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1. Introduction

FI-modules are a convenient framework for studying stability properties of sequences
of symmetric group representations. An FI-module is a functor from the category of
finite sets and injections to the category of Z-modules. In this paper, we introduce two
new techniques for proving stability results for graded sequences of FI-modules which
yield improved stable ranges in many examples, including the cohomology of configura-
tion spaces and the homology of congruence subgroups of general linear groups. In all
applications, this grading will come from the standard grading on the (co)homology of a
sequence of spaces or groups. By stability, we roughly mean a bound on the presentation
degree in terms of the (co)homological degree. If there is such a bound which is linear
in the (co)homological degree, we say that the sequence exhibits a linear stable range
(similarly quadratic, exponential etc.).

While previous stability arguments focused on bounding the presentation degree, our
proof strategy involves studying two other invariants of an FI-module. We call these
invariants stable degree and local degree and show that these invariants are easier to
control in spectral sequences than presentation degree. An FI-module over a ring k is a
functor from FI to the category of abelian groups that factors though the category of
k-modules. Finitely generated FI-modules over fields have dimensions that are eventually
equal to a polynomial. The stable degree of a finitely generated FI-module is equal to the
degree of this polynomial and the local degree controls when these dimensions become
equal to this polynomial.

Together, the stable degree and the local degree control the presentation degree of an
FI-module (Proposition 3.1). Conversely, the presentation degree can be used to bound
these invariants (Proposition 2.9 and Theorem 2.10). As a consequence, it is enough to
bound the stable and the local degrees to bound the presentation degree and vice-versa.
More precisely, we have the following quantitative result (Proposition 3.1):
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(x) Let M be an FI-module with stable degree a and local degree b. Then the generation
degree of M is < a+ b+ 1 and the presentation degree of M is < a + 2b + 2.
(xx) Let M be an FI-module with generation degree a and presentation degree b. Then
the stable degree of M is < a and the local degree of M is <a+b—1.

The two techniques that we introduce for proving stability for sequences of FI-modules
involve two different kinds of spectral sequence arguments which we will call Type A and
Type B. The main results of this paper are two general theorems, one which establishes
linear ranges for Type A arguments and the other which establishes quadratic ranges
for Type B arguments. We will use these general theorems to prove our linear ranges
for cohomology of configuration spaces and quadratic ranges for homology of congruence
subgroups.

We note that stable degree and local degree have respectively been previously studied
in [32] and [14] under different names.

Type A stability arguments. In Type A arguments, one constructs a spectral sequence
EPd — MPTa
i

where M" are the objects of interest and with E?'? exhibiting stability for some page d.
One shows that stability is preserved by the spectral sequence to deduce that the MF
stabilize. This strategy was first used in the context of representation stability by Church
who proved representation stability for the rational cohomology of ordered configuration
spaces ([6, Theorem 1]). It has also been used to establish homological stability results;
see e.g. the work of Kupers—Miller—Tran [20]. We prove the following theorem which
allows one to establish linear stable ranges for sequences of FI-modules using Type A
stability arguments.

Theorem A. Let EP'Y be a cohomologically graded first quadrant spectral sequence of
FI-modules converging to MP+9. Suppose that for some d, the stable and the local degrees
of EY are bounded linearly in p and q. Then the same holds for EL:2 and MPT9.

We use a quantitative version (Proposition 4.1) of Theorem A to establish a linear
stable range for the cohomology of configuration spaces with coeflicients in an arbitrary
abelian group; we suppress this abelian group from the notation whenever convenient.
Given a manifold M, let PConf(M) denote the FI°’-space sending a set S to the space
of embeddings of S into M (the S-labeled configuration space of M). Taking cohomology
gives an FI-module H*(PConf(M)).

Application A. Suppose M is a connected manifold of dimension at least 2. Then we
have:

(1) The stable degree of H*(PConf(M)) is < 2k.
(2) The local degree of H*(PConf(M)) is < max(—1, 8k — 2).
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(3) The generation degree of H*(PConf(M)) is < max(0, 10k — 1).
(4) The presentation degree of H*(PConf(M)) is < max(0, 18k — 2).

The same bounds hold for H*(PConf(M); k) with any coefficients. In particular, we
have:

(a) If M is finite type and k is a field, then there are polynomials pﬁ,"k of degree at most
2k such that

dimy H*(PConf,, (M); k) = pﬁ,/tk(”)

if n > max(—1, 8k — 2).
(b) The natural map

Indg"  H*(PConf,_1(M)) — H*(PConf, (M))

is surjective for n > max(0, 10k — 1), and the kernel of this map is the image of the
difference of the two natural maps

Indg"  H*(PConf,_5(M)) = Indg"_ H*(PConf,_1(M))
for n > max(0, 18k — 2).

We establish even better ranges when M is at least 3-dimensional, orientable,
or admits a pair of linearly independent vector fields. The best previously known
bounds away from characteristic zero are due to Miller and Wilson who showed that
dimy, H*(PConf, (M); k) agrees with a polynomial of degree at most 21(k+1)(14+/2)*2
for n > 49(k + 1)(1 + +/2)k=2 [24, Theorem A.12]. This was proven using the regularity
theorem of Church and Ellenberg [8, Theorem A].

The quantitative version (Proposition 4.1) of Theorem A can be used to improve
bounds for many other sequences of FI-modules. Such examples include homology groups
of the generalized configuration spaces of Petersen [29], the homology of groups of the
singular configuration spaces of Tosteson [36], and homotopy groups of configuration
spaces [19].

Type B stability arguments. In Type B arguments, one constructs a spectral sequence
E} , where Eéyq are the objects of interest and one uses highly acyclic simplicial com-
plexes to prove that the spectral sequence converges to 0 in a range. One then interprets
cancellation in this spectral sequence as stability. This method was introduced by Quillen
who, in unpublished work, proved homological stability for certain general linear groups.
This was first used in the context of representation stability by Putman [31] who proved
representation stability for the homology of congruence subgroups.
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To state our result for Type B stability arguments, we will need more terminology. Let
HEY(V) denote the so-called minimal generators of an FI-module. Concretely, HEY(M),,
is the cokernel of

Indg"  M,_1 — M,.

Vanishing of HEY(M ) measures the generation degree of M and vanishing of both HEY (M)
and its first derived functor HFY(M) measure the presentation degree of M. These derived
functors extend to complexes of FI-modules M, in the standard way; explicitly, the
FI-homology HEI(M.) is computed by replacing M, by a quasi-isomorphic complex of
projective FI-modules, applying HEY, then taking homology of the resulting complex.
This should not be confused with Hy(M,) which denotes the usual homology of the
complex M,.

Theorem B. Let M, be a complex of FI-modules. Suppose HEI(M.)TL vanishes for n
larger than a linear function of k. Then we have:

(1) The stable degree of H(M,) grows at most linearly in k.
(2) The local degree, generation degree, and presentation degree of Hy(Ms) grow at most
quadratically in k.

See Theorem 5.1 for a quantitative version of this theorem. The key example we apply
these results to is when M, = C,I is the chains on an FI-group T', so that Hy(M,) is the
group homology Hy(M,) = H(T'). In particular, we will apply the quantitative version
of Theorem B (Theorem 5.1) to congruence subgroups of general linear groups. Given
an ideal I in a ring R, let GL,, (R, I) denote the kernel of GL,,(R) — GL,,(R/I). This is
called the level-I congruence subgroup of GL,,(R). The groups {GL, (R, I)} assemble to
form an FI-group GL(R, I) whose homology groups form FI-modules. Theorem B gives
the following.

Application B. Let I be an ideal in a ring R satisfying Bass’s stable range condition
SRg+2. Then we have:

(1) The stable degree of Hi(GL(R,I)) is < 2k +d.

(2) The local degree of Hy(GL(R, 1)) is < 2k? + 2(d + 2)k + 2(d + 1).

(3) The generation degree of Hy(GL(R,I)) is < 2k? + (2d + 6)k + 3(d + 1).
(4) The presentation degree of Hy(GL(R, 1)) is < 4k? + (4d + 10)k + 5d + 6.

The same bounds hold for Hy(GL(R, I); k) with any coefficients. In particular, we have:

(a) Let k be a field and assume that dimy H,(GLy, (R, I);k) is finite. Then there are
polynomials p,ﬁﬁ of degree at most 2k + d such that
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dimy Hy(GL, (R, I); k) = pp (n)

if n > 2k? 4+ 2(d+ 2)k 4+ 2(d + 1).
(b) The natural map

Indg"  Hi(GL,_1(R,I)) = Hi(GL,(R, 1))

is surjective for n > 2k® + (2d + 6)k + 3(d + 1), and the kernel of this map is the
image of the difference of the two natural maps

Indg"  Hy(GL,—2(R,1)) = Indg"  Hy(GL,_1(R, 1))
for n > 4k? 4 (4d + 10)k + 5d + 6.

See [1, Definition 2.19] for a definition of Bass’ stable range condition. Recall that any
d-dimensional Noetherian ring satisfies Bass’s stable range condition SRy 5. In partic-
ular, fields satisfy SRo (with d = 0) and Dedekind domains satisfy SRg (with d = 1).
We note that the finiteness condition in Part (a) of Application B is satisfied for many
classes of ideals, including all ideals in rings of integers in number fields.

The previously best known stable range for congruence subgroups is due to Church—
Ellenberg [8, Theorem C’] who established an exponential stable range. Their result
improved upon the work of Putman [31] who also established an exponential range with
coefficients in a field with characteristic large compared to the homological degree, and
the work of Church-Ellenberg—Farb—Nagpal [10] who established an integral result but
with no explicit stable range at all. We note that after the release of an initial draft of
this paper, Gan and Li established a linear stable range for congruence subgroups [18,
Theorem 5].

Djament conjectured that the stable degree of Hy(GL(R,I);k) is < 2k in [12, Con-
jecture 1] (also see [14, §5.2] for further discussion). Part (1) of Application B proves
that this stable degree is < 2k + d. Thus, up to an additive constant, Application B es-
tablishes this conjecture. The conjecture was subsequently established by Djament [13,
Theorem 2].

Theorem B can also be used in other contexts. For example, it can be used to im-
prove the ranges in Patzt and Wu’s theorem on the homology of Houghton groups [28,
Theorem BJ.

The complex of mod-/ split partial bases. We prove Application B by connecting the
FI-homology of GL(R, I) with the complex of mod-I split partial bases SPB,, (R, I). This
is a simplicial complex whose maximal simplices correspond to bases for R™ that are con-
gruent mod I to the standard basis, with the lower-dimensional simplices encoding bases
for summands of R™ together with a complement; see Definition 7.5 for a precise defini-
tion. (Experts should note that SPB,, (R, I) may be slightly different than the complex
one has in mind; the key feature that distinguishes our definition is that every simplex of
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SPB,,(R, I) belongs to an (n—1)-simplex.) Together these form an FI-simplicial complex
SPB(R, I) with an action of GL(R,T), so its GL(R, I)-equivariant homology forms an
FI-module.

