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work on congruence subgroups verifies a conjecture of Dja-
ment.

© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

FI-modules are a convenient framework for studying stability properties of sequences 

of symmetric group representations. An FI-module is a functor from the category of 

finite sets and injections to the category of Z-modules. In this paper, we introduce two 

new techniques for proving stability results for graded sequences of FI-modules which 

yield improved stable ranges in many examples, including the cohomology of configura-

tion spaces and the homology of congruence subgroups of general linear groups. In all 

applications, this grading will come from the standard grading on the (co)homology of a 

sequence of spaces or groups. By stability, we roughly mean a bound on the presentation 

degree in terms of the (co)homological degree. If there is such a bound which is linear 

in the (co)homological degree, we say that the sequence exhibits a linear stable range 

(similarly quadratic, exponential etc.).

While previous stability arguments focused on bounding the presentation degree, our 

proof strategy involves studying two other invariants of an FI-module. We call these 

invariants stable degree and local degree and show that these invariants are easier to 

control in spectral sequences than presentation degree. An FI-module over a ring k is a 

functor from FI to the category of abelian groups that factors though the category of 

k-modules. Finitely generated FI-modules over fields have dimensions that are eventually 

equal to a polynomial. The stable degree of a finitely generated FI-module is equal to the 

degree of this polynomial and the local degree controls when these dimensions become 

equal to this polynomial.

Together, the stable degree and the local degree control the presentation degree of an 

FI-module (Proposition 3.1). Conversely, the presentation degree can be used to bound 

these invariants (Proposition 2.9 and Theorem 2.10). As a consequence, it is enough to 

bound the stable and the local degrees to bound the presentation degree and vice-versa. 

More precisely, we have the following quantitative result (Proposition 3.1):
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(�) Let M be an FI-module with stable degree a and local degree b. Then the generation 

degree of M is ≤ a + b + 1 and the presentation degree of M is ≤ a + 2b + 2.

(��) Let M be an FI-module with generation degree a and presentation degree b. Then 

the stable degree of M is ≤ a and the local degree of M is ≤ a + b − 1.

The two techniques that we introduce for proving stability for sequences of FI-modules 

involve two different kinds of spectral sequence arguments which we will call Type A and 

Type B. The main results of this paper are two general theorems, one which establishes 

linear ranges for Type A arguments and the other which establishes quadratic ranges 

for Type B arguments. We will use these general theorems to prove our linear ranges 

for cohomology of configuration spaces and quadratic ranges for homology of congruence 

subgroups.

We note that stable degree and local degree have respectively been previously studied 

in [32] and [14] under different names.

Type A stability arguments. In Type A arguments, one constructs a spectral sequence

Ep,q
r =⇒ Mp+q

where Mk are the objects of interest and with Ep,q
d exhibiting stability for some page d. 

One shows that stability is preserved by the spectral sequence to deduce that the Mk

stabilize. This strategy was first used in the context of representation stability by Church 

who proved representation stability for the rational cohomology of ordered configuration 

spaces ([6, Theorem 1]). It has also been used to establish homological stability results; 

see e.g. the work of Kupers–Miller–Tran [20]. We prove the following theorem which 

allows one to establish linear stable ranges for sequences of FI-modules using Type A 

stability arguments.

Theorem A. Let Ep,q
r be a cohomologically graded first quadrant spectral sequence of 

FI-modules converging to Mp+q. Suppose that for some d, the stable and the local degrees 

of Ep,q
d are bounded linearly in p and q. Then the same holds for Ep,q

∞ and Mp+q.

We use a quantitative version (Proposition 4.1) of Theorem A to establish a linear 

stable range for the cohomology of configuration spaces with coefficients in an arbitrary 

abelian group; we suppress this abelian group from the notation whenever convenient. 

Given a manifold M, let PConf(M) denote the FI
op-space sending a set S to the space 

of embeddings of S into M (the S-labeled configuration space of M). Taking cohomology 

gives an FI-module Hk(PConf(M)).

Application A. Suppose M is a connected manifold of dimension at least 2. Then we 

have:

(1) The stable degree of Hk(PConf(M)) is ≤ 2k.

(2) The local degree of Hk(PConf(M)) is ≤ max(−1, 8k − 2).
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(3) The generation degree of Hk(PConf(M)) is ≤ max(0, 10k − 1).

(4) The presentation degree of Hk(PConf(M)) is ≤ max(0, 18k − 2).

The same bounds hold for Hk(PConf(M); k) with any coefficients. In particular, we 

have:

(a) If M is finite type and k is a field, then there are polynomials pM
k,k of degree at most 

2k such that

dimk Hk(PConfn(M); k) = pM
k,k(n)

if n > max(−1, 8k − 2).

(b) The natural map

IndSn

Sn−1
Hk(PConfn−1(M)) → Hk(PConfn(M))

is surjective for n > max(0, 10k − 1), and the kernel of this map is the image of the 

difference of the two natural maps

IndSn

Sn−2
Hk(PConfn−2(M)) ⇒ IndSn

Sn−1
Hk(PConfn−1(M))

for n > max(0, 18k − 2).

We establish even better ranges when M is at least 3-dimensional, orientable, 

or admits a pair of linearly independent vector fields. The best previously known 

bounds away from characteristic zero are due to Miller and Wilson who showed that 

dimk Hk(PConfn(M); k) agrees with a polynomial of degree at most 21(k+1)(1 +
√

2)k−2

for n ≥ 49(k + 1)(1 +
√

2)k−2 [24, Theorem A.12]. This was proven using the regularity 

theorem of Church and Ellenberg [8, Theorem A].

The quantitative version (Proposition 4.1) of Theorem A can be used to improve 

bounds for many other sequences of FI-modules. Such examples include homology groups 

of the generalized configuration spaces of Petersen [29], the homology of groups of the 

singular configuration spaces of Tosteson [36], and homotopy groups of configuration 

spaces [19].

Type B stability arguments. In Type B arguments, one constructs a spectral sequence 

Er
p,q where E1

0,q are the objects of interest and one uses highly acyclic simplicial com-

plexes to prove that the spectral sequence converges to 0 in a range. One then interprets 

cancellation in this spectral sequence as stability. This method was introduced by Quillen 

who, in unpublished work, proved homological stability for certain general linear groups. 

This was first used in the context of representation stability by Putman [31] who proved 

representation stability for the homology of congruence subgroups.
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To state our result for Type B stability arguments, we will need more terminology. Let 

HFI

0 (V ) denote the so-called minimal generators of an FI-module. Concretely, HFI

0 (M)n

is the cokernel of

IndSn

Sn−1
Mn−1 → Mn.

Vanishing of HFI

0 (M) measures the generation degree of M and vanishing of both HFI

0 (M)

and its first derived functor HFI

1 (M) measure the presentation degree of M . These derived 

functors extend to complexes of FI-modules M• in the standard way; explicitly, the 

FI-homology HFI

k (M•) is computed by replacing M• by a quasi-isomorphic complex of 

projective FI-modules, applying HFI

0 , then taking homology of the resulting complex. 

This should not be confused with Hk(M•) which denotes the usual homology of the 

complex M•.

Theorem B. Let M• be a complex of FI-modules. Suppose H
FI

k (M•)n vanishes for n

larger than a linear function of k. Then we have:

(1) The stable degree of Hk(M•) grows at most linearly in k.

(2) The local degree, generation degree, and presentation degree of Hk(M•) grow at most 

quadratically in k.

See Theorem 5.1 for a quantitative version of this theorem. The key example we apply 

these results to is when M• = C•Γ is the chains on an FI-group Γ, so that Hk(M•) is the 

group homology Hk(M•) = Hk(Γ). In particular, we will apply the quantitative version 

of Theorem B (Theorem 5.1) to congruence subgroups of general linear groups. Given 

an ideal I in a ring R, let GLn(R, I) denote the kernel of GLn(R) → GLn(R/I). This is 

called the level-I congruence subgroup of GLn(R). The groups {GLn(R, I)} assemble to 

form an FI-group GL(R, I) whose homology groups form FI-modules. Theorem B gives 

the following.

Application B. Let I be an ideal in a ring R satisfying Bass’s stable range condition 

SRd+2. Then we have:

(1) The stable degree of Hk(GL(R, I)) is ≤ 2k + d.

(2) The local degree of Hk(GL(R, I)) is ≤ 2k2 + 2(d + 2)k + 2(d + 1).

(3) The generation degree of Hk(GL(R, I)) is ≤ 2k2 + (2d + 6)k + 3(d + 1).

(4) The presentation degree of Hk(GL(R, I)) is ≤ 4k2 + (4d + 10)k + 5d + 6.

The same bounds hold for Hk(GL(R, I); k) with any coefficients. In particular, we have:

(a) Let k be a field and assume that dimk Hk(GLn(R, I); k) is finite. Then there are 

polynomials pR,I
k,k of degree at most 2k + d such that
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dimk Hk(GLn(R, I); k) = pR,I
k,k (n)

if n > 2k2 + 2(d + 2)k + 2(d + 1).

(b) The natural map

IndSn

Sn−1
Hk(GLn−1(R, I)) → Hk(GLn(R, I))

is surjective for n > 2k2 + (2d + 6)k + 3(d + 1), and the kernel of this map is the 

image of the difference of the two natural maps

IndSn

Sn−2
Hk(GLn−2(R, I)) ⇒ IndSn

Sn−1
Hk(GLn−1(R, I))

for n > 4k2 + (4d + 10)k + 5d + 6.

See [1, Definition 2.19] for a definition of Bass’ stable range condition. Recall that any 

d-dimensional Noetherian ring satisfies Bass’s stable range condition SRd+2. In partic-

ular, fields satisfy SR2 (with d = 0) and Dedekind domains satisfy SR3 (with d = 1). 

We note that the finiteness condition in Part (a) of Application B is satisfied for many 

classes of ideals, including all ideals in rings of integers in number fields.

The previously best known stable range for congruence subgroups is due to Church–

Ellenberg [8, Theorem C′] who established an exponential stable range. Their result 

improved upon the work of Putman [31] who also established an exponential range with 

coefficients in a field with characteristic large compared to the homological degree, and 

the work of Church–Ellenberg–Farb–Nagpal [10] who established an integral result but 

with no explicit stable range at all. We note that after the release of an initial draft of 

this paper, Gan and Li established a linear stable range for congruence subgroups [18, 

Theorem 5].

Djament conjectured that the stable degree of Hk(GL(R, I); k) is ≤ 2k in [12, Con-

jecture 1] (also see [14, §5.2] for further discussion). Part (1) of Application B proves 

that this stable degree is ≤ 2k + d. Thus, up to an additive constant, Application B es-

tablishes this conjecture. The conjecture was subsequently established by Djament [13, 

Theorem 2].

Theorem B can also be used in other contexts. For example, it can be used to im-

prove the ranges in Patzt and Wu’s theorem on the homology of Houghton groups [28, 

Theorem B].

The complex of mod-I split partial bases. We prove Application B by connecting the 

FI-homology of GL(R, I) with the complex of mod-I split partial bases SPBn(R, I). This 

is a simplicial complex whose maximal simplices correspond to bases for Rn that are con-

gruent mod I to the standard basis, with the lower-dimensional simplices encoding bases 

for summands of Rn together with a complement; see Definition 7.5 for a precise defini-

tion. (Experts should note that SPBn(R, I) may be slightly different than the complex 

one has in mind; the key feature that distinguishes our definition is that every simplex of 
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SPBn(R, I) belongs to an (n −1)-simplex.) Together these form an FI-simplicial complex 

SPB(R, I) with an action of GL(R, I), so its GL(R, I)-equivariant homology forms an 

FI-module.

Theorem C. For any ring R and any proper ideal I ⊂ R, the FI-homology of the chains 

on the congruence FI-group GL(R, I) is computed by the GL(R, I)-equivariant homology 

of the complex of mod-I split partial bases SPB(R, I):

H
FI

k (C•GL(R, I)) ∼= H̃
GL(R,I)
k−1 (SPB(R, I))

for all k ≥ 0, and similarly for any coefficient group k.

