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ABSTRACT: We present a systematic framework to derive
model-based simultaneous strategies for the integration of
scheduling and control via multiparametric programming. We
develop offline maps of optimal scheduling actions accounting
for the closed-loop dynamics of the process through a
surrogate model formulation that incorporates the inherent
behavior of the control scheme. The surrogate model is
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designed to translate the long-term scheduling decisions to time varying set points and operating modes in the time scale of the
controller. The continuous and binary scheduling decisions are explicitly taken into account in the multiparametric model
predictive controllers. We showcase the framework on a stand-alone three-product continuous stirred tank reactor, and two

reactors operating in parallel.

1. INTRODUCTION

The traditional approach to assess the multiscale operational
activities sequentially often leads to suboptimal solutions as
each problem dictates different, and sometimes conflicting,
objectives. The most recent advances in the field of operational
research and the rapid reduction in the cost of computer
hardware have enabled the integration of multiscale decision
making mechanisms.' > Production scheduling and process
control are two layers in the process operations that are highly
dependent due to the volume of reciprocal information flow.
Typically, the process schedule coordinates the production
sequence, production times, and inventory levels based on the
market dynamics. Process control, on the other hand, delivers
the production targets with the existence of operational
uncertainty, measured/unmeasured process disturbances, and
plant—model mismatch. These layers are typically addressed
independently and sequentially due to the hierarchical nature of
the underlying problems. The isolation between the decisions
from different layers can result in suboptimal, or even infeasible
0})er:1tions.4’5

Individual assessment of the scheduling and control
problems requires some assumptions that neglect the dynamics
introduced by their complements. The scheduling problem
utilizes static tables comprising the process time constants for
the transitions between the operating modes of the system.
These time constants are typically obtained by exhaustive
closed-loop simulations conducted offline. Consequently, the
static tables fail to represent the closed-loop dynamics of the
system due to the lack of an underlying high-fidelity model.*”

A simultaneous approach for process scheduling and control
reconstructs the two problems as a unified problem. The
reformulated problem takes into account the degrees of
freedom of the two subproblems simultaneously, leading to
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an augmented feasible space. This allows the chemical plant to
respond to rapidly changing market conditions while
maintaining feasible and profitable operation. These changes
include but are not limited to the market demand, price, and
the spectrum and specifications regarding the products
manufactured in the chemical plant. Furthermore, ﬂuctuatin%
operating costs require flexibility in the process scheduling.”
Therefore, a chemical process needs integrated decisions that
enable higher adaptability and operability to remain competitive
in the market.® There have been some attempts over the years
to tackle the two aspects of operational optimization in an
integrated framework. An indicative list of these contributions
is presented in Table 1.

Over two decades of academic literature on integrated
approaches for the process scheduling and control problem has
focused on a systematic methodology to overcome the
following fundamental challenges:*’

(i) Discrepancies in objectives: The schedule and control
formulations are designed to deliver specialized tasks in a
process. The former aims to bring profitable operation by
taking into account the operational aspects such as the
process economics, raw material, and equipment
availability, and product specifications; while the latter
involves real-time manipulation of select process
variables to meet the targeted product specifications.
These scheduling and control goals are not always
aligned and frequently require the compromise of one of
their respective objectives.
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Table 1. Scheduling and Control in the Literature: An Indicative List

author (year)

Grossmann and co-workers (2006a, 2006b, 2007, 2010, 2011, 2012, 2014),”*~** Gudi and co-workers (2010),"* Biegler

and co-workers (2012, 2015),16’1 You and co-workers (2013)"®

Pistikopoulos and co-workers (2003a, 2003b),'”*° You and co-workers (2012)*

Allcock and co-workers (2002),> Espufia and co-workers (2013),” Baldea and co-workers (2014, 2015)%**

Biegler and co-workers (1996),> Barton and co-workers 1(999),7‘6 Nystrom and co-workers (2005),”” Marquardt and co-
workers (2008),>® Terapetritou and co-workers (2012),”” You and co-workers (2013)"®

Puigjaner and co-workers (1995),* Pistikopoulos and co-workers (2013, 2014, 2016),*"** Rawlings and co-workers

(2012, 2013)**

Marquardt and co-workers (2011),35 Pistikopoulos and co-workers (2016, 2017, 2017),3”3’6'37 Ierapetritou and co-workers

(2016)**

Reklaitis and co-workers (1999),% Floudas and co-workers (2004, 2007),*>*" Ricardez-Sandoval and co-workers (2015,

2017),** You and co-workers (2015)**

Reklaitis and co-workers (1996),* Floudas and co-workers (2004),*° Grossmann (2005),' Nystrom and co-workers
(2009),* Engell and Harjunkoski (2012),* Baldea and co-workers (2014), You and co-workers (2015),** Ierapetritou

and co-workers (2016)*

contribution

simultaneous/decomposition (MI)DO or
(MI)NLP and open-loop optimal
control

simultaneous/decomposition (MI)DO
schedule and P—PI-PID control

simultaneous/decomposition algorithms
using control/dynamics aware
scheduling models

simultaneous/decomposition algorithms
via (MI)DO reformulation to (MI)NLP

control theory in scheduling problems

advanced control and (MI)NLP
scheduling schemes

scheduling under uncertainty

review articles on scheduling and control
and metholodogies

(ii) Discrepancies in time-scales: A typical control horizon
varies between seconds and minutes, whereas the
scheduling horizon is on the order of hours or weeks.
Therefore, integration of the two distinct problems into a
unified formulation creates a large scale, stiff system due
to the order of magnitude differences in their respective
time scales.”*” Following direct solution approaches for
the reformulated unified problem has been shown to be
computationally intractable."”

In this study, we propose a surrogate model formulation that
bridges the inherent gap between the schedule and control
formulations. The surrogate model is designed to translate the
fast closed-loop dynamics to the slower scheduling dynamics,
while providing corrective time varying targets for the
controller. We utilize the reactive scheduling approach
introduced by Subramanian et al,*® and adapted in a
multiparametric framework by Kopanos and Pistikopoulos,*”
formulating a state-space representation that is implemented in
a rolling horizon framework. This formulation is solved once
and offline via multiparametric programming techniques,
deriving optimal scheduling decisions as affine functions of
the product demand scenarios. The derivation of the
controllers, on the other hand, is adapted from the PARametric
Optimization and Control (PAROC) framework,* which
provides a systematic methodology to design advanced
model-based controllers via multiparametric programming.
The framework is tailored to account for the scheduling
decisions explicitly.

