
Crossing the Logarithmic Barrier for Dynamic Boolean Data
Structure Lower Bounds∗

Kasper Green Larsen

Aarhus University

Denmark

larsen@cs.au.dk

Omri Weinstein

Columbia University

USA

omri@cs.columbia.edu

Huacheng Yu

Harvard University

USA

yuhch123@gmail.com

ABSTRACT
This paper proves the first super-logarithmic lower bounds on the

cell probe complexity of dynamic boolean (a.k.a. decision) data

structure problems, a long-standing milestone in data structure

lower bounds.

We introduce a new approach and use it to prove a Ω̃(lg1.5 n)
lower bound on the operational time of a wide range of boolean data

structure problems, most notably, on the query time of dynamic

range counting over F2 (Pǎtraşcu, 2007). Proving an ω(lgn) lower
bound for this problem was explicitly posed as one of five impor-

tant open problems in the late Mihai Pǎtraşcu’s obituary (Thorup,

2013). This result also implies the first ω(lgn) lower bound for the

classical 2D range counting problem, one of the most fundamental

data structure problems in computational geometry and spatial

databases. We derive similar lower bounds for boolean versions of

dynamic polynomial evaluation and 2D rectangle stabbing, and for

the (non-boolean) problems of range selection and range median.
Our technical centerpiece is a new way of “weakly" simulating

dynamic data structures using efficient one-way communication

protocols with small advantage over random guessing. This simu-

lation involves a surprising excursion to low-degree (Chebyshev)

polynomials which may be of independent interest, and offers an

entirely new algorithmic angle on the “cell sampling" method of

Panigrahy et al. (2010).

CCS CONCEPTS
• Theory of computation → Cell probe models and lower
bounds; Computational complexity and cryptography; Communica-
tion complexity;

KEYWORDS
Data Structures, Cell Probe Complexity, Lower Bounds, Range

Searching, Dynamic Problems

ACM Reference Format:
Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. 2018. Crossing

the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds.

∗
Kasper Green Larsen is supported by Villum Grant 13163 and an AUFF Starting Grant.

Huacheng Yu is supported by NSF CCF-1212372.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00

https://doi.org/10.1145/3188745.3188790

In Proceedings of 50th Annual ACM SIGACT Symposium on the Theory of
Computing (STOC’18). ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3188745.3188790

1 INTRODUCTION
Proving unconditional lower bounds on the operational time of

data structures in the cell probe model [Yao81] is one of the holy

grails of complexity theory, primarily because lower bounds in this

model are oblivious to implementation considerations, hence they

apply essentially to any imaginable data structure (and in particular,

to the ubiquitous word-RAM model). Unfortunately, this abstrac-

tion makes it notoriously difficult to obtain data structure lower

bounds, and progress over the past three decades has been very

slow. In the dynamic cell probe model, where a data structure needs

to maintain a database under an “online” sequence of n operations

(updates and queries) by accessing as few memory cells as possible,

a few lower bound techniques have been developed. In [FS89], Fred-

man and Saks proved Ω(lgn/lg lgn) lower bounds for a list of dy-
namic problems. About 15 years later, Pǎtraşcu and Demaine [PD04,

PD06] proved the first Ω(lgn) lower bound ever shown for an

explicit dynamic problem. The celebrated breakthrough work of

Larsen [Lar12a] brought a near quadratic improvement on the lower

bound frontier, where he showed an Ω((lgn/lg lgn)2) cell probe
lower bound for the 2D range sum problem (a.k.a. weighted orthog-

onal range counting in 2D). This is the highest cell probe lower

bound known to date.

Larsen’s result has one substantial caveat, namely, it inherently

requires the queries to have large (Θ(lgn)-bit) output size. There-
fore, when measured per output-bit of a query, the highest lower

bound remains only Ω(lgn) per bit (for dynamic connectivity due

to Pǎtraşcu and Demaine [PD06]).

In light of this, a concrete milestone that was identified en route

to proving ω(lg2 n) dynamic cell probe lower bounds, was to prove
an ω(lgn) cell probe lower bound for boolean (a.k.a. decision) data
structure problems (the problem was explicitly posed in [Lar12a,

Tho13, Lar13] and the caveat with previous techniques requiring

large output has also been discussed in e.g. [Pat07, CGL15]). We

stress that this challenge is provably a prerequisite for going be-

yond the ω(lg2 n) barrier for general (Θ(lgn)-bit output) problems:

Indeed, consider a dynamic data structure problem P maintaining

a database with updatesU and queries Q, where each query q ∈ Q
outputs lgn bits. If one could prove an ω(lg2 n) lower bound for P,

this would directly translate into an ω(lgn) lower bound for the

following induced dynamic boolean problem Pbool
: Pbool

has the

same set of update operationsU, and has queries Q ′ := Q × [lgn].
Upon a query (q, i), the data structure should output the i-th bit

(P(q,U))i of the answer to the original query q w.r.t the database

978

https://doi.org/10.1145/3188745.3188790
https://doi.org/10.1145/3188745.3188790
https://doi.org/10.1145/3188745.3188790

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Kasper Green Larsen, Omri Weinstein, and Huacheng Yu

U. Anω(lgn) lower bound then follows, simply because each query

of P can be simulated by lgn queries of Pbool
, and the update time

is preserved. Thus, to break the lg
2 n-barrier for cell probe lower

bounds, one must first prove a super-logarithmic lower bound for

some dynamic boolean problem. Of course, many classic data struc-

ture problems are naturally boolean (e.g., reachability, membership,

etc.), hence studying decision data structure problems is interesting

on its own.

Technically speaking, the common reason why all previous tech-

niques hitherto (e.g., [Pat07, Lar12a, WY16]) fail to prove super-

logarithmic lower bounds for dynamic problems with small output

size, is that they all heavily rely on each query revealing a large

amount of information about the database. In contrast, boolean

queries can reveal at most one bit of information, and thus any

such technique is doomed to fail. We elaborate on this excruciating

obstacle and how we overcome it in the following subsection.

We develop a fundamentally new lower bound method and

use it to prove the first super-logarithmic lower bounds for dy-

namic boolean data structure problems. Our results apply to nat-

ural boolean versions of several classic data structure problems.

Most notably, we study a boolean variant of the dynamic 2D range
counting problem. In 2D range counting, n points are inserted one-

by-one into an [n] × [n] integer grid, and given a query point

q = (x ,y) ∈ [n] × [n], the data structure must return the num-

ber of points p dominated by q (i.e., p.x ≤ x and p.y ≤ y). This is
one of the most fundamental data structure problems in computa-

tional geometry and spatial database theory (see e.g., [Aga04] and

references therein). It is known that a variant of dynamic “range

trees" solve this problem using O((lgn/lg lgn)2) amortized update

time and O((lgn/lg lgn)2) worst case query time ([BGJS11]). We

prove an Ω̃(lg1.5 n) lower bound even for a boolean version, called

2D range parity, where one needs only to return the parity of the

number of points dominated by q. This is, in particular, the first

ω(lgn) lower bound for the (classical) 2D range counting prob-

lem. We are also pleased to report that this is the first progress

made on the 5 important open problems posed in Mihai Pǎtraşcu’s

obituary [Tho13].

In addition to the new results for 2D range parity, we also prove

the first ω(lgn) lower bounds for the classic (non-boolean) prob-
lems of dynamic range selection and range median, as well as an
ω(lgn) lower bound for a boolean version of polynomial evaluation.
We formally state these problems, our new lower bounds, and a

discussion of previous state-of-the-art bounds in Section 3.

Organization. Due to space constraints, the following extended

abstract contains only an exposition of our main results and techni-

cal contributions, while most proofs are deferred to the full version

of this paper. We begin with a streamlined overview of our technical

approach in light of previous data structure lower bounds (Section

2). Section 3 describes applications of our main result (Theorem 1)

to higher dynamic lower bounds for 2D Range Counting and for

the rest of the aforementioned data structure problems. In Section

5 we provide the necessary background, definitions and setup for

our main result. Section 6 contains the proof of our main technical

contribution (Theorem 1 below).

2 TECHNIQUES
2.1 Previous Techniques
To better understand the challenge involved in proving super-

logarithmic lower bounds for boolean data structure problems, and

how our approach departs from previous techniques that fail to over-

come it, we first revisit Larsen’s Ω̃(lg2 n) lower bound technique

for problems with Θ(lgn)-bit output size, which is most relevant

for our work. (We caution that a few variations [CGL15, WY16]

of Larsen’s [Lar12a] approach have been proposed, yet all of them

crucially rely on large query output size). The following overview

is presented in the context of the 2D range sum problem for which

Larsen originally proved his lower bound. 2D range sum is the vari-

ant of 2D range counting where each point is assigned a Θ(lgn)-bit
integer weight, and the goal is to return the sum of weights as-

signed to points dominated by the query q. Clearly this is a harder

problem than 2D range counting (which corresponds to all weights

being 1) and 2D range parity (which again has all weights being 1,

but now only 1 bit of the output must be returned).

