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Abstract—In this paper, we introduce Jenga, a new scheme for
protecting 3D DRAM, specifically high bandwidth memory
(HBM), from failures in bits, rows, banks, channels, dies, and
TSVs. By providing redundancy at the granularity of a cache
block—rather than across blocks, as in the current state of the
art—Jenga achieves greater error-free performance and lower
error recovery latency. We show that Jenga’s runtime is on
average only 1.03% the runtime of our Baseline across a range of
benchmarks. Additionally, for memory intensive benchmarks,
Jenga is on average 1.11x faster than prior work.
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1. INTRODUCTION

Current stacked DRAM designs include the Hybrid
Memory Cube (HMC) and High Bandwidth Memory (HBM),
and these designs are attractive for many systems [1]-[3]. The
appeal of 3D stacked DRAM is its ability to deliver far greater
memory bandwidth to processors that need it, and researchers
have eagerly explored ways of leveraging it [4]-[7].

Stacked DRAM comes with new challenges. First, the
stacking introduces new error models, including the potential
failure of through silicon vias (TSVs) and failure of a chip in
the stack (whose failure has a different impact than the failure
of a DRAM chip in traditional 2D DRAM). Second, the
traditional solution to DRAM errors—Hamming error
correcting codes (ECC) with the error correcting bits on a
dedicated DRAM chip—are a poor fit in 3D stacked DRAM.

Prior work [8]-[11] has also identified this fault tolerance
challenge, and several clever schemes have been proposed to
improve fault tolerance for 3D stacked DRAM. These
schemes tolerate failures in rows, banks, and TSVs, but they
do so at a considerable expense. These expenses include extra
reads before every write and error correction processes that
involve accessing and synchronizing multiple blocks.

We introduce Jenga, a new scheme for protecting 3D
DRAM, specifically HBM, from failures in bits, rows, banks,
channels, dies, and TSVs. Jenga’s key innovation—which
enables better performance and less complexity than previous
work with similar fault tolerance goals—is to provide
additional redundancy at the granularity of the size of a cache
block instead of across multiple blocks. By not involving
multiple blocks, Jenga’s procedures for writes and error
recovery are much simpler. Jenga requires no modifications to
the existing HBM protocol.
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II.

HBM is a 3D memory that allows the integration of
multiple memory dies in the same chip (stack).

A. HBM Organization

Today HBM provides 4 or 8 dies per stack. Each die is
divided into two channels, and all of the channels have their
own memory controllers and can work simultaneously and
independently from each other. Each channel is organized in
bank groups (typically 4 per channel) that contain banks
(typically 4 per bank group). The process of accessing a row
in a bank is similar to traditional DRAM technologies. A row
needs to first be opened in order to read or write it, and
accessing an already open row is faster than a closed row.

A key feature of HBM is that it provides a wide
interconnection interface for each channel by making use of
through-silicon via (TSV) technology [12]. TSVs allow for
point-to-point connections that run vertically through the
silicon, creating a dense and compact interface.

B. Current HBM Fault Tolerance

DRAM has been shown to be vulnerable to transient and
permanent bit errors [13],[14]. To tolerate these errors,
memories are often protected with error correcting codes
(ECC). Although there are many types of ECCs, memory is
often protected with codes that provide single error correction
and double error detection (SECDED). A commonly used
SECDED code is Hamming (72,64), in which a 64-bit
dataword is encoded as a 72-bit codeword. In a common
implementation of this code with x8 DRAM chips, nine chips
are used. The 64 bits of each dataword are striped across the
first eight chips, and the 8 ECC bits are on the ninth chip. To
tolerate the problem of “chipkill,” in which an entire DRAM
chip fails, the data and ECC bits can be striped across chips
such that the loss of any one chip can be tolerated (i.e., no chip
holds more bits of a given codeword than can be corrected by
the code) [15].

Naively, one might expect to be able to straightforwardly
adapt SECDED codes (without chipkill tolerance) to HBM.
In an HBM stack with 8 channels, one could imagine adding
a ninth channel for ECC and striping the data across the
channels as is done with 2D DRAM. Unfortunately, this
design, while good for fault tolerance, would greatly hurt
performance. Each read or write would require accessing
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Figure 1: The organization of HBM2

every channel and would thus eliminate much of the
bandwidth benefit of using HBM.