The remainder of the paper is organized as follows. The
proposed methodology to derive an integrated process schedule
and control is described in section 2 in detail and showcased on
a three product CSTR, and two CSTRs in parallel in section 3.
The concluding remarks on the application of the framework
and the future directions to extend its implementation is
provided in section 4.

2. INTEGRATION OF CONTROL AND SCHEDULING
VIA PAROC

2.1. Problem Definition. The following generalized
problem definition presents the long-term (schedule) and
short-term (control) objectives simultaneously.
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(i) Given: a dynamic model of the system of interest,
process constraints regarding the safety issues and
product specifications, unit cost for inventory, a scenario
of the market conditions.

(ii) Determine: production sequence, target production rate,
optimal control actions to achieve the target production
rate.

(iii) Objective: minimize the total cost comprising the
inventory, transition, and raw material costs.

We propose a systematic framework that features the

following:

e a single high fidelity model based on which we seek to

derive an integrated scheduling and control scheme

a scheduling scheme, aware of the short-term dynamics
a control scheme, aware of the longer term scheduling/
operational decisions

an offline map of optimal short-term and long-term
operational actions

2.2. Problem Formulation. The problem defined in

section 2.1 is represented with a generalized mathematical
model in the form of a MIDO problem.*

min | =

P(x,y,u,S,Y,d)dt
u,S,Y 0

d
t —x=f(x,u,S,Y,d
s dtx f(x, u )

ymin S y= g(xl u, S, Y; d) S yma.x

h(x, S8,Y, d) < Uy

m(x,y,Y,d) <S,..

Y € {o, 1}

[xrzin? drzin]T < [xT) dT]T < [xrzax! dn];ax]T (1)
where x stands for the states of the system, y is the system
outputs, u is the optimal control actions, S and Y are the
continuous and binary scheduling decisions respectively, d is
the measured disturbances to the system and the market
conditions, P is the objective function of the system accounting
for the short-term and long-term operational costs, f and g are

the first principle system equations, and h and m are the
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Figure 1. (a) The steps of the PAROC framework;*® (b) proposed methodology to derive integrated schedule and control (adapted from ref 36).

Actions within the gray area happen once and offline.

optimal control and scheduling actions. On the basis of the
problem definition stated in section 2.1, (i) we are given the
process model f and g, operational cost function P, a scenario of
the market conditions d° C d, and operational upper (-),,., and
lower (+),;, bounds, and (ii) we aim to determine the
production sequence Y, target production rate S, and control
actions u (jii) that minimize the operational costs over a time
horizon.

Equation 1 typically describes a nonlinear and nonconvex
problem that requires simplifying assumptions or advanced
decomposition techniques. The fundamental complexity of this
class of problems stems from (i) the computational cost of the
integration of short-term regulatory control decisions with
relatively longer time horizons, and (ii) incorporating economic
considerations in short-term decisions.

In this work, we propose the use of the PAROC framework*®
to decompose the overall problem into two main steps. The
proposed methodology consists of (i) acquiring scheduling
dependent explicit control schemes and (ii) developing long-
term scheduling strategies based on the high fidelity process
model featuring the control scheme derived in the first step.

2.3. The PAROC Framework and Software Platform.
The PAROC framework provides a comprehensive environ-
ment to design chemical processes, to build controllers, and to
perform parameter estimation based on high-fidelity models
benefiting from the most recent advances in the field of
multiparametric prograrnming.48 In our previous work®® we
have presented the applicability of this framework on the
integration of process design and control. In this study, we
provide a generic methodology to apply PAROC to carry out
short-term and long-term operational optimization simulta-
neously.

The first step of the proposed method is to acquire a
mathematical model “high-fidelity” to describe the system of
interest with sufficient accuracy. These models are typically very
large in size and/or complex in nature, rendering it difficult to
apply an advanced optimization algorithm. Therefore, the
original mathematical model is approximated or reduced in size
via the existing algorithms in the literature. Note that the
approximate model features the scheduling aspects of the
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system as additional dimensions in order to generate a
schedule-aware control scheme. A model predictive control
(MPC) scheme is constructed using the approximate model,
and solved multiparametrically (mpMPC) to generate offline
maps of optimal control actions. These maps are embedded
into the original mathematical model, and a control-aware
approximate model is derived to describe the closed-loop
behavior of the system. The resulting model is used to derive
offline maps of (i) long-term decisions regarding the opera-
tional feasibility and profitability and (ii) a surrogate model to
bridge the gap between the short-term and long-term decisions.
The oftline maps are validated against the “high-fidelity” model
used in the first step. A schematic representation of the
proposed methodology is presented in Figure 1. The closed-
loop implementation of the framework and the fundamental
interactions between different layers of models for the
integration of schedule and control are depicted in Figure 2.

Note the following advantages of solving the multiparametric
counterparts of the schedule, control, and time scale bridging
surrogate model:

e Offline maps of optimal operations at both long and

short terms are acquired as explicit expressions.

Demand Scenario

!

Scheduling Problem
(mpMILP & mpQP)

Discrete 4 Control Setpoints
Decisions Wy v & Feedback

Control Schemes

>
>
Measurements (mpMPC)

High-Fidelity Model

A

Optimal Action

Figure 2. Schematic representation of the simultaneous scheduling
and control (adapted from ref 36).
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e Online computational time for the optimal control
problem is reduced to a simple look-up table algorithm
and evaluation of an affine function. Such significant
reduction enables the application of the framework to
systems with fast dynamics.

The offline maps of solutions can allow for the
integration of the design of the process/equipment
with the schedule and control in a dynamic optimization
framework.

Following are the fundamental steps of PAROC in further
detail, tailored specific to the needs of the simultaneous
scheduling and control problem.