Larsen’s Lower Bound [Lar12a]. Larsen’s result combines the sem-

inal chronogram method of Fredman and Saks [FS89] together with

the cell sampling technique introduced by Panigrahy et al. [PTW10].

The idea is to show that, after n random updates have been per-

formed,
1
any data structure (with poly lgn update time) must probe

many cells when prompted on a random range query. To this end,

the n random updates are partitioned into ℓ := Θ(lgn/lg lgn)
epochs Uℓ , . . . ,Ui , . . . ,U1, where the i-th epoch Ui consists of

βi updates for β = poly lgn. The goal is to show that, for each

epoch i ∈ {1, . . . , ℓ}, a random query must read in expectation

Ω(lgn/lg lgn) memory cells whose last modification occurred dur-

ing the ith epochUi . Summing over all epochs then yields a Ω̃(lg2 n)
query lower bound.

To carry out this approach, one restricts the attention to epoch

i , assuming all remaining updates in other epochs (U−i) are fixed
(i.e., only Ui is random). For a data structure D, let Ai denote the
set of memory cells associated with epoch i , i.e., the cells whose
last update occurred in epoch i . Clearly, any cell that is written

before epoch i cannot contain any information about Ui , while
the construction guarantees there are relatively few cells written

after epoch i , due to the geometric decay in the lengths of epochs.

Thus, “most" of the information D provides on Ui comes from cell

probes to Ai (hence, intuitively, the chronogram method reduces a

dynamic problem into ≈ lgn nearly independent static problems).

The high-level idea is to now prove that, if a too-good-to-be-true

data structure D exists, which probes o(lgn/lg lgn) cells associated
with epoch i on an average query, then D can be used to devise

a compression scheme (i.e., a “one-way" communication protocol)

which allows a decoder to reconstruct the random update sequence

Ui from an o(H (Ui))-bit message, an information-theoretic contra-

diction.

Larsen’s encoding scheme has the encoder (Alice) find a subset

C ⊆ Ai of a fixed size, such that sufficiently many range queries

q ∈ [n] × [n] can be resolved by C , meaning that these queries can

be answered without probing any cell inAi \C . Indeed, the assump-

tion that the query algorithm of D probes only o(lgn/lg lgn) cells

1
Each update inserts a random point and assigns it a random Θ(lgn)-bit weight.

979

Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds STOC’18, June 25–29, 2018, Los Angeles, CA, USA

from Ai , implies that a random subset of size |C | = |Ai |/poly lgn

cells resolves at least a (1/poly lgn)o(lgn/lg lgn) = n−o(1)-fraction
of the n2 possible queries, an observation first made in [PTW10].

This observation in turn implies that by sending the contents and

addresses of C , the decoder (Bob) can recover the answers to some

specific subset Q∗ ⊆ [n] × [n] of at least n2−o(1) queries (recall that
updates U−i are fixed, hence Bob can privately construct the con-

tents of cells associated to epochs j > i and the sets Aj for j < i
are so small that Alice can send those to Bob as well). Intuitively,

if the queries of the problem are “sufficiently independent”, e.g.,

the answers to all queries are n-wise independent over a random
Ui , then answering Q∗ or even any subset of Q∗ of size n would

be sufficient to reconstruct the entire update sequence Ui . Thus,
by simulating the query algorithm ∀q ∈ Q∗ and using the set C to

“fill in" his missing memory cells associated with Ui , Bob could es-

sentially recover Ui . On the other hand, the update sequence itself

contains at least Ω(|Ui |) ≫ |C | ·w bits of entropy, hence it cannot

possibly be reconstructed fromC , yielding an information-theoretic

contradiction. Here, and throughout the paper,w denotes the num-

ber of bits in a memory cell. We make the standard assumption that

w = Ω(lgn), such that a cell has enough bits to store an index into

the sequence of updates performed.

It is noteworthy that range queries do not directly possess such

“n-wise independence" property per-se, but using (nontrivial) tech-

nical manipulations (a-la [Pat07, Lar12a, WY16]) this argument can

be made to work, see the full version for details.

Alas, a subtle but crucial issue with the above scheme is that Bob
cannot identify the subset Q∗, that is, when simulating the query

algorithm of D on a given query, he can never know whether an

unsampled (< C) cell requested by his simulation of the query

algorithm in fact belongs to Ai or not. This issue is also faced by

Pǎtraşcu’s approach in [Pat07]. Larsen resolves this excruciating

problem by having Alice further send Bob the indices of (a subset

of) Q∗ that already reveals enough information about Ui to get

a contradiction. In order to achieve the anticipated contradiction,

the problem must therefore guarantee that the answer to a query

reveals more information than it takes to specify the query itself

(Θ(lgn) bits for 2D range sum). This is precisely the reason why

Larsen’s lower bound requires Ω(lgn)-bit weights assigned to each

input point, whereas for the boolean 2D range parity problem, all

bets are off.

2.2 Our Techniques
We develop a new lower bound technique which ultimately circum-

vents the aforementioned obstacle that stems from Bob’s inability

to identify the subset Q∗. Our high-level strategy is to argue that

an efficient dynamic data structure for a boolean problem, induces

an efficient one-way protocol from Alice (holding the entire update

sequence U := Uℓ , . . . ,U1 as before) to Bob (who now receives

a query q ∈ Q and U \ {Ui }), which enables Bob to answer his

boolean query with some tiny yet nontrivial advantage over ran-

dom guessing. For a dynamic boolean data structure problem P, we

denote this induced communication game (corresponding to the ith
epoch) by Gi

P
. The following “weak simulation" theorem, which is

the centerpiece of this paper, applies to any dynamic boolean data

structure problem P:

Theorem 1 (One-Way Weak Simulation Theorem, informal).

Let P be any dynamic boolean data structure problem, with n random
updates grouped into epochs U = {Ui }ℓi=1 followed by a single
query q ∈ Q. If P admits a dynamic data structure D with word-size
w , worst-case update time tu and average (over Q) expected query
time tq with respect to U, satisfying tq , tu ,w ≤ n0.1, then there
exists some epoch i ∈ [ℓ] for which there is a one-way randomized
communication protocol forGi

P
in which Alice sends Bob a message of

only |Ui |/(wtu)Θ(1) bits, and after which Bob successfully computes

P(q,U) with probability at least 1/2+exp
(
−tq lg

2(w · tu)/
√
lgn

)
.2

The formal statement and proof of the above theorem can be

found in Section 6. Before we elaborate on the proof of Theorem 1,

let us explain informally why such a seemingly modest guaran-

tee suffices to prove super-logarithmic cell probe lower bounds

on boolean problems with a certain “list-decoding" property. If

we view query-answering as mapping an update sequence to an

answer vector,
3
then answering a random query correctly with

probability 1/2 + e−r (n) would correspond to mapping an update

sequence to an answer vector that is (1/2 − e−r (n))-far from the

true answer vector defined by the problem. Intuitively, if the cor-

rect mapping defined by the problem is list-decodable in the sense

that in the (1/2 − e−r (n))-ball centered at any answer vector, there

are very few codewords (which are the correct answer vectors cor-

responding to some update sequences), then knowing any vector

within distance (1/2−e−r (n)) from the correct answer vector would

reveal a lot of information about the update sequence. Standard

probabilistic arguments [Vad12] show that when the code rate is
n−Θ(1) (i.e., |Q| = nΘ(1) as for 2D range parity), a random code is

“sufficiently” list-decodable with r (n) = Ω(lgn), i.e., for most data

structure problems, the protocol in the theorem would reveal too

much information if Bob can predict the answer with probability,

say 1/2 + e−0.01 lgn . Therefore, Theorem 1 would imply that the

query time must be at least tq = Ω(
lg

1.5 n
lg

2(w ·tu)
). Assuming the data

structure has tu = poly lgn worst-case update time and standard

word-size w = Θ(lgn), the above bound gives tq ≥ Ω̃(lg1.5 n). In-
deed all our concrete lower bounds are obtained by showing a

similar list-decoding property with r (n) = Ω(lgn), yielding a lower
bound of Ω̃(lg1.5 n). See Subsection 3 for more details.

Overview of Theorem 1 and the “Peak-to-Average" Lemma. We

now present a streamlined overview of the technical approach and

proof of our weak one-way simulation theorem, the main result of

this paper. Let P be any boolean dynamic data structure problem

and denote by ni := |Ui | = βi the size of each epoch of random

updates (where β := (tu ·w)
Θ(1)

and

∑ℓ
i=1 ni = n). Recall that inG

i
P
,

Alice receives the entire sequence of epochsU, Bob receivesq ∈R Q
andU \ {Ui }, and our objective is to show that Alice can send Bob

a relatively short message (ni/(tu ·w)
Θ(1)

bits) which allows him to

compute the answer to q w.r.tU, denoted P(q,U) ∈ {0, 1}, with

advantage δ := exp(−tq lg
2(w · tu)/

√
lgn) over 1/2.