Because dedicating a channel in the stack to ECC has
many drawbacks, the HBM2 standard [16] specifies memory
channels that contain rows that are wide enough to store data
and ECC bits together as shown in Figure 1. This collocation
of data with ECC is good for performance, because each
memory request needs to access only one channel (instead of
one channel for data and one for the ECC bits). However, this
collocation provides less fault tolerance. Specifically, with
collocated data and ECC, the 3D DRAM cannot tolerate
failures of rows, banks, channels, dies, or TSVs. For example,
a single hard error in one of the 256 TSVs of a given channel
would result in 2 (or 4) bit errors for every block access of size
32B (or 64B) from every bank/row of that channel. Then, the
occurrence of a single transient error in any of the rows of that
channel can result in an uncorrectable error.

I1I.

We propose the Jenga design for 3D DRAM in order to
provide comprehensive fault tolerance while minimizing costs
(due to extra storage) and performance degradation (due to
extra accesses). As with any fault tolerance scheme, it requires
redundancy, and redundancy inherently has costs.

We designed Jenga for HBM stacks that comply with the
HBM2 standard, but there is nothing fundamental about that
baseline system model other than that it provides ECC
collocated with the data in each row, as shown in Figure 1.
Moreover, Jenga requires no modifications to the HBM2
standard!. We assume the ECC is a Hamming(72,64) code
that provides SECDED at a cost of 12.5%. That is, each 64B
cache block requires an extra 8B for ECC, and we assume that
block accesses involve all 72B. Like prior work [8]-[11], we
assume the memory controllers implement the ECC logic (i.e.,
errors are detected and corrected by the memory controllers)
and can diagnose failed rows, banks, channels, and chips.

A. Adding Spatial Redundancy

Jenga is a novel approach to fault tolerance for 3D DRAM,
but it shares the same high-level structure as several pieces of
prior work [8]-[11]. Although these papers differ in their
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details, which we describe in more depth in Section VII, they
share a common structure.

All four schemes have two levels of error coding: a first
level code (denoted L1C) that provides error detection and
perhaps a small amount of error correction, and a second level
code (L2C) that provides correction for large-scale errors.
The L2C in all four schemes protects a given number of
blocks, say N, by maintaining a redundant block that is the
XOR (i.e., parity) of the N data blocks. These schemes use
spatial redundancy to spread the N data blocks and one parity
block such that no single fault is unrecoverable.

This structure tolerates many faults at relatively low cost,
but it has four drawbacks—all due to the L2C being a parity
across multiple blocks—that we seek to overcome with Jenga.
Consider a data block 4 in a parity group with parity block P:

e Every write to 4 requires first reading the old values of

A and P. The old value of 4 must be XORed out of the
old value of P, and the new value of 4 must be XORed
into P. Then A (with its L1C) and P can be written.?
Writing to 4 and writing to P must be atomic with
respect to other writes to other blocks in A’s parity
group. If P can be cached, this involves modifying the
coherence protocol and being careful to avoid deadlock.
If P cannot be cached, this involves memory controller
support to “lock” P until the writes to 4 and P complete.
Correcting an error in A4 with the L2C requires accessing
all blocks in A’s parity group. Moreover, until the
correction completes, no blocks in 4’s parity group may
be written. Once again, these requirements may affect
the coherence protocol and/or memory controller.
Most prior work [8], [9], [11] (but not [10]) assumes a
unified memory controller that is aware of all memory.
However, each HBM channel has its own unique
controller that is aware of only that channel’s memory.
Without a unified controller, the LLC bank that submits
a memory request would be burdened with calculating
parity bits, issuing extra requests to load and store the
parity bits, and identifying and correcting errors.

B. Jenga’s Finer-Grained Spatial Redundancy

Jenga overcomes the undesirable aspects of prior work
with one key innovation: adding redundancy at the granularity
of a single block, instead of across multiple blocks. Every
memory block 4 (72B) is divided into two sub-blocks, 4;
(36B) and A, (36B). We then perform a bit-wise XOR
between A4; and A to produce a redundant sub-block 43 (36B)
that is the parity of sub-blocks A; and A,. Thus, reading any
two of the 3 sub-blocks can recreate our data. Concatenating
A; and A; recreates block 4 or we can perform a bitwise XOR
of A, (or A5) with A3 in order to generate A; (or A;) and then
concatenate the two to again recreate block 4.