Designing Schedule-Aware Controller. Step 1: “High-
fidelity” dynamic modeling. A rigorous and robust model
based on first-principles, typically differential algebraic equa-
tions (DAEs) or partial differential algebraic equations
(PDAESs), is used to simulate the dynamics of the system. In
this work, we use the gPROMS environment to construct the
model, as described with a general representation in eq 2.

%x(t) = f(x(t), u(t), S(t), Y(t), d(t), t)
}/(t) = g('x(t); u(t)r S(t>) Y(t)r d(t)) t) )

where S(t) is a generic expression that encompasses the set
points on the outputs, y**(t), set points on the inputs, u5"(t),
and the degrees of freedom of the system that is determined by
the scheduler and unavailable to the controller Sc(t).

Step 2: Model approximation: The high-fidelity model
designed in Step 1 usually comprises highly nonlinear and
nonconvex terms that render the practice of advanced control
algorithms quite challenging. Therefore, we appeal to system
identification or model reduction techniques to approximate
the model formulation with a discrete time affine state space
representation. In this work, the model approximation is
performed via the MATLAB System Identification Toolbox
yielding the state space representation in eq 3. Note that the
system identification techniques may or may not preserve the
physical meanings of the original states in eq 2.

s = Al + Bluy + Cd], s !

N T o T
j, =D%x! + E%u, + F*.[d,, Sc] 3)
where index f, indicates the discrete time steps sampled in
control scale, superscript q denotes the index of the linear
model, and j is the output predicted by the approximate model.
Note that the states x{ can be concatenated into a single vector,

X

Equation 3 is a generalized reduced expression that
represents the dynamics between the manipulated inputs,
measured disturbances, and outputs of the system. Note that
the reduced model also features the degrees of freedom of the
system that may be fixed by the scheduler and unavailable to

the controller, Sc,.

The validity of the approximate model is essential for the
closed loop performance of the system. The approximate model
is considered acceptable if (i) it yields a good fit against an
input—output test set, (ii) the cross-correlation between the
inputs and the residual outputs is within the confidence
intervals, (iii) it is open loop stable within the range of inputs,
and (iv) no single pole is canceled by a zero to satisfy the
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necessary and sufficient condition of controllability. In the case
of an inadequate representation of the high fidelity model, the
number of piecewise models can be incremented at the expense
of increasing the computational time to derive the control
strategies in the next step.

Step 3: Design of the multiparametric model predictive
controller (mpMPC). The state space model given in eq 3 is
used to build a mpMPC following the procedure described in
our previous work.”**>! Note that the mpMPC is aware of the
scheduling level decisions since the state space model
incorporates them as measured disturbances. Equation 4
describes the general form of the mpMPC formulation used
in this work.

N-1
min J(0) = x}\;chNt + Z xtCTthtc

e, t=1
N-1
SPA\T sp
2 0 = 3RG, - )
t=1
M1
Z (“fc - ufP)Tth(utE - u[jp)
=0
M,—1

Y, Au'R1, Au,

=0

+

+

st x4 =Ax + Bu, + C~[dtcT, SCZ]T

J, = Dx, + Eouy + F-[dtcT, ch]T

=5 te
€= V=0 ~ )A'tczo
0=

T T T T SPN\T SP\T T T T
[xt‘=01 utﬁ:—l) dt‘=0' SCt‘, (ytc ) » (utu ] Yt‘ ) ytczo]

xmin,tc < xtc < xmax,tf

ymin,tf = ytc = ymax,tc

u <u <u

‘min, f,

Au

max, t,

min, {, < Autc < Aumax,tc

1}

Vte{ol,.,N —
4)

where x, is the state variables, y, is the system outputs, u, is the
control variables, Au, is the magnitude between two
consecutive control actions, d, is measured disturbances, Q;,
QR,, R,, Rl are the corresponding weights in the objective
function, P is the stabilizing term determined by solving the
discrete time algebraic Ricatti equation, N, and M, are the
output horizon and control horizon, respectively. e denotes the
plant-model mismatch and is defined as the difference between
the real output measured and the state space estimation of the
output at £, = 0. y; and u;" are the output set points and input
reference points, respectively. Note that these two vectors of
variables are scheduling level decisions (i.e., {yip ,uip 1 CS), and
hence mpMPC treats them as additional parameters in 6.
The minimization problem presented in eq 4 is translated
into a linearly constrained quadratic multiparametric program-

DOI: 10.1021/acs.iecr.7b04457
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ming problem (mpQP) via the YALMIP toolbox,”* and solved
via the Parametric OPtimization (POP) Toolbox™ in
MATLAB. The solution of the mpQP problem yields explicit
control actions as an affine function of the uncertain
parameters, as presented in eq S.

u(0) = K,0+r1,V0€CR,
0= [xtcT:o; ”tCT:—p dtcTzo: SCZ; (}’sP)T; (“tfp T; YtCTJ yzzo]T
CR,:={0€0®ILO<b},Vne{]?2 ..NC}

vie{o,1,.,M},Vte{o1,.,N}
(8)

where 0 is the set of uncertain parameters measured at t, = 0,
u,_, is the optimal control action at the previous time step, CR,

is the active polyhedral partition of the feasible parameter space,
NC is the number of critical regions CR,, and © are defined as a
closed and a bounded set. Note that inclusion of scheduling
level decisions, that is, yf{P . utS{P , and Y, in the parameter space

enables mpMPC to account for any future changes in the
operational level a priori within the range of the output horizon.

Step 4: Closed-loop validation. Since the framework suggests
an approximation of the high fidelity model, a validation step is
mandatory to test the validity of the simplified model, as well as
the controller scheme. Therefore, the mpMPC derived in Step
3 is validated through in-silico testing against the high fidelity
model in Step 1. The assessment of the closed loop
performance, including but not limited to efficient set point
tracking, fast adaptation to changes in the operational level,
constraint violation, and operational stability dictates whether a
new approximate model is required or we can proceed to the
next step to design the scheduler.

gPROMS provides interconnectivity with MATLAB via (i) a
gO:MATLAB object to enable working in the MATLAB
environment, or (ii) C++ programming and creation of
Dynamic Link Libraries (.dll) for straight implementation of
the controllers in gPROMS environment. Hence, closed-loop
simulations can be conducted using either software.

