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Abstract—In this paper, we introduce Jenga, a new scheme for 
protecting 3D DRAM, specifically high bandwidth memory 
(HBM), from failures in bits, rows, banks, channels, dies, and 
TSVs.  By providing redundancy at the granularity of a cache 
block—rather than across blocks, as in the current state of the 
art—Jenga achieves greater error-free performance and lower 
error recovery latency. We show that Jenga’s runtime is on 
average only 1.03× the runtime of our Baseline across a range of 
benchmarks. Additionally, for memory intensive benchmarks, 
Jenga is on average 1.11× faster than prior work. 
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I. INTRODUCTION 

Current stacked DRAM designs include the Hybrid 
Memory Cube (HMC) and High Bandwidth Memory (HBM), 
and these designs are attractive for many systems [1]–[3].  The 
appeal of 3D stacked DRAM is its ability to deliver far greater 
memory bandwidth to processors that need it, and researchers 
have eagerly explored ways of leveraging it [4]–[7]. 

Stacked DRAM comes with new challenges. First, the 
stacking introduces new error models, including the potential 
failure of through silicon vias (TSVs) and failure of a chip in 
the stack (whose failure has a different impact than the failure 
of a DRAM chip in traditional 2D DRAM).  Second, the 
traditional solution to DRAM errors—Hamming error 
correcting codes (ECC) with the error correcting bits on a 
dedicated DRAM chip—are a poor fit in 3D stacked DRAM.  

Prior work [8]–[11] has also identified this fault tolerance 
challenge, and several clever schemes have been proposed to 
improve fault tolerance for 3D stacked DRAM. These 
schemes tolerate failures in rows, banks, and TSVs, but they 
do so at a considerable expense.  These expenses include extra 
reads before every write and error correction processes that 
involve accessing and synchronizing multiple blocks.  

We introduce Jenga, a new scheme for protecting 3D 
DRAM, specifically HBM, from failures in bits, rows, banks, 
channels, dies, and TSVs.  Jenga’s key innovation—which 
enables better performance and less complexity than previous 
work with similar fault tolerance goals—is to provide 
additional redundancy at the granularity of the size of a cache 
block instead of across multiple blocks. By not involving 
multiple blocks, Jenga’s procedures for writes and error 
recovery are much simpler. Jenga requires no modifications to 
the existing HBM protocol. 

II. HBM BACKGROUND AND ERROR MODEL 

HBM is a 3D memory that allows the integration of 
multiple memory dies in the same chip (stack).  

A. HBM Organization 
Today HBM provides 4 or 8 dies per stack. Each die is 

divided into two channels, and all of the channels have their 
own memory controllers and can work simultaneously and 
independently from each other.  Each channel is organized in 
bank groups (typically 4 per channel) that contain banks 
(typically 4 per bank group). The process of accessing a row 
in a bank is similar to traditional DRAM technologies. A row 
needs to first be opened in order to read or write it, and 
accessing an already open row is faster than a closed row. 

A key feature of HBM is that it provides a wide 
interconnection interface for each channel by making use of 
through-silicon via (TSV) technology [12].  TSVs allow for 
point-to-point connections that run vertically through the 
silicon, creating a dense and compact interface.  

B. Current HBM Fault Tolerance 
DRAM has been shown to be vulnerable to transient and 

permanent bit errors [13],[14]. To tolerate these errors, 
memories are often protected with error correcting codes 
(ECC). Although there are many types of ECCs, memory is 
often protected with codes that provide single error correction 
and double error detection (SECDED).  A commonly used 
SECDED code is Hamming (72,64), in which a 64-bit 
dataword is encoded as a 72-bit codeword. In a common 
implementation of this code with x8 DRAM chips, nine chips 
are used.  The 64 bits of each dataword are striped across the 
first eight chips, and the 8 ECC bits are on the ninth chip.  To 
tolerate the problem of “chipkill,” in which an entire DRAM 
chip fails, the data and ECC bits can be striped across chips 
such that the loss of any one chip can be tolerated (i.e., no chip 
holds more bits of a given codeword than can be corrected by 
the code) [15]. 

