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Simultaneous Multi-Scale Diffusion Estimation and
Tractography Guided by Entropy Spectrum Pathways

Vitaly L. Galinsky* and Lawrence R. Frank

Abstract—We have developed a method for the simultaneous
estimation of local diffusion and the global fiber tracts based upon
the information entropy flow that computes the maximum entropy
trajectories between locations and depends upon the global struc-
ture of the multi-dimensional and multi-modal diffusion field.
Computation of the entropy spectrum pathways requires only
solving a simple eigenvector problem for the probability distri-
bution for which efficient numerical routines exist, and a straight
forward integration of the probability conservation through ray
tracing of the convective modes guided by a global structure of the
entropy spectrum coupled with a small scale local diffusion. The
intervoxel diffusion is sampled by multi b-shell multi q-angle dif-
fusion weighted imaging data expanded in spherical waves. This
novel approach to fiber tracking incorporates global information
about multiple fiber crossings in every individual voxel and ranks
it in the most scientifically rigorous way. This method has potential
significance for a wide range of applications, including studies of
brain connectivity.

Index Terms—Brain connectivity, diffusion weighted imaging
(DWI), fiber tractography, magnetic resonance imaging (MRI).

I. INTRODUCTION

PROBLEM of significant interest in basic neuroscience
A research and in a wide range of clinical applications is
the reconstruction of tissue fiber pathways from volumetric dif-
fusion weighted magnetic resonance imaging (DW-MRI) data.
This is an inherently ill-posed problem because the local (voxel)
diffusion measurements are noisy and made on a scale signifi-
cantly greater than the underlying fibers and thus there are a
multitude of possible neural pathways between any two given
points in the imaging volume that might be consistent with the
experimental data. The question then is to find the paths that
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are most probable. Current fiber tractography methods gener-
ally fall into two categories: 1) deterministic methods, typically
based on some form of streamline construction (e.g., [1]-[3])
or 2) probabilistic methods, also generally based on streamline
construction, but with the most likely principal diffusion direc-
tion determined from a posterior distribution of principal dif-
fusion directions (e.g., [4]-[7]). These algorithms are “local” in
the sense that the computations are done at each voxel and some
small neighborhood around it and thus are not informed by the
final path that is created, and thus are not capable of assessing
the probability of the final path amongst all possible paths. In
most cases, these algorithms are inherently based upon some
underlying relation to a random walk which guides the evolu-
tion of the trajectories.

Recently, interest has grown in more “global” methods that
aim to take into account the probabilities of the final paths by
incorporating the path probabilities into the estimation process.
These methods typically are based upon parameterizations of
the diffusion field, or the anatomical connections they imply,
that extend spatially beyond the voxel dimensions and subse-
quently take the form of either improving the local computations
by the incorporation of more spatially extended path lengths
(e.g., [8], [9]) or on the extremization of a cost function over
a multitude of possible paths [10]-[13]). These global methods
usually (with some exceptions [ 11]) do not take the random walk
viewpoint but rather view the entire system as possessing some
underlying structure, characterized by local interactions or po-
tentials, that can be elucidated by optimizing some cost function
(e.g., energy) over multiple configurations of that system.

The original diffusion tensor imaging (DTI) model assumes
that the measurements in each voxel provide an estimate of a
single real, 3 X 3 symmetric diffusion tensor D from whose
eigenstructure can be derived both a meaningful measure of the
anisotropy (here characterized by the fractional anisotropy ¥ A
[14]) and a principal eigenvector that can be used as a proxy
for the fiber orientation [14]. Then DTI is the simplest under-
lying model for diffusion data, is predicated on a single fiber
model for the voxel content, and is equivalent to a Gaussian
model for diffusion (e.g., [14]). (To be more accurate, DTI
can be viewed as the next simplest mathematical framework,
while a scalar framework is the simplest that can be used
for modeling diffusion data. Also, there may be significant
deviations from Gaussian diffusion both on microscopic and on
meso-scales. Thus, effectively even DTI may have a deviations
from Gaussian due to i.e., cellular boundaries with less than
100% permeability). However, the DTI model is not sufficient
to capture more realistic possibilities of complex fiber crossings
needed for clinical applications [15]. To estimate local diffusion

0278-0062 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1178

directions in each voxel (streamline directions) several high
angular resolution diffusion imaging (HARDI) [16] methods
are typically used. These methods represent an extension of
the original DTI acquisition framework [17] to higher angular
resolutions appropriate not only for detection of main fiber
orientation, but also for attempting to resolve more complex
intravoxel fiber architecture such as multiple crossing fibers
[18]-[22].

In recent years, there has been significant interest in de-
veloping DW-MRI methods capable not only of estimating
angular fiber distributions from multidirectional diffusion
imaging (multiple g-angles) [16], [19]-[23]), but also find
spatial scales with multiple diffusion weightings (multiple
b-shells) [24]-[28]. While it has long been recognized that the
most general nonparametric (model-free) approach is to mea-
sure the displacement probability density function or diffusion
propagator directly [29], [30], the natural extension of this to
imaging wherein 3-D Cartesian sampling of g-space is used
to obtain the 3-D displacement probability density function
(dPDF) at each voxel [24], is prohibitively expensive from the
standpoint of data acquisition. This recognition has recently
spawned more practical methods for obtaining an estimate of
the dPDF, often called the ensemble average propagator (EAP),
from more practical multi-shell, multi-directional acquisitions
[25]-[28].

Nevertheless, despite these advances, a critical simplification
that is made in all current methods used to estimate either the
intravoxel diffusion characteristics (via the EAP, for example)
or to estimate the underlying global structure (tractography) is
the assumption that these two estimation procedures are inde-
pendent. Thus one first estimates the intravoxel diffusion, then
applies a tractography algorithms. For example multiple b-shell
effects, used in obtaining the EAP, are used only to infer direc-
tional multiple fiber information for input into streamline trac-
tography algorithms (see e.g., [31]). However, this distinction
between local and global estimation is artificial and limiting,
since both the local (voxel EAP) information and the global
structure (tracts) are from the same tissue, just seen at different
scales. In practical applications of human DW-MRI data this
artificial division of information on local and global gives rise
to problems at the data interpretation stage: e.g., spurious white
matter loss due to local underestimation of fiber anisotropy, in-
correct tracking of fiber orientation due to apparent overlapping
of angular distributions, etc.

