state-of-the-art methods we conducted a complete analysis work-flow of brain 

segmentation/characterization task using our original 3D brain dataset (Figure 1a) as an 

input to FreeSurfer/SPHARM combination. As the SPHARM on its own is unable to 

analyze volumetric data, the typical analysis work-flow requires as a first step preprocessing 

of the volumetric data with FreeSurfer (Dale et al., 1999). At this stage we extracted white 

matter surface using all the required steps of the standard FreeSurfer processing, i.e 
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segmentation, inflation, registration, fitting to sphere, etc. The total FreeSurfer processing 

took more than 12 hours to obtain a single hemisphere white matter surface.

The resulting white matter surface of the left hemisphere has been used afterwards as an 

input to several different stages of the SPHARM analysis using codes from http://

www.stat.wisc.edu/~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html. The 

first SPHARM step is to construct the spherical harmonics representation and save it into a 

hard drive (~ 2.86 GB). This step took around 7 minutes for generating all the harmonics up 

to Lmax=85. (Lmax=85 has been chosen due to the inability of the SPHARM to produce 

higher degree expansion giving us “matrix is singular to working precision” error for any 

degree above 85). The WFS smoothing step (SPHARMsmooth2) of the SPHARM took 

about half an hour using the same degree Lmax=85. And finally generation of the smoothed 

white matter surface from a set of Fourier coefficients (SPHARMrepresent2) took around 20 

minutes. The overall processing of the left hemisphere white matter surface took close to 14 

hours (the processing times are summarized in Table 2). The total FreeSurfer processing of 

both hemispheres as well as the gray matter surfaces took almost a day (≳ 23 hours).

Figure 8 shows the 3D views of both the SPHARM and the SWD white matter extraction 

results. The details as well as the quality of the segmentation seems to be comparable for the 

SPHARM (a) and for the SWD (b), but topological defects produced by a single sphere 

inflation procedure of FreeSurfer followed by smoothing of the SPHARM are clearly visible 

in the SPHARM surface (Figure 8c) and absent in the SWD (Figure 8d).

The reason for these topological defects can become more obvious by looking at several 

slices of the volumetric data with the SPHARM/FreeSurfer white matter surface overlaid. 

Figures 9a and b show original FreeSurfer segmentation results (blue), and Figures 9c and d 

show the final surface obtained with SPHARM smoothing (red). The yellow accented area 

shows the same defect that was marked by yellow in the previous Figure 8a. Another defect 

area, marked green, is located deep inside the volume. The bridging of both of these areas 

results in topologically incorrect surface closure and produces convex region that actually 

encompass hollow area inside this topologically closed white matter region. This erroneous 

bridging is absent on slides of volumetric SWD white matter (Figures 9e and f).

To quantitatively characterize an amount of topological defects that are present in the 

SPHARM/FreeSurfer white matter surface (Figure 8a) and in the isosurface of the 

volumetric SWD white matter (Figure 8b) we estimated the Euler characteristic (sometimes 

also called the Euler-Poincaré characteristic) for the trianlulated meshes obtained in both 

analyses.

The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to 

the formula (Spanier, 1994)

(23)

where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the 

given polyhedron. Any convex polyhedron’s surface has Euler characteristic χ = 2.
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The SPHARM/FreeSurfer white matter mesh shown in Figure 8a has 161532 vertices, 

323060 (triangular) faces and 420506 edges, thus giving the Euler characteristic χFreeSurfer 

equals to 64086. The SWD mesh shown in Figure 8b has 166314 vertices, 332680 faces 

(triangular as well) and 488207 edges. The Euler characteristic χSWD is then equal to 10787.

An ideal regular white matter genus zero surface (that it is homologous to a sphere) should 

have χ=2, therefore, the SWD provides significant (almost 6-fold) decrease in overall 

number of topological artifacts.

7. SWD Application to Clinical Brain Morphometry

To further validate our method as well as to show its competitiveness not only in research 

but also in clinical settings, we used the work-flow entirely based on our SWD approach to 

replicate the results of a recent analysis of differential effects of binge drinking on the brain 

morphometry of adolescent males and females (Lisdahl et al., 2013; Squeglia et al., 2012). 