Naively, one might expect to be able to straightforwardly 
adapt SECDED codes (without chipkill tolerance) to HBM.  
In an HBM stack with 8 channels, one could imagine adding 
a ninth channel for ECC and striping the data across the 
channels as is done with 2D DRAM.  Unfortunately, this 
design, while good for fault tolerance, would greatly hurt 
performance. Each read or write would require accessing 
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every channel and would thus eliminate much of the 
bandwidth benefit of using HBM.  

Because dedicating a channel in the stack to ECC has 
many drawbacks, the HBM2 standard [16] specifies memory 
channels that contain rows that are wide enough to store data 
and ECC bits together as shown in Figure 1.  This collocation 
of data with ECC is good for performance, because each 
memory request needs to access only one channel (instead of 
one channel for data and one for the ECC bits).  However, this 
collocation provides less fault tolerance. Specifically, with 
collocated data and ECC, the 3D DRAM cannot tolerate 
failures of rows, banks, channels, dies, or TSVs.  For example, 
a single hard error in one of the 256 TSVs of a given channel 
would result in 2 (or 4) bit errors for every block access of size 
32B (or 64B) from every bank/row of that channel. Then, the 
occurrence of a single transient error in any of the rows of that 
channel can result in an uncorrectable error. 

III. JENGA 

We propose the Jenga design for 3D DRAM in order to 
provide comprehensive fault tolerance while minimizing costs 
(due to extra storage) and performance degradation (due to 
extra accesses). As with any fault tolerance scheme, it requires 
redundancy, and redundancy inherently has costs.   

We designed Jenga for HBM stacks that comply with the 
HBM2 standard, but there is nothing fundamental about that 
baseline system model other than that it provides ECC 
collocated with the data in each row, as shown in Figure 1. 
Moreover, Jenga requires no modifications to the HBM2 
standard1.  We assume the ECC is a Hamming(72,64) code 
that provides SECDED at a cost of 12.5%.  That is, each 64B 
cache block requires an extra 8B for ECC, and we assume that 
block accesses involve all 72B. Like prior work [8]–[11], we 
assume the memory controllers implement the ECC logic (i.e., 
errors are detected and corrected by the memory controllers) 
and can diagnose failed rows, banks, channels, and chips. 

A. Adding Spatial Redundancy 
Jenga is a novel approach to fault tolerance for 3D DRAM, 

but it shares the same high-level structure as several pieces of 
prior work [8]–[11].  Although these papers differ in their 

                                                           
1 Jenga does require the bit-width of the channel to be smaller than the 
cache block size, which is true of both HBM2 and HMC, which has a 
channel width of 16 bits. 

details, which we describe in more depth in Section VII, they 
share a common structure.   
 All four schemes have two levels of error coding: a first 
level code (denoted L1C) that provides error detection and 
perhaps a small amount of error correction, and a second level 
code (L2C) that provides correction for large-scale errors.  
The L2C in all four schemes protects a given number of 
blocks, say N, by maintaining a redundant block that is the 
XOR (i.e., parity) of the N data blocks.  These schemes use 
spatial redundancy to spread the N data blocks and one parity 
block such that no single fault is unrecoverable. 

This structure tolerates many faults at relatively low cost, 
but it has four drawbacks—all due to the L2C being a parity 
across multiple blocks—that we seek to overcome with Jenga.  
Consider a data block A in a parity group with parity block P: 

� Every write to A requires first reading the old values of 
A and P.  The old value of A must be XORed out of the 
old value of P, and the new value of A must be XORed 
into P.  Then A (with its L1C) and P can be written.2   

� Writing to A and writing to P must be atomic with 
respect to other writes to other blocks in A’s parity 
group.  If P can be cached, this involves modifying the 
coherence protocol and being careful to avoid deadlock.  
If P cannot be cached, this involves memory controller 
support to “lock” P until the writes to A and P complete. 