In this paper we revisit the problem of local diffusion esti-
mation and fiber tractography with the specific goal to include
multiple spatial and temporal scales that can be deduced from
multiple b-shell DW-MRI measurements in addition to just an-
gular (multi-)fiber orientation [32], [33]. In many practical ap-
plications, either one or two spatial locations (or regions) are
known a priori. In neuroscience applications, for example, two
regions may be functionally connected (as measured, perhaps,
by FMRI) and the diffusion weighted MRI data is being used to
assess the degree (if any) of the structural connectivity between
two functionally connected regions. We therefore reconsider
two common formulations of fiber tractography: 1) initial value,
i.e., finding fibers that start at some chosen area of the brain, 2)
boundary value, i.e., finding fibers that connect two preselected
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brain regions. Thus we recast the fiber tractography algorithm as
the determination of the most probable path either starting at a
selected location or connecting two spatial locations, and seek a
general probabilistic framework that can accommodate various
local diffusion models and yet can incorporate the structure of
extended pathways into the inference process. In this case, the
problem of tractography from DWI data can be reformulated as
the determination of the probability of paths on a 3-D lattice be-
tween two given points where the probability of a path passing
through any particular point is not equiprobable, but is weighted
according to the locally measured diffusion characteristics.

The essential problem at the core of the tractography problem
is the estimation of macroscopic structure from microscopic
measurements. In this paper we present a formulation of the
tractography problem based upon a recently formulated general
theory for understanding information flow in a disordered lat-
tice. This theory, called entropy spectrum pathways, or ESP[34],
is used to infer the spectra of the most probable global path-
ways (in this case, fiber tracts) in a nonuniform lattice (the sam-
pled DWI data) based upon prior information about the local
coupling structure of lattice (in this case estimated from the
local measurements of the diffusion). The method is general-
ized to utilize multi-scale diffusion information that is avail-
able in multi-shell DWI datasets by extending the mechanism
of streamlines generation using a Hamiltonian formalism and a
diffusion-convection (Fokker-Plank) description of signal prop-
agation though multiple scales [34]-[36].

II. REFORMULATION OF THE EAP PROBLEM

As shown below, the ESP framework allows for the incor-
poration of both measured data and prior information into the
estimation procedure. It is thus essential that the description of
the data be as general and complete as possible. A general de-
scription of the measured DW-MRI data is provided by the EAP
formalism [25]-[28]. In this section we reformulate the problem
in order to provide a very general characterization amenable to
numerical implementation, and to bring out some of the essen-
tial spatial scales that inform our application of ESP.

The DW-MRI signal W (r, g) measured in both r and g space
can be expressed in terms of both the spin density p(r) and the
average propagator pa (r, R) using the narrow pulse approxi-
mation [30] as

W(r,q) = /Q(r, R)e B4R (1)
where r is the voxel coordinate, § = yG§/2w, with G and §
being the strength and duration of the diffusion-encoding gra-
dient and +y the gyromagnetic ratio of protons and the function
W (r, q) is the Fourier transform (in the diffusion displacement
coordinate R, defined as a change in particle position over time
t, R = r{tqg+t) — r(ty)) of the weighted spin density function
[23]

Q(r,R) = p(r)pa(r, R) 2
that scales (or weights) the spin density with the average prop-
agator pa (r, R) at each observed voxel.
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To find an expression for the spin density function Q(r, R)
we will use the plane wave expansion in spherical coordinates
with ¢ = q¢ and R = RR, where ¢ = ||q|| and R = || R

&S] l
R —dr Yy N aaR)Y @Y (R)
=0 m l

3

where j;(¢R) is the spherical Bessel function of order { and
Y"(@) = Y™ (Qy) = Y, (6,,¢,) is the spherical harmonic
with 8, and ¢, being the polar and azimuthal angles of the vector
g, and similarly for the vector R.

The product j;(qa)Y;™ (&) represents the basis function for
the spherical wave expansion [37]. These basis functions can
be obtained as solutions of Helmholtz's wave equation [38]

Vi 4% =0, @)
This representation suggests an interesting possibility of
treating the problem of fiber tractography for diffusion weighted
MRI data using the techniques of geometrical optics in inhomo-
geneous media [39]. We will discuss this point in more details
in Section III-C.

The above basis functions are composed of radial (spherical
Bessel j;) and angular (spherical harmonic ¥;™) parts, where the
spherical harmonics Y, (&) are the eigensolution of the angular
part of the Laplacian with the eigenvalues \; = —I{1 + 1)

VA" = Ny )

The spherical harmonic ¥, of degree ! and order m allows sep-

aration of the # and ¢ variables when expressed using associated
Legendre polynomials P™ of order m as

V™0, ¢) = cim Pl (cos O)e ™7 (6)

where ¢; ,, is the normalization constant

2l -1 —m)!
B dr (I + m)!

chosen to guarantee the orthonormality condition

Clom,

T 2
/ / le‘myvl‘rn,* sin 0d9d¢ = 0y mm -
0 0

The radial component j; (gz) of (3) is obtained as the eigenfunc-
tion of the radial Laplacian

N N
Vf]z—(q“rr—é) Ji

with the orthonormality conditions

/ Ji(gz)ji(q'z)a*da = %5(41 —q).
0 2q

(7

This allows us to reconstruct the spin density function Q(r, R)
using the spherical wave decomposition as

o0 l
Q(r,R) = 4772 Z ilnm(ﬂ)slm('ﬁ R)

=0 m=-1

®)
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where

sinlreB) = [ W QiR @da. ©)
This representation offers a concise and intuitively clear quan-
titative description of the local diffusion in terms of a clearly
defined expansion order on which can be based decisions of
optimal fitting. We would like to mention, that although there
are several different bases proposed to describe MR signal
in g-space [25], [40], [41], finding the best representation of
g-signal on partially acquired grid was not an intent of our
paper. We reused existing fast and robust algorithms that we
have developed for this computation [37]. Our implementation
is flexible and does have a choice of several filters able to
significantly reduce ringing artifacts.