Suppose P admits a dynamic data structure D with worst-case

update time tu and expected query time tq with respect toU and

2
Throughout the paper, we use exp(x) to denote 2

Θ(x)
.

3
An answer vector is a |Q |-dimensional vector containing one coordinate per query,

whose value is the answer to this query.

980

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Kasper Green Larsen, Omri Weinstein, and Huacheng Yu

q ∈R Q. Following Larsen’s cell sampling approach, a natural course

of action for Alice is to generate the updated memory state M of

D (w.r.tU), and send Bob a relatively small random subset C0 of

the the cells Ai associated with epoch i , where each cell is sampled

with probability p = 1/(tu ·w)
Θ(1)

. Since the expected query time

of D is tq and there are ℓ = Θ(lgβ n) epochs, the average (over

i ∈ [ℓ]) number of cells in Ai probed by a query is tq/ℓ, hence
the probability that Alice’s random set C0 resolves Bob’s random
query q ∈R Q is at least ϵ := pΘ(tq/ℓ). Let us henceforth denote this

desirable event byWq . It is easy to see that, if Alice further sends

Bob all cells that were written (associated) with future epochs U<i
(which can be done using less than ni/(w · tu)

Θ(1)
bits due to the

geometric decay of epochs and the assumption that D probes at

most tu cells on each update operation), then conditioned onWq ,

Bob would have acquired all the necessary information to perfectly

simulate the correct query-path of D on his query q.
Thus, if Bob could detect the eventWq , the above argument

would have already yielded an advantage of roughly Pr[Wq] ≥

ϵ = pΘ(tq/ℓ) ≥ exp(−tq lg
2(w · tu)/lgn) ≫ δ (as Bob could simply

output a random coin-toss unlessWq occurs), and this would have

finished the proof. Unfortunately, certifying the occurrence ofWq
is prohibitively expensive, precisely for the same reason that iden-

tifying the subset Q∗ is costly in Larsen’s argument. Abandoning

the hope for certifying the eventWq (while insisting on low com-

munication) means that we must take a fundamentally different

approach to argue that the noticeable occurrence of this event can

somehow still be exploited implicitly so as to guarantee a nontrivial

advantage. This is the heart of the paper, and the focal point of the

rest of this exposition.

The most general strategy Bob has is to output his “maximum

likelihood" estimate for the answer P(q,U) given the information

he receives, i.e., themore likely posterior value of (P(q,U) |U−i ,C0) ∈

{0, 1} (for simplicity of exposition, we henceforth ignore the con-

ditioning on U−i ,C0 and on the set of updates D makes to future

epochs U<i which Alice sends as well). Assuming without loss of

generality that the answer to the query is P(q,U) = 1, whenWq
occurs, this strategy produces an advantage (“bias") of 1/2 (since

whenWq occurs, the answer P(q,U) is completely determined by

U−i ,C0 and the updates to U<i), and when it does not occur, the

strategy produces a bias of Pr[(P(q,U) = 1|Wq)] − 1/2. Thus, the

overall bias is

Pr[Wq] · (1/2) + Pr[Wq] ·
(
Pr[(P(q,U) = 1|Wq)] − 1/2

)
.

This quantity could be arbitrarily close to 0, sincewe have no control

over the distribution of the answer conditioned on the complement

eventWq , which might even cause perfect cancellation of the two

terms.

Nevertheless, one could hope that such unfortunate cancellation

of our advantage can be avoided if Alice reveals to Bob some little

extra “relevant" information. To be more precise, let Sq be the set

of memory addresses D would have probed when invoked on the

query q according to Bob’s simulation. That is, Bob simulates D until

epoch i , updates the contents for all cells that appear in Alice’s

message, and simulates the query algorithm for q on this memory

state. In particular, if the eventWq occurs, then Sq is the correct

set of memory cells the data structure probes. Of course, the set Sq

is extremely unlikely to be “correct” as Pr[Wq] is tiny, so Sq should

generally be viewed as an arbitrary subset of memory addresses.

Now, the true contents of the cells Sq (w.r.t the true memory state

M) induce some posterior distribution on the correct answer P(q,U)
(in particular, whenWq occurs, the path is correct and its contents

induce the true answer).

Imagine that Alice further reveals to Bob the true contents of

some small subsetY ⊆ Sq , i.e., an assignment x ∈ [2w]Y . The poste-
rior distribution of the answer P(q,U) conditioned on x is simply

the convex combination of the posterior distributions conditioned

on “Sq = z” for all z’s that are consistent with x (z |Y = x), weighted
by the probability of z (Pr[Sq = z]) up to some normalizer. The

contribution of each term in this convex combination (i.e., of each

posterior distribution induced by a partial assignment x) to the

overall bias, is precisely the average, over all full assignments z to
cells in Sq which are x-consistent, of the posterior bias induced by

the event “Sq = z” (i.e., when the entire Sq is revealed). For each

full assignment z, we denote its latter contribution by f (z), hence
the expected bias contributed by the event “z |Y = x” is nothing
but the sum of f (z) over all z’s satisfying z |Y = x . Furthermore,

we know that there is some assignment z∗, namely the contents of

Sq whenWq occurs, such that | f (z∗)| is “large” (recall the bias is
1/2 in this event). Thus, the key question we pose and set out to

answer, is whether it is possible to translate this ℓ∞ “peak” of f into

a comparable lower bound on the “average” bias
∑
x
��∑z |Y =x f (z)

��
,

by conditioning on the assignments to a small subset of coordi-

nates Y . Indeed, if such Y exists, Alice can sample independently

another set of memory cellsC1 and send it to Bob. With probability

p |Y | , all contents of Y are revealed to Bob, and we will have the

desired advantage. In essence, the above question is equivalent to

the following information-theoretic problem:

Let Z be a k-variate random variable and B a uniform
binary random variable in the same probability space,
satisfying: (i) Pr[Z = z∗] ≥ ϵ for some z∗; (ii) H (B |
Z = z∗) = 0. What is the smallest subset of coordinates
Y ⊆ [k] such that H (B | (Z |Y)) ≤ 1 − η ?

The crux of our proof is the following lemma, which asserts that

conditioning on only |Y | = O(
√
k lg(1/ϵ)) coordinates suffices to

achieve a non-negligible average advantage η = exp(−
√
k lg(1/ϵ)).

Lemma 1 (Peak-to-Average Lemma). Let f : Σk → R be any
real function satisfying: (i)

∑
z∈Σk | f (z)| ≤ 1; and (ii)maxz∈Σk | f (z)| ≥

ϵ . Then there exists a subset Y of indices, |Y | ≤ O
(√

k · lg 1/ϵ
)
, such

that
∑
y∈ΣY |

∑
z |Y =y f (z)| ≥ exp(−

√
k · lg 1/ϵ).

An indispensable ingredient of the proof is the usage of low-

degree (multivariate) polynomials with “threshold"-like phenom-

ena, commonly known as (discrete) Chebyshev polynomials.4 The
lemma can be viewed as an interesting and efficient way of “de-

composing" a distribution into a small number of conditional dis-

tributions, “boosting" the effect of a single desirable event, hence

the Peak-to-Average Lemma may be of independent interest (see

the full version for a high-level overview and the formal proof). In

4
These are real polynomials defined on the k -hypercube, of degree O (

√
k lg(1/γ))

and whose value is uniformly bounded by γ everywhere on the cube except the all-0
point which attains the value 1.

981

Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds STOC’18, June 25–29, 2018, Los Angeles, CA, USA

the full version, we also show that the lemma is tight, in the sense

that there are functions for which conditioning on o
(√

k · lg 1/ϵ
)

of their coordinates provides no advantage at all.
To complete the proof of the simulation theorem, we apply the

Peak-to-Average Lemma with f , k := tq and ϵ := pΘ(tq/ℓ) =

(1/wtu)
O (tq/ℓ)

. The lemma guarantees that Bob can find a small

(specific) set of coordinates Y ⊆ Sq , such that his maximum likeli-

hood estimate conditioned on the true value y of the coordinates

in Y must provide an advantage of at least

exp(−
√
k · lg 1/ϵ) = exp

(
−tq lg(w · tu)/

√
lgn

)
.

Since |Y | is small, the probability that Y is contained in Alice’s

second sample C1 is p |Y | ≥ exp

(
−tq lg

2(w · tu)/
√
lgn

)
. Overall,

Bob’s maximum-likelihood strategy provides the desired advantage

δ we sought, which completes the proof of Theorem 1.