Designing Control-Aware Scheduler. Production schedul-
ing of a chemical process formulated as a general MILP
problem can also be represented by a state space model.*>** A
multiparametric counterpart of this class of reactive scheduling
problems and its solution is described extensively in Kopanos
and Pistikopoulos.*” This approach yields an optimal map of
solutions under potential disruptions in the course of operation
prior to the occurrence of the event. The explicit form of the
schedule significantly reduces the computational cost of
repetitive evaluations after every disruptive event. However,
the sampling time of the state space model is typically too large
to account for the dynamic considerations inherent to the
process. Hence, such an approach suggests utilization of static
transition tables based on exhaustive testing’ that create plant-
model mismatch since they are agnostic to the real system
dynamics.

In this work, we propose a two level scheduling scheme with
a hierarchical order: (i) upper level schedule for the regulation
of the economic considerations and operational feasibility based
on the formulation of Kopanos and Pistikopoulos,” and (i)
lower level surrogate model to bridge the time scales between
the control and the upper level schedule based on the closed
loop behavior of the high fidelity model. The surrogate model
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further aims to remedy the plant-model mismatch introduced
by the schedule.

Step 1: “High-fidelity” model with controller embedded. The
control scheme derived in the earlier phase (eq 5) is embedded
in the original high fidelity model (eq 2).

Step 2: Approximate models. A discrete time state space
model is derived based on the closed loop behavior of the high
fidelity model. The input—output relationship focuses on
capturing the overall response of the closed loop system to the
step changes in the output set points and input reference
points. Note that the discretization time of the identified model
for the upper level scheduler is several orders of magnitude
larger than the mpMPC. Therefore, we introduce a surrogate
model formulation to translate the upper level scheduling
decisions in the first scheduling time step into the control time
steps. This translation is carried out by resampling the
identified scheduling model with a discretization step matching
the output horizon of the mpMPC. The resampled model is
used as the governing constraint in the surrogate model
formulation, as described in detail in the next step.

Step 3: Design of the multiparametric schedule and surrogate
model. The multiparametric schedule is formulated with an
objective to account for the economic considerations and
operational feasibility, subjected to the corresponding approx-
imate model derived earlier, as described in Kopanos and
Pistikopoulos.”” The resulting formulation creates a mpMILP
that treats the disruptive scheduling events as parameters
described in eq 6.

N, N1 N,
. T, T T
min ](9)=Zaxt+2ﬂtrt+z¢ut
o , , 2
Bl t=1 t=0 t=0
st. &, = A& + Bii, + Cd,
2 , , 2

?'jts = Az(fts - ’?ts—l) + Bz(ﬁts - ﬁt5—1)

~ T (<SP\T (~SPN\TT
u = [Scts ) O’ts ) ’ (uts ) :|
- 5 Tqr
0= ['xts—O' Xp—pp Up——py dts ]
~min,t = xts < xmax,ts
~ ~ ~
Uinye, S < Moy
ﬁmin,tSYtS < lZts < lzmax,t‘x t
vte{ol,.., N} (6)

where the tilde (~) sign denotes a scheduling level counterpart
of the variable, & is the operational level and the inventory, t7
denotes transition to a different operational mode, and the
Greek letters a, f, and ¢ are the corresponding cost
parameters. Note that additional constraints can be included
in eq 6 regarding the needs of the specific problem. The linear
state space matrices represent the closed loop dynamics of the
system, and acquired through the MATLAB System Identi-
fication Toolbox or a model reduction technique, as described
by Diangelakis.”* The multiparametric solution of eq 6 provides
explicit affine expressions of the optimal scheduling actions as
functions of the system parameters, as defined in eq 7.
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[](0), v/ ()] =R,0+7,V 0 €CR,

=T T ~T < Tqr
0 := [xtS:()) Xp=—p Ut=—1 dtS ]

CR,={0€®ILH<b},Vnel,2 ..NC}

vte{ol,., N} (7)

Due to approximation of the scheduling model and the large
discretization time, there exists a plant-model mismatch that is
handled by a surrogate model formulated as a mp(MI)QP.
Therefore, we utilize the formulation presented in eq 8 to
minimize the aforementioned mismatch.

Noy
Z (Stxm - ﬁts)TR'(Stsm - ﬁtﬁ,)
=0

t =

sm

min J(0) =
S,

st. %, ,=Ax, +BS,

y, = Cxtim + DS,
O, YT

Y]

sm

T
., = [8c,

~T
0=,

’ ’
min,{,,, <x

max,

X <x

tsm

S yt S ymax,t

sm sm

Smax, tsthsm

b/ min, £,

S

min, {,,

Y, <8, <

vt,e{0,1,.,N,} ®)

Equation 8 poses a mpQP problem that reinterprets the
scheduling actions i, in the time steps of the controller. Sc, is

directly passed to the process, and the set points y;* and 1" are

determined to be used by the controller. At,, is based on the
output horizon of the mpMPC (At,, = At.N,), and N,, is
selected such that the surrogate model horizon can account for
the first scheduling time step in its entirety (ie., N, > At/
At,,). The multiparametric solution to eq 8 yields an offline
map of optimal scheduling actions and set points for the
controller, allowing for fast reevaluation of the scheduling
decisions under varying market conditions. The surrogate
model formulation utilizes a linear state space representation of
the closed loop dynamics of the system. Therefore, the number
of state space models required to capture the complete
dynamics is dependent on the complexity of the high fidelity
model and the size of the explicit control law. The validity of
these surrogate models representations is assured in the
subsequent step.

Note that binary decisions Y, from eq 6 are treated as

continuous uncertain parameters. Oberdieck et al.’* presents a
rigorous proof through the Basic Sensitivity Theorem that
relaxation of the binary parameters yields the exact solution in
this class of problems. Equivalently, one can generate 2" mpQP
problems to exhaustively enumerate all combinations of binary
parameter realizations, where n is the number of binary
parameters.

Step 4: Closed-loop validation. Overall validation of the
integrated schedule-control scheme is performed in a rolling
horizon fashion through utilization of the maps of solutions
generated with eqs 4, 6, and 8 simultaneously on the high
fidelity model (eq 2). The overall system is subjected to
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randomized market conditions that is updated in the time steps
of the scheduler to yield the input and output trajectories in the
scheduling and control levels. The interplay and the flow of
information among the multiparametric scheduler, surrogate
model, controller, and the process is summarized and depicted
in Figure 3.