! Jenga does require the bit-width of the channel to be smaller than the
cache block size, which is true of both HBM2 and HMC, which has a
channel width of 16 bits.
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2 There are ways to reduce that penalty (e.g., with caching and proactive
XORing of the old values of blocks), but we prefer to avoid it entirely.
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Figure 2: Comparing Jenga to baseline HBM2, in terms of mapping (sub-)blocks to channels

Like prior work, Jenga needs spatial redundancy to
tolerate channel and die failures; we cannot have multiple sub-
blocks vulnerable to a single failure. Jenga stripes the three
sub-blocks in different channels and different dies, and it does
this striping in a modulo-like fashion as shown in Figure 2. To
explain the mapping, we use an example in which, for
unmodified HBM (i.e., without Jenga), block 4 would have
been stored in channel 0, row 0, and columns 0 and 1. Assume
each DRAM column is a half-block wide.

We treat the parity sub-block A3 differently from the
original sub-blocks A; and A,. To store 43, we first need to
find space in our HBM. Because we do not want to add dies
(i.e., assume HBM stacks with an arbitrary number of dies),
we choose to sacrifice the host-visible capacity of our
memory. As illustrated in Figure 2, Jenga uses 2/3 of the total
capacity to store data and reserves 1/3 of the total capacity to
store the additional parity sub-blocks like 43. In our example,
Jenga stores sub-block 43 in channel 4 of that reserved space.
Observe that this space is enough to store all the extra sub-
blocks (43, Bs, ...) corresponding to blocks that have their first
sub-block (4, By, ...) in channel 0.

There are many functions that work for mapping the
original sub-blocks A; and 4, and we can choose from among
those that best preserve DRAM row locality. In our example,
sub-block 4; is in channel 0, and it is at row 0, column 0. The
mapping function must ensure that (a) a sub-block from some
other block gets mapped to channel 0, row 0, column 1, and
(b) sub-block A4, gets mapped to some column 1 in row 0 of
another channel (channel 2 in our example). The function we
implement and present in Figure 2 interleaves the sub-blocks
such that 4; and B; are collocated in the same row, 4, and B;
are together in a different row, and A3 and B; are together in a
third row.

C. Reads

On aread miss in the last-level cache (LLC), the LLC bank
acquires a block of data by accessing two different HBM
channels on two different chips. Thus, a memory read
generates two separate half-block read requests. Although the
overall amount of data we read does not change, we do access
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two channels rather than one. Additionally, a read is only
completed once both channels have replied.

Because Jenga needs only two of the three sub-blocks to
obtain a block, we have the opportunity to choose which two
we access, and there are several ways one could try to exploit
this freedom of channel selection. For example, if one
channel is malfunctioning (e.g., due to multiple TSV
failures), then we always want to access the other two.
Additionally, it would be possible to select the channels with
the least occupied queues. To keep our implementation
simple, Jenga selects the channels depending on their
Manhattan distance from the LLC bank that issued the
corresponding request.

Figure 3(a) presents a timing diagram of an LLC read miss
in Jenga in the absence of errors. The LLC controller issues
two read requests to channels 0 and 2 in order to retrieve sub-
blocks A1 and A>. When both channels reply, data block A4 is
reconstructed by concatenating the two sub-blocks.

D. Writes

To perform a memory write, Jenga generates three separate
half-block accesses to different channels on different chips.
In our running example, writing block 4 requires us to update
all three sub-blocks A;, A> and 4; and thus access channels 0,
2 and 4. Jenga also requires the computation of A3 as the
logical XOR of sub-blocks A4; and A4, but this is simple and
adds minimal overhead.

E. Error Detection and Correction

The baseline HBM against which we compare Jenga has
SECDED coding. (We discuss in Section I'V.E the possibility
of using different codes.) If SECDED cannot correct an
error, Jenga uses the third sub-block to recreate the correct
data. For example, assume that we are reading block 4 and
thus issued read requests for 4; and 4,. As shown in Figure
3(b), if SECDED cannot correct errors in sub-block A4, then
the LLC controller requests A3. When the LLC has A4; and 43,
it can bit-wise XOR them to recover 4, and thus obtain 4.

