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ABSTRACT

This paper proves the first super-logarithmic lower bounds on the
cell probe complexity of dynamic boolean (a.k.a. decision) data
structure problems, a long-standing milestone in data structure
lower bounds.

We introduce a new approach and use it to prove a Q(Ig'-> n)
lower bound on the operational time of a wide range of boolean data
structure problems, most notably, on the query time of dynamic
range counting over Fy (Patrascu, 2007). Proving an w(lg n) lower
bound for this problem was explicitly posed as one of five impor-
tant open problems in the late Mihai Patrascu’s obituary (Thorup,
2013). This result also implies the first w(lg n) lower bound for the
classical 2D range counting problem, one of the most fundamental
data structure problems in computational geometry and spatial
databases. We derive similar lower bounds for boolean versions of
dynamic polynomial evaluation and 2D rectangle stabbing, and for
the (non-boolean) problems of range selection and range median.

Our technical centerpiece is a new way of “weakly" simulating
dynamic data structures using efficient one-way communication
protocols with small advantage over random guessing. This simu-
lation involves a surprising excursion to low-degree (Chebyshev)
polynomials which may be of independent interest, and offers an
entirely new algorithmic angle on the “cell sampling” method of
Panigrahy et al. (2010).

CCS CONCEPTS

« Theory of computation — Cell probe models and lower
bounds; Computational complexity and cryptography; Communica-
tion complexity,

KEYWORDS

Data Structures, Cell Probe Complexity, Lower Bounds, Range
Searching, Dynamic Problems
ACM Reference Format:

Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. 2018. Crossing
the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds.

“Kasper Green Larsen is supported by Villum Grant 13163 and an AUFF Starting Grant.
Huacheng Yu is supported by NSF CCF-1212372.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06....$15.00
https://doi.org/10.1145/3188745.3188790

Omri Weinstein
Columbia University

USA

omri@cs.columbia.edu

978

Huacheng Yu
Harvard University
USA
yuhch123@gmail.com

In Proceedings of 50th Annual ACM SIGACT Symposium on the Theory of
Computing (STOC’18). ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3188745.3188790

1 INTRODUCTION

Proving unconditional lower bounds on the operational time of
data structures in the cell probe model [Yao81] is one of the holy
grails of complexity theory, primarily because lower bounds in this
model are oblivious to implementation considerations, hence they
apply essentially to any imaginable data structure (and in particular,
to the ubiquitous word-RAM model). Unfortunately, this abstrac-
tion makes it notoriously difficult to obtain data structure lower
bounds, and progress over the past three decades has been very
slow. In the dynamic cell probe model, where a data structure needs
to maintain a database under an “online” sequence of n operations
(updates and queries) by accessing as few memory cells as possible,
a few lower bound techniques have been developed. In [FS89], Fred-
man and Saks proved Q(lg n/lglg n) lower bounds for a list of dy-
namic problems. About 15 years later, Patragcu and Demaine [PD04,
PD06] proved the first Q(lgn) lower bound ever shown for an
explicit dynamic problem. The celebrated breakthrough work of
Larsen [Lar12a] brought a near quadratic improvement on the lower
bound frontier, where he showed an Q((lg n/lglg n)?) cell probe
lower bound for the 2D range sum problem (a.k.a. weighted orthog-
onal range counting in 2D). This is the highest cell probe lower
bound known to date.

Larsen’s result has one substantial caveat, namely, it inherently
requires the queries to have large (9(lg n)-bit) output size. There-
fore, when measured per output-bit of a query, the highest lower
bound remains only Q(Ig n) per bit (for dynamic connectivity due
to Patragscu and Demaine [PD06]).

In light of this, a concrete milestone that was identified en route
to proving w(lg? n) dynamic cell probe lower bounds, was to prove
an w(lgn) cell probe lower bound for boolean (a.k.a. decision) data
structure problems (the problem was explicitly posed in [Lar12a,
Tho13, Lar13] and the caveat with previous techniques requiring
large output has also been discussed in e.g. [Pat07, CGL15]). We
stress that this challenge is provably a prerequisite for going be-
yond the w(lg? n) barrier for general (8(lg n)-bit output) problems:
Indeed, consider a dynamic data structure problem £ maintaining
a database with updates U and queries Q, where each query g € Q
outputs Ig n bits. If one could prove an w(lg? n) lower bound for P,
this would directly translate into an w(lgn) lower bound for the
following induced dynamic boolean problem PPo0l: Pbool hag the
same set of update operations U, and has queries Q" := Q x [lgn].
Upon a query (g, i), the data structure should output the i-th bit
(P(q,U)); of the answer to the original query q w.r.t the database
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U. An w(lg n) lower bound then follows, simply because each query
of P can be simulated by lg n queries of Pbool and the update time
is preserved. Thus, to break the lg? n-barrier for cell probe lower
bounds, one must first prove a super-logarithmic lower bound for
some dynamic boolean problem. Of course, many classic data struc-
ture problems are naturally boolean (e.g., reachability, membership,
etc.), hence studying decision data structure problems is interesting
on its own.