Theorem C. For any ring R and any proper ideal I C R, the FI-homology of the chains
on the congruence FI-group GL(R, I) is computed by the GL(R, I)-equivariant homology
of the complex of mod-I split partial bases SPB(R,I):

HIY(C,GL(R, I)) = HSM ™D (SPB(R, 1))
for all k >0, and similarly for any coefficient group k.

Theorem C tells us that to apply Theorem B to GL(R, I), we must bound the ho-
mology of SPB(R, I). Fortunately, Charney studied closely related complexes in [5]; her
results imply that these complexes SPB,,(R,I) are acyclic in dimensions up to ”%H.
A surprising consequence of Application B and Theorem C is that we can prove that
Charney’s result is very close to sharp, at least in certain cases (and probably in many

more).

Theorem D. Given any ¢ > 0, for each k > 0 we have
Hy_1(SPBo(Z/p’, p); F,) # 0.
Given any number ring O and any prime power p® > 2, for each k > 0 we have
either Hj_1(SPBor(O,p");F,) #0  or  Hy_1(SPBaogs1(O,p);F,) # 0.

Note that Charney’s bound implies all these complexes are (k — 2)-acyclic, since these
rings satisfy SR, so these are the first nonzero homology groups. We prove Theorem D by
using known results of Browder—Pakianathan, Lazard, and Calegari to prove the bounds
in Application B are sharp. We then argue that if these complexes were more acyclic, we
could obtain even stronger bounds in Application B, contradicting these known results.
As the proof of Theorem D shows, all that is necessary for a theorem like this is a lower
bound dim Hg(GL,, (R, I);F) >, n?*~! for a given k and field F. The restrictions on
the rings and ideals here are not essential to the argument; we use them only to deduce
such a lower bound from the literature. It is therefore likely that Theorem D holds in
greater generality.

Outline of the paper. In §2, we recall some basic facts about FI-modules. In §3, we
prove several properties of stable degree and local degree including that they can be
used to bound presentation degree. In §4, we study Type A spectral sequence argu-
ments and apply our results to configuration spaces. In §5, we study Type B spectral
sequence arguments and apply our results to congruence subgroups. In §6, we show that
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the FI-homology of the chains on an FI-group is given by the equivariant homology
of a natural FI-simplicial complex. In §7, we identify this simplicial complex in the
case of congruence subgroups with the complex of mod-I split partial bases, and prove
Theorems C and D.

Acknowledgments. The first author is grateful to Mladen Bestvina and Andrew Putman
for conversations regarding the homology of complexes of split partial bases. The third
author would like to thank Andrew Snowden and Steven Sam for several useful conver-
sations on local cohomology of FI-modules. We are grateful to them for allowing us to
include Proposition 2.9, which originated in joint work of Nagpal, Snowden, and Sam.
We thank the anonymous referee for a careful reading of the paper.

2. Preliminaries on FI-modules

In this section, we review some basic definitions, constructions, and results concerning
FI-modules. For more background, see [9]. Also see [34] for a discussion of FI-modules
from the perspective of twisted commutative algebras. The primary new results in this
section are Theorem 2.5 and Proposition 2.9.

2.1. Induced and semi-induced FI-modules

Recall that FI denotes the category of finite sets and injections. Similarly let FB
denote the category of finite sets and bijections. For any category C, the term C-module
will mean a functor from C to the category of abelian groups and we denote the category
of C-modules by Mod¢. Similarly, the term C-group will mean a functor from C to the
category of groups.

There is a forgetful functor Modgr — Modrp and we denote its left adjoint by
7 : Modpp — Modgr. This can be described concretely as follows. Given an FI-module
or FB-module M, let Mg denote its value on a set S and let M,, denote its value on the
standard set of size n, [n] = {1,2,...,n}. For an FB-module V, we have that:

I(V)s = @) Z[Hompi([n], S)] @zs,) Va-

n>0

We call FI-modules of the form Z(V') induced; see [9, Definition 2.2.2] for more details
(note that there the notation M (V) is used in place of Z(V') and they call these modules
FIf instead of induced). The category of FI-modules has enough projectives. The pro-
jective FI-modules are exactly the modules of the form Z(V') with each V;, projective as
a Z[S,]-module; see [39, Proposition 2.3.10] and [23, Corollary 9.40].

We say that an FI-module is semi-induced” if it admits a finite length filtration where
the quotients are induced modules. The following is a useful property of semi-induced

4 These were previously called f-filtered FI-modules by Nagpal [25]. A very similar construction under
the name J-good functors appeared in Powell [30].
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modules which holds not only for FI-modules but also many other similar functor cate-
gories; see for example [32, Remark 2.33] and [26, Corollary 4.23].

Proposition 2.1. In a short exact sequence of FI-modules, if two of the terms are semi-
induced, then so is the third.

Proof. Two of the three cases are proven in [11, Proposition A.8, Theorem A.9]. The
remaining case is an immediate corollary of [32, Theorem B]. O

2.2. FI-homology

Any FB-module can be upgraded to an FI-module by declaring that all injections
S — T which are not bijections act as the zero map. This assignment gives a functor
Modgp — Modgr which admits a left adjoint that we will denote by HoFI and call
FI-homology. Since HE! admits a right adjoint, it is right-exact. We denote the total
left-derived functor of HE' by LHFT and denote the ith left-derived functor by HFY(M).
Often, we will consider HZFI(M ) as an FI-module by post-composing with the functor
Modgp — Modgr described above.

Definition 2.2. The degree of a non-negatively graded abelian group M is the smallest
integer d > —1, denoted deg M, such that M,, = 0 for n > d. Evaluating an FI-module or
FB-module M on the standard sets [n] gives a non-negatively graded abelian group, and
so we can make sense of deg M. Let t;(M) := deg HFY(M). We call to(M) the generation
degree of M and call max(to(M),t1(M)) the presentation degree of M. We say that an
FI-module M is presented in finite degrees if to(M) < oo and t1(M) < oo.

The generation degree and presentation degree as in our definition above bounds
the smallest possible degrees of generators and relations in any presentation for M [8,
Proposition 4.2].

Theorem 2.3. We have the following:

(1) The category of FI-modules presented in finite degrees is abelian; in other words, for
any map between FI-modules presented in finite degrees, the kernel and cokernel are
also presented in finite degrees.

(2) An FI-module presented in finite degrees is FI-homology acyclic if and only if it is
semi-induced.

Proof. The first statement is an immediate corollary of [8, Theorem A] (or see [33,
Theorem B] for more details) and the second statement is [32, Theorem B]. O

Proposition 2.4. Let M be an FI-module.
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(1) Then to(M) < d if and only if Indgzian_l — M, is surjective for n > d.
2) Then t1(M) < r if and only if the kernel of Ind2» M,y — M, is the image of the
Sn-1
difference of the two natural maps Indﬁ:izMn_g = Indngan—l-

Proof. The first statement follows from the definition of HE! given in the introduction.
Let € denote the sign representation of Sy. It follows from [8, Proposition 5.10] that
H¥Y(M),, is equal to the homology of the chain complex:
Indg" o My 2®e—Indy" M, 1 — M,

n—2XS2

Since the difference of the two natural maps
Indg" M, » = Indg" M,
factors through the map
Indg" g Mn_o®e— Indd" M,
and

Indg"  M,_o —Indg" o M, »Re

n—2XS2

is surjective, HFY(M),, is also isomorphic to the homology of the chain complex:
Sp Sn
IndSn,gM”_Q = IndSn,an_l — M,
The claim now follows. O

As with any derived functor, FI-homology extends to any bounded-below complex of
FI-modules. If M, is a bounded-below complex of FI-modules, we write HFI(M,) for
the “FI-hyper-homology” computed by replacing M, by a quasi-isomorphic complex of
projective (or just semi-induced; Theorem 2.3 (2)) FI-modules, applying H¥! term-wise,
then taking ker/im in homological degree i. Similarly, we write t;(M,) for deg HFY(M,).

A reason we write HFY(M,) and t;(M,), rather than just HFY(M,) and t;(M,), is to
emphasize that M, is a complex of FI-modules. Another reason for using this notation
is that HFY(M,) could plausibly mean the complex of FI-modules obtained by applying
the functor HF! to each FI-module M}, individually (ignoring the differential on M,)
and then reassembling these groups back into a chain complex; we will never use this
notation or this notion.

For any complex of FI-modules M,, we will denote the homology of the complex by
H;(M,) = ker(M; — M;_1)/im(M;; — M;). To avoid confusion with FI-homology,
throughout this paper we observe the convention that the notation H;(M,) without
superscript FI always refers to ker/im; any functor obtained from HE! will always have
the superscript FI.
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2.8. Shifts, derivatives, and FI-homology
For a finite set S, we have a natural transformation 7g given by the composite
FI - FI x FI — FI

where the first transformation takes T+ (S, T) and the second transformation is given
by the disjoint union. Pulling back along 7¢ defines a natural transformation on Modgy
which depends (up to an isomorphism) only on the size of S. We define the shift functor
3 Modgr — Modgr to be this functor when S = {x}, and we define X" to be the n-fold
iterate of X. For any FI-module M, we have deg(XM) = deg M — 1 (unless M = 0, in
which case deg(XM) = deg M = —1).

The natural transformation id — 7g induces a natural transformation id — > whose
cokernel will be denoted by A (note that > and A are denoted by S and D respectively
in [9,10,8]). Induced modules (and hence semi-induced modules) are acyclic with respect
to A [8, Corollary 4.5]. Moreover, if V' is an FB-module then the short exact sequence

0-Z(V)=XI(V) - AZ(V) = 0

splits, and we have AZ(V) = Z(XV) [8, Lemma 4.4]. It follows that A takes semi-induced
modules to semi-induced modules.

It is well known that ¢o(XM) < to(M) (see [10, Corollary 2.13]). A key ingredient in
the proof of Theorem B is the following derived version of this statement.

Theorem 2.5. Let M, be a bounded-below graded complex of FI-modules. Then we have
t;(XM,) < t;(M,) for alli.

Proof. The key to this theorem is a lemma, due to Church [7], which leads to a nat-
ural long exact sequence (this is a derived version of the long exact sequence in [17,
Theorem 1))

o= HIY (M) - HIY (SM,) - SHIY (M) — .. .. (1)

We explain the construction of this long exact sequence below, but first we note that the
assertion of the theorem follows immediately from it:

t;(XM,) = deg HF (2 M,) < max(deg HF(M,), deg ZH *(M,)) = t;(M,).