These results establish links between cortical thickness in several areas of the brain to 

repeated binge drinking, hence confirming the potentially deleterious effects of binge 

drinking on adolescent brain development, as it is known that early adolescent cortical 

thinning is related to better neuropsychological performance (Squeglia et al., 2013).

We used the same set of high-resolution anatomical images (Squeglia et al., 2012) collected 

at the UCSD Keck fMRI Center from a 3-Tesla CXK4 short bore Excite-2 MR system 

(General Electric, Milwaukee, WI) with an eight-channel phase-array head coil. Scan 

sessions involved a 10-s scout scan with slice selection covering the whole brain, followed 

by a sagittally acquired high-resolution 3D T1-weighted anatomical MRI that lasted 7 min 

and 26 s (FOV 24 cm, 256 × 256 × 192 matrix, 0.94 × 0.94 × 1 mm voxels, 176 slices, 

TR=20 ms, TE=4.8 ms; flip angle 12°). Two representative scans both from the study group 

(14 female and 15 make binge drinkers) and from the healthy control group (15 females and 

15 males) are shown in Figures 10a and b.

The complete processing of high-resolution anatomical volumetric datasets was done by our 

SWD framework and no other preprocessing steps were necessary. The spherical wave 

gradient approach described above was used for the automated skull stripping as well as for 

the white/gray matter segmentation (Figures 10c,d,e and f). No time consuming surface 

fitting/ topology correction steps were required for the cortical thickness calculations. The 

average cortical thickness for the left frontal poles (Figures 10e and f) have been derived 

from the volumetric gray matter data as a ratio of a number of all gray matter voxels (G) to a 

number of boundary voxels in gray/white matter boundary (∂G),

(24)

where the gray/white matter boundary ∂G is defined by all voxels in G that has at least one 

neighbor from the white matter region. The angular extent of left frontal pole has been 

specified by a common for all datasets range of spherical coordinates (θ1 < θ < θ2 and ϕ1 < ϕ 

< ϕ2).
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The cortical thickness obtained from our analysis seems to correlate well with the results of 

the original study but our approach produces slightly better mean separation between study 

and control groups (~ 0.1mm). For example, the two left frontal pole samples shown in 

Figures 10e and f, were found to have the cortical thickness of 2.80mm and 3.52mm (vs 

2.96mm and 3.51mm) and were correctly placed in normal and abnormal female groups 

(with the mean cortical thickness and the standard deviation of 3.24±0.19mm and 3.00±0.23 

respectively). Analysis of each sample using the SWD framework takes on the order of 

minutes, rather than the tens of hours required for the original approach.

We would like to emphasize that the original analysis, presented in Squeglia et al. (2012), 

using FreeSurfer for independent left and right hemispheres white matter segmentation, 

required a significant amount of both computer and human inspection time spent fixing the 

topology of the segmentation, in order for it to be homologous to a sphere. The volumetric 

based filtering provided by the SWD using interrelated scales in both radial (spherical 

Bessels) and tangential (spherical harmonics) parts is able to reduce a number of simple 

geometrical artifacts (e.g. needles), that can be further minimized by filtering out the high-

frequency terms with, for example, a simple Fourier transformation low-pass filter (of 

course, at the expense of creating a convolved image, where edges are also blurred).

More importantly, the volumetric SWD based analysis is able to reduce the true topological 

defects, i.e. those defects that prevent the surface that has genus zero to be inflated to a 

sphere due to spurious handles and holes, resulting is relatively regular surface borders of 

both white and gray matter volumes (as can be seen from Figures 10c,d,e and f). Thus, in 

contrast to a simple Fourier transformation, the volumetric SWD transform method favors 

the spherical nature of the cortical band. As a result there was no need for the topology 

fixing step anywhere in our analysis, as our expression for the cortical thickness directly 

involves volumetric data that are “regularized” in some sense by the volumetric SWD 

reconstruction and does not require the expensive surface fitting/inflation step.

8. Conclusion

We have presented a novel spherical wave decomposition (SWD) method that allows 

compact representation, characterization, automatic segmentation and morphometry analysis 

of complex shapes embedded within volumetric data. The method is very general and thus 

applicable to a wide range of applications. In particular, the method is appropriate for 

efficient quantitative analysis of volumetric magnetic resonance imaging data.