Schedule (Eq. 6)

SSP ~SP T
Vg » Uig »SCtg

Xtgm: Vesm

Surrogate (Eq.8)

S

SP

SP
Sty YVigm? Utsm

Xter Ve

Control (Eq.4)

ut, (Eq.5)

e — = -

Process (Eq.2)

Figure 3. Information flow among the scheduler, surrogate model
controller, and the process. The gray area indicates the overall control-
aware scheduler.

Note that the framework assumes an update in the disruptive
events at the time steps of the schedule. Any further scheduling
level disturbances in between these time steps can be addressed
by reevaluating the set points through the surrogate model to
remedy a potential performance degradation. The process
disturbances, on the other hand, are accounted for by the
controller of which dynamics are embedded in the scheduler.

The following section presents the application of the
framework on (i) a CSTR with three reactants and three
outputs, and (ii) two CSTRs operated in parallel.

3. EXAMPLES

3.1. Example 1. Single CSTR with Three Inputs and
Three Outputs. Problem Definition. This case study, adapted
from Flores-Tlacuahuac and Grossmann,” considers an
isothermal CSTR designed to manufacture three products on
a single production line, as depicted in Figure 4. In the figure, R,

|- B
: R
Control scheme | ===- ]
1
- N
1
o
L]
| I A ——
1
|
1
1 r= _l_ I I -5
Scheduling scheme - - - | P, | lT' | P, | :
l
T e —_—_—_—_‘1’_—_ e v
e | Demandp, Demandp, Demandp, |
______________ -

Figure 4. CSTR flowsheet with the online implementation of the
scheduling and control schemes.
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denotes the ith reactant, P; denotes the jth product, and
Demandp, denotes the demand rate for product P;. The problem

statement encompasses the following:

(i) Given: a high-fidelity model of the three product CSTR,
unit cost for inventory, a scenario of product demands
(i) Determine: production sequence, production rates,
optimal control actions to achieve the target production
rate and to reach the threshold purity
(iii) Objective: minimize the total cost comprising the
inventory and transition costs

On the basis of the described problem definition, the control
scheme aims to determine the optimal transitions between the
production periods of three products through tracking a time
variant product concentration set point to maintain a certain
level of purity threshold. The controller is designed to deliver
this short-term objective by manipulating the feed composition
at the inlet of the reactor, and monitoring the states of the
system. To obtain the longer term objectives, we utilize a
scheduling scheme to minimize the operating and inventory
costs, while satisfying a continuous demand rate for each
product. The scheduler aims to determine the optimal
production sequence and manufacturing time, while accounting
for the inventory levels in the storage tanks and a demand
scenario. The scheduling decisions are passed on to the
controller as set points and operating modes.

Note that different from that of Flores-Tlacuahuac and
Grossmann,” this work relaxes the assumption of constant
product demand rate profile, and considers a variable demand
rate profile.

High-Fidelity Dynamic Model. Three irreversible reactions
take place in parallel in the CSTR reaction network given in eq
9.

kl
2R, — R

kZ
Ri+R,— P,

Ry + Ry ‘E’ B 9)
where k;, k,, and k; are the rate constants of the respective
reactions. Note that production of P, requires only R;, which
also features as one of the raw materials of products P, and P;.
Hence, the given reaction network yields P, as a byproduct
during the production phases of P, and P;. The byproduct
concentration degrades the purity of the product of interest,
and needs to be accounted for by the control scheme to achieve
high selectivity.

The high-fidelity model that describes the dynamic behavior
of the CSTR comprises mole balances (eq 10) and power law
kinetic expressions for elementary reactions (eq 11).

dCRx QR,»CIJ; - QtotalCR,'
- + Ry
dt 14 :
dCP, Q—total(CP, - CP,)
= 44 P
dt v i (10)
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R = —ZRg - Rp RPS
R, _RP2

R, = —Rp,

Rp = kCx

R, = k,Cg Cr,

RPz = k3CR|CR3 (11)
where C denotes the concentration, Q is the volumetric flow
rate, V is the volume of the CSTR, R is the reaction rate,
superscript f denotes the feed to the CSTR, R; and P; are the
indices for the ith reactant and jth product, respectively. The
system parameters are given in Table 2.

Table 2. Parameters of the High-Fidelity CSTR Model

reaction rate constants value reactant concentration at the feed  value
k 0.1 Ch, 1.0
k, 0.9 Ch, 0.8
ks L5 Ch, 1.0

The total volumetric flow rate is defined as the sum of
reactant flow rates at the inlet of the reactor. Note that constant
volume reactor is assumed, therefore the total flow rate at the
inlet is equal to the total flow rate at the outlet.

Qtotal = Z Q'R1 (12)

The inventory levels of the product of interest are as follows.

CH/VP QtotalcP, - DRp}; ifPuVPJ > 0.90

J

dt

—DR,, if Pur, < 0.90

(13)
where Wy, is the inventory level, DR, is the demand rate, and
Purp is the purity level in the CSTR as defined in eq 14.

Cp

]

Purpl =

2Cp (14)

The molar fractions of the reactant flow rates are defined in eq
15. Note that the molar fractions are utilized as the manipulated
variables in the mpMPC control scheme, as demonstrated in
the following sections.

Q
Y Q—total

ZuR1=1

i (15)

Model Approximation. The highly nonlinear nature of the
model necessitates partitioning of the input space to capture
the system dynamics with higher accuracy. Rigorous
simulations of the high fidelity model suggest the partitioning
of each degree of freedom available to the controller (i, ag,

ar

and ap) to at least two mutually exclusive subspaces,

respectively. Hence, the discrete time state space model
generated in MATLAB System Identification Toolbox has the
following form.
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x4 =Ax, + Bu, + Cfdtc

5, =D, (16)

u, = [y, ty,, ey, Uy, "
T Lty Uy Uy Ugy

U, = dag, ag, € [0, 0.5)

Uy, = ag, ag, € [0.5, 1]

uy, = ag, ag, € [0, 0.55)
Uy, = ag, ag, € [0.55, 1] (17)

where «, is the identified states, u, is the molar fractions of the

reactant flow rates partitioned in the input space as given in eq
17, d, is the total volumetric flow rate (Qu), and y, is the

product concentrations (CP’). The state space matrices are
given in the Supporting Information. Note that ap is excluded

from the manipulated variables due to the linear independence
of the molar fractions.