F. Half-Block Accesses

Typically, the majority of accesses to memory are at least
one block. However, systems occasionally perform half-



block accesses, for a variety of reasons, including segmented
cache designs [17]-[20], I/O operations, or if the LLC
maintains dirty bits at a sub-block granularity

For Jenga, half-block reads require less work. Instead of
performing the two sub-block reads required to obtain a full
block, Jenga would need to perform only one sub-block read.
(An uncorrectable SECDED error in that sub-block could be
reconstructed from the other two sub-blocks.) A half-block
write requires reading two of the three sub-blocks before
writing these two sub-blocks to correctly compute the parity
sub-block. This need to read before writing is a drawback that
prior work has for all writes (not just sub-block writes), and
that Jenga has only for sub-block writes.

G. Costs

We now summarize the costs of Jenga, bearing in mind that
all fault tolerance schemes require redundancy and more fault
tolerance incurs more cost.

Storage: For each block, Jenga adds another half-block of
storage. Thus, Jenga memory has 2/3 of the host-visible
memory as the baseline HBM2.

Read latency: Each read requires waiting for the
completion of two concurrent half-size accesses to
different channels on different chips. Ideally these
latencies overlap, but that overlap will not be perfect.
Each half-block access takes somewhat less time than a
full-block access, which slightly benefits Jenga.

Write latency: Each write requires three half-size writes.
Writes are rarely on the critical path of performance, and
thus only bandwidth really matters.

Bank conflicts: Jenga may introduce more HBM bank
conflicts due to having more accesses (even if each access
is smaller), and these bank conflicts may degrade
performance. (On the flip side, Jenga may increase the
number of row hits.)

Interconnection network bandwidth: Reads require
approximately the same bandwidth as the baseline (two
half-block requests and responses compared to one full-
block request and response), if we ignore packet header
overheads. Writes require 1.5% the bandwidth as the
baseline (three half-size requests and responses compared
to one full-size request and response).
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Power/Energy: The power and energy overheads of Jenga
are a function of how much extra work it does and thus
track closely with its bandwidth overheads.

IV. ERROR DETECTION AND CORRECTION ANALYSIS

In this section, we analyze Jenga’s ability to tolerate errors.
We consider one block, 4, and its three sub-blocks. If at least
two of its three sub-blocks are correct, Jenga will produce
correct data when reading A. Thus, the analysis devolves to
determining when at least two of the three sub-blocks are
correct.

An additional subtlety arises because the SECDED code is
at a finer granularity (72 bits) than a sub-block (36B per sub-
block in DRAM). Consider the case where A4; has an
uncorrectable SECDED error in its first 72 bits, and A, has an
uncorrectable SECDED error in its last 72 bits. Assume A3
is error-free. Even though two of the three sub-blocks have
uncorrectable SECDED errors, Jenga could still reconstruct
A because the first 72-bit codeword can be reconstructed from
A and A3 and the last 72-bit codeword could be reconstructed
from A; and 4;. To achieve this benefit, we would need to
modify the memory controllers such that, when they detect
an uncorrectable SECDED error, they still send to the LLC
the data and the locations of the codewords with the
uncorrectable SECDED errors.

A. Individual Bit Errors

Any number of 72-bit codewords with a single bit error
will be corrected by the SECDED code. A 2-bit error in a 72-
bit codeword in a given sub-block will be uncorrectable by
SECDED, but it will be corrected by using the other two sub-
blocks as long as neither of those sub-blocks has a multi-bit
error in the same codeword position.

B. TSV Failures

Any single TSV failure will cause two bit errors in one of
the three sub-blocks. These bit errors are separated by 127
bits and thus will be corrected by the SECDED code.
However, once a TSV has failed, a subsequent bit error can
cause an uncorrectable SECDED error in one 72-bit
codeword in one sub-block. This uncorrectable SECDED
error will force Jenga to fetch the third sub-block and thus
produce correct data.



Figure 4: The nodes of the system and how they are interconnected. Only nodes marked as Nj, connect to an HBM channel

Multiple TSV failures can be tolerated if the failed TSVs
are separated by at least 64 TSVs, in which case the
corresponding bits that are read through the faulty TSVs are
protected by separate SECDED codes. Additionally, in the
absence of individual bit errors, any two arbitrary TSV
failures can be corrected.