Theorem C tells us that to apply Theorem B to GL(R, I), we must bound the ho-

mology of SPB(R, I). Fortunately, Charney studied closely related complexes in [5]; her 

results imply that these complexes SPBn(R, I) are acyclic in dimensions up to n−d−3
2 . 

A surprising consequence of Application B and Theorem C is that we can prove that 

Charney’s result is very close to sharp, at least in certain cases (and probably in many 

more).

Theorem D. Given any � > 0, for each k > 0 we have

H̃k−1(SPB2k(Z/p�, p);Fp) 	= 0.

Given any number ring O and any prime power pa > 2, for each k > 0 we have

either H̃k−1(SPB2k(O, pa);Fp) 	= 0 or H̃k−1(SPB2k+1(O, pa);Fp) 	= 0.

Note that Charney’s bound implies all these complexes are (k −2)-acyclic, since these 

rings satisfy SR3, so these are the first nonzero homology groups. We prove Theorem D by 

using known results of Browder–Pakianathan, Lazard, and Calegari to prove the bounds 

in Application B are sharp. We then argue that if these complexes were more acyclic, we 

could obtain even stronger bounds in Application B, contradicting these known results. 

As the proof of Theorem D shows, all that is necessary for a theorem like this is a lower 

bound dim Hk(GLn(R, I); F) 
n n2k−1 for a given k and field F. The restrictions on 

the rings and ideals here are not essential to the argument; we use them only to deduce 

such a lower bound from the literature. It is therefore likely that Theorem D holds in 

greater generality.

Outline of the paper. In §2, we recall some basic facts about FI-modules. In §3, we 

prove several properties of stable degree and local degree including that they can be 

used to bound presentation degree. In §4, we study Type A spectral sequence argu-

ments and apply our results to configuration spaces. In §5, we study Type B spectral 

sequence arguments and apply our results to congruence subgroups. In §6, we show that 
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the FI-homology of the chains on an FI-group is given by the equivariant homology 

of a natural FI-simplicial complex. In §7, we identify this simplicial complex in the 

case of congruence subgroups with the complex of mod-I split partial bases, and prove 

Theorems C and D.

Acknowledgments. The first author is grateful to Mladen Bestvina and Andrew Putman 

for conversations regarding the homology of complexes of split partial bases. The third 

author would like to thank Andrew Snowden and Steven Sam for several useful conver-

sations on local cohomology of FI-modules. We are grateful to them for allowing us to 

include Proposition 2.9, which originated in joint work of Nagpal, Snowden, and Sam. 

We thank the anonymous referee for a careful reading of the paper.

2. Preliminaries on FI-modules

In this section, we review some basic definitions, constructions, and results concerning 

FI-modules. For more background, see [9]. Also see [34] for a discussion of FI-modules 

from the perspective of twisted commutative algebras. The primary new results in this 

section are Theorem 2.5 and Proposition 2.9.

2.1. Induced and semi-induced FI-modules

Recall that FI denotes the category of finite sets and injections. Similarly let FB

denote the category of finite sets and bijections. For any category C, the term C-module 

will mean a functor from C to the category of abelian groups and we denote the category 

of C-modules by ModC . Similarly, the term C-group will mean a functor from C to the 

category of groups.

There is a forgetful functor ModFI → ModFB and we denote its left adjoint by 

I : ModFB → ModFI. This can be described concretely as follows. Given an FI-module 

or FB-module M , let MS denote its value on a set S and let Mn denote its value on the 

standard set of size n, [n] := {1, 2, . . . , n}. For an FB-module V , we have that:

I(V )S
∼=

⊕

n≥0

Z[HomFI([n], S)] ⊗Z[Sn] Vn.

We call FI-modules of the form I(V ) induced; see [9, Definition 2.2.2] for more details 

(note that there the notation M(V ) is used in place of I(V ) and they call these modules 

FI� instead of induced). The category of FI-modules has enough projectives. The pro-

jective FI-modules are exactly the modules of the form I(V ) with each Vn projective as 

a Z[Sn]-module; see [39, Proposition 2.3.10] and [23, Corollary 9.40].

We say that an FI-module is semi-induced4 if it admits a finite length filtration where 

the quotients are induced modules. The following is a useful property of semi-induced 

4 These were previously called �-filtered FI-modules by Nagpal [25]. A very similar construction under 
the name J-good functors appeared in Powell [30].



T. Church et al. / Advances in Mathematics 333 (2018) 1–40 9

modules which holds not only for FI-modules but also many other similar functor cate-

gories; see for example [32, Remark 2.33] and [26, Corollary 4.23].

Proposition 2.1. In a short exact sequence of FI-modules, if two of the terms are semi-

induced, then so is the third.

Proof. Two of the three cases are proven in [11, Proposition A.8, Theorem A.9]. The 

remaining case is an immediate corollary of [32, Theorem B]. �

2.2. FI-homology

Any FB-module can be upgraded to an FI-module by declaring that all injections 

S → T which are not bijections act as the zero map. This assignment gives a functor 

ModFB → ModFI which admits a left adjoint that we will denote by HFI

0 and call 

FI-homology. Since HFI

0 admits a right adjoint, it is right-exact. We denote the total 

left-derived functor of HFI

0 by LHFI and denote the ith left-derived functor by HFI

i (M). 

Often, we will consider HFI

i (M) as an FI-module by post-composing with the functor 

ModFB → ModFI described above.

Definition 2.2. The degree of a non-negatively graded abelian group M is the smallest 

integer d ≥ −1, denoted deg M , such that Mn = 0 for n > d. Evaluating an FI-module or 

FB-module M on the standard sets [n] gives a non-negatively graded abelian group, and 

so we can make sense of deg M . Let ti(M) := deg HFI

i (M). We call t0(M) the generation 

degree of M and call max(t0(M), t1(M)) the presentation degree of M . We say that an 

FI-module M is presented in finite degrees if t0(M) < ∞ and t1(M) < ∞.

The generation degree and presentation degree as in our definition above bounds 

the smallest possible degrees of generators and relations in any presentation for M [8, 

Proposition 4.2].

Theorem 2.3. We have the following:

(1) The category of FI-modules presented in finite degrees is abelian; in other words, for 

any map between FI-modules presented in finite degrees, the kernel and cokernel are 

also presented in finite degrees.

(2) An FI-module presented in finite degrees is FI-homology acyclic if and only if it is 

semi-induced.

Proof. The first statement is an immediate corollary of [8, Theorem A] (or see [33, 

Theorem B] for more details) and the second statement is [32, Theorem B]. �

Proposition 2.4. Let M be an FI-module.
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(1) Then t0(M) ≤ d if and only if IndSn

Sn−1
Mn−1 → Mn is surjective for n > d.

(2) Then t1(M) ≤ r if and only if the kernel of IndSn

Sn−1
Mn−1 → Mn is the image of the 

difference of the two natural maps IndSn

Sn−2
Mn−2 ⇒ IndSn

Sn−1
Mn−1.

Proof. The first statement follows from the definition of HFI

0 given in the introduction.

Let ε denote the sign representation of S2. It follows from [8, Proposition 5.10] that 

HFI

1 (M)n is equal to the homology of the chain complex:

IndSn

Sn−2×S2
Mn−2 � ε → IndSn

Sn−1
Mn−1 → Mn

Since the difference of the two natural maps

IndSn

Sn−2
Mn−2 ⇒ IndSn

Sn−1
Mn−1

factors through the map

IndSn

Sn−2×S2
Mn−2 � ε → IndSn

Sn−1
Mn−1

and

IndSn

Sn−2
Mn−2 → IndSn

Sn−2×S2
Mn−2 � ε

is surjective, HFI

1 (M)n is also isomorphic to the homology of the chain complex:

IndSn

Sn−2
Mn−2 ⇒ IndSn

Sn−1
Mn−1 → Mn

The claim now follows. �

As with any derived functor, FI-homology extends to any bounded-below complex of 

FI-modules. If M• is a bounded-below complex of FI-modules, we write HFI

i (M•) for 

the “FI-hyper-homology” computed by replacing M• by a quasi-isomorphic complex of 

projective (or just semi-induced; Theorem 2.3 (2)) FI-modules, applying HFI term-wise, 

then taking ker/im in homological degree i. Similarly, we write ti(M•) for deg H
FI

i (M•).

A reason we write HFI

i (M•) and ti(M•), rather than just HFI

i (M•) and ti(M•), is to 

emphasize that M• is a complex of FI-modules. Another reason for using this notation 

is that HFI

i (M•) could plausibly mean the complex of FI-modules obtained by applying 

the functor HFI

i to each FI-module Mk individually (ignoring the differential on M•) 

and then reassembling these groups back into a chain complex; we will never use this 

notation or this notion.

For any complex of FI-modules M•, we will denote the homology of the complex by 

Hi(M•) := ker(Mi → Mi−1)/im(Mi+1 → Mi). To avoid confusion with FI-homology, 

throughout this paper we observe the convention that the notation Hi(M•) without

superscript FI always refers to ker/im; any functor obtained from HFI

0 will always have 

the superscript FI.
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2.3. Shifts, derivatives, and FI-homology

For a finite set S, we have a natural transformation τS given by the composite

FI → FI × FI → FI

where the first transformation takes T 
→ (S, T ) and the second transformation is given 

by the disjoint union. Pulling back along τS defines a natural transformation on ModFI

which depends (up to an isomorphism) only on the size of S. We define the shift functor 

Σ: ModFI → ModFI to be this functor when S = {�}, and we define Σn to be the n-fold 

iterate of Σ. For any FI-module M , we have deg(ΣM) = deg M − 1 (unless M = 0, in 

which case deg(ΣM) = deg M = −1).

The natural transformation id → τS induces a natural transformation id → Σ whose 

cokernel will be denoted by Δ (note that Σ and Δ are denoted by S and D respectively 

in [9,10,8]). Induced modules (and hence semi-induced modules) are acyclic with respect 

to Δ [8, Corollary 4.5]. Moreover, if V is an FB-module then the short exact sequence

0 → I(V ) → ΣI(V ) → ΔI(V ) → 0

splits, and we have ΔI(V ) = I(ΣV ) [8, Lemma 4.4]. It follows that Δ takes semi-induced 

modules to semi-induced modules.

It is well known that t0(ΣM) ≤ t0(M) (see [10, Corollary 2.13]). A key ingredient in 

the proof of Theorem B is the following derived version of this statement.

Theorem 2.5. Let M• be a bounded-below graded complex of FI-modules. Then we have 

ti(ΣM•) ≤ ti(M•) for all i.

Proof. The key to this theorem is a lemma, due to Church [7], which leads to a nat-

ural long exact sequence (this is a derived version of the long exact sequence in [17, 

Theorem 1])

. . . → H
FI

i (M•) → H
FI

i (ΣM•) → ΣH
FI

i (M•) → . . . . (1)

We explain the construction of this long exact sequence below, but first we note that the 

assertion of the theorem follows immediately from it:

ti(ΣM•) = deg H
FI

i (ΣM•) ≤ max(deg H
FI

i (M•), deg ΣH
FI

i (M•)) = ti(M•).

To construct the long exact sequence above, start by replacing M• with a quasi-

isomorphic complex P• of projective FI-modules. We then get a split short exact sequence

0 → P• → ΣP• → ΔP• → 0
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which induces a long exact sequence in FI-homology

. . . → H
FI

i (P•) → H
FI

i (ΣP•) → ΣH
FI

i (P•) → . . . .

By definition, the first term is HFI

i (P•) = H
FI

i (M•), and since Σ is exact, the second term 

is HFI

i (ΣP•) = H
FI

i (ΣM•). Since Δ takes projectives to projectives [8, Lemma 4.7(iv)], 

the third term is

H
FI

i (ΔP•) = Li(H
FIΔ)(M•) ∼= Li(ΣHFI)(M•) = ΣLi(H

FI)(M•) = ΣH
FI

i (M•).