It should be kept in mind that the typical scales for the voxel
coordinate r and for the dynamic displacement R in current dif-
fusion weighted MR experiments are vastly different. For the
time scale over which the individual measurements in DWI are
typically made (= 50 ms) the free diffusion root mean squared
distance is <:v2>1/ ? 20 1 and thus much smaller than typ-
ical voxel dimensions (=~ 1 mm?3, at best). Hence, with high
degree of accuracy it can be assumed that the average propa-
gator in the spin density function Q(r, R) only influences the
nearest neighbor voxels through the dynamic displacement R
dependence. The entropy spectrum pathway (ESP) formalism
presented in [34] is well suited for taking nearest neighbors into
account. We would like to emphasize that although the spin
density function Q(r, R) only influences the nearest neighbors
through the dynamic displacement R dependence in the current
sample acquisition framework, it also contains the global scale
variations through the r dependence. Hence, even in the limit
when the diffusions times are vanishingly small (such as in high
gradient strength systems) our approach does not break down,
but simply operates as a global method.

III. TRACTOGRAPHY GUIDED BY ENTROPY SPECTRUM
PATHWAYS

A. Summary of ESP Theory

The entropy spectrum pathways (ESP) theory [34] is an ex-
tension of the maximum entropy random walk [42], [43] and
concerns the very general problem of random walks on a de-
fective or disordered lattice. There are several key findings pro-
vided by the ESP theory. First, the pathways of the random walk
are determined by prior information concerning the structure
and relationships of the lattice points, and therefore the ESP
represents a flow of information, rather than representing an
actual physical process. This view facilitates the use of ESP
within a wide range of practical problems related to connec-
tivity. Second, it is possible to characterize multiple pathways,
ranked according to their entropy, all of which contribute to the
flow of information on the lattice. Thirdly, the interesting local-
ization phenomenon previously noted [42], [43] can be under-
stood in terms of the eigenstructure of the lattice. Fourthly, the
local interactions that inform the generation of global structure
can be based upon whatever coupling information the user has
available. This coupling can take on a general form, and it was
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shown that this property can be understood in terms of potential
theory [34]. In the case of nearest neighbor coupling with a “bi-
nary” potential (on or off), the problem reduces to the computa-
tion of the eigenstructure of the adjacency matrix of accessible
(nondefective) lattice locations. But the more general formula-
tion of ESP facilitates the use in practical applications such as
we present here. In this section we will briefly summarize and
reformulate the ESP formalism within the context of the trac-
tography problem.

The objective is to calculate the probability that a spin, or
“particle,” starting from an initial spatial location x(tq) at ini-
tial time t; = 0 diffuses to a second location x(t) at a later time
t. While the underlying structure we wish to estimate is assumed
continuous (being comprised of tissue fibers), the spatial loca-
tions & at which the measurements are acquired are assumed
to be from DWI images and thus discretized to a 3-D Carte-
sian spatial grid. However, the temporal discretization to be
employed is a fictitious construct used to implement a random
walk model, due to the above mentioned difference in scales
of the voxel coordinates and the dynamic displacement. Our
space-time points are defined on the true voxel spatial grid but
on a diffusion pseudo-time grid whose increments are much
larger than the experimental time scale. Simulating diffusion in
this way lends itself to two different interpretations. One view of
this process is to see it as diffusion that is allowed to take place
for much longer than the measurement time, or, equivalently,
that the process is in equilibrium and thus long time behavior is
well-represented by the snapshots in time provided by the exper-
imental data. However, another viewpoint, that of ESP, and the
one we adopt, is that the simulation is of the flow of information
constrained by the physical measurements. The entire process
is one of estimating a macroscopic phenomena from local mea-
surements, using by prior information.

The ESP theory ([34]) ranks the optimal paths within a dis-
ordered lattice according to their path entropy. Associated with
the kth path is a transition probability

P =Sl (10)
k=1
(k)
) Qij ¥;
where  p{%) = A;ﬁ (11)

where ), and 1*) are eigenvalues and eigenvectors of the cou-
pling matrix () defined as

Qij = M. (12)
Hence each transition probability is associated with a standard
eigenvalue equation

3@ = a®. (13)
J

This matrix defines the interactions between locations on the
lattice and is called the coupling matrix. The A;; are Lagrange
multipliers that define the interactions that can be seen as local
potentials that depend on some function of the spatial locations
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x;; on the lattice. For each transition matrix (11) there is a
unique stationary distribution associated with each path &

ut =[]’ (14)

that satisfies

k k o0
=3 P ply) (15)
J

the first of which, (!, corresponds to the maximum entropy
stationary distribution. Considering only (!, note that if the
Lagrange multipliers take the form

0, Ay 1
Az-j:{oo’ ;sQij:eA”:{O (16)

then @ becomes simply an adjacency matrix, the single max-
imum entropy distribution constructed from this adjacency
matrix is maximum entropy random walk [42]. However, one
major significance of the ESP theory to the present problem is
that is ranks multiple paths, and these paths can be constructed
from arbitrary coupling schemes through @;;. For each of
the stationary distributions is associated a path related to the
localization of information related to the eigenstructure of the
disordered lattice. The key feature is that the /ocal transition
probabilities between nodes depend on the global structure of
the graph through the eigenvectors 1(*). In practical appli-
cations, the lattice can be described in terms of n pathways
constructed from the first n eigenvectors of the potential matrix
(in decreasing order of the eigenvalues).

We emphasize that we do not presume to be explicitly mod-
eling the diffusion over the paths, since we know that the diffu-
sion length over the typical time-scale of a DWI experiment is
typically far smaller than a voxel dimensions. Rather, this pro-
cedure is viewed as one of estimation and thus the construction
of the ranked maximum entropy paths—those that are most un-
biased with respect to the measured data and the prior infor-
mation (the lattice couplings) while satisfying the initial and/or
final conditions. In this view the problem is one of estimating
the global connectivity from the local diffusion characteristics.

connected
not connected

B. Multiple Scale Coupling

The estimation of the local and global tissue structure over
multiple scales using DW-MRI data can be investigated within
the ESP framework by viewing the data as measurements on a
3-D lattice in which each voxel is ascribed a “potential” that is
related to its coupling with neighboring voxels. An important
feature of the ESP theory is that this potential is very general in
form. This is critical to its application in the current problem.
While it was shown for a binary coupling (i.e., wherein the cou-
pling matrix reduced to the adjacency matrix with 0/1 elements)
[34], in the current problem we will incorporate a strength of
coupling that reflects the local interaction of voxel data. In order
to do this we first symmetrize the spin density function