C. Row and Bank Failures

Each of these large-scale failures can cause one of the three
sub-blocks to be uncorrectable by SECDED. Jenga will still
have two correct sub-blocks and thus produce correct data.
Multiple row and bank failures can be tolerated as long as no
two rows or banks that store sub-blocks of the same cache
block fail. For example, in the case that both the rows that
hold sub-block 4; and sub-block A; fail then block 4 can no
longer be recovered. However, considering the number of
rows and banks in all channels this is an unlikely event.

D. Chip and Channel Failures

Chip failure is a well-known failure mode for DRAM chips
[15], [21], and channel failure can occur for a variety of
reasons including a permanent fault in a channel controller.
Because any chip holds no more than one of the three sub-
blocks, a chip failure can be tolerated like a channel failure.
Jenga tolerates one channel or chip failure, and it can tolerate
two channel failures if both channels are on the same chip.

E. Using Different Collocated Error Codes

In Jenga, we assume the use of a typical SECDED code,
like Hamming(72,64). However, we could use other codes
that offer different trade-offs between cost and fault
tolerance. A straightforward change, that would improve
fault tolerance but reduce the host-visible capacity, would be
to strengthen the code from SECDED to DECTED (double
error correcting and triple error detecting) or even stronger.
A slightly different approach, with a subtler trade-off, would
use a code like CRC that has very strong error detection
capability but no error correction ability. With CRC, Jenga
would detect some errors that are missed by SECDED (or
DECTED) and enable them to be corrected using the third
sub-block. However, with CRC, Jenga would not be able to
correct any errors without having to resort to fetching the
third sub-block.
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V. EXPERIMENTAL METHODOLOGY

A. Simulation Methodology

We simulate Jenga with the gem5 simulator [22] in full-
system mode. We use the Ruby memory system simulator for
modeling and simulating our memory system (interconnection
network, caches, HBM, coherence protocol etc.) in detail. By
using Ruby, our simulation results will include any traffic
overheads and delays that may occur because of the additional
read and write memory requests that Jenga imposes.

B. Benchmarks

Our benchmarks are a set of multithreaded programs from
the PARSEC benchmark suite [23]. We include benchmarks
with different memory demands and we run them under large
size inputs with 32 threads. The benchmarks with high
memory demand, like canneal, are most relevant, but we run
all of them for completeness.

C. System Model

System Organization. The system configuration is
summarized in Table 1. We simulate a multicore chip with 32
cores that communicate through a mesh interconnection
network. The 8 HBM channels are connected in a diamond-
like fashion across the mesh [24] as shown in Figure 4.

HBM. We simulate unmodified HBM with a 4 die stack. Each
die consists of two channels (i.e., 8 channels in total). Each
channel connects to our system through 128 TSVs. Each
channel contains 4 bank-groups that consist of 4 banks each.
A bank contains 8192 rows that store 2KB of data and the
appropriate ECC bits. In total, each channel can hold 256MB
(i.e., 2GB per stack). More details about the timing
specifications of the HBM are in Table 1.

D. Comparison Schemes

We compare Jenga against two schemes. First, we consider
a baseline system (denoted “Baseline” in the figures) that
uses unmodified HBM with just the collocated SECDED
code. Second, we consider a scheme that, like prior work,
uses an L2C that maintains parity across multiple blocks
(denoted “PW”, for “prior work™). To make the comparison
fair—so that Jenga and PW have the same raw capacity—we
assume that the L2C in PW uses two blocks from different



channels and logically XORes them to produce a parity
block. The three blocks in each parity group are spread across
different channels in a modulo fashion (similarly to Jenga) in
order to ensure spatial redundancy.

VI

We now present the results of our simulations. We focus
on measuring the impact of Jenga on performance in the
absence and presence of memory errors.

EVALUATION

A. Error-Free Performance

In Figure 6, we present the runtime for all the benchmarks,
normalized to that of the baseline. The benchmarks are
organized, from left to right, in order of decreasing memory
demand [23], because memory demand is a key factor in
these performance results.