In the second equality, we used the isomorphism ΣHFI ∼= HFIΔ of [7], and in the third 

we used that Σ is exact. Therefore this is the desired long exact sequence. �

2.4. The shift theorem and stable degree

The following theorem is a slight generalization of Nagpal’s structure theorem for 

finitely generated FI-modules to the case of FI-modules with finite presentation degree.

Theorem 2.6 ([11, Proposition 6.4 and Theorem A.9] or [32, Theorem C]). Let M be an 

FI-module presented in finite degree. Then for large enough n, ΣnM is semi-induced.

Definition 2.7. Let M be an FI-module. We say that an element x ∈ M(S) is torsion if 

there exists an injection f : S → T such that f∗(x) = 0. An FI-module is torsion if it 

consists entirely of torsion elements.

Definition 2.8. We define the stable degree of an FI-module M , denoted δ(M), to be the 

least number n ≥ −1 such that Δn+1M is torsion.

The notion of stable degree was introduced in [14] where it was called weak degree. 

We summarize below some properties of stable degree for FI-modules presented in finite 

degrees. Before this project started, Steven Sam, Andrew Snowden and the third author 

worked out a proof of these properties in a private communication. We are grateful to 

Steven Sam and Andrew Snowden for allowing us to include these here.

Proposition 2.9. Let K, L, M and N be FI-modules presented in finite degrees.

(1) If M is semi-induced, then δ(M) = t0(M).

(2) δ(M) = δ(ΣnM) for any n ≥ 0.

(3) δ(M) is the common value of t0(ΣnM) for n 
 0.

(4) δ(M) ≤ t0(M) < ∞.

(5) If 0 → L → M → N → 0 is a short exact sequence, δ(M) = max(δ(L), δ(N)).

(6) If K is a subquotient of M , δ(K) ≤ δ(M).
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(7) The cokernel QaM of the natural map M → ΣaM for a > 0 satisfies δ(Qa(M)) =

max(δ(M) − 1, −1).

Proof. Part (1): First suppose M = I(V ) is induced. From the equality ΔI(V ) = I(ΣV ), 

we have ΔkI(V ) = I(ΣkV ), and the smallest n such that Σn+1V = 0 is deg V = t0(M). 

This shows that δ(I(V )) = t0(I(V )). Since induced modules are acyclic with respect to 

both HFI

0 (Theorem 2.3) and Δ ([8, Corollary 4.5]), we conclude that the result holds 

for semi-induced modules as well. Part (2) follows from the fact that Δ commutes with 

Σn [14, Proposition 1.4], and the fact that T is torsion if and only if ΣnT is torsion. 

Part (3): Once n is large enough that ΣnM is semi-induced (Theorem 2.6), this follows 

immediately from Part (1) and Part (2). Part (4) follows from Part (3) in light of the 

fact that t0(ΣnM) ≤ t0(M) (e.g. [10, Corollary 2.1]).

Part (5): Choose n large enough that ΣnL, ΣnM , and ΣnN are semi-induced. Since 

semi-induced modules are homology-acyclic, we have a short exact sequence

0 → HFI

0 (ΣnL) → HFI

0 (ΣnM) → HFI

0 (ΣnN) → 0.

Thus, t0(ΣnM) = max(t0(ΣnL), t0(ΣnL)), which implies the claim in light of Part (3). 

Part (6) is a consequence of Part (5). Part (7): By [14, Proposition 1.4 (7)], it suffices to 

prove the result when a = 1. In this case Qa(M) is just ΔM , and hence by definition of 

δ we have δ(Qa(M)) = max(δ(M) − 1, −1). This completes the proof. �

2.5. Local cohomology and local degree

Let Γm(M) denote the maximum torsion submodule contained in M . The functor Γm

is left-exact, and so we can consider its right-derived functor RΓm. We also write Hi
m

for RiΓm, and call these functors local cohomology (this terminology is chosen because 

of its similarity to the classical notion of local cohomology from commutative algebra). 

We write hi(M) for deg Hi
m

(M).

The following result is a strengthening of [22, Theorem E].

Theorem 2.10. Let M be an FI-module presented in finite degrees. Then there exists a 

complex

0 → I0 → I1 → . . . → IN → 0

exact in all high enough degrees such that I0 = M and Ii is semi-induced for i > 0. 

Moreover, for any such complex the following holds.

(1) Hi(I•) = Hi
m

(M).

(2) h0(M) ≤ min(t0(M), t1(M)) + t1(M) − 1.

(3) h1(M) ≤ δ(M) + t0(M) − 1.

(4) hi(M) ≤ 2δ(M) − 2(i − 1) for i ≥ 2. In particular, Hi
m

(M) = 0 if i > δ(M) + 1.
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Proof. Note that the assumption that the complex I• is exact in high enough degree is 

equivalent to saying that Hi(I•) is torsion for all i. The existence of such a complex is 

proven in [25, Theorem A]. Part (1) is proven in [22, Theorem E] (also see [33, Theo-

rem 4.10]). Part (2) is [8, Corollary F].5 For the remaining parts, note that for all i > 0, 

we have

Hi
m

(M) = ker(coker(Ii−1 → Ii) → Ii+1) = Γm(coker(Ii−1 → Ii))

where the last equality follows from the fact that Ii+1 is torsion-free and that Hi
m

(M) is 

torsion. The statement of [8, Corollary F] is that the degree of torsion in such a cokernel 

can be bounded:

hi(M) = deg Γm(coker(Ii−1 → Ii)) ≤ t0(Ii−1) + t0(Ii) − 1.

Note that for i > 0, we have t0(Ii) = δ(Ii). Therefore to obtain the claimed bounds on 

hi(M), it suffices to show that the complex can be chosen so that δ(Ii) ≤ δ(M) − i + 1

for i > 0. We do this by induction of δ(M) as follows.

In the base case δ(M) = −1, we can choose Ii = 0 for i > 0. Now assume δ(M) > 0, 

and choose an n large enough that ΣnM is semi-induced (Theorem 2.6). Let M ′ be the 

cokernel of M → ΣnM . By Proposition 2.9(7), we see that δ(M ′) < δ(M). By induction, 

there is a complex

0 → J0 → J1 → . . . → JN ′ → 0

such that J0 = M ′ and δ(J i) ≤ δ(M ′) − i + 1 for i > 0. Now set I0 = M , I1 = ΣnM

and Ii+1 = J i for i > 1, and observe that I• has the desired property. �

Remark 2.11. Sometimes it is possible to improve the bounds on hi(M) is the above 

proposition. By combining [27, Theorem 1.1] and [8, Theorem A], we see that

hi(M) ≤ tn(M) − n − i ≤ t0 + t1 − 1 − i.

Thus, if δ(M) is large compared to t1(M), these bounds are better than the ones in the 

theorem above.

Definition 2.12. Let M be an FI-module. We define the local degree of M to be the 

quantity hmax(M) := maxi≥0 hi(M).

Recall that Theorem 2.6 tells us that a sufficiently high shift ΣnM of any FI-module 

presented in finite degree will be semi-induced. The following corollary tells us that the 

local degree quantifies precisely how much we need to shift M for this to happen.

5 The proof of [8, Corollary F] has been greatly simplified by Church [7], based on a inductive argument 
given by Li [21, Theorem 1.3].
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Corollary 2.13 (Li–Ramos [22, Theorem F, Part (2)]). Let M be an FI-module presented 

in finite degrees. Then ΣnM is semi-induced if and only if n > hmax(M). In particular, 

RΓm(M) = 0 if and only if M is semi-induced.

Proof. Let I• be the complex constructed in the previous theorem. If n > hmax(M), then 

ΣnI• is exact (shifts commute with local cohomology). Since a shift of a semi-induced 

module is semi-induced, we see that ΣnIi is semi-induced for i > 0. By Proposition 2.1, 

we conclude that ΣnI0 = ΣnM is semi-induced. Conversely, if n ≤ hmax(M), then 

Hi
m

(ΣnM) is nonzero for some i (shifts commute with local cohomology). However, ΣnM

cannot be semi-induced by the theorem above. �

For any ring k, we say that an FI-module M is an FI-module over k if the functor 

M : FI → ModZ factors through Modk → ModZ.

Proposition 2.14. Suppose k is a field, and let M be an FI-module over k which is 

presented in finite degrees and with Mn finite dimensional for all n. Then there exists 

an integer-valued polynomial p ∈ Q[X] of degree δ(M) such that dimk Mn = p(n) for 

n > hmax(M).

Proof. First assume that M = I(V ) is an induced module. By the previous corollary, 

hmax(M) = −1. And we have deg V = δ(M). In this case the result follows from the 

following identity that holds for n ≥ 0:

dimk Mn =

deg V∑

j=0

(
n

j

)
dimk Vj .

In general, let N = hmax(M) + 1 and set M ′ = ΣN M . It is enough to show that 

dimk M ′
n agrees with a polynomial of degree δ(M) for all n ≥ 0. By Proposition 2.9, 

we have δ(M ′) = δ(M), and by the previous corollary M ′ is semi-induced. Then M ′

admits a finite filtration such that the graded pieces are induced modules of stable 

degree at most δ(M) and at least one such graded piece is of stable degree exactly δ(M)

(Proposition 2.9(5)). The result thus follows from the previous paragraph. �

3. Properties of stable degree and local degree

In this section, we show that the generation and presentation degrees of an FI-module 

can be bounded linearly in terms of the stable and local degrees, and vice versa, and 

that together they behave well under taking kernels and cokernels.

Proposition 3.1. Let M be an FI-module presented in finite degrees. Then we have the 

following:
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(1) δ(M) ≤ t0(M).

(2) hmax(M) ≤ t0(M) + max(t0(M), t1(M)) − 1.

(3) t0(M) ≤ δ(M) + hmax(M) + 1.

(4) t1(M) ≤ δ(M) + 2hmax(M) + 2.

Proof. Part (1) is Proposition 2.9(4). Part (2) is obtained by combining the different 

cases of Theorem 2.10, since δ(M) ≤ t0(M).

For the remaining parts, set n = hmax(M) + 1. Since ΣnM is semi-induced (Corol-

lary 2.13), we have t0(ΣnM) = δ(ΣnM) = δ(M). This shows that (see [10, Corol-

lary 2.13])

t0(M) ≤ t0(ΣnM) + n = δ(M) + hmax(M) + 1.

This proves Part (3). Part (4): Consider a presentation

0 → K → F → M → 0

with F semi-induced and generated in degrees ≤ t0(M). By Proposition 2.1, we see that 

ΣnK is semi-induced, since both ΣnF and ΣnM are. This shows that

t1(M) ≤ t0(K) ≤ t0(ΣnK) + n = δ(ΣnK) + n.

By Proposition 2.9(6), we have δ(ΣnK) ≤ δ(ΣnF ), and since F is semi-induced we have 

δ(ΣnF ) = δ(F ) = t0(F ) ≤ t0(M). Combined with the bound t0(M) ≤ δ(M) + n from 

Part (3), we obtain

t1(M) ≤ δ(ΣnK) + n ≤ t0(M) + n ≤ δ(M) + 2n = δ(M) + 2hmax(M) + 2. �

Proposition 3.2. Suppose the FI-module M has a finite filtration M = F 0 ⊃ · · ·
⊃ F k = 0, and let N i = F i/F i+1. Then δ(M) = maxi δ(N i) and hmax(M) ≤
maxi hmax(N i).

Proof. The claim for δ follows from Proposition 2.9(5) by induction. Given 0 → L →
M → N → 0, the long exact sequence · · · → Hi

m
(L) → Hi

m
(M) → Hi

m
(N) → · · · shows 

that hmax(M) is bounded by the maximum of hmax(L) and hmax(N). The proposition 

follows by induction. �

The following proposition is the key to analyzing Type A arguments. It gives us control 

over the stable and local degrees under taking kernels and cokernels.

Proposition 3.3. Let f : A → B be a map of FI-modules presented in finite degrees. Then 

we have the following:
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(1) δ(ker f) ≤ δ(A).

(2) δ(cokerf) ≤ δ(B).

(3) hmax(ker f) ≤ max(2δ(A) − 2, h0(A), h1(A), h0(B)) ≤ max(2δ(A) − 2, hmax(A),

hmax(B)).