Qij(ri, £)= Qji(r, £)
1

=5 1Q(ri, (ri—73)0)+Q (rj: (ry =) ()] (A7)
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where £ represents the dimensionless ratio of scales of dynamic
displacement R to the spatial (voxel) scales r, and, then sum all
relevant scales included in the spin density function Q(r, R) by
the dependence on the dynamic displacement R

en)ax
@i;‘ = @ji = /2 Qij(ri,g)dé (18)

min

Here, we used a symmetric input from voxels 7 and j by taking
the line integral of the spin density function Q(r, R;) along the
direction By = r; — r; between those voxels and take into
account only a subset of spatial scales that can contribute to
this interaction (from £;, to fax). Since the typical scales
for the voxel coordinate = in current diffusion weighted MR
experiments are much larger then the scales for the dynamic
displacement R (20 x versus 1 mm), the coupling can be limited
to nearest neighbor effects taklng Cmin = 0 and fp = 00 tO
calculate a coupling potential Q
We would like to emphasize, that in nearest neighbor cou-
pling evaluation [(18)] we do not use solid angle integration.
The appropriate choice of filters and order of angular resolution
in the SWD allows us to replace the costly integration of ge-
ometrically complex coupling between noisy multiple peaked
dODF from neighboring voxels with the fast and simple line in-
tegration across all radial scales.
This form of the coupling potential is then used in (13) to
obtain the relevant eigenvalues and eigenvectors
> 95 v
J

= nut. (19)

The kth eigenvalue and eigenvector can be used to generate the
transition probabilities [(11)] but in addition we also generate
the scale dependent transition probabilities

sz (ru ) ¢(k

T (20)

Pijk(ri,£) =

that will be equal to the total transition probability F;; when
integrated over all scales £. As those probabilities only describe
transitions between nearest neighbors they can be expressed as
a scale dependent function P (r, R). We will also generate the
equilibrium probabilities p*¥) = [14(%)]2.

As a concluding remark to this section, we would like to reit-
erate that the general problem of tractography is necessarily one
of multiple scales because the local diffusion occurs on the mi-
croscale and the tracts are on a macroscale. The entire point of
our approach is that it enables a characterization of the problem
in terms of information at these multiple scales.

C. Generation of Optimal Paths

Our goal is either to construct a pathway between an ini-
tial spatial location ¢ and a final spatial location b or to trace
a pathway incrementally starting from an initial location a. In
both cases we are interested in “the most probable” pathways,
i.e., we would like to constrain our local search by the global
entropy structure. Therefore, our interest is not in the final equi-
librium distribution £+* but in the pathway to it. We are therefore
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interested in the dynamics of the probability and want to com-
pute the path that maximizes the entropy at each step, and thus
results in the final (equilibrium) distribution x* at time 7.

The scale dependent transition and equilibrium probabilities
obtained in the previous section can naturally define the global
entropy field that shapes the flow of information and allow
finding optimal paths. In the limit of long pathway lengths (or
large time 7) and under the Markovian assumption, the rate of
entropy change Sy (r;) can be expressed at each location r; as
[44], [45]

= PN Pij(ri, OnPij(ri ). (21)
P 7

The most straight forward way to include this multi scale struc-
ture of the global entropy field is by taking into account that the
conservation of probability in general includes not only the dif-
fusive component (as for example used by [30] for obtaining the
expression of EAP in single mode homogeneous self-diffusion),
but also has the convective part [34]-[36]

P +V-(LPVS)=V-DVP (22)

here P is the probability, S is the entropy, and L and D are
coefficients (in general either tensors or functions of the coor-
dinates) that characterize local convective and diffusive scales
(L = &D). This Fokker-Planck equation, with the potential
equal to the entropy, connects the global structure of the prob-
ability with the local structure of the lattice through the local
structure of the entropy.

The current state-of-the-art approaches used for fiber tractog-
raphy in DTI/DWI data require splitting this problem in two
parts: first, obtain the EAP from the diffusion only subsystem,

0P =Vg-DVgP (23)

and second, solve the convective part (averaged over all the dy-
namic displacement scales R)

/ [0,P + V- (LPV,8)] dR = 0 (24)
by simple local tracing of one (DTI) or several (DWI) principal
fiber directions. Unfortunately, this decoupling results in only
the local diffusion information derived from EAP being used at
the fiber tracking stage

To illustrate this point, we will first assume the entropy gra-
dient fixed and will show how it leads to the current tractog-
raphy. In this case the convective part of (22) in the eikonal ap-
proximation provides a simple expression for the Hamiltonian
H(w, k, r)—the function of canonical coordinates that defines
the dynamics. (For mechanical systems this function is simply
the total energy, which is conserved in motion. For more com-
plex systems it does not necessarily corresponds to energy, but
still describes conservation laws of the system)

H(w, k,r) = VLR/ [~w? + (k- LVS)*| dR  (25)

where an input from all dynamic displacement scales is in-
cluded, as formally both L and S may depend on both R and r
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Finding the characteristics (or rays) of (22) will describe how
the signals propagate and can be accomplished by integrating
a set of ordinary differential equations of the Hamilton-Jacobi

type

dr oM dk oM

dt 9k’ dt ar’

The current fiber tractography methods in general do not em-
phasize or discuss the notion of global entropy, but implicitly
assume the local behavior of the entropy gradient, directing it
along some of the major axes of the local diffusion/convection
tensor L = kD, i.e., V.S = 4, where % is the eigenvector of L -
2 = M. Under the assumption of scale independent diffusion
[i.e., D{r, R) = D(r)] the Hamiltonian (25) then becomes

(26)

H(w, k,r) = —w? + A\ (k- 9)? (27)

and the ray tracing equation simplifies to the following form:

dr O0H 2

7k 224 k- = .
Ignoring the spatial dependence of the diffusion propagator (i.e.,
C = const) this equation is exactly in the form of Frenet equa-
tion commonly used for fiber tracking [3]. Thus, the current fiber
tractography can be regarded as a fixed scale and spatially ho-
mogeneous limit of the more general Fokker-Plank formalism
[(22)].