To construct the long exact sequence above, start by replacing M, with a quasi-
isomorphic complex P, of projective FI-modules. We then get a split short exact sequence

0— Py —XPy - APy — 0
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which induces a long exact sequence in FI-homology
...— HY(P) - HY(2P,) = SHFY(P,) — ...

By definition, the first term is HFY(P,) = HFI(M,), and since ¥ is exact, the second term
is HFY(XP,) = HFY(ZM,). Since A takes projectives to projectives [8, Lemma 4.7(iv)],
the third term is

HFY(AP,) = L;(HF'A)(M,) = L;(SH*Y (M,) = L;(HFY (M,) = SHFY (M,).

In the second equality, we used the isomorphism SHFI = HFTA of [7], and in the third
we used that ¥ is exact. Therefore this is the desired long exact sequence. 0O

2.4. The shift theorem and stable degree

The following theorem is a slight generalization of Nagpal’s structure theorem for
finitely generated FI-modules to the case of FI-modules with finite presentation degree.

Theorem 2.6 (/11, Proposition 6.4 and Theorem A.9] or [32, Theorem C]). Let M be an
FI-module presented in finite degree. Then for large enough n, XM is semi-induced.

Definition 2.7. Let M be an FI-module. We say that an element x € M (S) is torsion if
there exists an injection f: S — T such that f.(z) = 0. An FI-module is torsion if it
consists entirely of torsion elements.

Definition 2.8. We define the stable degree of an FI-module M, denoted §(M), to be the
least number n > —1 such that A®t!M is torsion.

The notion of stable degree was introduced in [14] where it was called weak degree.
We summarize below some properties of stable degree for FI-modules presented in finite
degrees. Before this project started, Steven Sam, Andrew Snowden and the third author
worked out a proof of these properties in a private communication. We are grateful to
Steven Sam and Andrew Snowden for allowing us to include these here.

Proposition 2.9. Let K, L, M and N be FI-modules presented in finite degrees.

(1) If M is semi-induced, then §(M) = to(M).

(2) (M) =06(X"M) for any n > 0.

(3) 0(M) is the common value of to(X"M) for n > 0.

(4) 6(M) < to(M) < .

(5) If 0 = L — M — N — 0 is a short exact sequence, §(M) = max(6(L),d(N)).
(6) If K is a subquotient of M, 6(K) < 6(M).
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(7) The cokernel Q.M of the natural map M — X*M for a > 0 satisfies 6(Qq(M)) =
max(d(M) —1,-1).

Proof. Part (1): First suppose M = Z(V) is induced. From the equality AZ(V) = Z(2V),
we have A*Z(V) = Z(X*V), and the smallest n such that "'V = 0 is deg V = to(M).
This shows that §(Z(V)) = ¢o(Z(V)). Since induced modules are acyclic with respect to
both HET (Theorem 2.3) and A ([8, Corollary 4.5]), we conclude that the result holds
for semi-induced modules as well. Part (2) follows from the fact that A commutes with
Y™ [14, Proposition 1.4], and the fact that T is torsion if and only if ¥"T is torsion.
Part (3): Once n is large enough that "M is semi-induced (Theorem 2.6), this follows
immediately from Part (1) and Part (2). Part (4) follows from Part (3) in light of the
fact that to(X"M) < to(M) (e.g. [10, Corollary 2.1]).

Part (5): Choose n large enough that X" L, X" M, and ¥"N are semi-induced. Since
semi-induced modules are homology-acyclic, we have a short exact sequence

0— H Y (Z"L) — HEY(EZ"M) — HEY(Z"N) — 0.

Thus, to(X"M) = max(to(X"L), to(X"L)), which implies the claim in light of Part (3).
Part (6) is a consequence of Part (5). Part (7): By [14, Proposition 1.4 (7)], it suffices to
prove the result when a = 1. In this case Q,(M) is just AM, and hence by definition of
0 we have 6(Q4(M)) = max(d(M) — 1, —1). This completes the proof. O

2.5. Local cohomology and local degree

Let ', (M) denote the maximum torsion submodule contained in M. The functor I'y,
is left-exact, and so we can consider its right-derived functor RT'y,. We also write HZ,
for RT'y, and call these functors local cohomology (this terminology is chosen because
of its similarity to the classical notion of local cohomology from commutative algebra).
We write h'(M) for deg H: (M).

The following result is a strengthening of [22, Theorem EJ.

Theorem 2.10. Let M be an FI-module presented in finite degrees. Then there exists a
complex

0= =I"—>... =1V =>0

exact in all high enough degrees such that I = M and I’ is semi-induced for i > 0.
Moreover, for any such complex the following holds.

(1) H'(I°) = Hg, (M).

(2) h°(M) < min(to(M), t1(M)) 4+ t1 (M) — 1.

(3) PH(M) < 6(M) +to(M) — 1.

(4) RY(M) < 26(M) —2(i — 1) for i > 2. In particular, H, (M) =0 if i > 6(M) + 1.
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Proof. Note that the assumption that the complex I® is exact in high enough degree is
equivalent to saying that H'(I®) is torsion for all i. The existence of such a complex is
proven in [25, Theorem A]. Part (1) is proven in [22, Theorem E] (also see [33, Theo-
rem 4.10]). Part (2) is [8, Corollary F].> For the remaining parts, note that for all i > 0,
we have

H: (M) = ker(coker(I'™* — I') — I'T') = Ty (coker(I' "1 — TI*))

where the last equality follows from the fact that I**! is torsion-free and that H: (M) is
torsion. The statement of [8, Corollary F] is that the degree of torsion in such a cokernel
can be bounded:

h{(M) = deg 'y (coker(I'™1 — I')) < to(I'™1) + to(I%) — 1.

Note that for i > 0, we have to(I?) = §(I*). Therefore to obtain the claimed bounds on
hi(M), it suffices to show that the complex can be chosen so that §(I*) < 6(M) —i+ 1
for i > 0. We do this by induction of §(M) as follows.

In the base case 6(M) = —1, we can choose I' = 0 for i > 0. Now assume (M) > 0,
and choose an n large enough that £" M is semi-induced (Theorem 2.6). Let M’ be the
cokernel of M — X" M. By Proposition 2.9(7), we see that 6(M’) < §(M). By induction,
there is a complex

0J9 gt gV 5o

such that J® = M’ and §(J%) < §(M') —i+1 for i > 0. Now set [° = M, [' = X"M
and I**! = J% for i > 1, and observe that I*® has the desired property. O

Remark 2.11. Sometimes it is possible to improve the bounds on hi(M) is the above
proposition. By combining [27, Theorem 1.1] and [8, Theorem A], we see that

RY(M) <t,(M)—n—i<tog+t; —1—i.

Thus, if 6(M) is large compared to ¢ (M), these bounds are better than the ones in the
theorem above.

Definition 2.12. Let M be an FI-module. We define the local degree of M to be the
quantity 2™ (M) = max;>o h*(M).

Recall that Theorem 2.6 tells us that a sufficiently high shift X" M of any FI-module
presented in finite degree will be semi-induced. The following corollary tells us that the
local degree quantifies precisely how much we need to shift M for this to happen.

5 The proof of [8, Corollary F] has been greatly simplified by Church [7], based on a inductive argument
given by Li [21, Theorem 1.3].
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Corollary 2.13 (Li-Ramos [22, Theorem F, Part (2)]). Let M be an FI-module presented
in finite degrees. Then XM is semi-induced if and only if n > h™**(M). In particular,
RT'w(M) =0 if and only if M is semi-induced.

Proof. Let I°® be the complex constructed in the previous theorem. If n > h™** (M), then
¥"I° is exact (shifts commute with local cohomology). Since a shift of a semi-induced
module is semi-induced, we see that X" 1" is semi-induced for i > 0. By Proposition 2.1,
we conclude that ¥"[° = %M is semi-induced. Conversely, if n < h™a*(M), then
H¢ (X" M) is nonzero for some i (shifts commute with local cohomology). However, %" M
cannot be semi-induced by the theorem above. O

For any ring k, we say that an FI-module M is an FI-module over k if the functor
M : FI — Mody, factors through Modyx — Mody.

Proposition 2.14. Suppose k is a field, and let M be an FI-module over k which is
presented in finite degrees and with M, finite dimensional for all n. Then there exists
an integer-valued polynomial p € Q[X| of degree (M) such that dimy M, = p(n) for
n > h™a*(M).

Proof. First assume that M = Z(V) is an induced module. By the previous corollary,
hmaX(M) = —1. And we have degV = §(M). In this case the result follows from the
following identity that holds for n > 0:

deg V' n
dirnkM = ( ) dimk V

In general, let N = h™¥(M) + 1 and set M’ = VM. It is enough to show that
dimy M), agrees with a polynomial of degree §(M) for all n > 0. By Proposition 2.9,
we have 6(M’) = §(M), and by the previous corollary M’ is semi-induced. Then M’
admits a finite filtration such that the graded pieces are induced modules of stable
degree at most 6(M) and at least one such graded piece is of stable degree exactly 6(M)
(Proposition 2.9(5)). The result thus follows from the previous paragraph. O

3. Properties of stable degree and local degree
In this section, we show that the generation and presentation degrees of an FI-module
can be bounded linearly in terms of the stable and local degrees, and vice versa, and

that together they behave well under taking kernels and cokernels.

Proposition 3.1. Let M be an FI-module presented in finite degrees. Then we have the
following:
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to(M) < 6(M) + (M) + 1.
£y (M) < 6(M) + 2h™(M) + 2.

Proof. Part (1) is Proposition 2.9(4). Part (2) is obtained by combining the different
cases of Theorem 2.10, since 6(M) < to(M).

For the remaining parts, set n = h™**(M) 4 1. Since "M is semi-induced (Corol-
lary 2.13), we have to(X"M) = §(X"M) = §(M). This shows that (see [10, Corol-
lary 2.13])

to(M) <to(X"M) +mn=38§M)+ ™M) + 1.
This proves Part (3). Part (4): Consider a presentation
0O-K—>F—->M-=0

with F' semi-induced and generated in degrees < ¢o(M). By Proposition 2.1, we see that
3" K is semi-induced, since both X" F and X" M are. This shows that

By Proposition 2.9(6), we have §(X"K) < §(X"F), and since F is semi-induced we have
0(X"F) = §(F) = to(F) < to(M). Combined with the bound to(M) < §(M) + n from
Part (3), we obtain

(M) < 6(S"K) +n < to(M) +n < 5(M) + 2n = (M) + 20™(M) + 2. O

Proposition 3.2. Suppose the FI-module M has a finite filtration M = F° > ...
D FF = 0, and let N = F!/F*l. Then §(M) = max;d(N?) and h™>*(M) <
max; hMaX(N).