Technically speaking, the common reason why all previous tech-
niques hitherto (e.g., [Pat07, Lar12a, WY16]) fail to prove super-
logarithmic lower bounds for dynamic problems with small output
size, is that they all heavily rely on each query revealing a large
amount of information about the database. In contrast, boolean
queries can reveal at most one bit of information, and thus any
such technique is doomed to fail. We elaborate on this excruciating
obstacle and how we overcome it in the following subsection.

We develop a fundamentally new lower bound method and
use it to prove the first super-logarithmic lower bounds for dy-
namic boolean data structure problems. Our results apply to nat-
ural boolean versions of several classic data structure problems.
Most notably, we study a boolean variant of the dynamic 2D range
counting problem. In 2D range counting, n points are inserted one-
by-one into an [n] X [n] integer grid, and given a query point
q = (x,y) € [n] X [n], the data structure must return the num-
ber of points p dominated by q (i.e., p.x < x and p.y < y). This is
one of the most fundamental data structure problems in computa-
tional geometry and spatial database theory (see e.g., [Aga04] and
references therein). It is known that a variant of dynamic “range
trees" solve this problem using O((lg n/lg lg n)?) amortized update
time and O((lg n/lglg n)?) worst case query time ([BGJS11]). We
prove an Q(lg!*> n) lower bound even for a boolean version, called
2D range parity, where one needs only to return the parity of the
number of points dominated by g. This is, in particular, the first
w(lgn) lower bound for the (classical) 2D range counting prob-
lem. We are also pleased to report that this is the first progress
made on the 5 important open problems posed in Mihai Patragcu’s
obituary [Tho13].

In addition to the new results for 2D range parity, we also prove
the first w(lg n) lower bounds for the classic (non-boolean) prob-
lems of dynamic range selection and range median, as well as an
«(lg n) lower bound for a boolean version of polynomial evaluation.
We formally state these problems, our new lower bounds, and a
discussion of previous state-of-the-art bounds in Section 3.

Organization. Due to space constraints, the following extended
abstract contains only an exposition of our main results and techni-
cal contributions, while most proofs are deferred to the full version
of this paper. We begin with a streamlined overview of our technical
approach in light of previous data structure lower bounds (Section
2). Section 3 describes applications of our main result (Theorem 1)
to higher dynamic lower bounds for 2D Range Counting and for
the rest of the aforementioned data structure problems. In Section
5 we provide the necessary background, definitions and setup for
our main result. Section 6 contains the proof of our main technical
contribution (Theorem 1 below).
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2 TECHNIQUES

2.1 Previous Techniques

To better understand the challenge involved in proving super-
logarithmic lower bounds for boolean data structure problems, and
how our approach departs from previous techniques that fail to over-
come it, we first revisit Larsen’s Q(lg? n) lower bound technique
for problems with ©(lg n)-bit output size, which is most relevant
for our work. (We caution that a few variations [CGL15, WY16]
of Larsen’s [Lar12a] approach have been proposed, yet all of them
crucially rely on large query output size). The following overview
is presented in the context of the 2D range sum problem for which
Larsen originally proved his lower bound. 2D range sum is the vari-
ant of 2D range counting where each point is assigned a ©(lg n)-bit
integer weight, and the goal is to return the sum of weights as-
signed to points dominated by the query g. Clearly this is a harder
problem than 2D range counting (which corresponds to all weights
being 1) and 2D range parity (which again has all weights being 1,
but now only 1 bit of the output must be returned).

Larsen’s Lower Bound [Lar12a]. Larsen’s result combines the sem-
inal chronogram method of Fredman and Saks [FS89] together with
the cell sampling technique introduced by Panigrahy et al. [PTW10].
The idea is to show that, after n random updates have been per-
formed,! any data structure (with poly Ig n update time) must probe
many cells when prompted on a random range query. To this end,
the n random updates are partitioned into ¢ := O(lgn/lglgn)
epochs Up,...,U;,...,Uj, where the i-th epoch U; consists of
B! updates for f = polylgn. The goal is to show that, for each
epoch i € {1,...,{}, a random query must read in expectation
Q(lg n/1glg n) memory cells whose last modification occurred dur-
ing the ith epoch U;. Summing over all epochs then yields a Q(Ig? n)
query lower bound.