To develop a more general entropy based tractography sev-
eral assumptions will be made. First, only solutions with the
high enough probability will be considered, i.c., it will be as-
sumed that in the region of interest the probabilities are suf-
ficiently close to 1, so that it is possible to linearize both the
probability and the entropy as

(28)

P:P0+P1, S:S()—FSl:SO*(l—’-lHP())Pl (29)
where Sy = —F; In P, and the scale dependent transition prob-
ability P, (r, R) [(20)] can be substituted for P,. Second, it is
assumed that P is a small correction to the equilibrium prob-
ability (i.e., P < Fy). The linearized convective part of (22)
can then be written

Third, use of the scale dependent transition probability P(r,
R) for P, allows us to omit L in these expressions, as the diffu-
sion anisotropy is already included in ESP calculations of P(r,
R) from the spin density function Q(r, R) obtained with the
spherical wave decomposition using (8) and (9). Fourth, no time
dependence is assumed to be present in Py as it is time sta-
tionary, hence 9; Py = 0. Fifth, we also have omitted the last
term V - DV P; from the (22) as it will not appear in eikonal
approximation used for obtaining the ray tracing equations.
Equation (30) is a linear inhomogeneous hyperbolic equa-
tion, hence it has traveling wave solutions propagating along
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the characteristics. In order to formally find those characteris-
tics we will assume a plane wave solution for P; [39], [46] in
the form

Pi(r,R,t) = A(r, R, 1)’

U(r,t)=k r—uwt 31

and then obtain a more general expression for the Hamiltonian
as

H(w, kyr) = — /[—w2+(k-X)2+(Y(k-k)—Z)Q]dR (32)

Vr
where X = VP(24+1InPy)+ V(Py(1+1nR)), Y = Py(1+
InPy), Z =V -VP(2+ InP,), and, again we averaged over
all dynamic displacement scales.

Hence, taking into account the global entropy gradient as well
as the scale dependence of the diffusion coefficient, the fiber
tracking in the geometrical optics limit can be represented in
more general form, using (26) and (32), as

dr 2
pri [X(k-X)+2kY (Y|k|> — Z)] dR (33)
k2
at Ve
~/[(k-X)V(k~X)—s—(lk\QYfZ)(\kFVYfVZ)} dR.
(34)

The first equation [(33)] traces the characteristics (rays) of the
convective part of the original Fokker-Plank equation [(22)]
under the influence of a local diffusion coupled with a global
entropy gradient. This coupling is locally described by a vector
X. A second term (with 2kY") provides some smoothing by
adding “a push” in the direction of the wave vector k. It also
ensures that in voxels with isotropic diffusion (or with many
fibers of different directions crossing) and without a global en-
tropy gradient the ray will continue following this & direction. In
the second equation [(34)] the spatial gradients are responsible
for a change of the wave vector & direction and magnitude.

A schematic illustration of differences between traditional
fiber tracking and geometrical optics-like tracking is shown in
Fig. 1. The traditional approach defines tracts by integration of
position-only function 4, that assigns the tangential direction of
tracts to each location r. For the geometrical optics approach,
the integration takes into account both the orientation and mul-
tiple scales, through the dependence of % on directional angle
k/|k| and magnitude |k|.

IV. RESULTS

To evaluate practical aspects and performance of ESP guided
fiber tractography we used our method to process several mul-
tiple shell multiple angle diffusion weighted MRI datasets ac-
quired using either realistic MR phantom or real brain samples.

A practical realization of the method used in all of the exper-
iments includes several stages that were implemented in C++
with multithreading (using pthread libraries) and runs both on
Linux and Mac OS X. The ESP framework uses our spherical
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Fig. 1. Schematic illustration of (a) traditional fiber tracking based on integration of a single Frenet equation versus (b) fiber tracking that uses the geometrical
optics analogy. (a) In the first case the fiber orientation vector 4 only depends on spatial location 7, hence, even at location of fiber crossing only single the most
important fiber can be followed (point ro uniquely selects single family of fibers oriented along #(rs)). (b) Geometrical optics approach automatically includes
dependence of 4 on both orientation k/|k| and scale | k|, hence it can effectively proceed through difficult areas of crossings of multiple fibers (the choice of fiber
direction at point g depends on the value of the parameter k, with k; selecting the same fiber direction as in (a), and k2 corresponding to the alternative crossing

family of fibers).

wave decomposition approach (SWD) [37] based on the fast
Fourier and on the fast spherical Bessel transforms. The tracking
algorithm uses the standard fourth order Runge-Kutta integra-
tion applied to six dimensional (r, k) space.

The high resolution full brain tractography processing of
typical 140 x 140 x 96 diffusion weighted MRI volume with
four shells of 552 g-vectors using Intel Core 17-4930 K six
cores (twelve threads) 3.40 GHz CPU produces around 190 K
fiber tracts in 15 min. The spherical wave decomposion part
of processing takes six minutes for obtaining 600 spherical
wave modes at each voxel using Ly,,x (or spherical harmonics
order) of 10, and Ny,,x (or spherical Bessels order) of 6. The
tractography part uses full 140 x 140 x 96 spatial grid and 7
x 7 x 7 resampled k-grid and outputs ~ 190 K of fiber tracts
in under 9 min. The medium resolution full brain processing
produces ~ 90 K tracts in 5 min, with the ESP stage taking
around 3 min.

The first dataset is the well-known “fiber cup” MR phantom
extensively used for testing and performance evaluation of
various fiber tractography approaches [47]. The phantom
consists of seven fiber bundles confined in a single plane by
squeezing them in between two solid disks. Diffusion-weighted
image data of the phantom was acquired on the 3T Tim
Trio MRI system with 3 mm isotropic resolution on 64 x 64
x 3 spatial grid. Three diffusion sensitizations (at b-values
b = 650/1500/2000 s/mm?) were collected two times for 64
different diffusion gradients uniformly distributed over a unit
sphere. Several baseline (b = 0) images were also recorded
[47].

Our initial stage of processing includes restoration of the
spin density function Q(r, R) using (8) and (9) from Section IL.
The spin density function is then used to generate symmetric
scale integrated input to the coupling potential with (17) and

(18). Eigenvectors and eigenvalues of the coupling potential
then used for obtaining the transition probabilities using (11).

We included one of the baseline images of the fiber cup
phantom in Fig. 2(a) to emphasize an interesting and important
feature of the ESP approach. The baseline image (as well as
other diffusion weighted images not shown here) clearly shows
bright artifacts at the interface boundaries of the disks used for
phantom manufacturing. The overall effects of these artifacts
are significant with the brightest spots located either at the very
ends of the fiber bundles where they are cut by the disks or even
at the circular boundary of the disks themselves. The expanded
version of one of these areas is shown in Fig. 2(d).

The currently standard analyses that are based on the maps
of the apparent diffusion coefficient (ADC) and the fractional
anisotropy (FA) (available in Fig. 2 of [47]) also favor those re-
gions by assigning higher anisotropy and diffusion values. As
a result many of the current streamline tracing tractography ap-
proaches do not see the actual ends of the fiber bundles and con-
tinue tracts through the circular disks interfaces.