Proof. The claim for § follows from Proposition 2.9(5) by induction. Given 0 — L —
M — N — 0, the long exact sequence --- — H: (L) — H% (M) — Hi (N) — -+ shows
that A™**(M) is bounded by the maximum of A™**(L) and h™®*(N). The proposition
follows by induction. 0O

The following proposition is the key to analyzing Type A arguments. It gives us control
over the stable and local degrees under taking kernels and cokernels.

Proposition 3.3. Let f: A — B be a map of FI-modules presented in finite degrees. Then
we have the following:
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(1) d(ker f) < 6(A).

(2) d(cokerf) < 4(B).

(3) hmax(ker f) < max(20(A) — 2,h°(A),h1(A),h%(B)) < max(25(A) — 2, ™ (A),
hmaI(B))‘

(4) h™a*(cokerf) < max(2§(A) — 2, h™*(A), k™ (B)).

The proof of this proposition occupies the remainder of this section, but first we
establish the following lemmas.

Lemma 3.4. Let M*® be a bounded complex of FI-modules presented in finite degrees which
is exact in high enough degree. Denote the cokernel of the map id — X by Q.. Then
H(Q,(M*®)) vanishes in high enough degree.

Proof. Choose n large enough so that X" M*® is an exact complex of semi-induced mod-
ules. Since semi-induced modules are acyclic with respect to @, ([8, Corollary 4.5]),
we see that Q,X"M*® is exact. The result follows because @, commutes with 3" ([14,

Proposition 1.4]). O

Lemma 3.5. Let M*® be a bounded complex of FI-modules presented in finite degrees such
that H'(M*®) is exzact in high enough degree. Then there exists a double complex I** with
the following properties:

(a) The first column I%* is M*® and I** =0 for i < 0.

(b) The columns I* are exact for i > 0.

(c) I is semi-induced if i > 0 and §(I™7) < §(M7) —i+ 1.
(d) Each row I*7 is exact in high enough degree.

Note that Part (d) implies H(I1*7) = H: (M7) by Theorem 2.10.

Proof. To build such a double complex, we proceed by induction on d := max; 6(M7). If
d = —1, then we can just take I/ = 0 for i > 0. Now suppose d > —1. Pick an n large
enough such that X" M* is an exact complex of semi-induced modules (see Theorem 2.6).
Set I%* = M*® and I"* = X"M?*. The cokernel of the map I%* — I** is Q,M®. By
the previous lemma, we see that H'(Q,, M*®) is torsion for each i. Thus, by induction
on d, the theorem holds for the complex Q,M®. Let J*J be the corresponding double
complex for Q,, M*®. Set I't1:* = Ji* for i > 0. It is now easy to check that I** has all
the required properties. O

Proof of Proposition 3.3. Both Parts (1) and (2) are special cases of Proposition 2.9(6).
We now prove Parts (3) and (4). For the ease of notation, denote the complex 0 —
ker f - A — B — cokerf — 0 by

M®:0— M - M' = M?%2— M3 —0.
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Let I*° be the complex as in the previous lemma. Since all the columns are exact, the
spectral sequence corresponding to this double complex converges to 0. The first page of
this spectral sequence is given by E{"? = HE (M?). Since this spectral sequence converges
to zero, we see that the following must hold:
hH(M) < max h? (M'7HT),

It
In particular, h?(ker f) < h°(A) and h'(ker f) < max(h'(A),h°(B)). By Part (1) and
Theorem 2.10, we see that hi(ker f) < 26(A) — 2(i — 1) for 4 > 2. This proves Part (3).
Again, since ET"? converges to 0, we observe that the following must hold:

h'(M?) < max b (M*H77).
J=1

Thus for each i, we have

h'(coker f) < max(h*(B), " (A), K" (ker f)) < max(h™*(B), h™**(A),25(A) — 2).
This finishes the proof of Part (4), and we are done. 0O
4. Type A spectral sequence arguments and configuration spaces

In this section, we prove Theorem A which establishes linear stable ranges in Type A
spectral sequence arguments. We use this to prove our results on configuration spaces,
Application A.

4.1. The Type A setup

By a Type A setup, we mean a first quadrant spectral sequence EF*¢ of FI-modules
such that for some page d we have bounds on to(E,?) and ¢ (E%?) depending on p
and q.

Theorem A follows via Proposition 3.1 from the following proposition. Note that
our spectral sequences are cohomologically indexed; Theorem A applies equally well
to homologically indexed spectral sequences, but the precise bounds in Proposition 4.1
would be slightly different.

Proposition 4.1. Let EP? be a cohomologically graded first quadrant spectral sequence
of FI-modules converging to MPV4. Suppose that for some page d, the FI-modules
ED are presented in finite degrees, and set Dy = maxpiq—;0(EY?) and np =
max, i q—x K" (EL?). Then we have the following:

(1) 6(M*) < Dy
(2) hmaX(Mk) < max ( MaX/<jts—d N, MaXp<op—d+1(2Dg — 2))

where s = max(k + 2,d).
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Proof. For all r, set V} = @D, 4= EX?. Note that Dy, = S(VE) and ny, = hmax(VF).

Since M* has a filtration whose associated graded is VX Proposition 3.2 tells us that
S(MF*) = §(VE) and hmax(MF) < pmax(VE).

By definition, V¥, | = coker(VF=! — ker(V¥ — V}*1)). Applying Proposition 3.3
shows 6(V;¥ ;) < 6(V;F) and

RR(VEL) < max(28(VETY) = 2, 20(VE) =2, RU(VETY), RE(VE), R (VET).
It follows by induction for all r > d that §(V;*) < D, and

max k < _ )
WE(VY) < max (| max ;e max  (2D¢—2))

Since VE = VE  (h42.0) We find that §(VE) < Dy and

max k < _
(V) < max (|, max mg, | max (2D —2)),

as desired. 0O

Recall that if an FI-module V is semi-induced then A™**(V') = —1. Hence we obtain
the following corollary by using Proposition 4.1 to bound &§(M*) and h™**(M*), then
applying Proposition 3.1(3) and (4).

Corollary 4.2. Let EP'9 be a cohomologically graded first quadrant spectral sequence of
FI-modules converging to MP*9. Suppose that for some page d, the FI-modules EL? are
semi-induced and generated in degree < u(p + q) for some p. Then we have

(1) 6(M*) < pk.

(2) hmax(MF*) < max(—1,4pk — 2u(d — 1) — 2).
(3) to(M*) < max(uk,5uk — 2u(d — 1) — 1).
(4) t1(M*) < max(uk, 9uk — 4pu(d — 1) — 2).

4.2. Cohomology of configuration spaces

Let M be a connected manifold of dimension d > 2. Let A be any abelian group. In
this section, we prove a linear bound on the generation and presentation degrees of the
FI-modules H*(PConf(M); A) described in §1. The following theorem (in conjunction
with Proposition 2.4 and Proposition 2.14) includes Application A as a special case.

Theorem 4.3. Let M be a connected manifold of dimension d > 2, and set:

)2 dfd=2 5= 0 if M is non-orientable
1 ifd>3 1 if M is orientable
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Let A be an abelian group. Then we have:

(1) (I (PConf(M); A)) < ik

(2) hmax(H*(PConf(M); A)) < max(—1,4uk — 2u\ — 2).
(3) to(H¥(PConf(M); A)) <m (,uk7 Spk — 2uX —1).
(4) t1(H*(PConf(M); A)) < maz(uk, Iuk — 4uX — 2).

This follows immediately from Corollary 4.2, in light of the following two results. The
first is due to Miller and Wilson; it follows from the proof of [24, Theorem A.12]. The
second is due to Totaro [37].

Theorem 4.4 (Miller—Wilson). There is a first quadrant spectral sequence EP'? of
FI-modules converging to HP+t4(PConf(M), A) such that EY'? is induced and to(EY?) <

1q.

Theorem 4.5 (Totaro [37], see [9, Proof of Theorem 6.3.1]). If M is orientable, there is
a first quadrant spectral sequence EP9 of FI-modules converging to HP4(PConf(M); A)
such that EY? is induced and to(EY?) < p(p + q).

One can improve Theorem 4.3 if the manifold admits two pointwise linearly inde-
pendent vector fields. This includes all manifolds with trivial tangent bundle. We give
this example because it illustrates that sometimes one can bound A™?* using topology
instead of algebra.

Proposition 4.6. With the notation of Theorem 4.3, suppose that M admits a pair of
linearly independent vector fields. Then we have:

(1) S(H*(PConf(M); A)) < jik
(2) pmax Hk(PConf(M),A))
(3) to(H*(PConf(M); A)) < k+1
(4) t1(H*(PConf(M); A)) < uk + 2.

Proof. We will need the following three categories:

o Let FIf denote the category with objects finite based sets and with morphisms given
by maps of based sets such that the preimage of all elements except possibly the
base point have cardinality at most one.

o Let Set denote the category of finite sets and all maps.

o Let Set, denote the category of based sets and base point-preserving maps.

There is a commuting square of natural functors:
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FI FI#

L

Set —— Set,

Church—Ellenberg—Farb [9, Theorem 4.1.5] proved that the restriction of an FIf-module
to FI is an induced FI-module. Thus, Set,-modules are also induced FI-modules.
Ellenberg and Wiltshire-Gordon [15, Theorem 14| showed that the FI-module struc-
ture on H¥(PConf(M); A) extends to the structure of a Set-module if M admits
a pair of linearly independent vector fields. The shift of a Set-module is naturally
a Set,-module. We conclude that the FI-module structure on ¥ (H*(PConf(M); A))
extends to a Set,-module structure. Thus ¥ (H*(PConf(M); A)) is induced. By Corol-
lary 2.13, hma*(H*(PConf(M); A)) is at most 0, proving Part (2). Theorem 4.3 gives
Part (1), and Proposition 3.1 then implies Parts (3) and (4). O

5. Type B spectral sequence arguments and congruence subgroups

In this section, we prove Theorem B which establishes quadratic stable ranges in
Type B spectral sequence arguments. We use this to prove our results on congruence
subgroups of general linear groups, Application B.

5.1. The Type B setup

By a Type B setup, we mean that we start with a bounded-below complex M,
of FI-modules, together with bounds on ty(M,) for each i (which typically grow
linearly in k). There is a hyper-homology spectral sequence with the second page
E?; = HFY(H,;(M)) converging to Hflj (M,), and one can analyze this spectral sequence
to produce bounds on to(H;(M,)) and t1(H;(M,)). Previous methods lead to bounds
that are exponential in j even if the bound on ty(M,) is linear in k; see the proof of
[8, Theorem D]. Our next theorem together with Proposition 3.1 provides a way to get
better bounds in a Type B setup. It gives a quantitative version of Theorem B.

Theorem 5.1. Suppose M, is a bounded-below complex of FI-modules with ty(M,) < oo.
Then for all k:

(1) 6(Hk(Mo>) < tk(Mo)'
(2) WX (Hy (M) < maxgep Bm(H, (M) + max(bx(Ma), b1 (M) + 6 (Ma).