(4) hmax(cokerf) ≤ max(2δ(A) − 2, hmax(A), hmax(B)).

The proof of this proposition occupies the remainder of this section, but first we 

establish the following lemmas.

Lemma 3.4. Let M• be a bounded complex of FI-modules presented in finite degrees which 

is exact in high enough degree. Denote the cokernel of the map id → Σa by Qa. Then 

Hi(Qa(M•)) vanishes in high enough degree.

Proof. Choose n large enough so that ΣnM• is an exact complex of semi-induced mod-

ules. Since semi-induced modules are acyclic with respect to Qa ([8, Corollary 4.5]), 

we see that QaΣnM• is exact. The result follows because Qa commutes with Σn ([14, 

Proposition 1.4]). �

Lemma 3.5. Let M• be a bounded complex of FI-modules presented in finite degrees such 

that Hi(M•) is exact in high enough degree. Then there exists a double complex I•,• with 

the following properties:

(a) The first column I0,• is M• and Ii,• = 0 for i < 0.

(b) The columns Ii,• are exact for i > 0.

(c) Ii,j is semi-induced if i > 0 and δ(Ii,j) ≤ δ(M j) − i + 1.

(d) Each row I•,j is exact in high enough degree.

Note that Part (d) implies Hi(I•,j) = Hi
m

(M j) by Theorem 2.10.

Proof. To build such a double complex, we proceed by induction on d := maxj δ(M j). If 

d = −1, then we can just take Ii,j = 0 for i > 0. Now suppose d > −1. Pick an n large 

enough such that ΣnM• is an exact complex of semi-induced modules (see Theorem 2.6). 

Set I0,• = M• and I1,• = ΣnM•. The cokernel of the map I0,• → I1,• is QnM•. By 

the previous lemma, we see that Hi(QnM•) is torsion for each i. Thus, by induction 

on d, the theorem holds for the complex QnM•. Let J i,j be the corresponding double 

complex for QnM•. Set Ii+1,• = J i,• for i > 0. It is now easy to check that I•,• has all 

the required properties. �

Proof of Proposition 3.3. Both Parts (1) and (2) are special cases of Proposition 2.9(6). 

We now prove Parts (3) and (4). For the ease of notation, denote the complex 0 →
ker f → A → B → cokerf → 0 by

M• : 0 → M0 → M1 → M2 → M3 → 0.
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Let I•,• be the complex as in the previous lemma. Since all the columns are exact, the 

spectral sequence corresponding to this double complex converges to 0. The first page of 

this spectral sequence is given by Ep,q
1 = Hp

m(Mq). Since this spectral sequence converges 

to zero, we see that the following must hold:

hi(M0) ≤ max
j≤i

hj(M i−j+1).

In particular, h0(ker f) ≤ h0(A) and h1(ker f) ≤ max(h1(A), h0(B)). By Part (1) and 

Theorem 2.10, we see that hi(ker f) ≤ 2δ(A) − 2(i − 1) for i ≥ 2. This proves Part (3). 

Again, since Ep,q
1 converges to 0, we observe that the following must hold:

hi(M3) ≤ max
j≥i

hj(M2+i−j).

Thus for each i, we have

hi(cokerf) ≤ max(hi(B), hi+1(A), hi+2(ker f)) ≤ max(hmax(B), hmax(A), 2δ(A) − 2).

This finishes the proof of Part (4), and we are done. �

4. Type A spectral sequence arguments and configuration spaces

In this section, we prove Theorem A which establishes linear stable ranges in Type A 

spectral sequence arguments. We use this to prove our results on configuration spaces, 

Application A.

4.1. The Type A setup

By a Type A setup, we mean a first quadrant spectral sequence Ep,q
r of FI-modules 

such that for some page d we have bounds on t0(Ep,q
d ) and t1(Ep,q

d ) depending on p

and q.

Theorem A follows via Proposition 3.1 from the following proposition. Note that 

our spectral sequences are cohomologically indexed; Theorem A applies equally well 

to homologically indexed spectral sequences, but the precise bounds in Proposition 4.1

would be slightly different.

Proposition 4.1. Let Ep,q
r be a cohomologically graded first quadrant spectral sequence 

of FI-modules converging to Mp+q. Suppose that for some page d, the FI-modules 

Ep,q
d are presented in finite degrees, and set Dk = maxp+q=k δ(Ep,q

d ) and ηk =

maxp+q=k hmax(Ep,q
d ). Then we have the following:

(1) δ(Mk) ≤ Dk

(2) hmax(Mk) ≤ max
(

max�≤k+s−d η�, max�≤2k−d+1(2D� − 2) 
)

where s = max(k + 2, d).
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Proof. For all r, set V k
r =

⊕
p+q=k Ep,q

r . Note that Dk = δ(V k
d ) and ηk = hmax(V k

d ). 

Since Mk has a filtration whose associated graded is V k
∞, Proposition 3.2 tells us that 

δ(Mk) = δ(V k
∞) and hmax(Mk) ≤ hmax(V k

∞).

By definition, V k
r+1 = coker(V k−1

r → ker(V k
r → V k+1

r )). Applying Proposition 3.3

shows δ(V k
r+1) ≤ δ(V k

r ) and

hmax(V k
r+1) ≤ max(2δ(V k−1

r ) − 2, 2δ(V k
r ) − 2, hmax(V k−1

r ), hmax(V k
r ), hmax(V k+1

r )).

It follows by induction for all r ≥ d that δ(V k
r ) ≤ Dk and

hmax(V k
r ) ≤ max

(
max

�≤k+r−d
η�, max

�≤k+r−d−1
(2D� − 2)

)
.

Since V k
∞ = V k

max(k+2,d), we find that δ(V k
∞) ≤ Dk and

hmax(V k
∞) ≤ max

(
max

�≤k+s−d
η�, max

�≤2k−d+1
(2D� − 2)

)
,

as desired. �

Recall that if an FI-module V is semi-induced then hmax(V ) = −1. Hence we obtain 

the following corollary by using Proposition 4.1 to bound δ(Mk) and hmax(Mk), then 

applying Proposition 3.1(3) and (4).

Corollary 4.2. Let Ep,q
r be a cohomologically graded first quadrant spectral sequence of 

FI-modules converging to Mp+q. Suppose that for some page d, the FI-modules Ep,q
d are 

semi-induced and generated in degree ≤ μ(p + q) for some μ. Then we have

(1) δ(Mk) ≤ μk.

(2) hmax(Mk) ≤ max(−1, 4μk − 2μ(d − 1) − 2).

(3) t0(Mk) ≤ max(μk, 5μk − 2μ(d − 1) − 1).

(4) t1(Mk) ≤ max(μk, 9μk − 4μ(d − 1) − 2).

4.2. Cohomology of configuration spaces

Let M be a connected manifold of dimension d ≥ 2. Let A be any abelian group. In 

this section, we prove a linear bound on the generation and presentation degrees of the 

FI-modules Hk(PConf(M); A) described in §1. The following theorem (in conjunction 

with Proposition 2.4 and Proposition 2.14) includes Application A as a special case.

Theorem 4.3. Let M be a connected manifold of dimension d ≥ 2, and set:

μ =

{
2 if d = 2

1 if d ≥ 3
λ =

{
0 if M is non-orientable

1 if M is orientable
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Let A be an abelian group. Then we have:

(1) δ(Hk(PConf(M); A)) ≤ μk.

(2) hmax(Hk(PConf(M); A)) ≤ max(−1, 4μk − 2μλ − 2).

(3) t0(Hk(PConf(M); A)) ≤ max(μk, 5μk − 2μλ − 1).

(4) t1(Hk(PConf(M); A)) ≤ max(μk, 9μk − 4μλ − 2).

This follows immediately from Corollary 4.2, in light of the following two results. The 

first is due to Miller and Wilson; it follows from the proof of [24, Theorem A.12]. The 

second is due to Totaro [37].

Theorem 4.4 (Miller–Wilson). There is a first quadrant spectral sequence Ep,q
r of 

FI-modules converging to Hp+q(PConf(M), A) such that Ep,q
1 is induced and t0(Ep,q

1 ) ≤
μq.

Theorem 4.5 (Totaro [37], see [9, Proof of Theorem 6.3.1]). If M is orientable, there is 

a first quadrant spectral sequence Ep,q
r of FI-modules converging to Hp+q(PConf(M); A)

such that Ep,q
2 is induced and t0(Ep,q

2 ) ≤ μ(p + q).

One can improve Theorem 4.3 if the manifold admits two pointwise linearly inde-

pendent vector fields. This includes all manifolds with trivial tangent bundle. We give 

this example because it illustrates that sometimes one can bound hmax using topology 

instead of algebra.

Proposition 4.6. With the notation of Theorem 4.3, suppose that M admits a pair of 

linearly independent vector fields. Then we have:

(1) δ(Hk(PConf(M); A)) ≤ μk.

(2) hmax(Hk(PConf(M); A)) ≤ 0.

(3) t0(Hk(PConf(M); A)) ≤ μk + 1.

(4) t1(Hk(PConf(M); A)) ≤ μk + 2.

Proof. We will need the following three categories:

• Let FI� denote the category with objects finite based sets and with morphisms given 

by maps of based sets such that the preimage of all elements except possibly the 

base point have cardinality at most one.

• Let Set denote the category of finite sets and all maps.

• Let Set� denote the category of based sets and base point-preserving maps.

There is a commuting square of natural functors:
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FI FI�

Set Set�

Church–Ellenberg–Farb [9, Theorem 4.1.5] proved that the restriction of an FI�-module 

to FI is an induced FI-module. Thus, Set�-modules are also induced FI-modules. 

Ellenberg and Wiltshire-Gordon [15, Theorem 14] showed that the FI-module struc-

ture on Hk(PConf(M); A) extends to the structure of a Set-module if M admits 

a pair of linearly independent vector fields. The shift of a Set-module is naturally 

a Set�-module. We conclude that the FI-module structure on Σ 
(
Hk(PConf(M); A)

)

extends to a Set�-module structure. Thus Σ 
(
Hk(PConf(M); A)

)
is induced. By Corol-

lary 2.13, hmax(Hk(PConf(M); A)) is at most 0, proving Part (2). Theorem 4.3 gives 

Part (1), and Proposition 3.1 then implies Parts (3) and (4). �

5. Type B spectral sequence arguments and congruence subgroups

In this section, we prove Theorem B which establishes quadratic stable ranges in 

Type B spectral sequence arguments. We use this to prove our results on congruence 

subgroups of general linear groups, Application B.

5.1. The Type B setup

By a Type B setup, we mean that we start with a bounded-below complex M•

of FI-modules, together with bounds on tk(M•) for each i (which typically grow 

linearly in k). There is a hyper-homology spectral sequence with the second page 

E2
i,j = HFI

i (Hj(M)) converging to HFI

i+j(M•), and one can analyze this spectral sequence 

to produce bounds on t0(Hj(M•)) and t1(Hj(M•)). Previous methods lead to bounds 

that are exponential in j even if the bound on tk(M•) is linear in k; see the proof of 

[8, Theorem D]. Our next theorem together with Proposition 3.1 provides a way to get 

better bounds in a Type B setup. It gives a quantitative version of Theorem B.

Theorem 5.1. Suppose M• is a bounded-below complex of FI-modules with tk(M•) < ∞. 

Then for all k:

(1) δ(Hk(M•)) ≤ tk(M•).

(2) hmax(Hk(M•)) ≤ maxq<k hmax(Hq(M•)) + max(tk(M•), tk+1(M•)) + tk(M•).

In particular, if tk(M•) ≤ ak + b for all k and M• is supported on non-negative homo-

logical degrees, then we have:

(a) δ(Hk(M•)) ≤ ak + b.

(b) hmax(Hk(M•)) ≤ a(k + 1)2 + 2b(k + 1) = ak2 + 2(a + b)k + a + 2b.
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(c) t0(Hk(M•)) ≤ ak2 + (3a + 2b)k + a + 3b + 1.