But the transition probability map shown in Fig. 2(b) that
was generated by the ESP clearly emphasizes the separation
between the fiber bundles and the circular disk interface [with
the same area enlarged in Fig. 2(e)]. Using simple thresholding
[Fig. 2(c) and (f)] allows identification of the ends for all of
the fiber bundles. What is equally important is that ESP cor-
rectly restores the contrast that has been lost at the crossing fiber
areas that can clearly be seen in b0 as well as in the diffusion
weighted images for different gradient directions. As previously
mentioned, this helps the geometrical optics algorithm to find
the correct continuation of rays in voxels with isotropic diffu-
sion (or with many fibers of different directions crossing).

The local samples of multiple scales of the transition proba-
bilities calculated by the ESP method are presented in Fig. 3.
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Fig. 2. Central horizontal 64 x 64 slice of 64 x 64 x 3 MR fiber cup phantom [47]; (a) one of the baseline b = 0 images and (d) the expanded version of the
white square area clearly showing strong signal at the fiber end and at the circular disc interface; (b) the map of the largest ESP transition probability values with
(e) the enlargement of the same area showing the resolution of the fiber end; (c) and (f) the map of equilibrium probability distribution (1£* = [¢(1?]?) thresholded
at 0.45 with perfect identification of all fiber ends and overall area occupied by fiber bundles.

One of the crossing fiber areas, enlarged in the right panel,
clearly shows existence of different fiber directions in different
scales of the transition probabilities.

We would like to stress two important aspects of our method.
First, Fig. 3 shows the multi-scale transition probabilities [as
expressed by (20)] rather than the EAP (or dPDF). The transi-
tion probabilities were derived not just from the local diffusion
(used in EAP/dPDF). It also takes into account the nonlocal cou-
pling between voxels by calculating the global eigenmodes and
updating the probabilities according to the structure of the cor-
responding global eigenvectors. In this respect, the transition
probabilities are more fundamental quantities than the locally
derived EAPs or dPDFs.

Second, the use of multiple scales enables the geometrical
optics-like approach presented here to find the correct path
even when the angular resolution is relatively low. To illustrate
this fact we included in Fig. 4 two possible tracking sce-
narios, (a) using just single scale transition probabilities, and
(b) with transition probabilities that include multiple scales.
The single scale tracking finds only one bundle of fibers, and
either breaks the second set of fibers or wrongly connects
it to the first bundle. But with multiple scale transitional
probabilities, the second set of fibers is found correctly with
the geometrical optics-like tracking even at this relatively
low angular resolution.

Utilization of high angular resolution locally (in an isolated
voxel) and without the incorporation of multiple scales and
global connectivity does not necessarily guarantee detection
of crossing fibers. For example, it is not possible to detect the
second direction of fibers in an EAP-like function [Fig. 4(c)]
of a single voxel from the crossing area of Fig. 3(b). This
EAP-like map was obtained from single voxel diffusion data
using the original shell of 60 direction g-values with high
angular resolution 72 mode spherical harmonics expansion.
Importantly, our approach using multi scale transition probabil-
ities and global connectivity information can identify crossings
from significantly lower angular and radial resolution.

A direct comparison with the fiber cup results is shown in
Fig. 5(a). Several possible fiber tracts obtained by integrating
the equations of geometrical optics rays for Fokker-Plank for-
malism [(33) and (34)] are displayed. The phantom includes
several different types of fiber crossings (at different angles), as
well as kissings and splits/joints. To illustrate one peculiar fea-
ture of the approach based on geometrical optics we included
the blow up of one of the fiber tracts. In the boundary area
where the underlying fibers end abruptly the ray tracing algo-
rithm may produce a reflection of the ray from the interface and
proceed following the same (or neighboring) fiber backwards.
In Fig. 5(b) the reflection happens at two ends of the fiber and
results in a closed horseshoe-like loop that is being transversed
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Fig. 3. (a) Local samples of different scales of transition probabilities obtained by the ESP, with (b) blow up of the center crossing fibers area.
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Fig. 4. (a) One possible tracking through fiber crossing area shown in Fig. 3(b) using only single scale transition probabilities. With low angular resolution only
a single set of crossing fibers can be identified, and the second bundle will either be broken (or connected to the first one). (b) Tracking with multiple scales
and coupling information are used in obtaining transition probabilities. Even with this relatively low angular and radial resolution the presence of multiple scales
enables geometrical optics-like tracking through the difficult area. (¢c) A map of EAP-like function for a single voxel from the crossing area. The map was obtained
using only local diffusion data from the original shell of 60 direction g-values with high angular resolution 72 mode spherical harmonics expansion. The map shows
that even with high angular resolution only one fiber direction can be reliably identified. Our multi-scale approach incorporating global connectivity information

can reliably identify crossing in the calculated transition probabilities.

back and forth many times. Of course, we included this close-
loop tract only as an example as identifying the reflection re-
gions and cutting the fibers at these points instead of reflecting
would be a fairly easy task.

To generated fiber tracts we selected seed points [Fig. 5(d)]
by thresholding the map of the ESP equilibrium probabilities.
Using all 512 selected seed points the algorithm produced 372
total fiber tracts. All but two fiber tracts are topologically equiv-

alent to one of the seven tracts shown in Fig. 5(a). Two fiber
tracts (one red and one green) show the end points switched.
These two incorrect tracts give 0.5% false positive error rate. In
general simple post processing can remove even those two out-
liers using, for example, the total fiber tract length or the distinct
change in the fiber curvature as a source of discrimination. Also
all those fibers can be evaluated using for example Tracktometer
[48]. We will surely be using it when/if we are directly involved
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Fig. 5. (a) Several fiber tracts produced by geometrical optics ray tracing of the Fokker-Plank equation using the ESP equilibrium probability distribution shown
in Fig. 2. (b) Blow up of one of the tracts showing an interesting property of the ray tracing: the tracts reaching the fiber ends can get reflected at the boundary and
form a closed cycle repeating itself again and again. (c) All fiber tracts obtained using seeds (d) selected with single threshold from the ESP equilibrium probability
distribution. The processing of 512 total seed produced 372 fiber tracts with only two (one red and one green) incorrectly finished at the neighboring ending point.