� Correcting an error in A with the L2C requires accessing 
all blocks in A’s parity group. Moreover, until the 
correction completes, no blocks in A’s parity group may 
be written.  Once again, these requirements may affect 
the coherence protocol and/or memory controller. 

� Most prior work [8], [9], [11] (but not [10]) assumes a 
unified memory controller that is aware of all memory. 
However, each HBM channel has its own unique 
controller that is aware of only that channel’s memory. 
Without a unified controller, the LLC bank that submits 
a memory request would be burdened with calculating 
parity bits, issuing extra requests to load and store the 
parity bits, and identifying and correcting errors.  

B. Jenga’s Finer-Grained Spatial Redundancy 
Jenga overcomes the undesirable aspects of prior work 

with one key innovation: adding redundancy at the granularity 
of a single block, instead of across multiple blocks.  Every 
memory block A (72B) is divided into two sub-blocks, A1 
(36B) and A2 (36B). We then perform a bit-wise XOR 
between A1 and A2 to produce a redundant sub-block A3 (36B) 
that is the parity of sub-blocks A1 and A2. Thus, reading any 
two of the 3 sub-blocks can recreate our data. Concatenating 
A1 and A2 recreates block A or we can perform a bitwise XOR 
of A1 (or A2) with A3 in order to generate A2 (or A1) and then 
concatenate the two to again recreate block A.  

2 There are ways to reduce that penalty (e.g., with caching and proactive 
XORing of the old values of blocks), but we prefer to avoid it entirely. 

Figure 1: The organization of HBM2 
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Like prior work, Jenga needs spatial redundancy to 
tolerate channel and die failures; we cannot have multiple sub-
blocks vulnerable to a single failure. Jenga stripes the three 
sub-blocks in different channels and different dies, and it does 
this striping in a modulo-like fashion as shown in Figure 2. To 
explain the mapping, we use an example in which, for 
unmodified HBM (i.e., without Jenga), block A would have 
been stored in channel 0, row 0, and columns 0 and 1.  Assume 
each DRAM column is a half-block wide. 

We treat the parity sub-block A3 differently from the 
original sub-blocks A1 and A2. To store A3, we first need to 
find space in our HBM. Because we do not want to add dies 
(i.e., assume HBM stacks with an arbitrary number of dies), 
we choose to sacrifice the host-visible capacity of our 
memory. As illustrated in Figure 2, Jenga uses 2/3 of the total 
capacity to store data and reserves 1/3 of the total capacity to 
store the additional parity sub-blocks like A3. In our example, 
Jenga stores sub-block A3 in channel 4 of that reserved space. 
Observe that this space is enough to store all the extra sub-
blocks (A3, B3, …) corresponding to blocks that have their first 
sub-block (A1, B1, …) in channel 0. 

There are many functions that work for mapping the 
original sub-blocks A1 and A2, and we can choose from among 
those that best preserve DRAM row locality. In our example, 
sub-block A1 is in channel 0, and it is at row 0, column 0. The 
mapping function must ensure that (a) a sub-block from some 
other block gets mapped to channel 0, row 0, column 1, and 
(b) sub-block A2 gets mapped to some column 1 in row 0 of 
another channel (channel 2 in our example). The function we 
implement and present in Figure 2 interleaves the sub-blocks 
such that A1 and B1 are collocated in the same row, A2 and B2 
are together in a different row, and A3 and B3 are together in a 
third row.  

C. Reads 
On a read miss in the last-level cache (LLC), the LLC bank 

acquires a block of data by accessing two different HBM 
channels on two different chips. Thus, a memory read 
generates two separate half-block read requests. Although the 
overall amount of data we read does not change, we do access 

two channels rather than one. Additionally, a read is only 
completed once both channels have replied.  

Because Jenga needs only two of the three sub-blocks to 
obtain a block, we have the opportunity to choose which two 
we access, and there are several ways one could try to exploit 
this freedom of channel selection. For example, if one 
channel is malfunctioning (e.g., due to multiple TSV 
failures), then we always want to access the other two. 
Additionally, it would be possible to select the channels with 
the least occupied queues. To keep our implementation 
simple, Jenga selects the channels depending on their 
Manhattan distance from the LLC bank that issued the 
corresponding request.   