In particular, if tx(Me) < ak + b for all k and M, is supported on non-negative homo-
logical degrees, then we have:

(a) 6(H(M,)) < ak +b.
(b) h™a(Hg(M,)) < a(k +1)% + 2b(k + 1) = ak® + 2(a + b)k + a + 2.
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(c) to(Hi(M,)) < ak? + (3a +2b)k +a+ 3b+ 1.
(d) t1(Hp(M,)) < 2ak* + (5a + 4b)k + 2a + 5b + 2.

Remark 5.2. In the initial distributed version of this paper, we asked if the above theorem
could be improved to produce linear ranges. An affirmative answer to that question was
subsequently found by Gan and Li [18, Theorem 5].

The first step in proving the above theorem is to show that each Hy(M,) is presented
in finite degrees. This is accomplished by the following lemma which we have extracted
from the proof of [8, Theorem D].

Lemma 5.3. Suppose M, is a bounded-below complex of FI-modules with ti(M,) < oo
for each k. Then each Hy(M,) is presented in finite degrees.

Proof. We assume, without loss of generality, that M, is supported on non-negative ho-
mological degrees, and proceed by induction on k. We have the hyper-homology spectral
sequence with second page E2 = HEF'(H,(M,)) converging to HEY  (M,). The following
inequalities follow easily from it:

to(Hy(Ma) < max(te(Ma), | max _ t,(H,(M.)))

b (He(M,)) < max(trr (M), max  tp(Hy(M,)))
In the base case k = 0, we get to(Ho(M,)), t1(Ho(M,)) < oo. This is equivalent to Ho(M,)
being presented in finite degrees. By induction, assume that Hy(A/,) are presented in
finite degrees for ¢ < k. By Theorem 2.3(1), we see that ¢,(Hq(M,)) < oo for ¢ < k and
p > 0. The two inequalities above thus imply that Hy(M,) is presented in finite degrees,
completing the inductive step of the proof. 0O

Proof of Theorem 5.1. We assume, without loss of generality, that M, is supported on
non-negative homological degrees. By Lemma 5.3, each Hy(M,) is presented in finite
degrees, and so methods of the earlier sections (for example Theorem 2.6) are applicable.

Proof of Part (1): Fix a k and choose an n large enough such that X"H,(M,) are semi-
induced for ¢ < k. We have a spectral sequence with E2 = HFY(H, (X" M,)) converging
to Hj 1, (X" M,). Since semi-induced modules are FI-homology acyclic (Theorem 2.3),
we have Ef,’q =0 for p > 0 and g < k. This causes the spectral sequence to collapse in a

range. We conclude that
deg Ej j, = deg Eg5, = 6(Hy(M,)) < t4(5" M) < ty(M,)

where the last inequality is by Theorem 2.5. This proves Part (1).
Proof of Part (2): Fix a k and choose an n large such that ¥"H, (M, ) are semi-induced
for ¢ < k. This n is precisely maxg<y h™*(Hy(M,)) + 1 (Corollary 2.13). We have



T. Church et al. / Advances in Mathematics 333 (2018) 1-40 23

a spectral sequence with E? = HF'(H,(X"M,)) converging to HF ! (3"M,). Since
semi-induced modules are FI-homology acyclic, we have Ez’q =0forp>0andq < k.
This causes the spectral sequence to collapse in a range. This degeneration together with

Theorem 2.5 leads to the following inequalities:

to(He (X" M,)) = deg Ej , = deg B, < t(S"M,) < tj,(M,)
t1(Hi (X" M,)) = deg Eik =deg BT, < try1 (X" M) < tgp1(M).
Since local cohomologies commute with shifts, we have A™*(Hp(M,)) < n +

hmex(3"Hy (M,)). Clearly, we also have X"Hy(M,) = Hy(X"M,). Now Theorem 2.10
together with Part (1) and the inequalities above yield

hmaX(Hk(ZnM.)) < maX(tk(M.),tk+1(M.)) + tk(M.) — 1.
Thus we have

h (He (M) < n+ R (Hy (X" M)
<n+ max(ty(Me), tr11(M,)) + tr(Ms) — 1
= a7 (H (M) (s (M), b1 (M) + (M)

This completes the proof of (2).

Now we prove the remaining parts. Part (a) follows from Proposition 2.9(4). For
part (b), denote max,<j h™**(Hy(M,)) by T} and set T_1 = 0. From part (2), we have
Ti — Te—1 < a(2k 4+ 1) + 2b. Expanding a telescoping sum gives

k
Tp =Tp =Ty <Y _a(2i+1)+2b=a(k+1)*+2b(k + 1) = ak® + 2(a + b)k + a + 20,
=0

completing the proof of (b). Parts (c) and (d) follow from Proposition 3.1 together with
(a) and (b). O

5.2. Congruence subgroups

We now prove Application B, stability for congruence subgroups. We will need the
following proposition bounding the FI-homology of the chains on congruence FI-groups;
the proof of this proposition occupies the next two sections (see §7.2).

Let EoG denote a functorial resolution of Z by free ZG-modules (e.g. the bar reso-
lution). Then for any FI-group I, we may consider CoI' := E,I" ®r Z, which is a chain
complex of FI-modules with Hy(CoI') = Hy(I'; Z). For any coefficient group A we set
Ce(T;A) =Co () ® A.
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Proposition 5.4. Let I be a proper ideal in a ring R satisfying Bass’s stable range con-
dition SRgy2, and let T' = GL(R, I) be the corresponding congruence FI-group. For any
coefficient group A we have ti,(Ce(T; A)) < 2k +d.

We now prove Application B, stability for congruence subgroups.

Proof of Application B. Theorem 5.1 and Proposition 5.4 give Parts 1, 2, 3, and 4 of
Application B in the case that the ideal is proper. We invoke Proposition 2.4 and Propo-
sition 2.14 to deduce Parts (a) and (b) of Application B.

For I = R, much stronger results are already known, since the groups GL, (R, ) =
GL,(R) exhibit classical homological stability. Van der Kallen [38] showed that
Hy(GL,(R)) — Hi(GL,41(R)) is an isomorphism for n > 2k 4+ max(1,d) and a sur-
jection for n > 2k 4+ max(1,d) — 1. This shows that Hy(GL(R)) has stable degree < 0,
generation degree < 2k + max(1,d) — 1, local degree < 2k + max(1,d) — 1 (see Theo-
rem 2.10(3)) and presentation degree < 2k + max(1, d). These bounds are all at least as
good as Application B claims, so Application B is also true for I = R. O

6. The FI-homology of the chains on an FI-group

For any injective FI-group I' (meaning that all maps I'r — T'g are injective) Church—
Ellenberg defined in [8, Proposition 5.13] a natural complex of FI-modules X on which
I" acts.® The definition of Xr will be spelled out explicitly below in Definition 6.9.

The purpose of this section is to prove the following proposition:

Proposition 6.1. For any injective F1-group T, there is a quasi-isomorphism
LHFY(C,T) = LH*Y(E,T ®r Z) — E,T ®r Xr.
In particular, HEY(C,I') = Hy(T; X1).

In other words, the FI-homology of the chains on the FI-group I' is computed by the
I'-equivariant homology of the FI-complex Xr. Since Xt consists of free abelian groups,
Proposition 6.1 has the following corollary.

Corollary 6.2. HFY(C,(T; A)) 22 Hy(T; Xr ® A) for any coefficient group A.

In light of these results, one immediately sees the importance of understanding the
FI-complex Xr. In service to this aim, we give in Section 7.1 an explicit description
for two representative FI-groups: the general linear group GL(R) and its congruence
subgroup GL(R, I).

6 The hypothesis that I' is injective was not mentioned explicitly in [8], but the definition of Xr only
makes sense when IT' is injective, as we will see below.
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6.1. The complex of FI-modules V (F)

Throughout the proof of Proposition 6.1, we will make use of the following construction
(originating in [8, Construction 5.7]).

Let FI¥ denote the arrow category of FI, which we will think of as follows: an object
of FI' is a pair (T,S) where T is a finite set and S C T is a subset (not necessarily
proper). We will denote such an object as S C T, but we emphasize that this is merely
formal notation for the pair (7,.5). A morphism from S C T to S’ C T’ is an injection
f: T < T such that f(S) C 5.

For any finite set R, we denote by A, the space of orientations of R. As an abelian
group A\ is always isomorphic to Z. A bijection R =5 R’ induces an isomorphism
Ar = A g/ > and permutations of R act on /\p by the sign representation. When we
wish to emphasize that R has cardinality |R| = k, we write /\];%

Definition 6.3. We define an exact functor V: Modgp — Ch(Modgr) as follows. On
objects, V(F)r is the graded abelian group

V(F)r == P Fscr 8 A,
T=SUR

graded by the cardinality of R. That is,

V(F)r)k= P FscrBAR- (2)
T=SUR
RI=k

(The symbol X here means simply ®z; we write X for visual distinctness, and to em-
phasize later that certain constructions act only on the first factor of Fscr X AR.)

An FI-morphism f: T < T’ sends the summand indexed by T = S LI R to the
summand indexed by 77 = 5" U f(R) for 8" :=T"\ f(R). If |R| = k, the map

Fscr X /\I;?, — Focr X /\];(R)

is given on the first factor by the FI*-morphism f,: Fgcr — Fscr and on the second
factor by the FI-morphism f,: /\];;c — /\];( r)- This gives V/(F) the structure of a graded
FI-module.

Finally, the differential d is given on the summand Fs-r X /\’;{ by the alternating sum
over € R of maps

Fscr X /\I;z — Fsyryer X /\K%Ty

That V is exact is visible from the defining formula (2).
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Remark 6.4. This construction is due to Church-Ellenberg, and was denoted Cf in
[8, Construction 5.7]. In particular, the reader concerned about consistency of signs or
checking that d> = 0 can find all details spelled out in [8]. However be aware that
this construction was phrased there in terms of the twisted arrow category FI™; our
description here corresponds to [8, Construction 5.7] under the isomorphism FI' ~ FI™
givenby SCT — (T\S)cCT.

The following is a standard result on triangulated categories.

Lemma 6.5. Let A, A" be abelian categories, and let X : Ch™(Mod 4) — Ch™(Mod./) be
a functor. Then X induces a triangulated functor X : DY (Mody) — DT (Mod_a/) if the
following hold:

(1) X commutes with homological shifts.

(2) X maps distinguished triangles M NG VR Cone(f) to distinguished triangles.
(3) X takes quasi-isomorphisms to quasi-isomorphisms.

Lemma 6.6. V induces a triangulated functor V: DT (Modgy) — DT (Modgr).