These results correspond to slightly more than 0.5% false positive rate.

in developing, tuning, optimizing a full-fledged tractography
processing pipeline. However, the main intention or this paper
is to show the feasibility of a new tracking paradigm. Our mo-
tivation for using the FiberCup data was precisely because it
facilitates comparison of our results with previously published
results, which we have successfully demonstrated. Further de-
tailed analysis on a phantom that has a rather limited connection
to human brain data is ultimately of little importance.

For human brain ESP tractography we collected multi b-shell
multi g-angle DWI dataset on the GE MR750 3T scanner at
the UCSD Center for FMRI using a multi-band blipped-CAIPI
EPI method [49] with a GRAPPA reconstruction [50]. Each
data set was collected with both forward and reversed phase
encoding polarity in order to perform a “topup” distortion and
eddy current correction [51] using FSL [52]. The dataset con-
tains three shells at & = 1000, 2000, and 3000 s/mm?. Each
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Fig. 6. Different slices of three dimensional equilibrium probabilities z(1?, or square of the first ESP eigenvector (14) (shown by grayscale background), obtained
using diffusion weighted images of human brain with local samples of different scales of transition probabilities shown by directionally colored ellipsoids.

b-shell uses different number of g-values, with 30 angles for
b = 1000 s/mm?, 45 angles for b = 2000 s/mm?, and the
largest at 60 angles for b = 3000 s/mm?.

Several slices of three dimensional eigenvector map obtained
by the ESP solution are shown in Fig. 6. The local samples of
transition probabilities are shown by directionally colored ellip-
soids. The multi-scale structure of the ESP approach can be used
for identifying fiber crossings—it can be seen clearly in many
of these samples that different scales show different main fiber
direction.

To illustrate the practical ability of geometrical optics-like
tracking of fibers though those “difficult” areas of multiple
fibers with different orientations we generated fiber tracts for
several sets of seed points (Fig. 7) located in the areas of corpus
callosum and longitudinal fasciculus that are known to have
multiple overlaps in both inferior and fronto-occipital regions

[53]. The 135 corpus callosum seed points were grouped in
blocks of three consecutive voxels coronally and two or three
voxels vertically. In the fasciculus region two sets of seed were
selected in left and right hemispheres with 30 seeds each again
grouped in blocks by three consecutive voxels vertically and
five consecutive voxels coronally. The total number of seeds
were 195 voxels resulting in 195 distinct fiber tracts.

All the seeds were selected in mostly in the regions with
predominantly single fiber orientation. In the multi-scale ESP
guided geometrical optics-like approach, the tracking algorithm
is able to follow tracts across voxels that contain a mixture of
fibers of different orientations and select the correct path based
on the combination of local and global parameters (Fig. 7).

For a more “difficult” starting point we first have chosen sev-
eral seed voxels in the area around the splenium of the corpus
callosum and up to the internal capsule. The five fiber tracts,



1188

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 5, MAY 2015

.)\ \
?‘ l

‘_"‘
L
(

Fig. 7. Selected fiber tracts obtained by geometrical optics-like processing of ESP guided tractography, with ESP equilibrium probability distribution shown by
grayish transparent background. A subset of seed points has been used to initialize fiber tracts, with 135 seeds located in corpus callosum (arranged in blocks of three
consecutive voxels coronally and two or three voxels vertically), and two sets of 30 seeds localized in left and right hemispheres around the inferior fronto-occipital
fasciculus areas (also blocked in by three consecutive voxels vertically and five consecutive voxels coronally), giving 195 seeds total. Panels (a)—(d) corresponds
to different projections and panes (e) and (f) shows tracts with seeds in corpus callosum and fasciculus respectively. The corpus callosum originating fibers and
fibers going through longitudinal fasciculus are crossing in areas occupying multiple voxels and the ESP tractography with geometrical optics-like tracking is able

to correctly proceed through those voxels.

shown in Fig. 8, clearly demonstrate the ability of the algorithm
to detect separate fibers crossing through rather small regions at
different directions. In this figure, the fibers passing though the
chosen location include those from latero—lateral (left to right
and right to left), anterior—posterior, and dorsal-ventral. That
example shows that the multiple scales used by ESP guided ge-
ometrical optics-like approach can help resolve crossing of mul-
tiple fibers in a small area of only several voxels extent.

To study behavior of our approach in even more difficult con-
ditions, we selected a single seed voxel that is located into a re-
gion where the corticospinal tract crosses the corpus callosum.
This is a region that is well known for crossing fiber prob-
lems, and appears often in the DTI literature. Even starting with
just a single voxel seed in the “difficult” area, the multi-scale
multi-modal approach is able to find and distinguish several
fibers that go into different regions of brain (Fig. 9). For compar-
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Fig. 8. Five fiber tracts going through a small region where a mixture of different fiber orientations emphasizes different directions at different scales. Five
chosen tracts show coexistence of orientations ranging from a latero—lateral (left to right and right to left), an anterior—posterior, a dorsal-ventral direction, and a

combinations of them.

ison we included in Fig. 9 a fiber tract that should be produced
by a standard tractography approach with a single scale integra-
tion of the principal direction of the diffusion tensor (shown by
white/gray tract).

Using several seeds in the small vicinity of the single seed
voxel used in Fig. 9 gives more complicated behavior with a
bundle of fibers going in and out of the corpus callosum, a
bundle coming to/from the corticospinal tract, a bundle con-
necting anterior posterior regions, and some bundles going to
outer regions of the brain (Fig. 10).

Finally, we applied our method to one of the diffusion
imaging datasets (MGH 1010) available from the Human
Connectome Project [54]. This dataset was collected on the cus-
tomized Siemens 3T Connectom scanner, which is a modified
3T Skyra system (MAGNETOM Skyra Siemens Healthcare),
housed at the MGH/HST Athinoula A. Martinos Center for
Biomedical Imaging (see [55] for details of the scanner design
and implementation). A 64-channel, tight-fitting brain array
coil [56] was used for data acquisition. The dataset contains 96
slices of 140 x 140 matrix at four levels of diffusion sensitiza-
tions (b-values b = 1k,3 k,5 k, and 10 ks/mm?) distributed
over 552 total g-vectors.

Fig. 11 shows both anisotropy maps for the primary direc-
tions of the transition probabilities and full brain tractography
for the whole volume as well as for a selected set of slices. Fibers
cut out through set of slices in panel (d) in general show good
agreement with the primary direction of the transition proba-
bility [panel (c)], at the same time clearly indicating that many
areas with seemingly single fiber direction may contain a mix-
ture of different orientations.