Figure 3(a) presents a timing diagram of an LLC read miss 
in Jenga in the absence of errors. The LLC controller issues 
two read requests to channels 0 and 2 in order to retrieve sub-
blocks A1 and A2. When both channels reply, data block A is 
reconstructed by concatenating the two sub-blocks. 

D. Writes 
To perform a memory write, Jenga generates three separate 

half-block accesses to different channels on different chips.  
In our running example, writing block A requires us to update 
all three sub-blocks A1, A2 and A3 and thus access channels 0, 
2 and 4.  Jenga also requires the computation of A3 as the 
logical XOR of sub-blocks A1 and A2, but this is simple and 
adds minimal overhead. 

E. Error Detection and Correction 
The baseline HBM against which we compare Jenga has 

SECDED coding. (We discuss in Section IV.E the possibility 
of using different codes.)  If SECDED cannot correct an 
error, Jenga uses the third sub-block to recreate the correct 
data. For example, assume that we are reading block A and 
thus issued read requests for A1 and A2. As shown in Figure 
3(b), if SECDED cannot correct errors in sub-block A2, then 
the LLC controller requests A3. When the LLC has A1 and A3, 
it can bit-wise XOR them to recover A2 and thus obtain A.  

F. Half-Block Accesses 
Typically, the majority of accesses to memory are at least 

one block. However, systems occasionally perform half-

Figure 2: Comparing Jenga to baseline HBM2, in terms of mapping (sub-)blocks to channels 
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block accesses, for a variety of reasons, including segmented 
cache designs [17]–[20], I/O operations, or if the LLC 
maintains dirty bits at a sub-block granularity 

For Jenga, half-block reads require less work.  Instead of 
performing the two sub-block reads required to obtain a full 
block, Jenga would need to perform only one sub-block read.  
(An uncorrectable SECDED error in that sub-block could be 
reconstructed from the other two sub-blocks.) A half-block 
write requires reading two of the three sub-blocks before 
writing these two sub-blocks to correctly compute the parity 
sub-block. This need to read before writing is a drawback that 
prior work has for all writes (not just sub-block writes), and 
that Jenga has only for sub-block writes. 

G. Costs 
We now summarize the costs of Jenga, bearing in mind that 

all fault tolerance schemes require redundancy and more fault 
tolerance incurs more cost. 

� Storage: For each block, Jenga adds another half-block of 
storage. Thus, Jenga memory has 2/3 of the host-visible 
memory as the baseline HBM2. 

� Read latency: Each read requires waiting for the 
completion of two concurrent half-size accesses to 
different channels on different chips. Ideally these 
latencies overlap, but that overlap will not be perfect. 
Each half-block access takes somewhat less time than a 
full-block access, which slightly benefits Jenga. 

� Write latency: Each write requires three half-size writes.  
Writes are rarely on the critical path of performance, and 
thus only bandwidth really matters. 

� Bank conflicts: Jenga may introduce more HBM bank 
conflicts due to having more accesses (even if each access 
is smaller), and these bank conflicts may degrade 
performance.  (On the flip side, Jenga may increase the 
number of row hits.)  

� Interconnection network bandwidth: Reads require 
approximately the same bandwidth as the baseline (two 
half-block requests and responses compared to one full-
block request and response), if we ignore packet header 
overheads.  Writes require 1.5× the bandwidth as the 
baseline (three half-size requests and responses compared 
to one full-size request and response).  

� Power/Energy: The power and energy overheads of Jenga 
are a function of how much extra work it does and thus 
track closely with its bandwidth overheads. 

IV. ERROR DETECTION AND CORRECTION ANALYSIS 

In this section, we analyze Jenga’s ability to tolerate errors.  
We consider one block, A, and its three sub-blocks. If at least 
two of its three sub-blocks are correct, Jenga will produce 
correct data when reading A.  Thus, the analysis devolves to 
determining when at least two of the three sub-blocks are 
correct.   