To carry out this approach, one restricts the attention to epoch
i, assuming all remaining updates in other epochs (U_;) are fixed
(i.e., only U; is random). For a data structure D, let A; denote the
set of memory cells associated with epoch i, i.e., the cells whose
last update occurred in epoch i. Clearly, any cell that is written
before epoch i cannot contain any information about U;, while
the construction guarantees there are relatively few cells written
after epoch i, due to the geometric decay in the lengths of epochs.
Thus, “most" of the information D provides on U; comes from cell
probes to A; (hence, intuitively, the chronogram method reduces a
dynamic problem into =~ lg n nearly independent static problems).

The high-level idea is to now prove that, if a too-good-to-be-true
data structure D exists, which probes o(lg n/lglg n) cells associated
with epoch i on an average query, then D can be used to devise
a compression scheme (i.e., a “one-way" communication protocol)
which allows a decoder to reconstruct the random update sequence
U; from an o(H(U;))-bit message, an information-theoretic contra-
diction.

Larsen’s encoding scheme has the encoder (Alice) find a subset
C C A; of a fixed size, such that sufficiently many range queries
q € [n] x [n] can be resolved by C, meaning that these queries can
be answered without probing any cell in A; \ C. Indeed, the assump-
tion that the query algorithm of D probes only o(lg n/lglg n) cells

!Each update inserts a random point and assigns it a random ©(lg n)-bit weight.
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from A;, implies that a random subset of size |C| = |A;|/polylgn
cells resolves at least a (1/poly Ig n)°U8n/18lgn) = p=0()_fraction
of the n? possible queries, an observation first made in [PTW10].
This observation in turn implies that by sending the contents and
addresses of C, the decoder (Bob) can recover the answers to some
specific subset Q* C [n] X [n] of at least n2-o) queries (recall that
updates U_; are fixed, hence Bob can privately construct the con-
tents of cells associated to epochs j > i and the sets A; for j < i
are so small that Alice can send those to Bob as well). Intuitively,
if the queries of the problem are “sufficiently independent”, e.g.,
the answers to all queries are n-wise independent over a random
Uj;, then answering Q" or even any subset of Q* of size n would
be sufficient to reconstruct the entire update sequence U;. Thus,
by simulating the query algorithm Vq € Q* and using the set C to
“fill in" his missing memory cells associated with U;, Bob could es-
sentially recover U;. On the other hand, the update sequence itself
contains at least Q(|U;|) > |C| - w bits of entropy, hence it cannot
possibly be reconstructed from C, yielding an information-theoretic
contradiction. Here, and throughout the paper, w denotes the num-
ber of bits in a memory cell. We make the standard assumption that
w = Q(lgn), such that a cell has enough bits to store an index into
the sequence of updates performed.

It is noteworthy that range queries do not directly possess such
n-wise independence" property per-se, but using (nontrivial) tech-
nical manipulations (a-la [Pat07, Lar12a, WY16]) this argument can
be made to work, see the full version for details.

Alas, a subtle but crucial issue with the above scheme is that Bob
cannot identify the subset Q*, that is, when simulating the query
algorithm of D on a given query, he can never know whether an
unsampled (¢ C) cell requested by his simulation of the query
algorithm in fact belongs to A; or not. This issue is also faced by
Patragcu’s approach in [Pat07]. Larsen resolves this excruciating
problem by having Alice further send Bob the indices of (a subset
of) Q* that already reveals enough information about U; to get
a contradiction. In order to achieve the anticipated contradiction,
the problem must therefore guarantee that the answer to a query
reveals more information than it takes to specify the query itself
(©(Ig n) bits for 2D range sum). This is precisely the reason why
Larsen’s lower bound requires Q(lg n)-bit weights assigned to each
input point, whereas for the boolean 2D range parity problem, all
bets are off.