3 APPLICATIONS: NEW LOWER BOUNDS
We apply our new technique to a number of classic data structure

problems, resulting in a range of new lower bounds. This section

describes the problems and the lower bounds we derive for them,

in context of prior work. As a warm-up, we prove a lower bound

for a somewhat artificial version of polynomial evaluation:

Polynomial Evaluation. Consider storing, updating and evaluat-

ing a polynomial P over the Galois field GF (2d). Here we assume

that elements of GF (2d) are represented by bit strings in {0, 1}d ,

i.e. there is some bijection between GF (2d) and {0, 1}d . Elements

are represented by the corresponding bit strings. Any bijection

between elements and bit strings suffice for our lower bound to

apply.

The least-bit polynomial evaluation data structure problem is

defined as follows: A degree n ≤ 2
d/4

polynomial P(x) =
∑n
i=0 aix

i

over GF (2d) is initialized with all n + 1 coefficients ai being 0. An
update is specified by a tuple (i,b) where i ∈ [n + 1] is an index and

b is an element in GF (2d). It changes the coefficient ai such that

ai ← ai + b (where addition is over GF (2d)). A query is specified

by an element y ∈ GF (2d) and one must return the least significant

bit of P(y). Recall that we make no assumptions on the concrete

representation of the elements in GF (2d), only that the elements

are in a bijection with {0, 1}d so that precisely half of all elements

in GF (2d) have a 0 as the least significant bit.
Using our weak one-way simulation theorem, we prove the

following lower bound in the full version of the paper:

Theorem 2. Any cell probe data structure for least-bit polynomial

evaluation over GF (2d), having cell size w , worst case update time
tu and expected average query time tq must satisfy:

tq = Ω

(
min

{
d
√
lgn

lg
2(tuw)

,

√
n

(tuw)O (1)

})
.

Note that this lower bound is not restricted to have d = O(lgn)
(corresponding to having polynomially many queries). It holds for

arbitrarily large d and thus demonstrates that our lower bound

actually grows as log of the number of queries, times a

√
lgn. At

least up to a certain (unavoidable) barrier (the

√
n bound in the

min is precisely when the query time is large enough that the

data structure can read all cells associated to more than half of

the epochs). We remark that the majority of previous lower bound

techniques could also replace a lgn in the lower bounds by a d for

problems with 2
d
queries. Our introduction focuses on the most

natural case of polynomially many queries (d = Θ(lgn)) for ease of
exposition.

Polynomial evaluation has been studied quite intensively from

a lower bound perspective, partly since it often allows for very

clean proofs. The previous work on the problem considered the

standard (non-boolean) version in which we are required to output

the value P(x), not just its least significant bit. Miltersen [Mil95]

first considered the static version where the polynomial is given

in advance and we disallow updates. He proved a lower bound of

tq = Ω(d/lg S) where S is the space usage of the data structure in

number of cells. This was improved by Larsen [Lar12b] to tq =
Ω(d/lg(Sw/(nd))), which remains the highest static lower bound

proved to date. Note that the lower bound peaks at tq = Ω(d) for
linear space S = O(nd/w). Larsen [Lar12b] also extended his lower

bound to the dynamic case (though for a slightly different type

of updates), resulting in a lower bound of tq = Ω(d lgn/(lg(wtu) ·
lg(wtu/d)). Note that none of these lower bounds are greater than
tq = Ω(lgn/lg tu) per output bit and in that sense they are much

weaker than our new lower bound.

In [GM07], Gál and Miltersen considered succinct data structures
for polynomial evaluation. Succinct data structures are data struc-

tures that use space close to the information theoretic minimum

required for storing the input. In this setting, they showed that any

data structure for polynomial evaluation must satisfy tqr = Ω(n)

when 2
d ≥ (1 + ϵ)n for any constant ϵ > 0. Here r is the redun-

dancy, i.e. the additive number of extra bits of space used by the

data structure compared to the information theoretic minimum.

Note that even for data structures using just a factor 2 more space

than the minimum possible, the time lower bound reduces to the

trivial tq = Ω(1). For data structures with non-determinism (i.e.,

they can guess the right cells to probe), Yin [Yin10] proved a lower

bound matching that of Miltersen.

On the upper bound side, Kedlaya and Umans [KU08] presented

a word-RAM data structure for the static version of the prob-

lem, having space usage n1+ϵd1+o(1) and worst case query time

lg
O (1) n · d1+o(1), getting rather close to the lower bounds. While

not discussed in their paper, a simple application of the logarith-
mic method makes their data structure dynamic with an amortized

update time ofnϵd1+o(1) and worst case query time lg
O (1) n ·d1+o(1).

Parity Searching in Butterfly Graphs. In a seminal paper [Pǎt08],

Pǎtraşcu presented an exciting connection between an entire class

of data structure problems. Starting from a problem of reachability
oracles in the Butterfly graph, he gave a series of reductions to

classic data structure problems. His reductions resulted in tq =
Ω(lgn/lg(Sw/n)) lower bounds for static data structures solving
any of these problems.

We modify Pǎtraşcu’s reachability problem such that we can use

it in reductions to prove new dynamic lower bounds. In our version

of the problem, which we term parity searching in Butterfly graphs,
the data structure must maintain a set of directed acyclic graphs

(Butterfly graphs of the same degree B, but different depths) under

982

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Kasper Green Larsen, Omri Weinstein, and Huacheng Yu

updates which assign binary weights to edges, and support queries

that ask to compute the parity of weights assigned to edges along

a number of paths in these graphs. The formal definition of this

version of the problem is given in the full version.

While this new problem might sound quite artificial and incom-

patible to work with, we show that parity searching in Butterfly

graphs in fact reduces to many classic problems, hence proving

lower bounds on this problem is the key to many of our results.

Indeed, our starting point is the following lower bound:

Theorem 3. Any dynamic data structure for parity searching in

Butterfly graphs of degree B = (wtu)8, with a total of n edges, having
cell size w , worst case update time tu and expected average query
time tq must satisfy:

tq = Ω

(
lg
3/2 n

lg
3(tuw)

)
.

In the remainder of this section, we present new lower bounds

which we derive via reductions from parity searching in Butterfly

graphs . For context, our results are complementedwith a discussion

of previous work.

2D Range Counting. In 2D range counting, we are given n points

P on a [U] × [U] integer grid, for someU = nO (1). We must prepro-

cess the points such that given a query point q = (x ,y) ∈ [U] × [U],
we can return the number of points p ∈ P that are dominated by q
(i.e. p.x ≤ q.x and p.y ≤ q.y). In the dynamic version of the prob-

lem, an update specifies a new point to insert. 2D range counting is

a fundamental problem in both computational geometry and spatial

databases and many variations of it have been studied over the past

many decades.

Via a reduction from reachability oracles in the Butterfly graph,

Pǎtraşcu [Pǎt08] proved a static lower bound of tq = Ω(lgn/lg(Sw/n))
for this problem, even in the case where one needs only to return

the parity of the number of points dominated by q. Recall that this
is the 2D range parity problem.

It turns out that a fairly easy adaptation of Pǎtraşcu’s reduction

implies the following:

Theorem 4. Any dynamic cell probe data structure for 2D range
parity, having cell size w , worst case update time tu and expected
query time tq , gives a dynamic cell probe data structure for parity
searching in Butterfly graphs (for any degree B) with cell sizew , worst
case update time O(tu) and average expected query time tq .

Combining this with our lower bound for parity searching in

Butterfly graphs (Theorem 3), we obtain:

Corollary 1. Any cell probe data structure for 2D range parity,
having cell sizew , worst case update time tu and expected query time
tq must satisfy:

tq = Ω

(
lg
3/2 n

lg
3(tuw)

)
.

In addition to Pǎtraşcu’s static lower bound, Larsen [Lar12a]

studied the aforementioned variant of the range counting problem,

called 2D range sum, in which points are assignedΘ(lgn)-bit integer
weights and the goal is to compute the sum of weights assigned

to points dominated by q. As previously discussed, Larsen’s lower

bound for dynamic 2D range sum was tq = Ω((lgn/lg(tuw))
2) and

was the first lower bound to break the Ω(lgn)-barrier, though only

for a problem with Θ(lgn) bit output. Weinstein and Yu [WY16]

later re-proved Larsen’s lower bound, this time extending it to the

setting of amortized update time and a very high probability of error.

Note that these lower bounds remain below the logarithmic barrier

when measured per output bit of a query. While 2D range counting

(not the parity version) also hasΘ(lgn)-bit outputs, it seems that the

techniques of Larsen andWeinstein and Yu are incapable of proving

an ω(lgn) lower bound for it. Thus the strongest previous lower

bound for the dynamic version of 2D range counting is just the

static bound of tq = Ω(lgn/lg(tuw)) (since one cannot build a data

structure with space usage higher than S = tun in n operations).