Proof. If F = F, is a bounded-below chain complex of FI*-modules, the functoriality of
V makes V(F,), into a double complex of FI-modules; we define V(F') to be its total
complex, satisfying

(V(E)r)r = EB @ (Fy)scr X /\%.

+q=k T=SUR
P R
This defines an extension V: Ch*t(Modpy:) — Ch™(Modpy). It now suffices to check
the conditions from the previous lemma, of which the first two are trivial. For the third
condition, note that from the obvious vertical grading we have a spectral sequence

(Ep)" = D (F)scr®AR = Hi(V(F)).

T=SUR

|R|=p
If f: Fo — G, is a quasi-isomorphism, the exactness of the original V' means the induced
map (EJ,)" — (EJ,) will be a quasi-isomorphism with respect to d°. It follows that
f induces an isomorphism on E', so f: V(F) — V(G) is a quasi-isomorphism. This
shows that V' descends to a triangulated functor V: D (Modgy) — DT (Modgr), as
claimed. O

There are two natural ways to view an FI-module as an FIi—module, and both will
be used in this section. They arise from the two natural functors FI¥ — FI defined by

(T,8)— S and (T,S)—T
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Accordingly, if M is an FI-module, let M and M be the FI*-modules defined by
Mgcr = Mg and Mscr = Mr.
Both M + M and M —s M are exact, so we use the same notation for M € DT (Modpr).
Lemma 6.7. For any M € DT (Modg1) we have V(M) = LH¥Y(M).
Proof. It follows from [8, Proof of Thm. C] and [8, Proposition 5.10]. O
Given an FI-group I', as above we write T for the FIi—group defined by fScT =TIr.

Lemma 6.8. Suppose that F is an FI*-module with a left action of f, and A is an
FI-module (or chain complex of FI-modules) with a right action of T.

(1) The action of T on F induces an action of T' on the FI-module V (F).
(2) There is a natural isomorphism V(A®z F') = AQrV (F') as complezes of FI-modules.

Proof. Let us first spell out what it means for T to act on the FI*-module F. This means
for every T'and S C T we have an action of the group I'r on the Z-module Fg-7; and for
any f: T — T" and any S’ D f(S) the FI*-morphism f,: Fscp — Fg/cp is equivariant
with respect to the FI-morphism f,: 'y — 'y

In particular, the FI*-module A @ F' is defined by

(A®g F)scr = Ascr ®rger Fscr = Ar ®ry Fscr.

(1): The claimed action of I'r on V(F)r = @;_g g Fscr ¥ Ap preserves each
summand; on the summand Fscr X Ap it acts on Fscr by the specified action of
I'r = fsc% and acts on A, by the identity. It is straightforward to check that this
commutes with FI-morphisms and the differential.

(2): We have

(Aer V(F))r = Ar ®r, ( P Fscr® /\R>
T=SUR

= @ Ar ®r, (FSCT‘X/\R)
T=SUR

P Arer, Fser)®Ap ()

T=SUR

= P (AepFscr®Ag
T=SUR

= V(g®f F)p

12
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The key isomorphism is (x); this holds because the action of I'r on the summand Fp y X
Ag of V(F) is trivial on the Aj factor. To see that this isomorphism commutes with
the differential, recall that the differential of V(ﬁ ®g I') is the alternating sum of maps
induced by (A ®s F)scr — (A ®f F)sugrycr- But since A is pulled back from an
FI-module, FT*-morphisms of the form id: (S € T) — (SU{r} C T) act by the identity
on A. So the differential is the identity on the Ay factor of (ﬁ@lz F)scr 2 Ar®r, Fscr,
just as we need. The functoriality of (%) guarantees that this holds for a chain complex
A of FI-modules as well. O

6.2. The complex Xp and the proof of Proposition 6.1

We can now define the complex Xp. Suppose that I' is an injective FI-group. For
any S C T, we can identify I'g with the subgroup i.(I's) C 'y, where i: S < T is the
inclusion. We will denote this subgroup simply by I's C I'p.

Definition 6.9. We define the FI*-module Fr as follows. On objects, (Fr)scr =
Z[I'r/Ts]|. Given a morphism f: T — T’ with f(S) C ', we define f.: (Fr)scr —
(FT)s/c7 to be the map induced by f.: Z[['r] — Z[['r/]; since f(S) C S’, we have
f(Ts) C T, so this is well-defined.

We define the complex Xt of FI-modules to be Xp := V(FT). The obvious left action
of 't on (Fr)scr induces an action of I on Fr, so by Lemma 6.8(1) it induces an action
of " on the chain complex of FI-modules Xr = V(FT).

Explicitly, the complex X is given in homological degree k by

(Xr)r)e = @D Z['r/Ts) @ AR, (3)

T=SUR
|RI=k

with T'r preserving each summand, and acting only on Z[['7/Ts].

Proof of Proposition 6.1. First, let us show that there is a natural quasi-isomorphism
between the complexes of FI*-modules

C.T =5 EJ @5 Fr. (4)

Indeed, on objects we have by definition

(CoD)scr =Col's = EI's Qr, Z

(BT ®t Ir)scr = EJ'r ®ry Z[I'7r /T].

The desired map from the former to the latter is induced by the inclusion I'g < I'p,
and is a quasi-isomorphism by Shapiro’s lemma.
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We now finish the proof:

LHFY(C,T") = V(C,T) by Lemma 6.7
= V(EV.I‘ ®f Ir) by (4) and Lemma 6.6
= EJ @r V(Fr) by Lemma 6.8(2)
= F,I ®pr Xr by definition of X

This demonstrates that LHFY(C,I') & E,I' ®r Xr, as claimed. 0O
6.3. Explicit description of Xp

In this section we show that for most FI-groups, the chain complex Xt can be realized
by a concrete FI-simplicial complex.

Definition 6.10. For any injective FI-group I', we define an FI-simplicial complex Yr
with an action of I" as follows.

e The vertices of the simplicial complex (Yr)r are pairs ({t},7 € I'r/T'p\(43)-

o Every maximal simplex of (Yr)r is (|T'] — 1)-dimensional. For every v € I'p, the |T|
vertices ({t},m¢(y)) form a (|T| — 1)-simplex, where m; is the canonical projection
T - FT s FT/FT\{t}-

To define the FI-structure and I-action, it suffices to define them on vertices (and check
that simplices are preserved). We must define for each FI-morphism f: T < T’ a map
f« from the vertices of (Yr)r to the vertices of (Y1), and for each g € I'r a map from
the vertices of (Yr)r to itself. Given v € T'r, we define

f{th7) = (O}, f+(7) € Trr [T gery)
g-({thm) = (At} , 97 €To/Tryy )

Observe that Yr has a canonical dimension-preserving projection Yr — A®~! given
by ({t},7) ~ {t}. Here A*~! is the FI-simplicial complex which assigns to a set T
the complete simplex AT~! on vertex set T. Furthermore, this projection realizes the
quotient by the action of I, giving an identification I'\Yr = A®~!. This can be seen as

follows.
Our definition of (Yr)7 implies that a collection o = {({t1},71), ..., ({tx},7%)} forms
a (k—1)-simplex if and only if the elements t1, ..., ¢, € T are all distinct, and there exists

v € I' such that 7, (y) =7%; € I'r/T'p\ g4, for all i = 1,..., k. This last condition can be
rephrased as saying that there exists v € I'r such that o = - {({t1},1id), ..., {tx},id)}.
Therefore two simplices of (Y1) are in the same I'p-orbit if and only if they project to
the same simplex R = {t1,...,t;} of AT~ as claimed.



30 T. Church et al. / Advances in Mathematics 333 (2018) 1-40

We now need the following condition on an FI-group.
Definition 6.11. An injective FI-group I' is saturated if for any S; C T and Sy C T,
I's, NT's, =I'sins,
as subgroups of I'p.
By induction, this implies that (\I's, = I'ng, for any finite collection of subsets S;.

Remark 6.12. The same definition makes sense for FI-modules (being abelian FI-groups).
An FI-module M is saturated if and only if

19, (M) = HL (M) =0,

as we now explain. By definition an FI-module M is injective as an FI-group if and only
if M is torsion-free, i.e. if HO (M) = 0.

We next claim that under this assumption the condition Mg, N Mg, = Mg,ng, holds
if and only if the cokernel @, M of the natural map M — "M is torsion-free for
each n > 0. To see this equivalence, let S1,Ss and T be sets such that T = S; U S
and |T\ S1| = n. Then the map M — X" M in degrees |S; N .S2| and |S;| leads to the
commutative diagram

Mg, — (X"M)g, = My —— (QuM)s, —— 0

J J |

MslﬂSQ — (EnM)SlﬂSQ = MSz —— (QHM)Slﬁsz —0

where the vertical maps are induced by the FI-morphism S; NSy — S7 and horizontal
maps are components of the natural map M — X" M. The vertical map (Q,M)s,ns, —
(QnM)g, is thus injective if and only if Mg, N Mg, = Mg, ns,, as claimed.

By [11, Proposition 1.1] and [16, p. 371, Corollaire], this implies that M is saturated
if and only if HY (M) = HL (M) = 0. In particular, our definition of saturation agrees
with the classical one; see [16, III §2].

It seems that “natural” examples of injective FI-groups are almost always saturated;
this includes GL(Z), Aut(F,), and their congruence subgroups. An example of an in-
jective FI-group that is not saturated would be the sub-FI-group I' C GL(Z) defined
by

ro— GL,(Z) ifn>5
" ifn <5

Any injective FI-group I is contained in a saturated FI-group IV defined by taking
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F{T = colim ((FTH[O])S[O] — (FTL,D])S[I] — (FTH[Q])S[Q] — .. ) .

Proposition 6.13. If T is a saturated FI-group, then Xr[1] is the reduced cellular chain
complex of the FI-simplicial complex Yr.

Proof. The key to this proposition is that when I' is saturated, the FI-simplicial complex
Yr admits the following alternative description:

The (k — 1)-simplices of (Yr)r are in bijection with pairs (R,5 € I'r/I'r\ g) where
R C T and |R| = k. The simplex (R’,~’) is contained in the simplex (R,%) if and only
if R C R and 7/ is the image of 5 under the projection I'r/I'r\ g — I /T g

To verify this description, consider a simplex o = {({r1},71),..., {rx}.7%)} of Y1
lying above R = {rq,...,rx} C T. By definition, for o to be a simplex means there
exists v € I'r with 7., (v) =% € I'r/T'p\ (3 for all 4. This element v is not unique; it
is only well-defined modulo the intersection ﬂle Ip\{r,3- But the hypothesis that T" is
saturated guarantees that

k
(Trverg =Te, mgry = e
i=1
Therefore to every simplex o of Yr above R C T' determines an element 5 € I'r/T'p\ g,
and the containment relation is as described.