The SWD representation uses a direct expansion of volumetric data in a linear combination 

of basis functions that include both angular (spherical harmonics) and radial (spherical 

Bessel functions) parts. The 3D descriptors are easily archived and facilitate statistical 

comparison at multiple spatial scales: low frequency information describes gross shape, 

while high frequency information captures more detail as well as internal structures.

In contrast to surface based methods, the SWD approach does not require an initial 

segmentation of a surface and a subsequent inflation of this surface to satisfy the uniqueness 

or stability of subsequent surface fitting algorithms. The surface methods are inefficient and 

time consuming because of the need for segmentation prior to fitting and the 
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computationally intensive inflation process, the latter of which being also a significant 

source of errors due to creation of topological defects.

Our implementation of the SWD method is based on several fast transforms for spherical 

harmonics and spherical Bessel functions and, therefore, is significantly faster than the 

surface based methods, but at the same time provides significantly higher accuracy. The fast 

transforms for spherical Bessel functions are based on our novel expression for asymptotic 

expansion as 1/kn series of the standard sine and cosine Fourier transforms and 

rearrangement of coefficients obtained by the standard FFTs afterwards.

Overall, the SWD method seems to be uniquely positioned to provide an effective, accurate 

and robust approach for morphology characterization, segmentation, and comparative 

morphometry for both basic neuroscience studies on comparative brain anatomy and clinical 

studies of disease characterization and progression in humans, and for a broad range of 

studies in comparative biology.
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Appendix A. Fast spherical Bessel transform

The integral representation of the spherical Bessel function is given by

(A.1)

where Pl(t) is the Legendre polynomials. By substituting Eqn A.1 into radial part of the 

SWD transform

(A.2)

and integrating by parts, the transform can be rewritten as follows:

(A.3)
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As derivative  vanishes for N > l, the summation in Eqn A.3 only goes to N = l, that 

is

(A.4)

The integrals in Eqn A.4 evaluated at t = ±1 represent the one dimensional half plane 

Fourier transforms of f(r, θ, ϕ) multiplied by various powers of r. Using the parity property 

of the Legendre polynomials  the Fourier integrals in Eqn A.4 

can be rewritten through the standard sine and cosine Fourier series instead:

(A.5)

where ⌊x⌋ denotes floor (x), i.e. the largest integer that does not exceed x.

It is clear from Eqn A.5 that all the coefficients of the spherical Bessel transform can be 

obtained by rearrangement of coefficients of sine and cosine Fourier transforms of f(r, θ, ϕ) 

multiplied by powers of radius rε with integer exponent ε decreasing from 1 to 1 − l.

However, for the purpose of efficient numerical implementation we do not compute all the 

terms in summation of Eqn A.5. Instead, we choose rather low upper limit of summation (N 

= 0 or 1) and evaluate the residual (the last term in Eqn A.3) using numerical integration, 

progressively evaluating the terms until they are smaller than some prescribed threshold. 

Because the Fourier expansion decreases not slower than k−1 (even for discontinuous 

functions) and taking into account an additional multiplication by a factor 1/kN+1, this seems 

to be always possible even despite the presence of large derivative of the Legendre 

polynomials , although the rigorous mathematical verification of this behavior lies 

beyond the scope of this paper.
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Highlights

• A novel spherical wave decomposition (SWD) method is developed.

• SWD allows characterization and automatic segmentation of complex shapes.

• SWD is significantly faster than the current state-of-the-art surface methods.

• SWD is more accurate than the current state-of-the-art surface methods.

• SWD is appropriate for comparative brain anatomy and clinical studies.
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Figure 1. 

Series of 3D brain reconstructions obtained with different degrees of SWD (different Lmax 

and Nmax parameters): a) original brain, b)-f) decreasing Lmax and Nmax from 300 to 10.
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Figure 2. 

Weighted Fourier smoothing (WFS) applied to the same 3D brain obtained using SWD with 

Lmax = 300, (b-f) for several different values of exponential smoothing factor t from 0.0001 

to 0.01, (a) for no smoothing t = 0.
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Figure 3. 