The key result is that the performance of Jenga is very
close to that of Baseline. For workloads with light memory
demand, that is unsurprising. However, even for workloads
with greater memory demand, like canneal, performance is
almost identical (less than 1.03x runtime comparing to
Baseline). Conversely, we observe that PW suffers a
significant performance overhead for benchmarks that are
memory intense. To highlight the impact of memory demand,
we ran the same experiment with a smaller L2 cache; the
results in Figure 5 show that performance degradation tends
to increase. More specifically, Jenga achieves an average
speedup of 1.11x over PW for the 2MB LLC across the 3
most memory intense benchmarks (canneal, facesim, dedup).

These results are primarily due to latency differences,
although bandwidth differences can potentially have an
impact. The key difference in latency is that Jenga, unlike
PW, does not have to issue reads before each write. Jenga’s
reads can take a bit longer than PW’s, because Jenga has to
wait for both sub-block reads to complete, but those latencies
often overlap considerably. Both Jenga and PW place more
bandwidth demand on the memory and on the
interconnection network, compared to Baseline, but modern
interconnection networks tend to be highly overprovisioned
[25], [26], and thus the increase in bandwidth has a relatively
small impact on performance.

One anomalous result is that Jenga is sometimes
marginally faster than the Baseline. This is a minor artifact
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Figure 6: Runtime normalized to Baseline —4MB LLC
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TABLE 1: SYSTEM CONFIGURATION
Multicore Processor Chip

Cores 32 out-of-order cores
L1 Caches private per-core, 32KB
L2 Caches shared 4MB, 32 banks

2D mesh
MESI with state at L2 cache
HBM Configuration
4 dies in one stack
2 @ 256MB each

Interconnection Network
Coherence Protocol

Number of Dies
Channels: number and size

Banks per Channel 16
Bank Groups per channel 4
Number of TSVs per Channel 128
HBM Timing Details
Clock Cycle tck = 2ns
Row Precharge trr = 1508
Row to Column Address Delay trep = 15ns
CAS Latency tcL = 15ns
Row Active Time tras = 33ns
Burst Delay tBURST = 2ns

and not a claimed benefit of Jenga, and there are two
phenomena that contribute to it. First, Jenga’s reads are half
the size of Baseline’s reads and thus each one can be
completed slightly faster; if the two reads by the L2 overlap
their latencies perfectly, a Jenga read will incur a slight
benefit. Second, because the LLC issues two half-block read
requests for each read miss, it opens two different DRAM
rows at the same time. For certain memory access patterns,
the second row opening is useful for future requests (i.e., like
a prefetch) and the latency to open the row is overlapped with
that of the first row.

Impact on Network Traffic. Jenga could impact
performance indirectly if its multiple requests and responses
cause significantly more congestion in the interconnection
network. To study this phenomenon, we measure the average
utilization of the on-chip mesh network. Although only
writes to memory generate more data than the baseline (96B
rather than 64B), the multiple requests (data and packet
header) need to travel through the mesh in order to find the
destination channel. Our results (not shown) reveal that
network utilization remains low, regardless.

Conclusions. From these results, we conclude that although
the error-free performance degradation due to Jenga is small,
it is more evident for memory intensive applications. It is
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Figure 5: Runtime normalized to Baseline — 2MB LLC



possible that benchmarks with even more memory demand
than parsec—or systems with many more threads—could
reveal a larger performance penalty for Jenga. However
Jenga achieves a significant performance gain comparing to
PW and this performance gap only increases for higher
memory demand benchmarks.

B. Performance in Presence of Errors

We consider two scenarios. First, as an extreme stress
test, we consider the worst case in which every pair of read
requests results in an uncorrectable error in the second
response to arrive at the L2. Thus, after the second response
arrives, the L2 issues an additional request to the third half-
block in order to recreate the block. Second, we present a
somewhat less extreme scenario in which 1% of every pair of
read requests results in an uncorrectable error in the second
response to arrive at the L2.

We observed (graph not shown) that even for the totally
improbable worst-case error scenario on our most memory
intensive benchmark, Jenga incurs an overhead that is less
than 40% (~70% for PW). Jenga with 1% error rate has
performance only slightly worse than that of error-free Jenga.
We can safely conclude that Jenga’s performance impact in
the presence of occasional errors will be minimal.