(d) t1(Hk(M•)) ≤ 2ak2 + (5a + 4b)k + 2a + 5b + 2.

Remark 5.2. In the initial distributed version of this paper, we asked if the above theorem 

could be improved to produce linear ranges. An affirmative answer to that question was 

subsequently found by Gan and Li [18, Theorem 5].

The first step in proving the above theorem is to show that each Hk(M•) is presented 

in finite degrees. This is accomplished by the following lemma which we have extracted 

from the proof of [8, Theorem D].

Lemma 5.3. Suppose M• is a bounded-below complex of FI-modules with tk(M•) < ∞
for each k. Then each Hk(M•) is presented in finite degrees.

Proof. We assume, without loss of generality, that M• is supported on non-negative ho-

mological degrees, and proceed by induction on k. We have the hyper-homology spectral 

sequence with second page E2
p,q = HFI

p (Hq(M•)) converging to HFI

p+q(M•). The following 

inequalities follow easily from it:

t0(Hk(M•)) ≤ max(tk(M•), max
p+q=k+1,q<k

tp(Hq(M•)))

t1(Hk(M•)) ≤ max(tk+1(M•), max
p+q=k+2,q<k

tp(Hq(M•)))

In the base case k = 0, we get t0(H0(M•)), t1(H0(M•)) < ∞. This is equivalent to H0(M•)

being presented in finite degrees. By induction, assume that Hq(M•) are presented in 

finite degrees for q < k. By Theorem 2.3(1), we see that tp(Hq(M•)) < ∞ for q < k and 

p ≥ 0. The two inequalities above thus imply that Hk(M•) is presented in finite degrees, 

completing the inductive step of the proof. �

Proof of Theorem 5.1. We assume, without loss of generality, that M• is supported on 

non-negative homological degrees. By Lemma 5.3, each Hk(M•) is presented in finite 

degrees, and so methods of the earlier sections (for example Theorem 2.6) are applicable.

Proof of Part (1): Fix a k and choose an n large enough such that ΣnHq(M•) are semi-

induced for q ≤ k. We have a spectral sequence with E2
p,q = HFI

p (Hq(ΣnM•)) converging 

to HFI

p+q(ΣnM•). Since semi-induced modules are FI-homology acyclic (Theorem 2.3), 

we have E2
p,q = 0 for p > 0 and q ≤ k. This causes the spectral sequence to collapse in a 

range. We conclude that

deg E2
0,k = deg E∞

0,k = δ(Hk(M•)) ≤ tk(ΣnM•) ≤ tk(M•)

where the last inequality is by Theorem 2.5. This proves Part (1).

Proof of Part (2): Fix a k and choose an n large such that ΣnHq(M•) are semi-induced 

for q < k. This n is precisely maxq<k hmax(Hq(M•)) + 1 (Corollary 2.13). We have 
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a spectral sequence with E2
p,q = HFI

p (Hq(ΣnM•)) converging to H
FI

p+q(ΣnM•). Since 

semi-induced modules are FI-homology acyclic, we have E2
p,q = 0 for p > 0 and q < k. 

This causes the spectral sequence to collapse in a range. This degeneration together with 

Theorem 2.5 leads to the following inequalities:

t0(Hk(ΣnM•)) = deg E2
0,k = deg E∞

0,k ≤ tk(ΣnM•) ≤ tk(M•)

t1(Hk(ΣnM•)) = deg E2
1,k = deg E∞

1,k ≤ tk+1(ΣnM•) ≤ tk+1(M•).

Since local cohomologies commute with shifts, we have hmax(Hk(M•)) ≤ n +

hmax(ΣnHk(M•)). Clearly, we also have ΣnHk(M•) = Hk(ΣnM•). Now Theorem 2.10

together with Part (1) and the inequalities above yield

hmax(Hk(ΣnM•)) ≤ max(tk(M•), tk+1(M•)) + tk(M•) − 1.

Thus we have

hmax(Hk(M•)) ≤ n + hmax(Hk(ΣnM•))

≤ n + max(tk(M•), tk+1(M•)) + tk(M•) − 1

= max
q<k

hmax(Hq(M•)) + max(tk(M•), tk+1(M•)) + tk(M•).

This completes the proof of (2).

Now we prove the remaining parts. Part (a) follows from Proposition 2.9(4). For 

part (b), denote maxq≤k hmax(Hq(M•)) by Tk and set T−1 = 0. From part (2), we have 

Tk − Tk−1 ≤ a(2k + 1) + 2b. Expanding a telescoping sum gives

Tk = Tk − T−1 ≤
k∑

i=0

a(2i + 1) + 2b = a(k + 1)2 + 2b(k + 1) = ak2 + 2(a + b)k + a + 2b,

completing the proof of (b). Parts (c) and (d) follow from Proposition 3.1 together with 

(a) and (b). �

5.2. Congruence subgroups

We now prove Application B, stability for congruence subgroups. We will need the 

following proposition bounding the FI-homology of the chains on congruence FI-groups; 

the proof of this proposition occupies the next two sections (see §7.2).

Let E•G denote a functorial resolution of Z by free ZG-modules (e.g. the bar reso-

lution). Then for any FI-group Γ, we may consider C•Γ := E•Γ ⊗Γ Z, which is a chain 

complex of FI-modules with Hk(C•Γ) ∼= Hk(Γ; Z). For any coefficient group A we set 

C•(Γ; A) = C•(Γ) ⊗ A.
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Proposition 5.4. Let I be a proper ideal in a ring R satisfying Bass’s stable range con-

dition SRd+2, and let Γ = GL(R, I) be the corresponding congruence FI-group. For any 

coefficient group A we have tk(C•(Γ; A)) ≤ 2k + d.

We now prove Application B, stability for congruence subgroups.

Proof of Application B. Theorem 5.1 and Proposition 5.4 give Parts 1, 2, 3, and 4 of 

Application B in the case that the ideal is proper. We invoke Proposition 2.4 and Propo-

sition 2.14 to deduce Parts (a) and (b) of Application B.

For I = R, much stronger results are already known, since the groups GLn(R, I) ∼=
GLn(R) exhibit classical homological stability. Van der Kallen [38] showed that 

Hk(GLn(R)) → Hk(GLn+1(R)) is an isomorphism for n ≥ 2k + max(1, d) and a sur-

jection for n ≥ 2k + max(1, d) − 1. This shows that Hk(GL(R)) has stable degree ≤ 0, 

generation degree ≤ 2k + max(1, d) − 1, local degree ≤ 2k + max(1, d) − 1 (see Theo-

rem 2.10(3)) and presentation degree ≤ 2k + max(1, d). These bounds are all at least as 

good as Application B claims, so Application B is also true for I = R. �

6. The FI-homology of the chains on an FI-group

For any injective FI-group Γ (meaning that all maps ΓT → ΓR are injective) Church–

Ellenberg defined in [8, Proposition 5.13] a natural complex of FI-modules XΓ on which 

Γ acts.6 The definition of XΓ will be spelled out explicitly below in Definition 6.9.

The purpose of this section is to prove the following proposition:

Proposition 6.1. For any injective FI-group Γ, there is a quasi-isomorphism

LHFI(C•Γ) = LHFI(E•Γ ⊗Γ Z) → E•Γ ⊗Γ XΓ.

In particular, HFI

k (C•Γ) ∼= Hk(Γ; XΓ).

In other words, the FI-homology of the chains on the FI-group Γ is computed by the 

Γ-equivariant homology of the FI-complex XΓ. Since XΓ consists of free abelian groups, 

Proposition 6.1 has the following corollary.

Corollary 6.2. HFI

k (C•(Γ; A)) ∼= Hk(Γ; XΓ ⊗ A) for any coefficient group A.

In light of these results, one immediately sees the importance of understanding the 

FI-complex XΓ. In service to this aim, we give in Section 7.1 an explicit description 

for two representative FI-groups: the general linear group GL(R) and its congruence 

subgroup GL(R, I).

6 The hypothesis that Γ is injective was not mentioned explicitly in [8], but the definition of XΓ only 
makes sense when Γ is injective, as we will see below.
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6.1. The complex of FI-modules V (F )

Throughout the proof of Proposition 6.1, we will make use of the following construction 

(originating in [8, Construction 5.7]).

Let FI
↓ denote the arrow category of FI, which we will think of as follows: an object 

of FI
↓ is a pair (T, S) where T is a finite set and S ⊂ T is a subset (not necessarily 

proper). We will denote such an object as S ⊂ T , but we emphasize that this is merely 

formal notation for the pair (T, S). A morphism from S ⊂ T to S′ ⊂ T ′ is an injection 

f : T ↪→ T ′ such that f(S) ⊂ S′.

For any finite set R, we denote by 
∧

R the space of orientations of R. As an abelian 

group 
∧

R is always isomorphic to Z. A bijection R
∼=−→ R′ induces an isomorphism 

∧
R

∼=−→ ∧
R′ , and permutations of R act on 

∧
R by the sign representation. When we 

wish to emphasize that R has cardinality |R| = k, we write 
∧k

R.

Definition 6.3. We define an exact functor V : ModFI↓ → Ch(ModFI) as follows. On 

objects, V (F )T is the graded abelian group

V (F )T :=
⊕

T =S	R

FS⊂T �
∧

R,

graded by the cardinality of R. That is,

(V (F )T )k =
⊕

T =S	R
|R|=k

FS⊂T �
∧k

R. (2)

(The symbol � here means simply ⊗Z; we write � for visual distinctness, and to em-

phasize later that certain constructions act only on the first factor of FS⊂T �
∧

R.)

An FI-morphism f : T ↪→ T ′ sends the summand indexed by T = S � R to the 

summand indexed by T ′ = S′ � f(R) for S′ := T ′ \ f(R). If |R| = k, the map

FS⊂T �
∧k

R → FS′⊂T ′ �
∧k

f(R)

is given on the first factor by the FI
↓-morphism f∗ : FS⊂T → FS′⊂T ′ and on the second 

factor by the FI-morphism f∗ :
∧k

R

∼=−→
∧k

f(R). This gives V (F ) the structure of a graded 

FI-module.

Finally, the differential d is given on the summand FS⊂T �
∧k

R by the alternating sum 

over r ∈ R of maps

FS⊂T �
∧k

R → FS	{r}⊂T �
∧k−1

R\{r}.

That V is exact is visible from the defining formula (2).
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Remark 6.4. This construction is due to Church–Ellenberg, and was denoted CF
• in 

[8, Construction 5.7]. In particular, the reader concerned about consistency of signs or 

checking that d2 = 0 can find all details spelled out in [8]. However be aware that 

this construction was phrased there in terms of the twisted arrow category FI
�; our 

description here corresponds to [8, Construction 5.7] under the isomorphism FI
↓ ∼= FI

�

given by S ⊂ T 
→ (T \ S) ⊂ T .

The following is a standard result on triangulated categories.

Lemma 6.5. Let A, A′ be abelian categories, and let X : Ch+(ModA) → Ch+(ModA′) be 

a functor. Then X induces a triangulated functor X : D+(ModA) → D+(ModA′) if the 

following hold:

(1) X commutes with homological shifts.

(2) X maps distinguished triangles M
f−→ N → Cone(f) to distinguished triangles.

(3) X takes quasi-isomorphisms to quasi-isomorphisms.

Lemma 6.6. V induces a triangulated functor V : D+(ModFI↓) → D+(ModFI).

Proof. If F = F• is a bounded-below chain complex of FI
↓-modules, the functoriality of 

V makes V (Fq)p into a double complex of FI-modules; we define V (F ) to be its total 

complex, satisfying

(V (F )T )k =
⊕

p+q=k

⊕

T =S	R
|R|=p

(Fq)S⊂T �
∧p

R.

This defines an extension V : Ch+(ModFI↓) → Ch+(ModFI). It now suffices to check 

the conditions from the previous lemma, of which the first two are trivial. For the third 

condition, note that from the obvious vertical grading we have a spectral sequence

(E0
p•)F =

⊕

T =S	R
|R|=p

(F•)S⊂T �
∧p

R =⇒ Hk(V (F )).