The SWD representation of a discontinuous (3D step function) shape with Lmax = Nmax=78 

(a) without the WFS (t = 0) and (b) with the WFS (t = 0.0001)
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Figure 4. 

Plot of root-mean-square-deviation (RMSD) for each of 6 volumes shown in Figure 2 as a 

function of the SWD degree Lmax = Nmax. The correspondent exponential smoothing 

parameters t are printed for each of the RMSD curves.
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Figure 5. 

Anatomical data (top) and derivative (bottom) calculated from the SWD coefficients.
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Figure 6. 

Gray matter 2D slices (a-c) and 3D view (d) segmented out from the full 3D brain (Figure 

1a).
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Figure 7. 

White matter 2D slices (a-c) and 3D view (d) segmented out from the full 3D brain (Figure 

1a)
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Figure 8. 

3D view of white matter left hemisphere obtained from the full 3D brain (Figure 1a) using 

(a) SPHARM and (b) SWD. The white matter surface used for the SPHARM analysis has 

been obtained using FreeSurfer (Dale et al., 1999), following all the standard surface 

extraction steps (segmentation, inflation, fitting, etc.). In addition to 12+ hours total 

processing time, the SPHARM results clearly show topology related problems (i.e. yellow 

highlighted bridging, zoomed in panels (c) and (d) for the SPHARM and the SWD 

respectively). Both SPHARM and SWD results were obtained with 85 degree expansion 

(due to inability of the SPHARM to process higher degree spherical harmonics).
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Figure 9. 

Two slices of the white matter surface obtained by the FreeSurfer/SPHARM (blue – 

FreeSurfer, red – SPHARM+FreeSurfer) and overlaid on the gray scale images of the 

original volumetric data (panels a,b,c and d); and two slices of the white matter volume 

obtained by the SWD (e and f). Both FreeSurfer and SPHARM slices show incorrect 

topological bridging in two areas that accented by yellow and green ellipses.
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Figure 10. 

Various processing stages of two subjects used for cortical thickness measurements in left 

frontal pole region, that include (1) original anatomical scans (panels a and b), (2) high 

resolution (Lmax = Nmax = 300) segmented white matter volume (panels c and d) with the left 

frontal pole shown in blue, (3) gray matter volumetric layer (panel e and f) shown in its 

entirety in gray on the right hemisphere, and for the left frontal pole (in blue) on the left 

hemisphere. The average cortical thickness in the left frontal pole region of the control 

sample is 2.80mm vs 3.52mm for the study sample.
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Table 1

Timing of different stages of SWD method for various degrees of the transform: interpolation to spherical 

coordinates (Fx : x ⇒ r), forward transform to frequency domain (f(r) ⇒ flmn), backward transform to 

spherical domain (flmn ⇒ f(r)), and interpolation to Cartesian coordinates (Fr : r ⇒ x). All results are for 

single thread Intel® Core™ i7-2760QM CPU 2.40GHz.

Order Lmax Timings (sec)

Fx : x ⇒ r f(r) ⇒ flmn flmn ⇒ f (r) Fr : r ⇒ x

400 338.8 56.26 51.95 2.65

300 143.6 20.01 19.22 2.42

200 43.97 4.68 4.99 2.17

100 5.53 0.45 0.46 1.82

50 0.71 0.05 0.05 1.61
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Table 2

Timing of different processing steps involved in the SPHARM analysis work-flow vs the overall processing 

time of the SWD method. All results are for single thread Intel® Core™ i7-2760QM CPU 2.40GHz.

SPHARMa SWD

Steps

FreeSurfer 12 hours 50 minb

SPHARMconstruct 420 sec

SPHARMsmooth2 1064 sec

SPHARMrepresent2 740 secc

Total time ~ 14 hours ≲ 10 secd

a
SPHARM only works for Lmax up to 85, hence in all timings Lmax = 85 is used

b
FreeSurfer time is for the left hemisphere only, add 4.5 hours for both

c
SPHARMsmooth2 step also includes the SPHARMrepresent2 step

d
SWD total time includes both the expansion and the derivative calculations for Lmax = 100 (5.34 sec) and the segmentation step for Lmax = 85 

(3.55 sec)
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