An additional subtlety arises because the SECDED code is 
at a finer granularity (72 bits) than a sub-block (36B per sub-
block in DRAM). Consider the case where A1 has an 
uncorrectable SECDED error in its first 72 bits, and A2 has an 
uncorrectable SECDED error in its last 72 bits.  Assume A3 
is error-free.  Even though two of the three sub-blocks have 
uncorrectable SECDED errors, Jenga could still reconstruct 
A because the first 72-bit codeword can be reconstructed from 
A2 and A3 and the last 72-bit codeword could be reconstructed 
from A1 and A3. To achieve this benefit, we would need to 
modify the memory controllers such that, when they detect 
an uncorrectable SECDED error, they still send to the LLC 
the data and the locations of the codewords with the 
uncorrectable SECDED errors.   

A. Individual Bit Errors 
Any number of 72-bit codewords with a single bit error 

will be corrected by the SECDED code.  A 2-bit error in a 72-
bit codeword in a given sub-block will be uncorrectable by 
SECDED, but it will be corrected by using the other two sub-
blocks as long as neither of those sub-blocks has a multi-bit 
error in the same codeword position. 

B. TSV Failures 
Any single TSV failure will cause two bit errors in one of 

the three sub-blocks.  These bit errors are separated by 127 
bits and thus will be corrected by the SECDED code.  
However, once a TSV has failed, a subsequent bit error can 
cause an uncorrectable SECDED error in one 72-bit 
codeword in one sub-block.  This uncorrectable SECDED 
error will force Jenga to fetch the third sub-block and thus 
produce correct data. 

Figure 3: The life of a LLC miss request in the (a) absence of errors and (b) when third sub-block is needed 
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Multiple TSV failures can be tolerated if the failed TSVs 
are separated by at least 64 TSVs, in which case the 
corresponding bits that are read through the faulty TSVs are 
protected by separate SECDED codes. Additionally, in the 
absence of individual bit errors, any two arbitrary TSV 
failures can be corrected.  

C. Row and Bank Failures 
Each of these large-scale failures can cause one of the three 

sub-blocks to be uncorrectable by SECDED.  Jenga will still 
have two correct sub-blocks and thus produce correct data.  
Multiple row and bank failures can be tolerated as long as no 
two rows or banks that store sub-blocks of the same cache 
block fail. For example, in the case that both the rows that 
hold sub-block A1 and sub-block A2 fail then block A can no 
longer be recovered. However, considering the number of 
rows and banks in all channels this is an unlikely event. 

D. Chip and Channel Failures 
Chip failure is a well-known failure mode for DRAM chips 

[15], [21], and channel failure can occur for a variety of 
reasons including a permanent fault in a channel controller.  
Because any chip holds no more than one of the three sub-
blocks, a chip failure can be tolerated like a channel failure.  
Jenga tolerates one channel or chip failure, and it can tolerate 
two channel failures if both channels are on the same chip.   

E. Using Different Collocated Error Codes 
In Jenga, we assume the use of a typical SECDED code, 

like Hamming(72,64).  However, we could use other codes 
that offer different trade-offs between cost and fault 
tolerance. A straightforward change, that would improve 
fault tolerance but reduce the host-visible capacity, would be 
to strengthen the code from SECDED to DECTED (double 
error correcting and triple error detecting) or even stronger. 
A slightly different approach, with a subtler trade-off, would 
use a code like CRC that has very strong error detection 
capability but no error correction ability.  With CRC, Jenga 
would detect some errors that are missed by SECDED (or 
DECTED) and enable them to be corrected using the third 
sub-block.  However, with CRC, Jenga would not be able to 
correct any errors without having to resort to fetching the 
third sub-block. 