If f : F• → G• is a quasi-isomorphism, the exactness of the original V means the induced 

map (E0
p•)F → (E0

p•)G will be a quasi-isomorphism with respect to d0. It follows that 

f induces an isomorphism on E1, so f : V (F ) → V (G) is a quasi-isomorphism. This 

shows that V descends to a triangulated functor V : D+(ModFI↓) → D+(ModFI), as 

claimed. �

There are two natural ways to view an FI-module as an FI
↓-module, and both will 

be used in this section. They arise from the two natural functors FI
↓ → FI defined by

(T, S) 
→ S and (T, S) 
→ T
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Accordingly, if M is an FI-module, let M and M̃ be the FI
↓-modules defined by

MS⊂T = MS and M̃S⊂T = MT .

Both M 
→ M and M 
→ M̃ are exact, so we use the same notation for M ∈ D+(ModFI).

Lemma 6.7. For any M ∈ D+(ModFI) we have V (M) ∼= LHFI(M).

Proof. It follows from [8, Proof of Thm. C] and [8, Proposition 5.10]. �

Given an FI-group Γ, as above we write Γ̃ for the FI
↓-group defined by Γ̃S⊂T = ΓT .

Lemma 6.8. Suppose that F is an FI
↓-module with a left action of Γ̃, and A is an 

FI-module (or chain complex of FI-modules) with a right action of Γ.

(1) The action of Γ̃ on F induces an action of Γ on the FI-module V (F ).

(2) There is a natural isomorphism V (Ã⊗Γ̃F ) ∼= A ⊗ΓV (F ) as complexes of FI-modules.

Proof. Let us first spell out what it means for Γ̃ to act on the FI
↓-module F . This means 

for every T and S ⊂ T we have an action of the group ΓT on the Z-module FS⊂T ; and for 

any f : T → T ′ and any S′ ⊇ f(S) the FI
↓-morphism f∗ : FS⊂T → FS′⊂T ′ is equivariant 

with respect to the FI-morphism f∗ : ΓT → ΓT ′ .

In particular, the FI
↓-module Ã ⊗Γ̃ F is defined by

(Ã ⊗Γ̃ F )S⊂T = ÃS⊂T ⊗ΓS⊂T
FS⊂T = AT ⊗ΓT

FS⊂T .

(1): The claimed action of ΓT on V (F )T =
⊕

T =S	R FS⊂T �
∧

R preserves each 

summand; on the summand FS⊂T �
∧

R it acts on FS⊂T by the specified action of 

ΓT = Γ̃S⊂T , and acts on 
∧

R by the identity. It is straightforward to check that this 

commutes with FI-morphisms and the differential.

(2): We have

(A ⊗Γ V (F ))T = AT ⊗ΓT

( ⊕

T =S	R

FS⊂T �
∧

R

)

∼=
⊕

T =S	R

AT ⊗ΓT

(
FS⊂T �

∧
R

)

∼=
⊕

T =S	R

(AT ⊗ΓT
FS⊂T ) �

∧
R (∗)

∼=
⊕

T =S	R

(Ã ⊗Γ̃ F )S⊂T �
∧

R

= V (Ã ⊗Γ̃ F )T
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The key isomorphism is (∗); this holds because the action of ΓT on the summand FT,U �∧
R of V (F ) is trivial on the 

∧
R factor. To see that this isomorphism commutes with 

the differential, recall that the differential of V (Ã ⊗Γ̃ F ) is the alternating sum of maps 

induced by (Ã ⊗Γ̃ F )S⊂T → (Ã ⊗Γ̃ F )S	{r}⊂T . But since Ã is pulled back from an 

FI-module, FI
↓-morphisms of the form id : (S ⊂ T ) → (S � {r} ⊂ T ) act by the identity

on Ã. So the differential is the identity on the AT factor of (Ã⊗Γ̃ F )S⊂T
∼= AT ⊗ΓT

FS⊂T , 

just as we need. The functoriality of (∗) guarantees that this holds for a chain complex 

A of FI-modules as well. �

6.2. The complex XΓ and the proof of Proposition 6.1

We can now define the complex XΓ. Suppose that Γ is an injective FI-group. For 

any S ⊂ T , we can identify ΓS with the subgroup i∗(ΓS) ⊂ ΓT , where i : S ↪→ T is the 

inclusion. We will denote this subgroup simply by ΓS ⊂ ΓT .

Definition 6.9. We define the FI
↓-module FΓ as follows. On objects, (FΓ)S⊂T :=

Z[ΓT /ΓS ]. Given a morphism f : T → T ′ with f(S) ⊂ S′, we define f∗ : (FΓ)S⊂T →
(FΓ)S′⊂T ′ to be the map induced by f∗ : Z[ΓT ] → Z[ΓT ′ ]; since f(S) ⊂ S′, we have 

f(ΓS) ⊂ ΓS′ , so this is well-defined.

We define the complex XΓ of FI-modules to be XΓ := V (FΓ). The obvious left action 

of ΓT on (FΓ)S⊂T induces an action of Γ̃ on FΓ, so by Lemma 6.8(1) it induces an action 

of Γ on the chain complex of FI-modules XΓ = V (FΓ).

Explicitly, the complex XΓ is given in homological degree k by

((XΓ)T )k =
⊕

T =S	R
|R|=k

Z[ΓT /ΓS ] �
∧k

R, (3)

with ΓT preserving each summand, and acting only on Z[ΓT /ΓS ].

Proof of Proposition 6.1. First, let us show that there is a natural quasi-isomorphism 

between the complexes of FI
↓-modules

C•Γ
∼=−→ Ẽ•Γ ⊗Γ̃ FΓ. (4)

Indeed, on objects we have by definition

(C•Γ)S⊂T = C•ΓS = E•ΓS ⊗ΓS
Z

(Ẽ•Γ ⊗Γ̃ FΓ)S⊂T = E•ΓT ⊗ΓT
Z[ΓT /ΓS ].

The desired map from the former to the latter is induced by the inclusion ΓS ↪→ ΓT , 

and is a quasi-isomorphism by Shapiro’s lemma.
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We now finish the proof:

LHFI(C•Γ) ∼= V (C•Γ) by Lemma 6.7

∼= V (Ẽ•Γ ⊗Γ̃ FΓ) by (4) and Lemma 6.6

∼= E•Γ ⊗Γ V (FΓ) by Lemma 6.8(2)

= E•Γ ⊗Γ XΓ by definition of XΓ

This demonstrates that LHFI(C•Γ) ∼= E•Γ ⊗Γ XΓ, as claimed. �

6.3. Explicit description of XΓ

In this section we show that for most FI-groups, the chain complex XΓ can be realized 

by a concrete FI-simplicial complex.

Definition 6.10. For any injective FI-group Γ, we define an FI-simplicial complex YΓ

with an action of Γ as follows.

• The vertices of the simplicial complex (YΓ)T are pairs ({t}, γ ∈ ΓT /ΓT \{t}).

• Every maximal simplex of (YΓ)T is (|T | − 1)-dimensional. For every γ ∈ ΓT , the |T |
vertices ({t}, πt(γ)) form a (|T | − 1)-simplex, where πt is the canonical projection 

πt : ΓT � ΓT /ΓT \{t}.

To define the FI-structure and Γ-action, it suffices to define them on vertices (and check 

that simplices are preserved). We must define for each FI-morphism f : T ↪→ T ′ a map 

f∗ from the vertices of (YΓ)T to the vertices of (YΓ)T ′ , and for each g ∈ ΓT a map from 

the vertices of (YΓ)T to itself. Given γ ∈ ΓT , we define

f∗({t}, γ) = ({f(t)}, f∗(γ) ∈ ΓT ′/ΓT ′\{t′})

g · ({t}, γ) = ( {t} , gγ ∈ ΓT /ΓT \{t} )

Observe that YΓ has a canonical dimension-preserving projection YΓ → Δ•−1 given 

by ({t}, γ) 
→ {t}. Here Δ•−1 is the FI-simplicial complex which assigns to a set T

the complete simplex ΔT −1 on vertex set T . Furthermore, this projection realizes the 

quotient by the action of Γ, giving an identification Γ\YΓ
∼= Δ•−1. This can be seen as 

follows.

Our definition of (YΓ)T implies that a collection σ = {({t1}, γ1), . . . , ({tk}, γk)} forms 

a (k−1)-simplex if and only if the elements t1, . . . , tk ∈ T are all distinct, and there exists 

γ ∈ Γ such that πti
(γ) = γi ∈ ΓT /ΓT \{ti} for all i = 1, . . . , k. This last condition can be 

rephrased as saying that there exists γ ∈ ΓT such that σ = γ · {({t1}, id), . . . , ({tk}, id)}. 

Therefore two simplices of (YΓ)T are in the same ΓT -orbit if and only if they project to 

the same simplex R = {t1, . . . , tk} of ΔT −1, as claimed.
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We now need the following condition on an FI-group.

Definition 6.11. An injective FI-group Γ is saturated if for any S1 ⊂ T and S2 ⊂ T ,

ΓS1
∩ ΓS2

= ΓS1∩S2

as subgroups of ΓT .

By induction, this implies that 
⋂

ΓSi
= Γ⋂

Si
for any finite collection of subsets Si.

Remark 6.12. The same definition makes sense for FI-modules (being abelian FI-groups). 

An FI-module M is saturated if and only if

H0
m

(M) = H1
m

(M) = 0,

as we now explain. By definition an FI-module M is injective as an FI-group if and only 

if M is torsion-free, i.e. if H0
m

(M) = 0.

We next claim that under this assumption the condition MS1
∩ MS2

= MS1∩S2
holds 

if and only if the cokernel QnM of the natural map M → ΣnM is torsion-free for 

each n ≥ 0. To see this equivalence, let S1, S2 and T be sets such that T = S1 ∪ S2

and |T \ S1| = n. Then the map M → ΣnM in degrees |S1 ∩ S2| and |S1| leads to the 

commutative diagram

MS1
(ΣnM)S1

∼= MT (QnM)S1
0

MS1∩S2
(ΣnM)S1∩S2

∼= MS2
(QnM)S1∩S2

0

where the vertical maps are induced by the FI-morphism S1 ∩ S2 → S1 and horizontal 

maps are components of the natural map M → ΣnM . The vertical map (QnM)S1∩S2
→

(QnM)S1
is thus injective if and only if MS1

∩ MS2
= MS1∩S2

, as claimed.

By [11, Proposition 1.1] and [16, p. 371, Corollaire], this implies that M is saturated 

if and only if H0
m

(M) = H1
m

(M) = 0. In particular, our definition of saturation agrees 

with the classical one; see [16, III §2].

It seems that “natural” examples of injective FI-groups are almost always saturated; 

this includes GL(Z), Aut(F•), and their congruence subgroups. An example of an in-

jective FI-group that is not saturated would be the sub-FI-group Γ ⊂ GL(Z) defined 

by

Γn =

{
GLn(Z) if n ≥ 5

1 if n < 5

Any injective FI-group Γ is contained in a saturated FI-group Γ′ defined by taking
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Γ′
T := colim

((
ΓT 	[0]

)S[0] →
(
ΓT 	[1]

)S[1] →
(
ΓT 	[2]

)S[2] → . . .
)

.

Proposition 6.13. If Γ is a saturated FI-group, then XΓ[1] is the reduced cellular chain 

complex of the FI-simplicial complex YΓ.

Proof. The key to this proposition is that when Γ is saturated, the FI-simplicial complex 

YΓ admits the following alternative description:

The (k − 1)-simplices of (YΓ)T are in bijection with pairs (R, γ ∈ ΓT /ΓT \R) where 

R ⊂ T and |R| = k. The simplex (R′, γ′) is contained in the simplex (R, γ) if and only 

if R′ ⊂ R and γ′ is the image of γ under the projection ΓT /ΓT \R � ΓT /ΓT \R′ .