The step and impulse responses of the open loop
approximate model are stable within the range of inputs, as
presented in Figures S1 and S2, respectively.

Design of the mpMPC. The formulation of the mpMPC is
based on eq 4 with additional soft constraints included as
presented in eq 18. The tuning of the corresponding
parameters is based on heuristic MPC design methods, and
the parameters are provided in Table 3.

N
min  J(0) = X O, — 3" QRO =57

o€, =1
M1 N,
T T
+ Y AulR1Au, + Y. &'Ple,
t=0 t=1
s.t. %41 = Ax, + Bu, + Cd,
J, = Dxtc
y =y te
=y},

X min < xt( < X max
<y <L

ymin - ytf - ymax

u Ztc < ut[ < umathL.

min’

Uppin

Yt[ S utC S umathc
d < dt[ S dmax

min —

Au < Au, < Aup

_y*,t[ + Pury, Zyi,t[ < —& +M Yfg
i
0<¢ <1,z e {o, 1}
T T T SPN\NT T TT
9 = [xtL:O) ytczo) thZO) (ytc ) ) ut‘:—ll Y;L]

Vted{ol,.,N} (18)

Table 3. Tuning Parameters for the mpMPC of the CSTR
for Example 1

mpMPC design parameters value
N, 6
M, 2

2
ar Ky
0 0 10

R1 S0
P1 90
Ymin [0, 0, 0]"
Yrmax [1,1,1]"
Unin [0, 0, 0]"
U [1,1,1]"
rnin 0
inax 500

where the additional term &, is the slack variables, P1 is the

penalty matrix, Pur,, is the minimum purity level required to
trigger accumulation in the storage tanks, y,, is the

concentration of the product of interest at time f, and M is
a big-M parameter. The binary switch parameter Y, determined

by an upper level decision maker dictates the product of
interest, and binary switch variable z, determines the optimal

input subspace. The soft constraints are constructed on y, , via
slack variables &, to minimize the transition time by penalizing

any production below the threshold purity level throughout the
output horizon. Therefore, the non-negative slack variables &,

contribute to the objective function if and only if the purity of
the product of interest is below the threshold. Note that any
process disturbances, such as reactant concentrations at the
feed stream, can be easily incorporated in the control scheme
without modifying the overall framework by simply introducing
them as additional parameters.

The optimization problem given in eq 18 is reformulated as a
mpMIQP problem and solved via the POP toolbox to generate
the map of optimal control actions as affine functions of the
system parameters. (The complete solution of the problem
along with the approximate model can be downloaded from
http://paroc.tamu.edu.) The explicit expression of the control
action is designed to (i) track a set point determined by an
upper level decision maker, (ii) adapt proactively to changing
operating modes (i.e., shifting between different products), and
(iii) minimize the transition time by penalizing impure
production periods.

Note that the mpMPC formulation utilizes a single state
space model with piecewise affine inputs that are selected via
binary switch variables, z,. Therefore, the control scheme

single-handedly recognizes the dynamics of the transitions
between the production periods. Although the stability of the
system under such transitions is left outside the scope of this
study, it can be further investigated following the approach
proposed by Grieder et al.*°

Closed-Loop Validation. The control scheme is validated by
exhaustive testing against the high-fidelity dynamic model
under various scheduling decisions. Figure S presents a 2 h
closed-loop operation with two distinct operational modes. The
process starts from zero product concentration and goes
through a shift from the production of P; to production of P, at
t = 60 min. This shift is manually enforced by changing the
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Figure S. Closed-loop validation of the mpMPC against the high-
fidelity model for Example 1.

concentration set points from ySP = [0, 0, 0.1]" to ySP =
[0,0.1,0]%.

The closed-loop simulation in Figure 5 validates the mpMPC
as it (i) tracks the set points of three product concentrations,
(i) handles operations at different production modes, (iii)
prioritizes purity satisfaction to minimize transition time, and
(iv) maintains feasible operation by keeping the system within
specified bounds. Note that the entirety of the closed loop
simulations uses only one mpMPC scheme in both the
production and the transition periods. Therefore, the controller
parameters are tuned regarding every possible transition
between the products.

High-Fidelity Model with the mpMPC Embedded. The
initial high-fidelity model given in eqs 10—15 is integrated with
the derived control scheme in the form of eq 5.

Model Approximation. To keep the example tangible, only
the mole balance around the storage tanks is considered in the
upper level schedule, while the dynamics of the CSTR is
accounted for in the lower level surrogate model formulation.
The bilinear QuoraCp, term in eq 13 results into a nonconvex

mpMINLP problem, for which only approximate solution
algorithms exist. Hence, we postulate a mpMILP problem, for
which POP toolbox features an exact algorithm, via replacing eq
13 with eq 19.

dw,
' =F, — DR

a0 (19)
where Fp is the molar product flow rate at the exit of the CSTR.

Having merely linear terms in eq 19 enables the formulation of
a mpMILP in the subsequent step.

The lower level surrogate model, on the other hand, is
identified via MATLAB System Identification Toolbox as
described in the previous section. Three surrogate models are
derived for three distinct operational modes (provided in the

Supporting Information with their respective step and impulse
responses).

Design of the Scheduler and the Surrogate Model. The
scheduler for this problem is designed to minimize the
inventory cost, while satisfying continuous demand rates for
the three products forecasted through the scheduling horizon.

N
min  J(0) = Z Z aPTW

Bt Yoy j=1t=1

st Wy = Wy, + ALF, —

Z F, totalt
Z Yo, =1
j=1

EyYp, < E, < EpuYp,

AtDR,

W S W, < W,
s

min max

Dijn S DRP t S DRmax
irts
T
0= [Wp—o DRp,]

Y, €{0,1}, V€ {01, .., N} (20)

where Y, denotes the selected product P; to be manufactured
at time ¢, F;, is the molar product flow rate, At is the sampling

time for the schedule. Note that eq 19 is discretized into time
steps At,.
The system parameters for eq 20 are given in Table 4.