V. DISCUSSION AND CONCLUSION

We have developed a novel diffusion estimation and fiber
tractography method that is based on simultaneous estimation
of global and local parameters of neural tracts from maximum
entropy principles and sorting them into a series of entropy spec-
tral pathways (ESP). The method uses local coupling between
sub-scale diffusion parameters to compute the structure of the
equilibrium probabilities that define the global information en-
tropy field and uses this global entropy to update the local prop-
erties of neural fiber tracts.

We have also developed an efficient way to trace individual
tracts that utilizes the multi-scale and multi-modal structure of
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Fig. 9. Seven fiber tracts with the same single voxel seed located in the area where the corticospinal tract crosses the corpus callosum. Geometrical optics-like
approach with different scales parameterized by the vector k& produces a latero-lateral, an anterior—posterior, a dorsal-ventral (and mixed) tracts that originate in
the same voxel. For comparison we included a fiber tact that would be traced by the standard method (shown by white/gray color) with the same voxel as a seed.

the local diffusion-convection propagation by means of an ap-
proach reminiscent of the geometrical optics ray tracing in dis-
persive media (either elastic or viscoelastic). This geometrical
optics-like approach naturally includes multiple scales that al-
lows fiber tracing to continue fibers through voxels with com-
plex local diffusion properties where multiple fiber directions
are unable to be adequately resolved.

One of the most important aspects of our method is that it
is “global” in the sense that data from spatially extended brain
structures are being used to inform both the local diffusion and
generation of tracts. The typical workflow of majority of other
global algorithms used in tractography, including algorithms
based on the well known shortest-path algorithm on graphs by
Dijkstra [57]-[60], represent the brain as a graph, where each
voxel is a node, in which they have a local estimation of the
diffusion process that they use as a speed function to guide a
front evolution evolving from a seed point. Then, the geodesic
or shortest-path between this point and any other location in
the brain can be easily computed with backtracking. While
there might appear to be similarities with our method, we point
out that both the theoretical foundations and the numerical
implementation for our approach are quite different from these
schemes. It is important to realize that our method does not
represent the brain as a graph. Rather, only nearest neighbor

coupling has been used. However, as we have shown in [34],
this is sufficient to produce long-range correlations. The local
estimation of the diffusion process is not used as a speed
function. Rather, the prior coupling is used to find the global
eigenvalues/vectors, rank those information pathways based on
a maximum entropy, and spread this global information about
pathways to every voxel. This global information we use in
every voxel is more than just an analog of a locally inferred
speed function—it is more akin to a dispersion of fibers. For
each voxel this function includes both angular and radial (scale)
distributions obtained as a collective effect of all fibers that
cross in a single voxel.

Our tracking process, although it might appear to look like a
front evolution, is not. Our approach does not need an explicit
front evolution step at all. The eigensystem calculation of the
connectivity matrix provides more complete and accurate path
information, than is available from the typical front evolution
methods, and does more efficiently. Our tracking is performed
in 6 dimensional coordinate and momentum space. Not only is
the position of each fiber updated on each step, but a momentum
equation is used to update the local fiber orientation as well as a
rate of orientation change based on a globally constructed dis-
tribution/dispersion of fibers. All the current tracking algorithm,
including the shortest-path algorithms [58]-[60], only update
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Fig. 10. Several bundles of fiber tracts obtained when seeded by several voxels in the vicinity of a single seed voxel used in the previous Fig. 9. Panels (a)—(c)
show coronal, sagittal and axial planes, panel (d) shows 3-D view and panels (e) and (f) show different projections of zoomed area with fibers grouped in going
from/to corpus callosum (blue), coming to/from the corticospinal tract (red), and longitudinal fibers (green).

a position of fiber assuming its orientation defined by static
(fixed at each voxel position) speed function.

Although we presented here both the theoretical foundation
and a number of practical examples that characterize perfor-
mance and accuracy of our approach, the main limitation of the
method and of the overall study is the lack of a system wide anal-
ysis of a role of different parameters that can be updated both
during data acquisition and during reconstruction stages on the

optimality of diffusion estimates as well as on the overall trac-
tography results.

It is important to reiterate that we have formulated the anal-
ysis problem in this paper as one of inference where the goal
is to make the most accurate estimates of both the local diffu-
sion and the extended fiber tracts based only upon the available
data and any relevant prior information. This is just the logic of
probability theory [61] and the theoretical basis for our method
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Fig. 11. Results of full brain ESP tractography obtained using the Human Connectome Project diffusion imaging dataset (MGH 1010). Panel (a) shows anisotropy
maps for primary direction of the transition probabilities for the whole volume and panel (b) shows full brain tractography also for the whole volume. Panel (c)

and (d) provide detailed views of for a set of slices (46 < z < 51).

is a probabilistic analysis of information flow in a lattice [34].
The key result of that paper is that local coupling information
provides significant information about global pathways, which
thus forms the important connection between local phenomena
(diffusion) and global structures (fiber tracts). Moreover, the dy-
namics of how local effects inform global structures was shown
to be characterized by a Fokker-Planck equation with a poten-
tial equal to the entropy [34], a formulation that had previously
been put forth in a general theoretical framework [35], [36], but
here finds a very practical manifestation, as it facilitates a geo-
metric-optics tractography scheme where the relationship be-
tween the local diffusion measurements and the global fiber tract
structure is made explicit.

Perhaps the most important result of our analysis is that the
connection between the local and the global properties of the
diffusion field are mediated by the transition probability, which
emerges as a more fundamental quantity than the traditional dif-
fusion PDF. In effect, our approach makes explicit a fact that is
often implicitly assumed in diffusion analysis papers but rarely
explicitly addressed: There is a fundamental logical flaw in es-
timating the local diffusion as if it were taking place in indepen-
dent, isolated voxels, but then using it to generate connections
between voxels based on their assumed dependence. Our for-
mulation naturally incorporates the continuum of spatial scales,
from local to global, and avoids unnecessary arguments related
to the fact that the actual diffusion is occurring on a scale much

smaller than the measurement process, and thus far smaller than
the scale of the fiber structures, since we are only requiring that
our macroscopic predictions from microscopic phenomena are
consistent with our data and prior information.

This method has potential significance for a wide range of
applications that employ diffusion weighted imaging, including
studies of brain connectivity.
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