As a rather technical explanation for why the previous techniques

fail, it can be observed that they all argue that a collection ofm =
n/poly(lgn) queries have Ω(m lgn) bits of entropy in their output.

But for 2D range counting, having n/poly(lgn) queries means that

on average, each query contains just poly(lgn) new points, reducing

the total entropy to something closer toO(m lg lgn). This turns out
to be useless for the lower bound arguments. It is conceivable that

a clever argument could show that the entropy remains Ω(m lgn),
but this has so forth resisted all attempts.

From the upper bound side, JáJá, Mortensen and Shi [JMS04]

gave a static 2D range counting data structure using linear space

andO(lgn/lg lgn) query time, which is optimal by Pǎtraşcu’s lower

bound. For the dynamic case, Brodal et al. [BGJS11] gave a data

structure with tq = tu = O((lgn/lg lgn)2). Our new lower bound

shrinks the gap between the upper and lower bound on tq to only

a factor

√
lgn lg lgn for tu = poly(lgn).

2D Rectangle Stabbing. In 2D rectangle stabbing, we must main-

tain a set of n 2D axis aligned rectangles with integer coordinates,

i.e. rectangles are of the form [x1,x2] × [y1,y2]. We assume coordi-

nates are bounded by a polynomial in n. An update inserts a new

rectangle. A query is specified by a point q, and one must return the

number of rectangles containing q. This problem is known to be

equivalent to 2D range counting via a folklore reduction. Thus all

the bounds in the previous section, both upper and lower bounds,

also apply to this problem. Furthermore, 2D range parity is also

equivalent to 2D rectangle parity, i.e. returning just the parity of

the number of rectangles stabbed.

Range Selection and Range Median. In range selection, we are to

store an array A = {A[0], . . . ,A[n − 1]} where each entry stores

an integer bounded by a polynomial in n. A query is specified by

a triple (i, j,k). The goal is to return the index of the k’th smallest

entry in the subarray {A[i], . . . ,A[j]}. In the dynamic version of

the problem, entries are initialized to 0. Updates are specified by an

index i and a value a and has the effect of changing the value stored
in entryA[i] to a. In case of multiple entries storing the same value,

we allow returning an arbitrary index being tied for k’th smallest.

We also give a reduction from parity searching in Butterfly

graphs. We remark that no reductions were known between the

static versions of the problems and thus our new reductions also

simplify previous static lower bounds.

Theorem 5. Any dynamic cell probe data structure for range
selection, having cell sizew , worst case update time tu and expected

983

Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds STOC’18, June 25–29, 2018, Los Angeles, CA, USA

query time tq , gives a dynamic cell probe data structure for parity
searching in Butterfly graphs (for any degree B) having cell size w ,
worst case update time O(tu lg

2 n) and expected average query time
tq . Furthermore, this holds even if we force i = 0 in queries (i, j,k)
and require only that we return whether the k’th smallest element in
A[0], . . . ,A[j] is stored at an even or odd position.

Since we assume w = Ω(lgn), combining this with Theorem 3

immediately proves the following:

Corollary 2. Any cell probe data structure for range selection,
having cell sizew , worst case update time tu and expected query time
tq must satisfy:

tq = Ω

(
lg
3/2 n

lg
3(tuw)

)
.

Furthermore, this holds even if we force i = 0 in queries (i, j,k) and
require only that we return whether the k’th smallest element in
A[0], . . . ,A[j] is stored at an even or odd position.

While range selection is not a boolean data structure problem,

it is still a fundamental problem and for the same reasons as men-

tioned under 2D range counting, the previous lower bound tech-

niques seem incapable of proving ω(lgn) lower bounds for the
dynamic version. Thus we find our new lower bound very valuable

despite the problem not beeing boolean . Also, we do in fact manage

to prove the same lower bound for the boolean version where we

need only determine whether the index of the k’th smallest element

is even or odd.

For the static version of the problem, Jørgensen and Larsen [JL11]

proved a lower bound of tq = Ω(lgn/lg(Sw/n)). Their proof was
rather technical and a new contribution of our work is that their

static lower bound now follows by reduction also from Pǎtraşcu’s

lower bound for reachability oracles in the Butterfly graph. For the

dynamic version of the problem, no lower bound stronger than the

tq = Ω(lgn/lg(tuw)) bound following from the static bound was

previously known.

On the upper bound side, Brodal et al. [BGJS11] gave a linear

space static data structure with query time tq = O(lgn/lg lgn). This
matches the lower bound of Jørgensen and Larsen. They also gave

a dynamic data structure with tq = tu = O((lgn/lg lgn)
2).

Since we prove our lower bound for the version of range selection

where i = 0, also known as prefix selection, we can re-execute a

reduction of Jørgensen and Larsen [JL11]. This means that we also

get a lower bound for the fundamental range median problem.

Range median is the natural special case of range selection where

k = ⌈(j − i + 1)/2⌉.

Corollary 3. Any cell probe data structure for range median,
having cell sizew , worst case update time tu and expected query time
tq must satisfy:

tq = Ω

(
lg
3/2 n

lg
3(tuw)

)
.

Furthermore, this holds even if we are required only to return whether
the median amongstA[i], . . . ,A[j] is stored at an even or odd position.

We note that the upper bound of Brodal et al. for range selection

is also the best known upper bound for range median.

4 ORGANIZATION OF SUBSEQUENT
SECTIONS

In Section 5 we introduce both the dynamic cell probe model and

the one-way communication model, which is the main proxy for

our results. In Section 6 we state the formal version of Theorem 1

and give its proof. Due to space constraints, the proof of the Peak-
to-Average lemma, as well as the proofs of all our lower bounds for

concrete data structure problems, are deferred to the full version of

this paper.

5 PRELIMINARIES
The dynamic cell probe model. A dynamic data structure in the

cell probe model consists of an array of memory cells, each of which

can storew bits. Each memory cell is identified by aw-bit address,

so the set of possible addresses is [2w]. It is natural to assume that

each cell has enough space to address (index) all update operations

performed on it, hence we assume thatw = Ω(lgn)when analyzing

a sequence of n operations.

Upon an update operation, the data structure can perform read

and write operations to its memory so as to reflect the update,

by probing a subset of memory cells. This subset may be an arbi-

trary function of the update and the content of the memory cells

previously probed during this process. The update time of a data

structure, denoted by tu , is the number of probes made when pro-

cessing an update (this complexity measure can be measured in

worst-case or in an amortized sense). Similarly, upon a query op-

eration, the data structure performs a sequence of probes to read

a subset of the memory cells in order to answer the query. Once

again, this subset may by an arbitrary (adaptive) function of the

query and previous cells probed during the processing of the query.

The query time of a data structure, denoted by tq , is the number of

probes made when processing a query.

5.1 One-way Protocols and “Epoch"
Communication Games

A useful way to abstract the information-theoretic bottleneck of

dynamic data structures is communication complexity. Our main

results (both upper and lower bounds) are cast in terms of the

following two-party communication games, which are induced by

dynamic data structure problems:

Definition 1 (Epoch Communication Games Gi
P
). Let P be

a dynamic data structure problem, consisting of a sequence of n up-
date operations divided into epochsU = (Uℓ ,Ul−1, . . . ,U1), where
|Ui | = ni (and

∑
i ni = n), followed by a single query q ∈ Q. For

each epoch i ∈ [ℓ], the two-party communication game Gi
P
induced

by P is defined as follows:

• Alice receives all update operationsU = (Uℓ ,Ul−1, . . . ,U1).
• Bob receives U−i := U \ {Ui } (i.e., all updates except those in
epoch i) and a query q ∈ Q for P.
• The goal of the players is to output the correct answer to q, that
is, to output P(q,U).

We shall consider the following restricted model of communica-

tion for solving such communication games.

984

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Kasper Green Larsen, Omri Weinstein, and Huacheng Yu

Definition 2 (One-Way Randomized Communication Proto-

cols). Let f : X × Y 7→ {0, 1} be a two-party boolean function. A
one-way communication protocol π for f (x ,y) under input distribu-
tion µ proceeds as follows:
• Alice and Bob have shared access to a public random string R
of their choice.
• Alice sends Bob a single message, MA(x ,R), which is only a
function of her input and the public random string.
• Based on Alice’s message, Bob must output a value vπ =
vπ (y,R,MA) ∈ {0, 1}.

We say that π ϵ-solves f under µ with costm, if :
• For any input x , Alice never sends more thanm bits to Bob, i.e.,
|MA(x ,R)| ≤ m, for all x , r .
• Pr(x,y)∼µ,R [vπ = f (x ,y)] ≥ 1/2 + ϵ .