V. EXPERIMENTAL METHODOLOGY 

A. Simulation Methodology 
We simulate Jenga with the gem5 simulator [22] in full-

system mode. We use the Ruby memory system simulator for 
modeling and simulating our memory system (interconnection 
network, caches, HBM, coherence protocol etc.) in detail. By 
using Ruby, our simulation results will include any traffic 
overheads and delays that may occur because of the additional 
read and write memory requests that Jenga imposes.  

B. Benchmarks 
Our benchmarks are a set of multithreaded programs from 

the PARSEC benchmark suite [23]. We include benchmarks 
with different memory demands and we run them under large 
size inputs with 32 threads. The benchmarks with high 
memory demand, like canneal, are most relevant, but we run 
all of them for completeness.   

C. System Model 
System Organization. The system configuration is 
summarized in Table 1. We simulate a multicore chip with 32 
cores that communicate through a mesh interconnection 
network. The 8 HBM channels are connected in a diamond-
like fashion across the mesh [24] as shown in Figure 4.  
 
HBM. We simulate unmodified HBM with a 4 die stack. Each 
die consists of two channels (i.e., 8 channels in total). Each  
channel connects to our system through 128 TSVs. Each 
channel contains 4 bank-groups that consist of 4 banks each. 
A bank contains 8192 rows that store 2KB of data and the 
appropriate ECC bits.  In total, each channel can hold 256MB 
(i.e., 2GB per stack). More details about the timing 
specifications of the HBM are in Table 1.  

D. Comparison Schemes 
 We compare Jenga against two schemes.  First, we consider 
a baseline system (denoted “Baseline” in the figures) that 
uses unmodified HBM with just the collocated SECDED 
code.  Second, we consider a scheme that, like prior work, 
uses an L2C that maintains parity across multiple blocks 
(denoted “PW”, for “prior work”). To make the comparison 
fair—so that Jenga and PW have the same raw capacity—we 
assume that the L2C in PW uses two blocks from different 

Figure 4: The nodes of the system and how they are interconnected. Only nodes marked as Nh connect to an HBM channel 
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channels and logically XORes them to produce a parity 
block. The three blocks in each parity group are spread across 
different channels in a modulo fashion (similarly to Jenga) in 
order to ensure spatial redundancy.  

VI. EVALUATION 

We now present the results of our simulations. We focus 
on measuring the impact of Jenga on performance in the 
absence and presence of memory errors.   

A. Error-Free Performance 
In Figure 6, we present the runtime for all the benchmarks, 

normalized to that of the baseline. The benchmarks are 
organized, from left to right, in order of decreasing memory 
demand [23], because memory demand is a key factor in 
these performance results.  

The key result is that the performance of Jenga is very 
close to that of Baseline.  For workloads with light memory 
demand, that is unsurprising. However, even for workloads 
with greater memory demand, like canneal, performance is 
almost identical (less than 1.03× runtime comparing to 
Baseline). Conversely, we observe that PW suffers a 
significant performance overhead for benchmarks that are 
memory intense. To highlight the impact of memory demand, 
we ran the same experiment with a smaller L2 cache; the 
results in Figure 5 show that performance degradation tends 
to increase. More specifically, Jenga achieves an average 
speedup of 1.11× over PW for the 2MB LLC across the 3 
most memory intense benchmarks (canneal, facesim, dedup).  

These results are primarily due to latency differences, 
although bandwidth differences can potentially have an 
impact.  The key difference in latency is that Jenga, unlike 
PW, does not have to issue reads before each write.  Jenga’s 
reads can take a bit longer than PW’s, because Jenga has to 
wait for both sub-block reads to complete, but those latencies 
often overlap considerably.  Both Jenga and PW place more 
bandwidth demand on the memory and on the 
interconnection network, compared to Baseline, but modern 
interconnection networks tend to be highly overprovisioned 
[25], [26], and thus the increase in bandwidth has a relatively 
small impact on performance.   