C. Capacity Cost.

The host-visible capacity of Jenga is 2/3 of that of
Baseline. Although it is technically possible to increase
Jenga’s host-visible capacity by using even finer granularity
redundancy (e.g., quarter-blocks), doing so would waste
HBM’s bandwidth. HBM uses 128 TSVs twice in one
DRAM cycle to transfer 32B. Thus, transferring anything less
than a half-block (32B) during that cycle is wasteful.
Although we assume PW to have the same capacity cost as

Jenga, we could easily increase PW’s host-visible capacity by
creating parity across more than two blocks. However, that
would result in even higher performance overheads for writes
and error recoveries, as blocks that share the same parity need
to synchronize during writes and recoveries. Additionally,
increasing the size of a parity group decreases fault tolerance.

VIL

There are four prior papers that stand out in fault tolerance
for 3D DRAM [8]-{11]. They have the same L1C/L2C
structure that inspired Jenga, and they all perform parity
across multiple blocks. We summarize the key characteristics
of this related work and Jenga in Table 2, and we now discuss
some relevant differences in their details.

Efficient RAS (E-RAS) [9] distributes the parity of the
L1C and L2C so that data and parity are not collocated.
Additionally, the L2C is spread across all the different
channels to increase reliability.

Citadel [11] and RATT-ECC [8] use an additional
dedicated ECC channel to store the L1C and L2C parity. That
ECC channel can become a bottleneck as it needs to be
accessed for every memory read and write.

Although Citadel, RATT-ECC, and E-RAS achieve high
fault tolerance with relatively high host-visible capacity, they
do not provide tolerance for die or channel failures.
Additionally, all three of these works assume the existence of
a unified memory controller that is aware of all the HBM
memory capacity and thus can easily compute, store and load
the necessary parity bits. However, this assumption is
unrealistic as each HBM channel has its own unique controller
in order to maximize the overall bandwidth.

Like Jenga, Parity Helix [10] uses the ECC that is
collocated with the data as the L1C, and the L2C is distributed

RELATED WORK

Table 2. Comparing Jenga to Prior Work

every channel

channels

channels

channel

Issue E-RAS [9] Citadel [11] RATT-ECC [8] Parity Helix [10] Jenga

To read block |2 reads on the 2 reads to different 2 reads to different 1 read to a single 2 half-block reads
same channel channels (1 of whichis |channels (1 of which is channel to different
(sequential) always ECC channel) always ECC channel) channels

To write block |2 reads,3 writes |4 reads, 5 writes 2 reads, 3 writes 2 reads, 3 writes 0 reads, 3 half-
(2 channels) (2 channels, 1 of which [(2 channels, 1 of which is |(2 channels) block writes

is ECC channel) ECC channel) (3 channels)
To correct error |1 read from multiple reads from all ~ |multiple reads from all 1 read from every 1 half-block read

Level-1 code

detection with
CRC-8

detection with CRC-32

detection and some
correction with Reed-

detection and some
correction with

detection and some
correction with

HBM controller?

Solomon Hamming(72,64) Hamming(72,64)
Level-2 code 1-dimensional 3-dimensional XOR 2-dimensional XOR 1-dimensional XOR 1-demensional
XOR across across rows, banks and  |across banks and channels |across channels intra-block XOR.
channels channels
Hardware none assumes added ECC die | assumes added ECC die none none
modifications
Normalized host- 0.84 0.86" 0.875" 0.875™ 0.66
visible capacity
Needs centralized yes yes yes no no

*(.8 assuming ECC-die instead of ECC-channel

*%(.75 assuming 2 Channels per Die instead of 1.
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in a modulo fashion across different channels. Parity Helix’s
use of spatial redundancy allows it to tolerate die and channel
failures.

All of these prior schemes share a common challenge.
When data blocks in the same parity group try to update the
parity at the same time, they must be careful to avoid
consistency violations (especially if the parity is cached). This
problem also can occur during recovery, as synchronization is
necessary to guarantee consistency when different cores are
trying to read and write the same parity block. Modifications
to the coherence protocol may be able to resolve this problem
by locking accesses to parity blocks. Jenga avoids this
problem because its L2C redundancy is at the size of a single
block: the same size granularity as the coherence protocol.

VIIL.

Our goal in this work was to develop a comprehensive fault
tolerance scheme for 3D DRAM that would minimize the
performance costs. Jenga achieves this goal by using a
combination of a collocated SECDED code and a sub-block
parity scheme to tolerate faults in bits, rows, banks, channels,
and chips.

CONCLUSION
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