Let us denote by

−−→
adv(f , µ,m) := sup{ϵ | ∃ one-way protocol π

that ϵ-solves f under µ with costm}

the largest advantage ϵ achievable for predicting f under µ via an

m-bit one-way communication protocol. For example, when applied

to the boolean communication problem Gi
P
, we say that Gi

P
has

an m-bit one-way communication protocol with advantage ϵ , if
−−→
adv(Gi

P
, µ,m) ≥ ϵ . We remark that we sometimes use the notation

∥π ∥ to denote the message-length (i.e., number of bitsm) of the

communication protocol π .

6 ONE-WAY WEAK SIMULATION OF
DYNAMIC DATA STRUCTURES

In this section we prove our main result, Theorem 1. For any dy-

namic decision problem P, we show that if P admits an efficient

data structure D with respect to a random sequence of n updates

divided into ℓ := lgβ n epochs U = (Uℓ ,Uℓ−1, . . . ,U1), then we

can use it to devise an efficient one-way communication protocol

for the underlying two-party communication problem Gi
P
of some

(large enough) epoch i , with a nontrivial success (advantage over

random guessing).

Throughout this section, let us denote the size of epoch i by

ni := |Ui | = βi , where we require β = (w · tu)
Θ(1)

, and

∑ℓ
i=1 ni = n.

We prove the following theorem.

Theorem 1 (restated). Let P be a dynamic boolean data structure
problem, with n random updates grouped into epochsU = {Ui }ℓi=1,
such that |Ui | = βi , followed by a single query q ∈ Q. If P admits a
dynamic data structureD with worst-case update time tu and average
(over Q) expected query time tq satisfying tq (w · tu)a+1 ≤ n1/2, then
there exists some epoch i ∈ [ℓ/2, ℓ] for which

−−→
adv

(
Gi
P
, U, ni/(w · tu)

a−1
)
≥

exp

(
−tq lg

2(w · tu)/
√
lgn

)
as long as β = (w · tu)Θ(1) ≥ (w · tu)a for a constant a > 1.

Proof. Consider the memory state M = M(U) of D after the

entire update sequence U, and for each cell c ∈ M , define its

associated epoch E(c) to be the last epoch in [ℓ] during which c

was probed (note that E(c) is a random variable over the random

update sequenceU). For each query q ∈ Q, let Tq be the random

variable denoting the number of probes made by D on query q (on

the random update sequence). For each query q and epoch i , let T iq
denote the number of probes on query q to cells associated with
epoch i (i.e., cells c for which E(c) = i).

By definition, we have
1

|Q |

∑
q∈Q E[Tq] = tq and Tq =

∑ℓ
i=1T

i
q .

Then by averaging, there exists one epoch i ∈ [ℓ/2, ℓ] such that

1

|Q |

∑
q∈Q E[T

i
q] ≤ 2tq/ℓ. By Markov’s inequality and a union

bound, there exists a subset Q ′ ⊆ Q of |Q|/2 queries such that both

E[T iq] ≤ 8tq/ℓ and E[Tq] ≤ 8tq , (1)

for every query q ∈ Q ′. By Markov’s inequality and union bound,

for each q ∈ Q ′, we have

Pr

U
[T iq ≤ 32tq/ℓ,Tq ≤ 32tq] ≥ 1/2. (2)

Note that, while Bob cannot identify the event “T iq ≤ 32tq/ℓ,Tq ≤
32tq " (as it depends on Alice’s input as well), he does know whether

his query q is in Q ′ or not, which is enough to certify (2).

Now, suppose that Alice samples each cell associated with epoch
i inM independently with probability p, where

p :=
1

(w · tu)
a

(note that, by definition ofGi
P
, Alice can indeed generate the mem-

ory stateM and compute the associated epoch for each cell, as her

input consists of the entire update sequence). LetC0 be the resulting

set of cells sampled by Alice. Alice sends Bob C0 (both addresses

and contents). For a query q ∈ Q ′, letWq denote the event that

the set of cellsC0 Bob receives, contains all T iq cells associated with

epoch i and probed by the data structure. By Equation (2), we have

that for every q ∈ Q ′

Pr

C0,U
[Wq ,Tq ≤ 32tq] ≥

p32tq/ℓ · Pr
U
[T iq ≤ 32tq/ℓ,Tq ≤ 32tq] ≥

p32tq/ℓ/2. (3)

If Bob align detect the eventWq , we would be done. Indeed, let C2

denote the set of (addresses and contents of) cells associated with all

future epochs j < i , i.e., all the cells probed by D succeeding epoch

i . Due to the geometrically decreasing sizes of epochs, sending C2

requires less than ni/(w · tu)
a−1

bits of communication. Since Bob

has all the updates preceding epoch i , he can simulate the data

structure and generate the correct memory state of D right before

epoch i . In particular, Bob knows for every cell, assuming it is not

probed since epoch i (thus associated with some epoch j > i), what
its content will be. Therefore, when he is further given the messages

(c0, c2), Bob would be able to simulate the data structure perfectly

on query q, assuming the eventWq occurs. If Bob could detect

Wq , he could simply output a random bit if it does not occur, and

follow the data structure if it does. This strategy would have already

produced an advantage ofp32tq/ℓ ≥ exp(−tq lg
2(w ·tu)/lgn), which

would have finished the proof. As explained in the introduction,

Bob has no hope of certifying the occurrence of the eventWq ,

hence we must take a fundamentally different approach for arguing

that condition (3) can nevertheless be (implicitly) used to devise a

985

Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds STOC’18, June 25–29, 2018, Los Angeles, CA, USA

strategy for Bob with a nontrivial advantage. This is the heart of

the proof.

To this end, note that, given a query q ∈ Q ′, a received sample c0
and all cells c2 associated with some epoch j < i , Bob can simulateD
on his partial update sequence (u−i), filling in the memory updates

according to c0 and c2, and pretending that all cells in the query-

path of q which are associated with epoch i are actually sampled in

c0 (i.e., pretending that the eventWq occurs). See Step 5 of Figure 1

for the formal simulation argument. LetM ′(u−i , c0, c2) denote the
resulting memory state obtained by Bob’s simulation in the figure,

given u−i and his received sets of cells c0, c2.
Now, let us consider the (deterministic) sequence of cells Sq that

D would probe given query q in the above simulation with respect

to Bob’s memory state M ′(u−i , c0, c2). Let us say that the triple

(u−i , c0, c2) is good for a query q ∈ Q ′, if PrUi [Wq |U−i = u−i ,C0 =

c0,C2 = c2] ≥ p32tq/ℓ/4 and |Sq | ≤ 32tq . That is, (u−i , c0, c2) is
good for q, if the posterior probability ofWq is (relatively) high

and Sq is not too large. By Equation (3) and Markov’s inequality,

the probability that the triple (u−i , c0, c2) satisfies PrU [Wq ,Tq ≤

32tq |u−i , c0, c2] ≥ p32tq/ℓ/4, is at least p32tq/ℓ/4 (indeed, the ex-

pectation in (3) can be rewritten as

E
U−i ,C0,C2

Pr

Ui
[Wq ,Tq ≤ 32tq |U−i ,C0,C2],

since C2 is a deterministic function of U). Note that whenWq
occurs, the value of Tq is completely determined given u−i , c0 and
c2, in which case |Sq | = Tq , and thus the probability that (u−i , c0, c2)

is good is at least p32tq/ℓ/4. From now on, let us focus only on the

case that (u−i , c0, c2) that Alice sends is good, since Bob can identify
whether u−i , c0, c2 is good based on q and Alice’s message, and if it

is not, he will output a random bit.

We caution that Sq is simply a set of memory addresses in M ,

not necessarily the correct one – in particular, while the addresses
of the cells Sq are determined by the above simulation, the contents
of these cells (inM) are not – they are a random variable of Ui , as
the sample c0 is very unlikely to contain all the associated cells).

For any assignment z ∈ [2w]Sq to the contents of the cells in Sq , let
us denote by

µq (z) := Pr

Ui
[Sq ← z |u−i , c0, c2]

the probability that the memory content of the sequence of cells

Sq is equal to z, conditioned on u−i , c0, c2.
Every content assignment Z = z to Sq , generates some posterior

distribution on the correct query path (i.e., with respect to the true
memory stateM) and therefore on the output P(q,U) of the query
q with respect to U. Hence we may look at the joint probability

distribution of the event “P(q,U) = 1" and the assignmentZ which

is

ηq (z) := Pr

Ui
[P(q,U) = 1, Sq ← z | u−i , c0, c2].