One anomalous result is that Jenga is sometimes 
marginally faster than the Baseline. This is a minor artifact 

and not a claimed benefit of Jenga, and there are two 
phenomena that contribute to it.  First, Jenga’s reads are half 
the size of Baseline’s reads and thus each one can be 
completed slightly faster; if the two reads by the L2 overlap 
their latencies perfectly, a Jenga read will incur a slight 
benefit.  Second, because the LLC issues two half-block read 
requests for each read miss, it opens two different DRAM 
rows at the same time.  For certain memory access patterns, 
the second row opening is useful for future requests (i.e., like 
a prefetch) and the latency to open the row is overlapped with 
that of the first row.      
Impact on Network Traffic. Jenga could impact 
performance indirectly if its multiple requests and responses 
cause significantly more congestion in the interconnection 
network.  To study this phenomenon, we measure the average 
utilization of the on-chip mesh network. Although only 
writes to memory generate more data than the baseline (96B 
rather than 64B), the multiple requests (data and packet 
header) need to travel through the mesh in order to find the 
destination channel. Our results (not shown) reveal that 
network utilization remains low, regardless. 
Conclusions. From these results, we conclude that although 
the error-free performance degradation due to Jenga is small, 
it is more evident for memory intensive applications.  It is 

TABLE 1: SYSTEM CONFIGURATION 
Multicore Processor Chip 

Cores 32 out-of-order cores 

L1 Caches private per-core, 32KB 

L2 Caches shared 4MB, 32 banks 

Interconnection Network 2D mesh 

Coherence Protocol MESI with state at L2 cache 

HBM Configuration 

Number of Dies 4 dies in one stack 

Channels: number and size 2 @ 256MB each 

Banks per Channel 16 
Bank Groups per channel 4 

Number of TSVs per Channel 128 

HBM Timing Details 
Clock Cycle tCK = 2ns  
Row Precharge tRP = 15ns 

Row to Column Address Delay tRCD = 15ns 
CAS Latency  tCL = 15ns 

Row Active Time tRAS = 33ns 
Burst Delay tBURST = 2ns 

Figure 6: Runtime normalized to Baseline – 4MB LLC Figure 5: Runtime normalized to Baseline – 2MB LLC 
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possible that benchmarks with even more memory demand 
than parsec—or systems with many more threads—could 
reveal a larger performance penalty for Jenga. However 
Jenga achieves a significant performance gain comparing to 
PW and this performance gap only increases for higher 
memory demand benchmarks.   

B. Performance in Presence of Errors 
 We consider two scenarios.  First, as an extreme stress 

test, we consider the worst case in which every pair of read 
requests results in an uncorrectable error in the second 
response to arrive at the L2. Thus, after the second response 
arrives, the L2 issues an additional request to the third half-
block in order to recreate the block. Second, we present a 
somewhat less extreme scenario in which 1% of every pair of 
read requests results in an uncorrectable error in the second 
response to arrive at the L2.  

We observed (graph not shown) that even for the totally 
improbable worst-case error scenario on our most memory 
intensive benchmark, Jenga incurs an overhead that is less 
than 40% (~70% for PW).  Jenga with 1% error rate has 
performance only slightly worse than that of error-free Jenga. 
We can safely conclude that Jenga’s performance impact in 
the presence of occasional errors will be minimal.   

C. Capacity Cost.  
The host-visible capacity of Jenga is 2/3 of that of 

Baseline. Although it is technically possible to increase 
Jenga’s host-visible capacity by using even finer granularity 
redundancy (e.g., quarter-blocks), doing so would waste 
HBM’s bandwidth. HBM uses 128 TSVs twice in one 
DRAM cycle to transfer 32B. Thus, transferring anything less 
than a half-block (32B) during that cycle is wasteful. 
Although we assume PW to have the same capacity cost as 

Jenga, we could easily increase PW’s host-visible capacity by 
creating parity across more than two blocks. However, that 
would result in even higher performance overheads for writes 
and error recoveries, as blocks that share the same parity need 
to synchronize during writes and recoveries. Additionally, 
increasing the size of a parity group decreases fault tolerance. 