Table 4. System Parameters for the Scheduler of the CSTR
for Example 1

system parameters value
N; 3
a[$/h.mol] [10, 1.5, 1.8]7
At, [min] 60
Finin [0, 0, 0]"
Foux [0, 50, 50]
Wiin [0, 0, 01
Winax [50, 50, 50]"
Din [0, 0, 0]
D, [60, 60, 60]T

The bridge between the mpMPC and the scheduler derived
in eqs 18 and 20 is constructed based on eq 8. Analogous to the
mpMPC, the surrogate model also features the soft constraints

to enforce a threshold purity level.

min ](0) = Z (Q—totalt totalt )TR/

,Co
Pjytsm’ I
ptom’ o to=

s
totalt ) + Z E Pl

total, gy,

x ( Q total £,
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Table S. System Parameters for the Surrogate Model of the
CSTR for Example 1

system parameters model 1 model 2 model 3
N,, 10 10 10
M, 1
T, [min] 6 6 6
Y 10° [10*4 071] [10*4 071]

0 10 0 10

Pl 10* 10° 10®
Yanin (mol/L] [0, 0, 01" [0, 0, 01" [0,0,0]"
Ymax [MoOl/L] [1,1,1]" 1,1,1]" [1,1,1]"
Qunin [L/min] 0 0 0
Qe [L/min] 500 500 500
CS? [mol/L] [0, 0, 01" [0, 0, 0]T [0, 0, 01
CS? [mol/L] [1,1,1]F 1, 1,1]% [1,1,1]"

s.t. eqs S1—S3 (Supporting Information)
~ _ Ftotal,tsm
total,t,, CP ‘o

s bsm

ymin < yt,.m < yma.x
Q—min < Qtotal,tsm < Q—max

CSP

‘min

< CSP

— Tmax

< Cpy

- j2tsm
’
+ Pur,, E Y, < —g
) 2Esm
1

0<¢

y* sbon

<1

T P;otal, [

CPt =0

#2 tsm

Vt,e{0,1,.,N,} (21)

Note that the formulation given in eq 21 is only valid for the
product of interest. Hence, three separate formulations are
constructed for each product. Tuning of the surrogate model
parameters is based on heuristic decisions that yield a desirable
performance in the closed loop validation, and the parameters
are given in Table S.(The complete solution of the problem
along with the approximate model can be downloaded from
http://paroc.tamu.edu.)

Closed-Loop Validation of the Overall Scheme. Closing
the loop of the CSTR is performed via testing the scheduling
and control scheme against the high fidelity model. Figure 6
presents a 12 h operation with the scheduler, the surrogate
model, and the controller operating in tandem with the
dynamic model while no specific knowledge of the demand
profile is assumed. (The explicit expressions of the simulta-
neous decisions at t+ = 60 min and ¢ = 105 min are
demonstrated in the Supporting Information.) The scheduler
(i) maintains low inventory levels and (ii) adapts to the changes
in the demand profile, while satisfying the continuous demand
rate. Because of the rolling horizon strategy, the schedule is
updated at every discretization step T, with the current
inventory level and the new demand profile N; time steps into
the future. Note that the resultant production sequence is
different from a cyclic schedule reported in Flores-Tlacuahuac
and Grossmann’ and Zhuge and Ierapetritou,” since the
demand rates in this work are time variant.
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Figure 6. Closed-loop validation of the scheduling scheme for
Example 1.

Figure 7 presents a snapshot of the first 6 h of operation,
focusing on the lower level surrogate model decisions. The

500
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Figure 7. Closed-loop simulation of the CSTR for the first 6 h of
operation for Example 1: (a) volumetric flow rate determined by the
scheduler, and the corrected action of the surrogate model; (b)
product concentration set points; (c) product purities.

volumetric feed flow rate from the schedule and the surrogate
model are juxtaposed in Figure 7a to emphasize the corrective
actions of the latter. During the transition between production
regimes, the surrogate model saturates Q.. at its upper bound
to purge the previous product left in the reactor. The
transitions can also be monitored from the product purities
presented in Figure 7c. The surrogate model and the mpMPC
operate in tandem to drive the system above the threshold
purity level. The transitions to product P, specifically show that
the integrated schedule and control scheme prioritizes the
purity satisfaction to minimize the transition time.
Note the following:

e The explicit expressions for the optimal scheduling
decisions enable rescheduling with a small computational
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cost when disruptive events occur in the product
demands.

The transition time is not determined explicitly by the
integrated scheduling and control scheme, but is
minimized through soft constraints in the surrogate
model and controller formulations. The non-negative
slack variables ¢, and & in eqs 18 and 21 are nonzero

only if the product concentration of interest is below the
threshold level, and contribute to the objective function
J(0) proportional to P1 and P1’, respectively. A more
accurate approach would be allocating every time step for
all products with binary variables to determine whether
the purity threshold is satisfied. However, employing
such a large number of binary variables in a multi-
parametric programming problem results in an exponen-
tial increase in the computational burden. Hence, we
alleviate this problem via the soft constraint formulation.
The heavy penalty terms for purity satisfaction in the
surrogate models result in steep changes in Q. during
the transitions, as observed in Figure 7. The upper level
schedule is unable to make such corrective decisions due
to its large time step. The lower level surrogate model
provides time varying targets and set points for the
controller due to the embedded closed loop dynamics in
its formulation.

Because of the strong nonlinearity of the high-fidelity
model, the input space is partitioned as presented in eq
17. Finer partitions will yield more accurate controllers at
the expense of increased computation time to generate
the offline maps of optimal actions.

Utilizing the maps of optimal solutions for the control,
surrogate model, and schedule actions eases the online
implementation. Calculation of the optimal actions is
reduced from an online optimization problem to a simple
look-up table algorithm and evaluation of an affine
function.