Now, consider the function

f (z) = f
q
u−i ,c0,c2 (z) := ηq (z) −

1

2

· µq (z). (4)

Equivalently, conditioned on u−i , c0 and c2, f (z) is the bias of the
random varaible P(q,U) conditioned on Sq ← z, multiplied by the

probability of Sq ← z.
Note that, since ηq (z) ≤ µq (z) for every assignment z, we have

| f (z)| ≤ µq (z)/2, and since µq (z) is a probability distribution, this

fact implies that: (i)

∑
z | f (z)| ≤

1

2
. Furthermore, we shall argue

that Pr[Wq | u−i , c0, c2] ≥ p32tq/ℓ/4 (as we always condition on

good u−i , c0, c2), in which case the contents of Sq are completely

determined by u−i , c0, c2 (we postpone the formal argument to the

Analysis section below). Denoting by z∗ the content assignment to

Sq induced by u−i , c0, c2, we observe that conditioned onWq , Sq
will be precisely the correct set of cells probed by D on q, in which

case P(q,U) is determined by z∗,q,u−i , c0, c2. Formally, this fact

means that: (ii) | f (z∗)| = 1

2
· Pr[Sq ← z∗ | u−i , c0, c2] ≥ Ω(p32tq/ℓ).

Conditions (i)+(ii) above imply that f = f
q
u−i ,c0,c2 satisfies the

premise of the Peak-to-Average Lemma (Lemma 1) with Σ :=

[2w],k := O(tq), ϵ := Ω(p32tq/ℓ) = exp(−tq lg
2(w · tu)/lgn). Recall

that the lemma guarantees there is a not-too-large subset Y ⊆ Sq of

coordinates (= addresses) of Sq , which Bob can privately compute,5

such that if the values of the coordinates in Y are also revealed,

then the conditional expectation of f
q
u−i ,c0,c2 , namely

E
Sq |Y

����PrUi [
P(q,U) = 1 | u−i , c0, c2, Sq |Y

]
− 1/2

���� ,
which is the average of Bob’s “maximum-likelihood" estimate for

P(q,U), is non-negligible (the formal details are postponed to the

Analysis section below).

Given this insight, a natural strategy for the players is for Alice

to further send Bob the contents of cells in the subset Y . While

Alice does not know the subset Y ,6 she can use public randomness
to sample yet another random setC1 of cells from the entirememory

M , where now every cell is sampled with equal probability p, and
send the subset of C1 that is associated with epoch i to Bob. (Note

that it is important that this time the players use public randomness

to subsample from the entire memory stateM , since Alice does not

know Y and yet Bob must be absolutely certain that all cells in Y
were subsampled. Notwithstanding, to keep communication low, it

is crucial that Alice sends Bob only the contents of cells associated

with epoch i). Since |Y | is guaranteed to be relatively small (of order

O(
√
k lg(1/ϵ))), the probability p |Y | that all cells in Y get sampled

will be sufficiently noticeable, in which case we shall argue that

Bob’s maximum-likelihood strategy will output the correct answer

∈ {0, 1} with the desired nontrivial advantage. The formal one-way

protocol π that the parties execute is described in Figure 1.

Analysis. We now turn to the formal analysis of the protocol π .
We need to show

• (Communication cost) ∥π ∥ ≤ O(ni/(w · tu)
a−1) .

• (Correctness) PrG i
P
∼U,q∈RQ

[
π (Gi

P
) = P(q,U)

]
≥ 1/2 +

exp

(
−tq lg

2(w · tu)/
√
lgn

)
.

Communication. In both Step 2 and Step 3, Alice sends at most

2p |Ui |tu · (2w) + 1 bits. In Step 4, Alice sends at most |U<i | · tu ·
(2w) =

∑
j<i |Uj | · tu · (2w) bits. Since |Uj | = nj = β j , the total

communication cost is at most

O(p · ni · tuw) +O(β
i−1 · tuw) ≤ O(ni/(w · tu)

a−1).

5
Indeed, Y is only a function of q , f qu−i ,c0,c2 , c0 ,c2 and the prior distribution on U,

and Bob possesses all this information.

6
Indeed, Y is a function of q .

986

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Kasper Green Larsen, Omri Weinstein, and Huacheng Yu

One-way protocol π for Gi
P

Henceforth, by “sending a cell”, we mean sending the address and (up to date) content of the cell in M .

Encoding.
(1) Alice generates the memory stateM of D by simulating the data structure onU, and computes the associated epoch for each cell.

(2) Alice samples each cell associatedwith epoch i independentlywith probabilityp. Let c0 be the set of sampled cells. If |c0 | > 2p |Ui |·tu ,
Alice sends a bit 0 and aborts. Otherwise, she sends a bit 1, followed by all cells in c0.

(3) Alice uses public randomness to sample every cell inM independently with probability p. Let c1 be the set of sampled cells. If there

are more than 2p |Ui | · tu cells in c1 that are associated with epoch i , Alice sends a bit 0 and aborts. Otherwise, she sends a bit 1,

followed by all cells in c1 that are associated with epoch i .
(4) Alice sends Bob all cells associated with epoch j for all j < i , i.e., all the cells probed by D succeeding epoch i . Denote this set of

(address and contents of) cells by c2.

Decoding.
(5) Given his query q ∈ Q, Bob simulates the data structure D on u>i and obtains a memory stateM0. He updates the contents of c0

and c2 inM0, obtains a memory stateM ′ = M ′(u−i , c0, c2), and then simulates the query algorithm of D on query q and memory

stateM ′. Let Sq be the set of (memory addresses of) cells probed by D in this simulation. If any of the following events occur, Bob

outputs a random bit and aborts:

(i) q < Q ′,
(ii) Bob receives a bit 0 before c0 or c1,
(iii) (u−i , c0, c2) is not good for q.

(6) Let Y ⊂ Sq be a subset of cells of size κ := |Y | ≤ O
(√

k · lg 1/ϵ
)
guaranteed by Lemma 1, when applied with f := f

q
u−i ,c0,c2 ,

Σ := [2w], k := |Sq | ≤ 32tq , ϵ := p32tq/ℓ/4.
(recall that Bob can privately compute the set Y).

(7) If Y ⊈ c1 (i.e., if the sample c1 sent by Alice does not contain all cells in Y), Bob outputs a random bit. Otherwise, let y ∈ [2w]Y

denote the content of the cells Y according to c1. Let Sq |Y ← y denote the event that the memory content of Y is assigned the

value y. Bob outputs 1 iff
Pr

Ui

[
P(q,U) = 1 | u−i , c0, c2, Sq |Y ← y

]
> 1/2.

Otherwise, Bob outputs 0.

Figure 1: The one-way weak simulation protocol of data structure D.

Correctness. Let π ′ be the variant of the protocol π in which,

when executing Step 2 and Step 3, Alice ignores the condition

of whether the samples C0 or C1 exceed the specified size limit,

i.e., she always sends a bit 1 followed by all sampled cells. For

simplicity of analysis, we will first show that π ′ has the claimed

success probability, and then show that the impact of the above

event (i.e., conditioning on C0 and C1 being within the size bound)

is negligible, as it occurs with extremely high probability.

We first claim that the probability (overU and an average query

q ∈R Q) that π ′ reaches Step 6 is not too small. By (1) and Markov’s

inequality, and by the discussion below (3), the probability that

q ∈ Q ′ and (u−i , c0, c2) is “good" for q is at least Ω(p32tq/ℓ) ≥
exp(−tq lg

2(w · tu)/lgn). This is precisely the probability that π ′

reaches Step 6.

We now calculate the success probability of π ′ conditioned on

reaching Step 6. To this end, fix a set Y ⊆ Sq of size κ. Then by Step

7, the success probability of π ′ conditioned on u−i , c0, c2 and the

event “Y ⊆ C1" is

1

2

+ E
Sq |Y

����PrUi [
P(q,U) = 1 | u−i , c0, c2, Sq |Y

]
− 1/2

����

=
1

2

+
∑

y∈[2w]Y
Pr

Ui
[(Sq |Y ← y) | u−i , c0, c2]

·

����PrUi [
P(q,U) = 1 | (Sq |Y ← y),u−i , c0, c2

]
− 1/2

����
=

1

2

+
∑

y∈[2w]Y

���� PrUi
[
P(q,U) = 1, (Sq |Y ← y)

| u−i , c0, c2

]
−

1

2

· Pr
Ui
[(Sq |Y ← y) | u−i , c0, c2]

����
=

1

2

+
∑

y∈[2w]Y

���� ∑
z∈[2w]Sq :z |Y =y

(
Pr

Ui

[
P(q,U) = 1,

(Sq ← z) | u−i , c0, c2

]
−
1

2

· Pr
Ui
[Sq ← z | u−i , c0, c2]

)����
=

1

2

+
∑

y∈[2w]Y

������ ∑
z∈[2w]Sq : z |Y =y

f
q
u−i ,c0,c2 (z)

������ , (5)

where the last transition is by the definition of f
q
u−i ,c0,c2 in (4). Note

that for any z, it holds that | f (z)| ≤ 1

2
· Pr[Sq ← z | u−i , c0, c2].