From this description the identification is clear: the (k — 1)-simplices of Y1 are labeled
by

(Y0)r)e—1 = || Tr/Trr : (5)
RCT

|R[=k
(This is correct even for k = 0 if we consider Yr to have a single (—1)-simplex.) Therefore
the cellular chain complex of Yr has

ék—l(YF)T = @ Z[FT/FT\R] X /\]IC%
b

Here /\];2 arises as the orientation (or fundamental class) of the simplices; it records the
fact that FI-morphisms can reverse the orientation of simplices. Comparing with the
explicit description of X in (3), we find

(X)) = @ Z[hr/Ts|BAR,

from which the desired identification Cj_1(Yy) = (Xr)g is clear. (Note the shift in
indexing, which is why Ce (Y1) is isomorphic to the shifted Xr[1] rather than Xp.) O
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Remark 6.14. If T is not saturated, (X1 )7 is still the shifted chain complex of a semi-
simplicial set; what goes wrong is that e.g. multiple edges may have the same endpoints,
so this fails to be a simplicial complex.

7. Congruence subgroups and complexes of split partial bases
7.1. The FI-simplicial complex Yr for congruence FI-groups

In this section, we give explicit and familiar descriptions of the FI-simplicial complex
Yr for the concrete FI-groups GL(R) and its congruence subgroups GL(R, I). It turns out
that for proper ideals I, this complex coincides with a natural “complex of mod-I split
partial bases” SPB,, (R, I). (This is closely related to the complexes of split unimodular
sequences considered by Charney [5] and Putman [31], as we will explain below.) However
there is a subtle point when the ideal T is equal to R, in which case the group GL,, (R, I)
is simply GL, (R). In this case the complex Y1 does not coincide with the complex of
split partial bases SPB,,(R) = SPB,,(R,I), but is instead a slightly different complex.
Making this subtlety clear is one of the main reasons for writing this section.

Before dealing with ideals at all, we define the complex of split unimodular collections
SU,(R) and the complex of split partial bases SPB,,(R).

Definition 7.1. The vertices of the complex of split unimodular collections SU,(R) are
pairs (v € R™,g: R" — R) with g(v) = 1. A collection {(v1,¢1),...,(vk,gx)} forms a
(k —1)-simplex of SU,(R) if and only if vq,..., vy are linearly independent and g;(v;) =
0ij-

Note that the (n — 1)-simplices of SU,(R) are in bijection with unordered bases
{v1,...,vn} of R™ (since the maps g; are then determined by the formula g;(v;) = d;5).

Definition 7.2. The complex of split partial bases SPB,,(R) is the subcomplex of SU,,(R)
defined as follows. A simplex of SU,,(R) belongs to SPB,,(R) if and only if it is contained
in an (n — 1)-simplex.

Remark 7.3. For R = 7Z the complexes SPB,,(Z) and SU,,(Z) are actually equal, but this
is not true for all rings R. For example, if R = R[x,y, 2]/(2? + y* + 2% — 1), the vector
v = (r,y,2) € R? and g: (a,b,¢) — ax + by + cz define a vertex (v,g) € SU3(R). But
this vertex cannot belong to SPB3(R) because the kernel of ¢ is not free (a basis for ker g
would define a trivialization of the tangent bundle of the 2-sphere).

To define the mod-I variants SU,, (R, I) and SPB,, (R, I) we must fix a standard basis
e1,...,e, for R™. Let A1,..., A\ R™ — R be the dual basis.
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Definition 7.4. The complex of mod-I split unimodular collections SU,, (R, I) is the full
subcomplex of SU,(R) on vertices (v,g) for which there exists ¢ € [n] such that v =
e; mod I and g = \; mod I.

Note that the (n — 1)-simplices of SU, (R, I) are in bijection with bases {v,...,v,}
of R™ such that v; =e; mod [ foralli=1,...,n.

Definition 7.5. The complex of mod-TI split partial bases SPB,, (R, I) is the subcomplex
of SU,(R,I) defined as follows. A simplex of SU, (R, I) belongs to SPB, (R, I) if and
only if it is contained in an (n — 1)-simplex of SU,, (R, I).

Remark 7.6. If R satisfies Bass’s stable range condition SR, then for all £ <n—d—2
the subcomplex SPB,, (R, I) contains all ¢-simplices of SU, (R, I) (see [31, Lemma 3.2] or
[5, Proposition on p. 2101], but note a typo in the former). In particular, the inclusion
SPB,,(R,I) — SU,(R,I) is (n — d — 2)-connected.

Remark 7.7. Putman works with SU,, (R, I) in [31, third Definition in §3] (but beware
an inaccurate reference to it as the complex of split partial bases). Charney does not
work directly with the simplicial complex SU,, (R, I), but rather with a semi-simplicial
set éIan(R, I) whose simplices are ordered sequences ((vi,91),--., (vg, gx)). Nevertheless
there is a surjection : élen(R, I) — SU, (R, I) which admits a section (see [31, Proof
of Lemma 3.1]), which will be enough for us.

We can view these simplicial complexes as forming FI-simplicial complexes as follows.

Definition 7.8. The FI-simplicial complex SU(R) is defined as follows. For each n we set
SUp, (R) = SU,(R). An inclusion f: [n] < [m] induces maps f.: R" < R™ (defined
by fi(ei) = efu)) and f*: R™ — R"™ (defined by f*(efu)) = e; and f*(e;) = 0 for
j ¢ imf). We define the structure map f,: SU,(R) — SU,,(R) by sending a vertex
(v,9) € SUL(R) to (f«(v), f* o g) € SU,,(R). This preserves the condition defining
simplices of SU,,(R), so extends to an injection of simplicial complexes.

These structure maps f.: SU,(R) — SU,,(R) preserve the subcomplexes SPB,,(R),
SU,.(R,I), and SPB,(R,I). Therefore we obtain FI-simplicial complexes SPB(R),
SU(R,I), and SPB(R,I).

We can now describe the FI-simplicial complex Yqr,g, 1) defined in Definition 6.10.

Proposition 7.9. If I C R is a proper ideal, Yo g,y is isomorphic as a GL(R,I)-
equivariant FI-simplicial complex to SPB(R, I).

Proof. Set I' = GL(R, I), and recall that the vertices of (Y1), are pairs ({i € [n]},7 €
Ly /Tnp\ iy ); for readability we write (4,7) in place of ({i},~). We define the isomorphism
¢: Yr = SPB(R, I) on vertices by sending (,id) € (Yr), to the standard vertices x; =
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(es, Ai) € SPB,, (R, I). Since this isomorphism is to be GL(R, I')-equivariant, we must take
©(i,5) = 7 - z;. Note that the stabilizer of x; is precisely ')\ 41, so this is well-defined.
It also respects the FI-structure maps on vertices.

We now verify that ¢ is a simplicial map. The (k — 1)-simplices of (Yr),, are precisely
those of the form -0 where ¢ is a “standard” simplex {(iy,id), ..., (ir, id)}. Note that o
itself is taken to (o) = {x;,,...,x;, } which is certainly a simplex of SPB,, (R, I), since
it belongs to the standard (n — 1)-simplex {z1,...,z,}. Since GL,(R,I) acts on the
simplicial complex SPB,, (R, I), we conclude that ¢(v-0) = v- (o) is a simplex as well.
This shows that ¢: Y — SPB(R, I) is a map of FI-simplicial complexes. It remains to
check that it is an isomorphism.

For a map of simplicial complexes, injectivity can be checked on vertices, and surjec-
tivity can be checked on maximal simplices. The fact that the stabilizer of z; is T',)\ (4}
shows that ©(i,7) = ¢(i,7/) == 7 = v'. So to check injectivity on vertices, it suffices
to check that we cannot have ¢(i,7) = ¢(j,') when i # j. This is where we will use
that I is a proper ideal. By definition ¢(i,%5) = v - (e;, \i) = (7 - €;,7*A;), and since
v €T, = GL,(R,I) we know that v - e; = e; mod I. The key point is that since I is a
proper ideal, e; # e; mod I for ¢ # j. Therefore -e; cannot coincide with «y-e;, verifying
injectivity on vertices.

For surjectivity, note that the maximal simplices o of SPB,(R,I) are (n — 1)-
dimensional, and correspond to bases {v1,...,v,} of R™ such that for each i there exists
Ji € [n] such that v; = ej, mod I. Since I is proper, after reordering we can guarantee
that v; = e; mod I. But then the vectors v; together define a matrix v € GL,(R,I)
such that v - {xy,...,2,} = o, and thus ¢ = ¢({(1,id), ..., (n,id)}. This concludes the
proof. O

Remark 7.10. The assumption that I is a proper ideal is really necessary here. If we
attempt to carry out the same comparison when I = R, we encounter a discrepancy.
Note that in this case GL(R, ) = GL(R) and SPB(R, I) = SPB(R).

The first key observation is that GL,(R) acts transitively on the ¢-simplices of
SPB,,(R) for all . Indeed, since every simplex is contained in an (n — 1)-simplex, and
GL,(R) acts transitively on these, it suffices to check that GL, (R) acts transitively on
the /-simplices contained in a single maximal simplex. But for this we need only the
permutation matrices. (These would be excluded from GL,(R,I) if I were a proper
ideal!)

On the other hand, we may take I' = GL(R) and consider the simplicial complex
Y, = (Yr)[n)- But in contrast, I';, cannot act transitively on ¢-simplices of Y,,; indeed by
definition, the I',-orbits of (k — 1)-simplices of Y,, are in bijection with k-element subsets
of [n]. So SPB,,(R) definitely cannot coincide with Y7,.

We can nevertheless describe Y;,: the simplices of Y, correspond to tuples (S C [n],
f: RS — R" g: R — RS) such that g o f = id. In particular, the vertices of Y,
correspond to tuples (i € [n], f: R{i} — R",g: R™ — R{i}) such that go f = id. There
is a natural projection 7:Y,, — SPB, (R) sending a vertex (i, f,g) to (v = f(1),9) €
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SPB,,(R), but it is not injective. A collection of k vertices o = {(i;, fj,9;)} forms a
(k — 1)-simplex of Y,, if and only if the labels iy, ... iy are all distinct and w (o) forms a
(k — 1)-simplex of SPB,,(R).

7.2. Bounding the FI-homology of congruence chains

We can now explain how to deduce the necessary bound on the FI-homology of
the chains on congruence subgroups from the work of Charney. The argument in this
section below partly follows a portion of [8, Proof of Proposition 5.13], but both the
connection with HEY(C,T') and the identification with SPB(R, I) are new. We begin by
proving Theorem C, which connects the FI-homology of congruence subgroups with the
equivariant homology of the complex of mod-TI split partial bases.