«

2.2 Our Techniques

We develop a new lower bound technique which ultimately circum-
vents the aforementioned obstacle that stems from Bob’s inability
to identify the subset Q*. Our high-level strategy is to argue that
an efficient dynamic data structure for a boolean problem, induces
an efficient one-way protocol from Alice (holding the entire update
sequence U := Uy, ..., U; as before) to Bob (who now receives
a query g € Q and U \ {U;}), which enables Bob to answer his
boolean query with some tiny yet nontrivial advantage over ran-
dom guessing. For a dynamic boolean data structure problem #, we
denote this induced communication game (corresponding to the ith
epoch) by Gip. The following “weak simulation" theorem, which is
the centerpiece of this paper, applies to any dynamic boolean data
structure problem #:
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THEOREM 1 (ONE-WAY WEAK SIMULATION THEOREM, INFORMAL).
Let P be any dynamic boolean data structure problem, with n random
updates grouped into epochs U = {Ui}f:1 followed by a single
query q € Q. If P admits a dynamic data structure D with word-size
w, worst-case update time t,, and average (over Q) expected query
time tq with respect to U, satisfying tg>tu,w < n®-1, then there
exists some epoch i € [{] for which there is a one-way randomized
communication protocol for G;, in which Alice sends Bob a message of

only |U; |/(wt,)®D bits, and after which Bob successfully computes
P (g, U) with probability at least 1/2 + exp (—tq 1g2(w - t,)/lg n).2

The formal statement and proof of the above theorem can be
found in Section 6. Before we elaborate on the proof of Theorem 1,
let us explain informally why such a seemingly modest guaran-
tee suffices to prove super-logarithmic cell probe lower bounds
on boolean problems with a certain “list-decoding" property. If
we view query-answering as mapping an update sequence to an
answer vector,’ then answering a random query correctly with
probability 1/2 + e™" () would correspond to mapping an update
sequence to an answer vector that is (1/2 — e_r("))—far from the
true answer vector defined by the problem. Intuitively, if the cor-
rect mapping defined by the problem is list-decodable in the sense
that in the (1/2 — e~ "(")-ball centered at any answer vector, there
are very few codewords (which are the correct answer vectors cor-
responding to some update sequences), then knowing any vector
within distance (1/2— e_r(")) from the correct answer vector would
reveal a lot of information about the update sequence. Standard
probabilistic arguments [Vad12] show that when the code rate is
n W (e, |Q| = n®W as for 2D range parity), a random code is
“sufficiently” list-decodable with r(n) = Q(lgn), i.e., for most data
structure problems, the protocol in the theorem would reveal too
much information if Bob can predict the answer with probability,
say 1/2 + ¢0-011gn Therefore, Theorem 1 would imply that the

1.5
query time must be at least t5 = Q(lglzg(w—-:)

structure has t;, = polylg n worst-case update time and standard
word-size w = ©(lg n), the above bound gives t4 > Q(lgl'5 n). In-
deed all our concrete lower bounds are obtained by showing a
similar list-decoding property with r(n) = Q(lg n), yielding a lower
bound of Q(lg!*> n). See Subsection 3 for more details.

). Assuming the data

Overview of Theorem 1 and the “Peak-to-Average” Lemma. We
now present a streamlined overview of the technical approach and
proof of our weak one-way simulation theorem, the main result of
this paper. Let # be any boolean dynamic data structure problem
and denote by n; := |U;| = B the size of each epoch of random
updates (where f := (t, )M and Zle n; = n). Recall that in GL
Alice receives the entire sequence of epochs U, Bob receives g €g Q
and U \ {U;}, and our objective is to show that Alice can send Bob
a relatively short message (n; /(ty, - w)e(l) bits) which allows him to
compute the answer to g w.r.t U, denoted P(q, U) € {0, 1}, with
advantage § := exp(~tq 1g%(w - tu)/\/lg_n) over 1/2.

Suppose £ admits a dynamic data structure D with worst-case
update time ¢, and expected query time t4 with respect to U and

2Throughout the paper, we use exp(x) to denote 20,
3 An answer vector is a |Q|-dimensional vector containing one coordinate per query,
whose value is the answer to this query.
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q €r Q.Following Larsen’s cell sampling approach, a natural course
of action for Alice is to generate the updated memory state M of
D (w.r.t U), and send Bob a relatively small random subset Cy of
the the cells A; associated with epoch i, where each cell is sampled
with probability p = 1/(t, - w)®(1). Since the expected query time
of D is tq and there are £ = O(Ig 5 1) epochs, the average (over
i € [£]) number of cells in A; probed by a query is t4/¢, hence
the probability that Alice’s random set Cy resolves Bob’s random
query q €r Q is at least € := pg(t‘?/[). Let us henceforth denote this
desirable event by ‘Wy. It is easy to see that, if Alice further sends
Bob all cells that were written (associated) with future epochs U;
(which can be done using less than n; /(w - £.)°® bits due to the
geometric decay of epochs and the assumption that D probes at
most t; cells on each update operation), then conditioned on Wy,
Bob would have acquired all the necessary information to perfectly
simulate the correct query-path of D on his query q.