To verify this description, consider a simplex σ = {({r1}, γ1), . . . , ({rk}, γk)} of YΓ

lying above R = {r1, . . . , rk} ⊂ T . By definition, for σ to be a simplex means there 

exists γ ∈ ΓT with πri
(γ) = γi ∈ ΓT /ΓT \{ri} for all i. This element γ is not unique; it 

is only well-defined modulo the intersection 
⋂k

i=1 ΓT \{ri}. But the hypothesis that Γ is 

saturated guarantees that

k⋂

i=1

ΓT \{ri} = Γ⋂
k

i=1 T \{ri} = ΓT \R.

Therefore to every simplex σ of YΓ above R ⊂ T determines an element γ ∈ ΓT /ΓT \R, 

and the containment relation is as described.

From this description the identification is clear: the (k −1)-simplices of YΓ are labeled 

by

((YΓ)T )k−1 = �
R⊂T
|R|=k

ΓT /ΓT \R . (5)

(This is correct even for k = 0 if we consider YΓ to have a single (−1)-simplex.) Therefore 

the cellular chain complex of YΓ has

C̃k−1(YΓ)T =
⊕

R⊂T
|R|=k

Z[ΓT /ΓT \R] �
∧k

R.

Here 
∧k

R arises as the orientation (or fundamental class) of the simplices; it records the 

fact that FI-morphisms can reverse the orientation of simplices. Comparing with the 

explicit description of XΓ in (3), we find

((XΓ)T )k =
⊕

T =S	R
|R|=k

Z[ΓT /ΓS ] �
∧k

R

from which the desired identification C̃k−1(YΓ) ∼= (XΓ)k is clear. (Note the shift in 

indexing, which is why C̃•(YΓ) is isomorphic to the shifted XΓ[1] rather than XΓ.) �
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Remark 6.14. If Γ is not saturated, (XΓ)T is still the shifted chain complex of a semi-

simplicial set; what goes wrong is that e.g. multiple edges may have the same endpoints, 

so this fails to be a simplicial complex.

7. Congruence subgroups and complexes of split partial bases

7.1. The FI-simplicial complex YΓ for congruence FI-groups

In this section, we give explicit and familiar descriptions of the FI-simplicial complex 

YΓ for the concrete FI-groups GL(R) and its congruence subgroups GL(R, I). It turns out 

that for proper ideals I, this complex coincides with a natural “complex of mod-I split 

partial bases” SPBn(R, I). (This is closely related to the complexes of split unimodular 

sequences considered by Charney [5] and Putman [31], as we will explain below.) However 

there is a subtle point when the ideal I is equal to R, in which case the group GLn(R, I)

is simply GLn(R). In this case the complex YΓ does not coincide with the complex of 

split partial bases SPBn(R) = SPBn(R, I), but is instead a slightly different complex. 

Making this subtlety clear is one of the main reasons for writing this section.

Before dealing with ideals at all, we define the complex of split unimodular collections 

SUn(R) and the complex of split partial bases SPBn(R).

Definition 7.1. The vertices of the complex of split unimodular collections SUn(R) are 

pairs (v ∈ Rn, g : Rn � R) with g(v) = 1. A collection {(v1, g1), . . . , (vk, gk)} forms a 

(k − 1)-simplex of SUn(R) if and only if v1, . . . , vk are linearly independent and gi(vj) =

δij .

Note that the (n − 1)-simplices of SUn(R) are in bijection with unordered bases 

{v1, . . . , vn} of Rn (since the maps gi are then determined by the formula gi(vj) = δij).

Definition 7.2. The complex of split partial bases SPBn(R) is the subcomplex of SUn(R)

defined as follows. A simplex of SUn(R) belongs to SPBn(R) if and only if it is contained 

in an (n − 1)-simplex.

Remark 7.3. For R = Z the complexes SPBn(Z) and SUn(Z) are actually equal, but this 

is not true for all rings R. For example, if R = R[x, y, z]/(x2 + y2 + z2 − 1), the vector 

v = (x, y, z) ∈ R3 and g : (a, b, c) 
→ ax + by + cz define a vertex (v, g) ∈ SU3(R). But 

this vertex cannot belong to SPB3(R) because the kernel of g is not free (a basis for ker g

would define a trivialization of the tangent bundle of the 2-sphere).

To define the mod-I variants SUn(R, I) and SPBn(R, I) we must fix a standard basis 

e1, . . . , en for Rn. Let λ1, . . . , λn : Rn → R be the dual basis.
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Definition 7.4. The complex of mod-I split unimodular collections SUn(R, I) is the full 

subcomplex of SUn(R) on vertices (v, g) for which there exists i ∈ [n] such that v ≡
ei mod I and g ≡ λi mod I.

Note that the (n − 1)-simplices of SUn(R, I) are in bijection with bases {v1, . . . , vn}
of Rn such that vi ≡ ei mod I for all i = 1, . . . , n.

Definition 7.5. The complex of mod-I split partial bases SPBn(R, I) is the subcomplex 

of SUn(R, I) defined as follows. A simplex of SUn(R, I) belongs to SPBn(R, I) if and 

only if it is contained in an (n − 1)-simplex of SUn(R, I).

Remark 7.6. If R satisfies Bass’s stable range condition SRd+2, then for all � ≤ n − d − 2

the subcomplex SPBn(R, I) contains all �-simplices of SUn(R, I) (see [31, Lemma 3.2] or 

[5, Proposition on p. 2101], but note a typo in the former). In particular, the inclusion 

SPBn(R, I) ↪→ SUn(R, I) is (n − d − 2)-connected.

Remark 7.7. Putman works with SUn(R, I) in [31, third Definition in §3] (but beware 

an inaccurate reference to it as the complex of split partial bases). Charney does not 

work directly with the simplicial complex SUn(R, I), but rather with a semi-simplicial 

set S̃Un(R, I) whose simplices are ordered sequences ((v1, g1), . . . , (vk, gk)). Nevertheless 

there is a surjection π : S̃Un(R, I) → SUn(R, I) which admits a section (see [31, Proof 

of Lemma 3.1]), which will be enough for us.

We can view these simplicial complexes as forming FI-simplicial complexes as follows.

Definition 7.8. The FI-simplicial complex SU(R) is defined as follows. For each n we set 

SU[n](R) = SUn(R). An inclusion f : [n] ↪→ [m] induces maps f∗ : Rn ↪→ Rm (defined 

by f∗(ei) = ef(i)) and f∗ : Rm � Rn (defined by f∗(ef(i)) = ei and f∗(ej) = 0 for 

j /∈ imf). We define the structure map f∗ : SUn(R) → SUm(R) by sending a vertex 

(v, g) ∈ SUn(R) to (f∗(v), f∗ ◦ g) ∈ SUm(R). This preserves the condition defining 

simplices of SUn(R), so extends to an injection of simplicial complexes.

These structure maps f∗ : SUn(R) → SUm(R) preserve the subcomplexes SPBn(R), 

SUn(R, I), and SPBn(R, I). Therefore we obtain FI-simplicial complexes SPB(R), 

SU(R, I), and SPB(R, I).

We can now describe the FI-simplicial complex YGL(R,I) defined in Definition 6.10.

Proposition 7.9. If I ⊂ R is a proper ideal, YGL(R,I) is isomorphic as a GL(R, I)-

equivariant FI-simplicial complex to SPB(R, I).

Proof. Set Γ = GL(R, I), and recall that the vertices of (YΓ)n are pairs ({i ∈ [n]}, γ ∈
Γn/Γ[n]\{i}); for readability we write (i, γ) in place of ({i}, γ). We define the isomorphism 

ϕ : YΓ
∼= SPB(R, I) on vertices by sending (i, id) ∈ (YΓ)n to the standard vertices xi =



34 T. Church et al. / Advances in Mathematics 333 (2018) 1–40

(ei, λi) ∈ SPBn(R, I). Since this isomorphism is to be GL(R, I)-equivariant, we must take 

ϕ(i, γ) = γ · xi. Note that the stabilizer of xi is precisely Γ[n]\{i}, so this is well-defined. 

It also respects the FI-structure maps on vertices.

We now verify that ϕ is a simplicial map. The (k − 1)-simplices of (YΓ)n are precisely 

those of the form γ ·σ where σ is a “standard” simplex {(i1, id), . . . , (ik, id)}. Note that σ

itself is taken to ϕ(σ) = {xi1
, . . . , xik

} which is certainly a simplex of SPBn(R, I), since 

it belongs to the standard (n − 1)-simplex {x1, . . . , xn}. Since GLn(R, I) acts on the 

simplicial complex SPBn(R, I), we conclude that ϕ(γ · σ) = γ · ϕ(σ) is a simplex as well. 

This shows that ϕ : YΓ → SPB(R, I) is a map of FI-simplicial complexes. It remains to 

check that it is an isomorphism.

For a map of simplicial complexes, injectivity can be checked on vertices, and surjec-

tivity can be checked on maximal simplices. The fact that the stabilizer of xi is Γ[n]\{i}

shows that ϕ(i, γ) = ϕ(i, γ′) =⇒ γ = γ′. So to check injectivity on vertices, it suffices 

to check that we cannot have ϕ(i, γ) = ϕ(j, γ′) when i 	= j. This is where we will use 

that I is a proper ideal. By definition ϕ(i, γ) = γ · (ei, λi) = (γ · ei, γ
∗λi), and since 

γ ∈ Γn = GLn(R, I) we know that γ · ei ≡ ei mod I. The key point is that since I is a 

proper ideal, ei 	≡ ej mod I for i 	= j. Therefore γ ·ei cannot coincide with γ ·ej , verifying 

injectivity on vertices.

For surjectivity, note that the maximal simplices σ of SPBn(R, I) are (n − 1)-

dimensional, and correspond to bases {v1, . . . , vn} of Rn such that for each i there exists 

ji ∈ [n] such that vi ≡ eji
mod I. Since I is proper, after reordering we can guarantee 

that vi ≡ ei mod I. But then the vectors vi together define a matrix γ ∈ GLn(R, I)

such that γ · {x1, . . . , xn} = σ, and thus σ = ϕ({(1, id), . . . , (n, id)}. This concludes the 

proof. �

Remark 7.10. The assumption that I is a proper ideal is really necessary here. If we 

attempt to carry out the same comparison when I = R, we encounter a discrepancy. 

Note that in this case GL(R, I) = GL(R) and SPB(R, I) = SPB(R).

The first key observation is that GLn(R) acts transitively on the �-simplices of 

SPBn(R) for all �. Indeed, since every simplex is contained in an (n − 1)-simplex, and 

GLn(R) acts transitively on these, it suffices to check that GLn(R) acts transitively on 

the �-simplices contained in a single maximal simplex. But for this we need only the 

permutation matrices. (These would be excluded from GLn(R, I) if I were a proper 

ideal!)

On the other hand, we may take Γ = GL(R) and consider the simplicial complex 

Yn = (YΓ)[n]. But in contrast, Γn cannot act transitively on �-simplices of Yn; indeed by 

definition, the Γn-orbits of (k −1)-simplices of Yn are in bijection with k-element subsets 

of [n]. So SPBn(R) definitely cannot coincide with Yn.

We can nevertheless describe Yn: the simplices of Yn correspond to tuples (S ⊂ [n],

f : RS ↪→ Rn, g : Rn � RS) such that g ◦ f = id. In particular, the vertices of Yn

correspond to tuples (i ∈ [n], f : R{i} ↪→ Rn, g : Rn � R{i}) such that g ◦ f = id. There 

is a natural projection π : Yn � SPBn(R) sending a vertex (i, f, g) to (v = f(1), g) ∈
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SPBn(R), but it is not injective. A collection of k vertices σ = {(ij , fj , gj)} forms a 

(k − 1)-simplex of Yn if and only if the labels i1, . . . , ik are all distinct and π(σ) forms a 

(k − 1)-simplex of SPBn(R).

7.2. Bounding the FI-homology of congruence chains

We can now explain how to deduce the necessary bound on the FI-homology of 

the chains on congruence subgroups from the work of Charney. The argument in this 

section below partly follows a portion of [8, Proof of Proposition 5.13], but both the 

connection with HFI

k (C•Γ) and the identification with SPB(R, I) are new. We begin by 

proving Theorem C, which connects the FI-homology of congruence subgroups with the 

equivariant homology of the complex of mod-I split partial bases.