VII. RELATED WORK 

There are four prior papers that stand out in fault tolerance 
for 3D DRAM [8]–[11]. They have the same L1C/L2C 
structure that inspired Jenga, and they all perform parity 
across multiple blocks.  We summarize the key characteristics 
of this related work and Jenga in Table 2, and we now discuss 
some relevant differences in their details. 

Efficient RAS (E-RAS) [9] distributes the parity of the 
L1C and L2C so that data and parity are not collocated. 
Additionally, the L2C is spread across all the different 
channels to increase reliability. 

Citadel [11] and RATT-ECC [8] use an additional 
dedicated ECC channel to store the L1C and L2C parity. That 
ECC channel can become a bottleneck as it needs to be 
accessed for every memory read and write. 

Although Citadel, RATT-ECC, and E-RAS achieve high 
fault tolerance with relatively high host-visible capacity, they 
do not provide tolerance for die or channel failures. 
Additionally, all three of these works assume the existence of 
a unified memory controller that is aware of all the HBM 
memory capacity and thus can easily compute, store and load 
the necessary parity bits. However, this assumption is 
unrealistic as each HBM channel has its own unique controller 
in order to maximize the overall bandwidth. 

Like Jenga, Parity Helix [10] uses the ECC that is 
collocated with the data as the L1C, and the L2C is distributed 

Table 2. Comparing Jenga to Prior Work 
Issue E-RAS [9] Citadel [11] RATT-ECC [8] Parity Helix [10] Jenga 

To read block 2 reads on the 
same channel 
(sequential) 

2 reads to different 
channels (1 of which is 
always ECC channel) 

2 reads to different 
channels (1 of which is 
always ECC channel) 

1 read to a single 
channel 

2 half-block reads 
to different 
channels 

To write block 2 reads,3 writes  
(2 channels) 

4 reads, 5 writes 
(2 channels, 1 of which 
is ECC channel) 

2 reads, 3 writes 
(2 channels, 1 of which is 
ECC channel) 

2 reads, 3 writes 
(2 channels) 

0 reads, 3 half-
block writes  
(3 channels) 

To correct error 1 read from 
every channel  

multiple reads from all 
channels 

multiple reads from all 
channels 

1 read from every 
channel 

1 half-block read 

Level-1 code detection with 
CRC-8  

detection with CRC-32 detection and some 
correction with Reed-
Solomon 

detection and some 
correction with 
Hamming(72,64) 

detection and some 
correction with 
Hamming(72,64) 

Level-2 code 1-dimensional 
XOR across 
channels 

3-dimensional XOR 
across rows, banks and 
channels 

2-dimensional XOR 
across banks and channels 

1-dimensional XOR 
across channels 

1-demensional 
intra-block XOR. 

Hardware 
modifications 

none assumes added ECC die assumes added ECC die none none 

Normalized host-
visible capacity  

0.84 0.86* 
 

0.875* 
 

0.875** 0.66 

Needs centralized 
HBM controller? 

yes yes yes no no 

*0.8 assuming ECC-die instead of ECC-channel                     **0.75 assuming 2 Channels per Die instead of 1.  
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in a modulo fashion across different channels. Parity Helix’s 
use of spatial redundancy allows it to tolerate die and channel 
failures. 

All of these prior schemes share a common challenge. 
When data blocks in the same parity group try to update the 
parity at the same time, they must be careful to avoid 
consistency violations (especially if the parity is cached). This 
problem also can occur during recovery, as synchronization is 
necessary to guarantee consistency when different cores are 
trying to read and write the same parity block. Modifications 
to the coherence protocol may be able to resolve this problem 
by locking accesses to parity blocks. Jenga avoids this 
problem because its L2C redundancy is at the size of a single 
block: the same size granularity as the coherence protocol.  

VIII. CONCLUSION 

Our goal in this work was to develop a comprehensive fault 
tolerance scheme for 3D DRAM that would minimize the 
performance costs. Jenga achieves this goal by using a 
combination of a collocated SECDED code and a sub-block 
parity scheme to tolerate faults in bits, rows, banks, channels, 
and chips. 
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