Thus, if Bob could detect the event ’VVq, the above argument
would have already yielded an advantage of roughly Pr['Wy] >
e = pOUtall) > exp(—tq lg(w - t,,)/1gn) > & (as Bob could simply
output a random coin-toss unless Wq occurs), and this would have
finished the proof. Unfortunately, certifying the occurrence of Wy
is prohibitively expensive, precisely for the same reason that iden-
tifying the subset Q* is costly in Larsen’s argument. Abandoning
the hope for certifying the event ‘W, (while insisting on low com-
munication) means that we must take a fundamentally different
approach to argue that the noticeable occurrence of this event can
somehow still be exploited implicitly so as to guarantee a nontrivial
advantage. This is the heart of the paper, and the focal point of the
rest of this exposition.

The most general strategy Bob has is to output his “maximum
likelihood" estimate for the answer (g, U) given the information
he receives, i.e., the more likely posterior value of (P (g, U) [U-;, Co)
{0, 1} (for simplicity of exposition, we henceforth ignore the con-
ditioning on U_;, Cy and on the set of updates D makes to future
epochs U; which Alice sends as well). Assuming without loss of
generality that the answer to the query is P(q, U) = 1, when Wy,
occurs, this strategy produces an advantage (“bias") of 1/2 (since
when ‘W occurs, the answer P (g, U) is completely determined by
U_;, Co and the updates to U.;), and when it does not occur, the
strategy produces a bias of Pr[(P(q, U) = 1|44_/(])] — 1/2. Thus, the
overall bias is

Pr[W,] - (1/2) + Pr{W,] - (Pr[(?’(q, U) = 1[Wy)] - 1 /2) .

This quantity could be arbitrarily close to 0, since we have no control
over the distribution of the answer conditioned on the complement
event Wq, which might even cause perfect cancellation of the two
terms.

Nevertheless, one could hope that such unfortunate cancellation
of our advantage can be avoided if Alice reveals to Bob some little
extra “relevant” information. To be more precise, let Sq be the set
of memory addresses D would have probed when invoked on the
query q according to Bob’s simulation. That is, Bob simulates D until
epoch i, updates the contents for all cells that appear in Alice’s
message, and simulates the query algorithm for ¢ on this memory
state. In particular, if the event Wy occurs, then S is the correct
set of memory cells the data structure probes. Of course, the set S4

€
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is extremely unlikely to be “correct” as Pr[Wj] is tiny, so S4 should
generally be viewed as an arbitrary subset of memory addresses.
Now, the true contents of the cells Sq (w.r.t the true memory state
M) induce some posterior distribution on the correct answer P(q, U)
(in particular, when Wy occurs, the path is correct and its contents
induce the true answer).

Imagine that Alice further reveals to Bob the true contents of
some small subset Y C S¢-i.e., an assignment x € [ZW]Y, The poste-
rior distribution of the answer (g, U) conditioned on x is simply
the convex combination of the posterior distributions conditioned
on “Sg = z” for all 2’s that are consistent with x (z|y = x), weighted
by the probability of z (Pr[Sq = z]) up to some normalizer. The
contribution of each term in this convex combination (i.e., of each
posterior distribution induced by a partial assignment x) to the
overall bias, is precisely the average, over all full assignments z to
cells in Sg which are x-consistent, of the posterior bias induced by
the event “Sq = z” (i.e., when the entire Sy is revealed). For each
full assignment z, we denote its latter contribution by f(z), hence
the expected bias contributed by the event “z|ly = x” is nothing
but the sum of f(z) over all z’s satisfying z|y = x. Furthermore,
we know that there is some assignment z*, namely the contents of
Sq when Wy occurs, such that | f(z*)] is “large” (recall the bias is
1/2 in this event). Thus, the key question we pose and set out to
answer, is whether it is possible to translate this £e “peak” of f into
a comparable lower bound on the “average” bias ), |Z zly=x [ (z)l,
by conditioning on the assignments to a small subset of coordi-
nates Y. Indeed, if such Y exists, Alice can sample independently
another set of memory cells C; and send it to Bob. With probability
pm, all contents of Y are revealed to Bob, and we will have the
desired advantage. In essence, the above question is equivalent to
the following information-theoretic problem:

Let Z be a k-variate random variable and B a uniform
binary random variable in the same probability space,
satisfying: (i) Pr[Z = z*] > € for some z*; (ii) H(B |
Z = z*) = 0. What is the smallest subset of coordinates
Y C [k] suchthatHB | (Z|y)) <1-n7?