Thus,

∑
z∈[2w]Sq | f (z)| ≤

1

2
. On the other hand, since we always

987

Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds STOC’18, June 25–29, 2018, Los Angeles, CA, USA

condition on good (u−i , c0, c2), we have Pr[Wq | u−i , c0, c2] ≥

p32tq/ℓ/4. That is, with probability at least p32tq/ℓ/4 all cells in

Sq associated with epoch i are contained in c0. In this case, the

contents of Sq are completely determined by u−i , c0, c2. Indeed, the
contents of the cells associated with epoch < i are determined

by c2; the cells associated with epoch i are determined by c0; the
remaining cells are determined byu>i . Let z

∗
denote the assignment

to Sq , induced by u−i and the contents of c0, c2 conditioned on the

occurrence ofWq . By the definition of Sq , whenWq happens,

Sq will be exactly the set of cells the data structure probes. Thus,

the output of q is also determined. We therefore have | f (z∗)| =
1

2
· Pr[Sq ← z∗ | u−i , c0, c2] ≥ Ω(p32tq/ℓ). We conclude that the

function f = f
q
u−i ,c0,c2 satisfies the premise of the Peak-to-Average

lemma (Lemma 1) with

• Σ = [2w];
• k = |Sq | ≤ O(tq);

• ϵ = p32tq/ℓ/4 ≥ exp(−tq lg
2(w · tu)/lgn).

7

Without loss of generality, we may assume lg(w · tu) ≪
√
lgn, and

thus ϵ ∈ [2−O (k), 1].8 Therefore, the lemma guarantees there is a

set Y ⊂ Sq of cells that has size at most

|Y | = κ ≤ O
(√

k lg 1/ϵ
)
≤ O

(
tq lg(w · tu)/

√
lgn

)
,

for which ∑
y∈[2w]Y

������ ∑
z∈[2w]Sq : z |Y =y

f
q
u−i ,c0,c2 (z)

������ ≥
exp

(
−tq lg(w · tu)/

√
lgn

)
.

This justifies Step 6 of the protocol. It follows that, for any q ∈ Q ′,
the probability that the sample C1 of cells contains the set Y is at

least

Pr

C1

[Y ⊆ C1] = p
|Y | = p

O
(
tq lg(w ·tu)/

√
lgn

)
=

exp

(
−tq lg

2(w · tu)/
√
lgn

)
. (6)

Equation (5) therefore implies that, conditioned on the event that

|Y | ⊆ C1, the probability that π ′ outputs a correct answer is

1/2 + exp
(
−tq lg(w · tu)/

√
lgn

)
,

and combining this with (6) and the probability that π ′ reaches Step
6, we conclude that the overall success probability of π , conditioned
on the protocol not aborting when c0 or c1 is too large, is

1/2 + exp
(
−tq lg

2(w · tu)/
√
lgn

)
. (7)

To finish the proof, it therefore suffices to argue that the prob-

ability that π aborts due to this event is tiny. To this end, let Ai
denote the random variable representing the number of associated

cells with epoch i . We know that Ai ≤ |Ui | · tu = ni · tu (since

the worst-case update time of D is tu by assumption). Now, let E0

denote the event that Alice’s sample in Step 2 of the protocol is

7
We used the fact that ℓ = Θ(lgβ n) and β = (w · tu)

Θ(1)
.

8
In fact, if lg(w · tu) ≥ Ω(

√
lgn), the right-hand side of the inequality in the theorem

statement is less thanptq , hence the statement becomes trivial. Indeed, with probability

ptq , Alice samples all cells probed by the data structure on query q .

too large, i.e., that “|C0 | > 2p |Ui | · tu ”. Similarly, let E1 denote the

event that in Step 3 of the protocol, “|C1 | > 2p |Ui | · tu ”. Denote
E := E0 ∨ E1 (note that this is the event (ii) in Step 5 of π). Since
both sets C0 and C1 are i.i.d samples where each cell is sampled in-

dependently with probability p, a standard Chernoff bound implies

that

Pr[E] ≤ 2 Pr [|C0 | ≥ 2E [|C0 |]] ≤ exp(−p(ni · tu))

≤ exp(−ni/(w · tu)
a). (8)

Finally, since i ≥ ℓ/2 and thus ni ≥ n1/2 ≥ tq (w · tu)
a+1

, by (7), (8)

and a union bound, we conclude that

Pr

U,q
[π (q) , P(q,U)]

≤ 1/2 − exp

(
−tq lg

2(w · tu)/
√
lgn

)
+ Pr[E]

≤ 1/2 − exp

(
−tq lg

2(w · tu)/
√
lgn

)
+ exp(−tq · (w · tu))

≤ 1/2 − exp

(
−tq lg

2(w · tu)/
√
lgn

)
,

which completes the proof of the entire theorem.

□

ACKNOWLEDGEMENT
We are grateful to Rocco Servedio and Oded Regev for insightful

discussions on the Peak-to-Average Lemma, and in particular, to

Alexander Sherstov for observing and sharing with us the proof

that our peak-to-average lemma is tight.

REFERENCES
[Aga04] Pankaj K. Agarwal. Range searching. In Handbook of Discrete and Compu-

tational Geometry, Second Edition., pages 809–837. 2004.
[BGJS11] Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter

Sanders. Towards optimal range medians. Theoretical Computer Science,
412(24):2588–2601, May 2011.

[CGL15] Raphaël Clifford, Allan Grønlund, and Kasper Green Larsen. New uncondi-

tional hardness results for dynamic and online problems. In Proc. 56th IEEE
Symposium on Foundations of Computer Science, 2015.

[FS89] Michael L. Fredman and Michael E. Saks. The cell probe complexity of

dynamic data structures. In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, pages 345–354, 1989.

[GM07] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct

data structures. Theoretical Computer Science, 379:405–417, July 2007.

[JL11] Allan Grønlund Jørgensen and Kasper Green Larsen. Range selection and

median: Tight cell probe lower bounds and adaptive data structures. In Proc.
22nd ACM/SIAM Symposium on Discrete Algorithms, pages 805–813, 2011.

[JMS04] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient

and fast algorithms for multidimensional dominance reporting and counting.

In Proc. 15th International Symposium on Algorithms and Computation, pages
558–568, 2004.

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast modular composition in any

characteristic. In Proc. 49th IEEE Symposium on Foundations of Computer
Science, pages 146–155, 2008.

[Lar12a] Kasper Green Larsen. The cell probe complexity of dynamic range counting.

In Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, pages 85–94, 2012.

[Lar12b] Kasper Green Larsen. Higher cell probe lower bounds for evaluating poly-

nomials. In Proc. 53rd IEEE Symposium on Foundations of Computer Science,
pages 293–301, 2012.

[Lar13] Kasper Green Larsen. Models and Techniques for Proving Data Structure
Lower Bounds. PhD thesis, Aarhus University, 2013.

[Mil95] Peter Bro Miltersen. On the cell probe complexity of polynomial evaluation.

Theoretical Computer Science, 143:167–174, May 1995.

[Pat07] Mihai Patrascu. Lower bounds for 2-dimensional range counting. In Proc.
39th ACM Symposium on Theory of Computation, pages 40–46, 2007.

988

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Kasper Green Larsen, Omri Weinstein, and Huacheng Yu

[Pǎt08] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. In Proc.
49th IEEE Symposium on Foundations of Computer Science, pages 434–443,
2008.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the partial-sums

problem. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2004, pages 20–29, 2004.

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the

cell-probe model. SIAM J. Comput., 35(4):932–963, 2006.
[PTW10] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near

neighbor search via metric expansion. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, pages 805–814, 2010.

[Tho13] Mikkel Thorup. Mihai Pǎtraşcu: Obituary and open problems. Bulletin of
the EATCS, 109:7–13, 2013.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical
Computer Science, 7(1–3):1–336, 2012.

[WY16] Omri Weinstein and Huacheng Yu. Amortized dynamic cell-probe lower

bounds from four-party communication. In Proc. 57th IEEE Symposium on
Foundations of Computer Science, pages 305–314, 2016.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28(3):615–628,

1981.

[Yin10] Yitong Yin. Cell-probe proofs. ACM Transactions on Computation Theory,
2:1:1–1:17, November 2010.

989

	Abstract
	1 Introduction
	2 Techniques
	2.1 Previous Techniques
	2.2 Our Techniques

	3 Applications: New Lower Bounds
	4 Organization of Subsequent Sections
	5 Preliminaries
	5.1 One-way Protocols and ``Epoch" Communication Games

	6 One-Way Weak Simulation of Dynamic Data Structures
	References