Theorem C, restated. Given a ring R and a proper ideal I ⊂ R, and any coefficient 

group A, for all k ≥ 0 we have

H
FI

k (C•(GL(R, I); A)) ∼= H̃
GL(R,I)
k−1 (SPB(R, I); A).

Proof of Theorem C. Let Γ = GL(R, I). Proposition 6.1 and Corollary 6.2 state that 

H
FI

k (C•(Γ; A)) ∼= Hk(Γ; XΓ ⊗A). Proposition 6.13 states that XΓ[1] is the reduced chain 

complex of YΓ, which is isomorphic to SPB(R, I) by Proposition 7.9, so Hk(Γ; XΓ ⊗ A)

is the Γ-equivariant homology

H
FI

k (C•(Γ; A)) ∼= Hk(Γ; XΓ ⊗ A) ∼= H̃
GL(R,I)
k−1 (SPB(R, I); A). �

We can now prove Proposition 5.4, which was the necessary technical input for Ap-

plication B.

Proof of Proposition 5.4. For readability, we explain the argument with Z coefficients, 

but it applies verbatim with arbitrary coefficients. Charney proved in [5, Theorem 3.5]

that S̃Un(R, I) is q-acyclic for n ≥ 2q + d + 3.

Our first step is to verify that the same is true of SUn(R, I) and SPBn(R, I). By 

Remark 7.7, the projection S̃Un(R, I) � SUn(R, I) has a section, so it is surjective on 

homology; thus SUn(R, I) is similarly q-acyclic for n ≥ 2q + d + 3. By Remark 7.6, the 

inclusion SPBn(R, I) ↪→ SUn(R, I) is (n − d − 2)-connected. Since n ≥ 2q + d + 3 implies 

n − d − 2 ≥ 2q + 1 > q, we conclude that

SPBn(R, I) is q-acyclic for n ≥ 2q + d + 3. (6)

This means H̃q(SPBn(R, I)) = 0 for n ≥ 2q + d + 3; in other words, the FI-module 

H̃q(SPB(R, I)) has

deg H̃q(SPB(R, I)) ≤ 2q + d + 2.
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Note that deg Hp(G; V ) ≤ deg V for any V (simply because Hp(G; 0) = 0). It follows 

immediately via the spectral sequence

E2
pq = Hp(GL(R, I); H̃q(SPB(R, I))) =⇒ H̃

GL(R,I)
p+q (SPB(R, I))

that deg H̃
GL(R,I)
k (SPB(R, I)) ≤ 2k + d + 2. Applying Theorem C, we conclude that

deg H
FI

k (C•GL(R, I)) = deg H̃
GL(R,I)
k−1 (SPB(R, I)) ≤ 2k + d, (7)

as desired. �

We conclude this paper by proving Theorem D, whose statement we recall for conve-

nience.

Theorem D. Given any � > 0, for each k > 0 we have

H̃k−1(SPB2k(Z/p�, p);Fp) 	= 0.

Given any number ring O and any prime power pa > 2, for each k > 0 we have

either H̃k−1(SPB2k(O, pa);Fp) 	= 0 or H̃k−1(SPB2k+1(O, pa);Fp) 	= 0.

We remark that the same nonvanishing results apply to SUn(Z/p�, p) and S̃Un(Z/p�, p)

when k > 1, since the inclusion SPB2k(Z/p�, p) ↪→ SU2k(R, I) is (2k − 2)-connected. 

Similarly, the same results apply to SUn(O, pa) and S̃Un(O, pa) when k > 2.

Proof. We first check that all these complexes are (k − 2)-acyclic. We noted in (6) that 

SPBn(R, I) is q-acyclic for n ≥ 2q + d + 3. All the rings R occurring in the proposition 

have dimension 0 or 1, so d ≤ 1. Since 2k + 1 ≥ 2k ≥ 2(k − 2) + d + 3, Charney’s results 

show that all these complexes are (k − 2)-acyclic as claimed.

The structure of the proof is as follows. The theorem deals with two cases: Case A, 

when R = Z/p� and I = pR, and Case B, when R = O and I = paR for pa > 2. The 

details will be quite different in places, but the overall argument is the same, so we first 

outline the proof in general. Let Γ = GL(R, I) and

Vk := H
FI

k (C•(Γ;Fp)) ∼= H̃Γ
k−1(SPB(R, I);Fp).

In both Case A and B, we will show that if the theorem were false for a certain k, we 

could prove the upper bound

deg Vk = deg H̃Γ
k−1(SPB(R, I);Fp) ≤ 2k − 1. (8)

(This argument is the first place the two cases diverge.) By Theorem 5.1(1) and Corol-

lary 6.2, we have
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δ(Hk(GLn(R, I);Fp)) ≤ deg Vk.

Thanks to Proposition 2.14, the bound δ(Hk(GLn(R, I); Fp)) ≤ 2k − 1 would imply 

the upper bound dim Hk(GLn(R, I); Fp) = O(n2k−1) as n → ∞. We will then derive a 

contradiction by showing in both cases that known results imply

dim Hk(GLn(R, I);Fp) = Θ(n2k) (9)

for all k. (This is the second place the two cases diverge.) To complete the proof, we 

must prove in both Case A and Case B that (8) holds if the theorem is false, and prove 

(9) in both Case A and Case B.

Proving (8) in Case A: Since R = Z/p� has Krull dimension 0, we have d = 0. Thus 

from (7) we know that deg Vk ≤ 2k, so let us consider this FI-module in degree 2k. Since 

the complex SPB2k(R, I) is (k − 2)-acyclic, we have an isomorphism

H0(Γ2k; H̃k−1(SPB2k(R, I);Fp)) ∼= H̃Γ2k

k−1(SPB2k(R, I);Fp) = (Vk)2k.

In particular, we have a surjection

H̃k−1(SPB2k(R, I);Fp) � (Vk)2k.

Therefore if the theorem were false and H̃k−1(SPB2k(R, I); Fp) = 0 for a certain k, we 

would have (Vk)2k = 0 and thus deg Vk ≤ 2k − 1. This verifies (8) in Case A.

The proof of (8) in Case B is very similar, except that since R = O has Krull dimen-

sion 1, we only know from (7) that deg Vk ≤ 2k + 1. Just as above we have surjections 

H̃k−1(SPB2k(R, I); Fp) � (Vk)2k and H̃k−1(SPB2k+1(R, I); Fp) � (Vk)2k+1. Therefore 

if the theorem were false and both these homology groups vanished for a certain k, we 

would have (Vk)2k = (Vk)2k+1 = 0 and thus deg Vk ≤ 2k − 1. This verifies (8) in Case B.

The remainder of the paper consists of the proof of (9). First, let us consider the 

simplest case when R = Z/p2 and I = pR. In this case Γn = GLn(Z/p2, p) is 

an elementary abelian group isomorphic to (Z/p)n2

, so the Künneth theorem implies 

that H∗(Γn; Fp) ∼= H∗(Z/p; Fp)⊗n2

. Since dim Hk(Z/p; Fp) = 1 for all k, we find that 

dim Hk(Γn; Fp) is the coefficient of tk in (1 + t + t2 + · · · )n2

= 1
(1−t)n2 , namely 

(
n2+k−1

k

)
. 

In particular, this shows that dim Hk(Γn; Fp) = Θ(n2k).

For R = Z/p� in general, Γn = GLn(Z/p�, p) is a non-abelian p-group. However, 

results on p-central groups imply that it nevertheless has the same cohomology as 

(Z/p)n2

, see Browder–Pakianathan [2, Corollary 2.34]. Therefore as before we have 

dim Hk(GLn(Z/p�, p); Fp) = Θ(n2k). This finishes the proof in Case A when R = Z/p�. 

(To extend the theorem from I = pR to I = paR in this case, all that would be necessary 

is to show dim Hk(GLn(Z/p�, pa); Fp) 
n n2k−1. Such estimates may well already be 

known. Note that when a ≥ �/2 this group is abelian, so this bound holds in that case.)

We now turn to Case B, when R = O is a number ring. In this case for techni-

cal reasons we work with Γ = SL(O, pa) rather than Γ′ = GL(O, pa). The complex 
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XΓ agrees with XΓ′ except in the very top dimensions, so all the bounds above work 

the same way. In particular, just as above, if the theorem were false we would have 

dim Hk(SLn(O, pa); Fp) = O(n2k−1). This contradicts the recent results of Calegari [3, 

Lemma 4.5, Remark 4.7], which imply that this dimension is Θ(n2k). Note, however, 

that the statements there omit the hypothesis that pa > 2. In order to be self-contained, 

and because the argument is short, we take this opportunity to summarize the argument 

of Calegari.

Let Op denote the p-adic completion of the number ring O. To address the cohomology 

of Γn = SLn(O, pa), we must first understand the continuous cohomology of the corre-

sponding congruence group Gn = SLn(Op, pa). Suppose the number ring O has degree D. 

The pro-p group Gn is a compact p-adic analytic group of dimension D(n2 − 1), and our 

assumption that pa > 2 guarantees that it is torsion-free and uniformly p-powerful. The 

work of Lazard thus implies that Gn is a Poincaré duality group of dimension D(n2 − 1)

for continuous cohomology with Fp coefficients; in fact,

H∗(Gn;Fp) ∼=
∧∗

H1(Gn;Fp) ∼=
∧∗

(Fp
D(n2−1)). (10)

In particular, dim Hk(Gn; Fp) =
(

D(n2−1)
k

)
= Θ(n2k). (Note that throughout, H∗(Gn; M)

denotes the continuous cohomology of the profinite group Gn. If we knew dim Hk(Gn;

Fp) = Θ(n2k) for the discrete cohomology we could add the case R = Op to the theorem; 

alternately, the argument bounding δ(Hk(G; Fp)) could perhaps be modified to work 

with continuous cohomology.) See [35] for a very readable overview of the cohomology 

of p-adic analytic groups; (10) appears as [35, Theorem 5.1.5].

To connect this back to the arithmetic group, let W q
n denote the “cohomology at 

infinite level”

W q
n = lim

−→
r

Hq(SLn(O, pr);Fp).

Note that W q
n naturally inherits an action of lim← SLn(O/pr) = SLn(Op), which in fact 

extends to an action of SLn(Op ⊗Q) via Hecke operators (though we will not really need 

this). There is a Hochschild–Serre spectral sequence

Epq
2 = Hp(Gn; W q

n) =⇒ Hp+q(Γn;Fp)

The main result of Calegari–Emerton [4, Theorem 1.1] is that for n 
 q, the vector 

space W q
n is independent of n and SLn(Op ⊗ Q) acts trivially on it (so in particular, so 

does Gn). This means that for sufficiently large n we can (in a range of cohomological 

degrees) write this spectral sequence as

Epq
2 = Hp(Gn;Fp) ⊗ W q =⇒ Hp+q(Γn;Fp)

The focus of Calegari’s paper is the determination (as far as possible) of the stable 

cohomology groups W q. But he points out that even without knowing anything, this 
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spectral sequence allows us to estimate the dimension of Hk(Γn; Fp). From the computa-

tion of Hk(Gn; Fp) above, and the fact that W q = W q
n does not depend on n, we find that 

dim Epq
2 = Θ(n2p). In particular, for fixed k the dimension of those Epq

2 with p + q = k

is dominated by Ek0
2 = Hk(Gn; Fp) whose dimension is Θ(n2k). All other terms in this 

string, as well as all those which could map to Ek0
r , have dimensions which are O(n2k−2). 

Therefore without knowing anything about the behavior of this spectral sequence, we 

can conclude that dim Hk(Γn; Fp) = dim Hk(SLn(O, pa); Fp) = Θ(n2k). This conclusion 

is [3, Lemma 4.5] for O = Z and [3, Remark 4.7] in general, except the hypothesis pa > 2

is missing from both (and beware a typo in the latter, where N2kd should be dkN2k). 

This completes the proof. �
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