The crux of our proof is the following lemma, which asserts that

conditioning on only |Y| = O(y/klg(1/€)) coordinates suffices to
achieve a non-negligible average advantage n = exp(—+/k lg(1/¢)).

LemMA 1 (PEAK-TO-AVERAGE LEMMA). Let f : 5K — R be any
real function satisfying: (i) 3. , csk | f(2)| < 1;and (ij)max, .5k | f(2)| 2
€. Then there exists a subset Y of indices, |Y| < O (\/k -lg l/e), such

that ZyEZY | 2z)y=y f(@)| = exp(—vk - 1g1/€).

An indispensable ingredient of the proof is the usage of low-
degree (multivariate) polynomials with “threshold"-like phenom-
ena, commonly known as (discrete) Chebyshev polynomials.* The
lemma can be viewed as an interesting and efficient way of “de-
composing" a distribution into a small number of conditional dis-
tributions, “boosting” the effect of a single desirable event, hence
the Peak-to-Average Lemma may be of independent interest (see
the full version for a high-level overview and the formal proof). In

“These are real polynomials defined on the k-hypercube, of degree O(+/k1g(1/y))
and whose value is uniformly bounded by y everywhere on the cube except the all-0
point which attains the value 1.
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the full version, we also show that the lemma is tight, in the sense
that there are functions for which conditioning on o (\/k -lg1/ e)
of their coordinates provides no advantage at all.

To complete the proof of the simulation theorem, we apply the
Peak-to-Average Lemma with f, k := t4 and € := pe(tfl/[) =
(1/ wtu)o(tq/ ). The lemma guarantees that Bob can find a small
(specific) set of coordinates Y C Sg, such that his maximum likeli-
hood estimate conditioned on the true value y of the coordinates
in Y must provide an advantage of at least

exp(—vk -1g1/e) = exp (—tq lg(w - ty) /g n) .
Since |Y| is small, the probability that Y is contained in Alice’s

exp (—tq 1g%(w - t,)//lg n). Overall,
Bob’s maximum-likelihood strategy provides the desired advantage
& we sought, which completes the proof of Theorem 1.

>

second sample C; is p|Y|

3 APPLICATIONS: NEW LOWER BOUNDS

We apply our new technique to a number of classic data structure
problems, resulting in a range of new lower bounds. This section
describes the problems and the lower bounds we derive for them,
in context of prior work. As a warm-up, we prove a lower bound
for a somewhat artificial version of polynomial evaluation:

Polynomial Evaluation. Consider storing, updating and evaluat-
ing a polynomial P over the Galois field GF (29). Here we assume
that elements of GF(2%) are represented by bit strings in {0, 1},
i.e. there is some bijection between GF (29) and {0, 1}9. Elements
are represented by the corresponding bit strings. Any bijection
between elements and bit strings suffice for our lower bound to
apply.

The least-bit polynomial evaluation data structure problem is
defined as follows: A degree n < 2d/4 polynomial P(x) = X7 aix’t
over GF(2%) is initialized with all n + 1 coefficients a; being 0. An
update is specified by a tuple (i, b) where i € [n+ 1] is an index and
b is an element in GF (2d). It changes the coefficient a; such that
a;j < aj + b (where addition is over GF (Zd)). A query is specified
by an element y € GF(2¢) and one must return the least significant
bit of P(y). Recall that we make no assumptions on the concrete
representation of the elements in GF(29), only that the elements
are in a bijection with {0, 1} so that precisely half of all elements
in GF(2%) have a 0 as the least significant bit.

Using our weak one-way simulation theorem, we prove the
following lower bound in the full version of the paper:

THEOREM 2. Any cell probe data structure for least-bit polynomial
evaluation over GF(Zd), having cell size w, worst case update time
ty and expected average query time tq must satisfy:

ol S i)

Igz(tuw)’ (tyw)O)

Note that this lower bound is not restricted to have d = O(Ign)
(corresponding to having polynomially many queries). It holds for
arbitrarily large d and thus demonstrates that our lower bound
actually grows as log of the number of queries, times a \/lg_n At
least up to a certain (unavoidable) barrier (the y/n bound in the

tq=Q
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min is precisely when the query time is large enough that the
data structure can read all cells associated to more than half of
the epochs). We remark that the majority of previous lower bound
techniques could also replace a lg n in the lower bounds by a d for
problems with 2¢ queries. Our introduction focuses on the most
natural case of polynomially many queries (d = ©(lg n)) for ease of
exposition.