3.2. Example 2 — Two CSTRs Operating in Parallel.
Problem Definition. This case study extends the CSTR
example from section 3.1 to encompass two identical CSTRs
operating in parallel. Because of the identical design of the
reactors, the mpMPC and the surrogate model driving the
closed-loop system are identical as well. Hence, the derivation
of their formulations and attaining the explicit maps of
solutions are omitted.

Cooperative operation of independent reactors requires a
centralized scheduling scheme to allocate the production tasks
on different reactors. However, the identical nature of the two
closed-loop system dynamics creates a multiplicity of solutions,
as the reactors are indistinguishable to the upper level schedule.
Hence, the scheduling formulation presented in eq 20 is
modified to (i) account for the previous production regime as
an additional uncertain parameter and (ii) penalize transitions
between consecutive production regimes to break multiple
solutions. Inclusion of the retrospective information provides a
distinction between the reactors, eliminating any redundant
transitions between the products. The mathematical represen-
tation of the described modification is provided in eq 22.

F—ZV/lYPt

t=0

Yp, gl
(22)
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where y is a very small number that virtually penalizes the
changes in the operational mode. Equation 22 can be
reformulated as follows to maintain the linear structure of the
scheduling problem.

N,
= Z w'Y
t=0

s.t.

YP, £ Yt

s

Yp o1 <
Yy, + Yy ST,

0<Y <1 (23)

whereY; is an auxiliary variable.

Design of the Scheduler. The scheduling formulation
presented in eq 20 is extended to account for multiple
production lines, and modified with eq 23 to eliminate multiple
solutions.

NCSTR N
min _ J(0) = Zzapwpt + Z Zl,l/ st:l

F;tSIVYPtIl to,l I lt—l

NCSTR

s.t. %rﬂ"’l = I/VP/,tS + Z Atfl;}rtsrl -
Z Jitol =
Z
j=1

Yp, i~

jrksr

AtDR,

total t,l

Yo, =1

jirksr

Yp -1 < Y
Yot Yo S Y

0<Y%,<1

meYPt 1 < Fj,ts,l

jrksr

< EplYp

ks

W,

min —

DR

min —

W,

max

S W <

< DRp, < DRy

_ T
6 = [Wp—o) DRy, Yo, ]

Y €40, 1L,V E{0, 1, .,
Vie(l,?2, .. Negp}

where the additional weight y is tuned to be 0.001, and the
number of the CSTRs, N¢grg, is 2 by the problem definition.

Closed-Loop Validation. The validation of the overall
scheduling and control scheme is presented in Figure 8. The
scheduler, the surrogate model, and the controller are operated
in tandem with the high fidelity model for 12 h under a
randomized demand profile. The integrated scheduling and
control scheme delivers the additional task to coordinate
multiple reactors to operate in parallel while satisfying the
continuous demand rate. The inclusion of eq 23 in the
objective function breaks the symmetry between the reactors
and coordinates the production sequence. Consequently,

N},

(24)
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Figure 8. Closed-loop validation of the integrated scheduling and
control scheme on two CSTRs for Example 2.

uninterrupted manufacturing of the product of interest is

maintained without redundant shifts between the reactors.
Figure 9 presents the evolution of the schedule with time for

the first 4 h of operation. Note that the demand scenario is

Time [h]
A W N 2 O

Scheduled Sequence

Figure 9. Realization of the schedule with time for Example 2. Top
bars and bottom bars represent CSTR 1 and CSTR 2, respectively.

updated every hour in a rolling horizon manner, allowing
rescheduling of the production sequence and the target
quantities by utilizing the offline maps of optimal scheduling
actions.

4. CONCLUSIONS

We have presented a systematic framework to integrate process
scheduling and control in continuous systems via multi-
parametric programming. We have derived optimal scheduling
and control actions simultaneously based on a single high
fidelity model. We take advantage of the synergistic interactions
between the two decision making mechanisms to yield offline
maps of optimal operations as explicit affine expressions at both
long and short terms of a process. The generic structure of the
framework renders it suitable for a software prototype toward
enterprise-wide optimization.

This work aims to increase the operability, flexibility, and
profitability of process systems through improving the
scheduling and control decisions. Nevertheless, the processes
with comparable capital and operating costs necessitate the
consideration of the design aspect simultaneously with the
scheduling and control. Hence, our current effort focuses on
the unification of these three multiscale problems.
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B NOMENCLATURE

Lowercase Letters
a = Molar fraction
b = Constant term of the critical region boundary
d = Measured disturbance
e = Plant-model mismatch
f = First principle equation
g = First principle equation
h = Optimal control action expression
k = Rate constant (L/mol.min)
m = Optimal scheduling action expression
r = Constant term in the explicit control law
t = Time (min)
tr = Transition variable
u = Control action
x = State of the system
y = Output of the system
z = Binary decision at the control level

Uppercase Letters
R = Reaction rate (mol/L-min)
C = Concentration (mol/L)
CR = Ciritical region
DR = Demand rate (mol/min)
F = Molar flow rate (mol/min)
] = Objective value
K = Linear term of the explicit control law
L = Linear term of the critical region boundary
M = Control horizon
N = Output horizon
NC = Number of critical regions
P = Objective function
P = Product
P = Terminal weight matrix
P1 = Penalty matrix for the slack variables
Pur = Purity
Q = Volumetric flow rate (L/min)
Q = Weight matrix of the states
QR = Weight matrix of the outputs
R = Reactant
R = Weight matrix of the manipulated variables
Rl = Weight matrix for the changes in the manipulated
variables
S = Continuous scheduling variables
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Sc = Degrees of freedom of the system avaiable to the
schedule
V = Reactor volume (L)
W = Inventory level (mol)
Y = Binary scheduling variables
Greek Letters
a = Operational cost parameter
p = Transition cost parameter
¢ = Cost parameter for the manipulated variable
7 = Time
©® = Closed and bounded set
6 = Parameter
& = Slack variable

Subscripts
¢ = Control
i = Reactant index
j = Product index
k = Discretized time step
n = Critical region index
s = Schedule
sm = Surrogate model

Superscripts
f = Feed stream
q = Linear model index
SP = Set point
Accents
" = Surrogate level counterpart
— = Auxiliary variable
A = Predicted
~ = Scheduling level counterpart
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