Theorem C, restated. Given a ring R and a proper ideal I C R, and any coefficient
group A, for all k > 0 we have

HY'(Co(GL(R, I); A)) = I (SPB(R, 1); A).
Proof of Theorem C. Let I' = GL(R,I). Proposition 6.1 and Corollary 6.2 state that
HEY(C,(T; A)) = Hi(T'; Xr ® A). Proposition 6.13 states that Xp[1] is the reduced chain
complex of Yr, which is isomorphic to SPB(R, I) by Proposition 7.9, so Hx('; Xr @ A)
is the I'-equivariant homology

HEY(C,(T; A)) = Hy(T; Xr ® A) = HSM(SPB(R, 1); 4). O

We can now prove Proposition 5.4, which was the necessary technical input for Ap-
plication B.

Proof of Proposition 5.4. For readability, we explain the argument with Z coefficients,
but it applies verbatim with arbitrary coefficients. Charney proved in [5, Theorem 3.5]
that SU, (R, I) is g-acyclic for n > 2q + d + 3.

Our first step is to verify that the same is true of SU, (R, I) and SPB,(R,I). By
Remark 7.7, the projection éﬁn(R, I) — SU, (R, I) has a section, so it is surjective on
homology; thus SU,, (R, I) is similarly g-acyclic for n > 2¢ + d + 3. By Remark 7.6, the
inclusion SPB,, (R, ) <= SU, (R, I) is (n —d — 2)-connected. Since n > 2q + d + 3 implies
n—d—22>2q+ 1> q, we conclude that

SPB,, (R, I) is g-acyclic for n > 2q + d + 3. (6)

This means ﬁq(SPBn(R, I)) = 0 for n > 2q + d + 3; in other words, the FI-module
H,(SPB(R,I)) has

deg H,(SPB(R, I)) < 2¢ + d + 2.



36 T. Church et al. / Advances in Mathematics 333 (2018) 1-40

Note that degH,(G;V) < degV for any V (simply because H,(G;0) = 0). It follows
immediately via the spectral sequence

E2, = H,(GL(R, I); H,(SPB(R, I))) — HSI™(SPB(R, I))

that deg ﬁSL(R’I)(SPB(R, I)) <2k + d + 2. Applying Theorem C, we conclude that

deg HFY(CLGL(R, I)) = deg HY™ ) (SPB(R, I)) < 2k + d, (7)
as desired. O

We conclude this paper by proving Theorem D, whose statement we recall for conve-
nience.

Theorem D. Given any ¢ > 0, for each k > 0 we have
Hj,—1 (SPBoy(Z/p", p); F,) # 0.
Given any number ring O and any prime power p® > 2, for each k > 0 we have
either H_1 (SPBor(O,p?);F,) #0  or  Hy_1(SPBagy1(O,p%);F,) # 0.

We remark that the same nonvanishing results apply to SU,, (Z/p?, p) and SR?,,,(Z/ p’,p)
when & > 1, since the inclusion SPBox(Z/p*,p) < SUsk(R, I) is (2k — 2)-connected.
Similarly, the same results apply to SU,, (O, p®) and SU,, (O, p*) when k > 2.

Proof. We first check that all these complexes are (k — 2)-acyclic. We noted in (6) that
SPB,, (R, I) is g-acyclic for n > 2q + d + 3. All the rings R occurring in the proposition
have dimension 0 or 1, so d < 1. Since 2k + 1 > 2k > 2(k — 2) + d + 3, Charney’s results
show that all these complexes are (k — 2)-acyclic as claimed.

The structure of the proof is as follows. The theorem deals with two cases: Case A,
when R = Z/p® and I = pR, and Case B, when R = O and I = p®R for p® > 2. The
details will be quite different in places, but the overall argument is the same, so we first
outline the proof in general. Let ' = GL(R, ) and

Vi := HEY(Co(T;F,)) = HL_, (SPB(R, I);F,).

In both Case A and B, we will show that if the theorem were false for a certain k, we
could prove the upper bound

deg Vi = degHL | (SPB(R, I);F,) < 2k — 1. (8)

(This argument is the first place the two cases diverge.) By Theorem 5.1(1) and Corol-
lary 6.2, we have



T. Church et al. / Advances in Mathematics 333 (2018) 1-40 37

d(Hi(GL, (R, 1);F))) < deg V.

Thanks to Proposition 2.14, the bound §(H(GL,(R,I);F,)) < 2k — 1 would imply
the upper bound dim Hy,(GL, (R, I);F,) = O(n?*~!) as n — oo. We will then derive a
contradiction by showing in both cases that known results imply

dim H*(GL, (R, I);F,) = ©(n?") (9)

for all k. (This is the second place the two cases diverge.) To complete the proof, we
must prove in both Case A and Case B that (8) holds if the theorem is false, and prove
(9) in both Case A and Case B.

Proving (8) in Case A: Since R = Z/p’ has Krull dimension 0, we have d = 0. Thus
from (7) we know that deg Vi, < 2k, so let us consider this FI-module in degree 2k. Since
the complex SPBo (R, I) is (k — 2)-acyclic, we have an isomorphism

Ho (D Hi—1 (SPBok (R, 1); Fp)) 2 H? (SPBox (R, 1); Fp) = (Vi) 2k
In particular, we have a surjection
Hj—1 (SPBok(R, 1); Fp) — (Vii)ak-

Therefore if the theorem were false and Hy_ 1 (SPBay (R, I);F,) = 0 for a certain k, we
would have (V)2 = 0 and thus deg Vj, < 2k — 1. This verifies (8) in Case A.

The proof of (8) in Case B is very similar, except that since R = O has Krull dimen-
sion 1, we only know from (7) that deg V) < 2k + 1. Just as above we have surjections
Hk;fl(SPBQk(R, I),Fp) - (Vk)gk and kal(SPB2k+1(R7 I),Fp) - (Vk)2k+1' Therefore
if the theorem were false and both these homology groups vanished for a certain k, we
would have (Vj)ar = (Vii)ak+1 = 0 and thus deg Vi, < 2k — 1. This verifies (8) in Case B.

The remainder of the paper consists of the proof of (9). First, let us consider the
simplest case when R = Z/p? and I = pR. In this case I', = GL,(Z/p? p) is
an elementary abelian group isomorphic to (Z/ p)”2, so the Kiinneth theorem implies
that H*(T'; Fp,) = H*(Z/p;IE‘p)®”2. Since dim H*(Z/p;F,) = 1 for all k, we find that
dim H*(T,,; F,,) is the coefficient of t* in (1 +¢+¢2+--- )"2 = m, namely (”2+kk_1).
In particular, this shows that dim H*(T',,; F,) = ©(n2).

For R = Z/p® in general, T',, = GL,(Z/p% p) is a non-abelian p-group. However,
results on p-central groups imply that it nevertheless has the same cohomology as
(Z/p)”Q, see Browder—Pakianathan [2, Corollary 2.34]. Therefore as before we have
dim H*(GL,,(Z/p*, p); F,) = ©(n?*). This finishes the proof in Case A when R = Z/p".
(To extend the theorem from I = pR to I = p®R in this case, all that would be necessary
is to show dim H*(GL,(Z/p*, p*); F,) >, n?*~1. Such estimates may well already be
known. Note that when a > £/2 this group is abelian, so this bound holds in that case.)

We now turn to Case B, when R = O is a number ring. In this case for techni-
cal reasons we work with I' = SL(O, p*) rather than IV = GL(O,p*). The complex
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X1 agrees with X1/ except in the very top dimensions, so all the bounds above work
the same way. In particular, just as above, if the theorem were false we would have
dim Hy,(SL,, (O, p*); F,) = O(n**~1). This contradicts the recent results of Calegari [3,
Lemma 4.5, Remark 4.7], which imply that this dimension is ©(n?*). Note, however,
that the statements there omit the hypothesis that p* > 2. In order to be self-contained,
and because the argument is short, we take this opportunity to summarize the argument
of Calegari.

Let O, denote the p-adic completion of the number ring O. To address the cohomology
of I';, = SL, (O, p*), we must first understand the continuous cohomology of the corre-
sponding congruence group G,, = SLy,(O,, p®). Suppose the number ring O has degree D.
The pro-p group G, is a compact p-adic analytic group of dimension D(n? — 1), and our
assumption that p* > 2 guarantees that it is torsion-free and uniformly p-powerful. The
work of Lazard thus implies that G,, is a Poincaré duality group of dimension D(n? —1)
for continuous cohomology with IF,, coefficients; in fact,

H* (G Fy) 2 NHY (G Fy) 2 A\"(F,P07D). (10)

In particular, dim H*(G,,; F,,) = (D(":fl)) = O(n?). (Note that throughout, H*(G,,; M)
denotes the continuous cohomology of the profinite group G,,. If we knew dim H*(G,,;
F,) = O(n?*) for the discrete cohomology we could add the case R = O, to the theorem;
alternately, the argument bounding 6(Hy(G;F,)) could perhaps be modified to work
with continuous cohomology.) See [35] for a very readable overview of the cohomology
of p-adic analytic groups; (10) appears as [35, Theorem 5.1.5].

To connect this back to the arithmetic group, let W? denote the “cohomology at
infinite level”

Wi = lim H?(SL, (O, p"); Fy).
Note that W? naturally inherits an action of lim, SL, (O/p") = SL,,(0,), which in fact

extends to an action of SL, (O, ® Q) via Hecke operators (though we will not really need
this). There is a Hochschild—Serre spectral sequence

EY =HP(G; W) =  HPHY(D,;F,)

The main result of Calegari-Emerton [4, Theorem 1.1] is that for n > ¢, the vector
space W7 is independent of n and SL,, (O, ® Q) acts trivially on it (so in particular, so
does G,,). This means that for sufficiently large n we can (in a range of cohomological
degrees) write this spectral sequence as

EY = HP(G,;F,) @ W =  HPFUT,;F,)

The focus of Calegari’s paper is the determination (as far as possible) of the stable
cohomology groups W4. But he points out that even without knowing anything, this
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spectral sequence allows us to estimate the dimension of H*(T,,; F,,). From the computa-
tion of H¥(G,,; F,) above, and the fact that W7 = W¢ does not depend on n, we find that
dim E5? = ©(n?P). In particular, for fixed k the dimension of those E}? with p+q =k

is dominated by E5° = H*(G,,; F,) whose dimension is ©(n2?*). All other terms in this
string, as well as all those which could map to E*, have dimensions which are O(n2?¥~2).
Therefore without knowing anything about the behavior of this spectral sequence, we
can conclude that dim H*(I",;;F,) = dim H*(SL,, (O, p®); F,) = ©(n?*). This conclusion
is [3, Lemma 4.5] for O = Z and [3, Remark 4.7] in general, except the hypothesis p® > 2
is missing from both (and beware a typo in the latter, where N2¥¢ should be d* N%¥).

This completes the proof. 0O
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