Polynomial evaluation has been studied quite intensively from
a lower bound perspective, partly since it often allows for very
clean proofs. The previous work on the problem considered the
standard (non-boolean) version in which we are required to output
the value P(x), not just its least significant bit. Miltersen [Mil95]
first considered the static version where the polynomial is given
in advance and we disallow updates. He proved a lower bound of
tq = Q(d/lgS) where S is the space usage of the data structure in
number of cells. This was improved by Larsen [Lar12b] to tq =
Q(d/lg(Sw/(nd))), which remains the highest static lower bound
proved to date. Note that the lower bound peaks at t; = Q(d) for
linear space S = O(nd/w). Larsen [Lar12b] also extended his lower
bound to the dynamic case (though for a slightly different type
of updates), resulting in a lower bound of t; = Q(d1g n/(Ig(wty) -
lg(wt,, /d)). Note that none of these lower bounds are greater than
tq = Q(lgn/lgt,) per output bit and in that sense they are much
weaker than our new lower bound.

In [GMO07], Gél and Miltersen considered succinct data structures
for polynomial evaluation. Succinct data structures are data struc-
tures that use space close to the information theoretic minimum
required for storing the input. In this setting, they showed that any
data structure for polynomial evaluation must satisfy tqr = Q(n)
when 29 > (1 + €)n for any constant € > 0. Here r is the redun-
dancy, i.e. the additive number of extra bits of space used by the
data structure compared to the information theoretic minimum.
Note that even for data structures using just a factor 2 more space
than the minimum possible, the time lower bound reduces to the
trivial tg = Q(1). For data structures with non-determinism (i.e.,
they can guess the right cells to probe), Yin [Yin10] proved a lower
bound matching that of Miltersen.

On the upper bound side, Kedlaya and Umans [KU08] presented
a word-RAM data structure for the static version of the prob-
lem, having space usage nl*€q1+o() and worst case query time
lgo(l) n-di+o(l), getting rather close to the lower bounds. While
not discussed in their paper, a simple application of the logarith-
mic method makes their data structure dynamic with an amortized
update time of n€d!*°() and worst case query time 1g®™) n-g1*+o(),

Parity Searching in Butterfly Graphs. In a seminal paper [Pat08],
Patrascu presented an exciting connection between an entire class
of data structure problems. Starting from a problem of reachability
oracles in the Butterfly graph, he gave a series of reductions to
classic data structure problems. His reductions resulted in t4
Q(lgn/1g(Sw/n)) lower bounds for static data structures solving
any of these problems.

We modify Patrascu’s reachability problem such that we can use
it in reductions to prove new dynamic lower bounds. In our version
of the problem, which we term parity searching in Butterfly graphs,
the data structure must maintain a set of directed acyclic graphs
(Butterfly graphs of the same degree B, but different depths) under
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updates which assign binary weights to edges, and support queries
that ask to compute the parity of weights assigned to edges along
a number of paths in these graphs. The formal definition of this
version of the problem is given in the full version.

While this new problem might sound quite artificial and incom-
patible to work with, we show that parity searching in Butterfly
graphs in fact reduces to many classic problems, hence proving
lower bounds on this problem is the key to many of our results.
Indeed, our starting point is the following lower bound:

THEOREM 3. Any dynamic data structure for parity searching in
Butterfly graphs of degree B = (wty,)8, with a total of n edges, having
cell size w, worst case update time t,, and expected average query

time tq must satisfy:
1 3/2
g=o| S|
lg” (tyw)

In the remainder of this section, we present new lower bounds
which we derive via reductions from parity searching in Butterfly
graphs . For context, our results are complemented with a discussion
of previous work.

2D Range Counting. In 2D range counting, we are given n points
P on a [U] x [U] integer grid, for some U = n9W . We must prepro-
cess the points such that given a query point q = (x,y) € [U] X [U],
we can return the number of points p € P that are dominated by q
(i.e. p.x < g.x and p.y < q.y). In the dynamic version of the prob-
lem, an update specifies a new point to insert. 2D range counting is
a fundamental problem in both computational geometry and spatial
databases and many variations of it have been studied over the past
many decades.

Via a reduction from reachability oracles in the Butterfly graph,
Patrascu [Pat08] proved a static lower bound of t; = Q(lg n/lg(Sw/n))
for this problem, even in the case where one needs only to return
the parity of the number of points dominated by g. Recall that this
is the 2D range parity problem.

It turns out that a fairly easy adaptation of Patrascu’s reduction
implies the following:

THEOREM 4. Any dynamic cell probe data structure for 2D range
parity, having cell size w, worst case update time t,, and expected
query time tq, gives a dynamic cell probe data structure for parity
searching in Butterfly graphs (for any degree B) with cell size w, worst
case update time O(ty) and average expected query time tq.

Combining this with our lower bound for parity searching in
Butterfly graphs (Theorem 3), we obtain:

CoROLLARY 1. Any cell probe data structure for 2D range parity,
having cell size w, worst case update time t,, and expected query time

tq must satisfy:
1 3/2
g=o| S|
lg” (tyw)

In addition to Patrascu’s static lower bound, Larsen [Lar12a]
studied the aforementioned variant of the range counting problem,
called 2D range sum, in which points are assigned ©(lg n)-bit integer
weights and the goal is to compute the sum of weights assigned
to points dominated by q. As previously discussed, Larsen’s lower
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bound for dynamic 2D range sum was t; = Q((Ig n/lg(t, w))?) and
was the first lower bound to break the Q(lg n)-barrier, though only
for a problem with ©(lg n) bit output. Weinstein and Yu [WY16]
later re-proved Larsen’s lower bound, this time extending it to the
setting of amortized update time and a very high probability of error.
Note that these lower bounds remain below the logarithmic barrier
when measured per output bit of a query. While 2D range counting
(not the parity version) also has ©(lg n)-bit outputs, it seems that the
techniques of Larsen and Weinstein and Yu are incapable of proving
an w(lgn) lower bound for it. Thus the strongest previous lower
bound for the dynamic version of 2D range counting is just the
static bound of t; = Q(lg n/lg(t,w)) (since one cannot build a data
structure with space usage higher than S = t,n in n operations).
As a rather technical explanation for why the previous techniques
fail, it can be observed that they all argue that a collection of m =
n/poly(lg n) queries have Q(mlg n) bits of entropy in their output.
But for 2D range counting, having n/poly(lg n) queries means that
on average, each query contains just poly(lg n) new points, reducing
the total entropy to something closer to O(m1glg n). This turns out
to be useless for the lower bound arguments. It is conceivable that
a clever argument could show that the entropy remains Q(mlgn),
but this has so forth resisted all attempts.

From the upper bound side, JaJa, Mortensen and Shi [JMS04]
gave a static 2D range counting data structure using linear space
and O(Ig n/lglg n) query time, which is optimal by Patrascu’s lower
bound. For the dynamic case, Brodal et al. [BGJS11] gave a data
structure with tg = t,, = O((Ign/lglg n)%). Our new lower bound
shrinks the gap between the upper and lower bound on t4 to only

a factor 4/lgnlglgn for t,, = poly(lg n).

2D Rectangle Stabbing. In 2D rectangle stabbing, we must main-
tain a set of n 2D axis aligned rectangles with integer coordinates,
i.e. rectangles are of the form [x1, x2] X [y1, y2]. We assume coordi-
nates are bounded by a polynomial in n. An update inserts a new
rectangle. A query is specified by a point ¢, and one must return the
number of rectangles containing g. This problem is known to be
equivalent to 2D range counting via a folklore reduction. Thus all
the bounds in the previous section, both upper and lower bounds,
also apply to this problem. Furthermore, 2D range parity is also
equivalent to 2D rectangle parity, i.e. returning just the parity of
the number of rectangles stabbed.

Range Selection and Range Median. In range selection, we are to
store an array A = {A[0],...,A[n — 1]} where each entry stores
an integer bounded by a polynomial in n. A query is specified by
a triple (i, j, k). The goal is to return the index of the k’th smallest
entry in the subarray {A[i], ..., A[j]}. In the dynamic version of
the problem, entries are initialized to 0. Updates are specified by an
index i and a value a and has the effect of changing the value stored
in entry A[i] to a. In case of multiple entries storing the same value,
we allow returning an arbitrary index being tied for k’th smallest.

We also give a reduction from parity searching in Butterfly
graphs. We remark that no reductions were known between the
static versions of the problems and thus our new reductions also
simplify previous static lower bounds.

THEOREM 5. Any dynamic cell probe data structure for range
selection, having cell size w, worst case update time t,, and expected
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query time tq, gives a dynamic cell probe data structure for parity
searching in Butterfly graphs (for any degree B) having cell size w,
worst case update time O(t,, 1g% n) and expected average query time
tq. Furthermore, this holds even if we force i = 0 in queries (i, j, k)
and require only that we return whether the k’th smallest element in
A[0], ..., A[j] is stored at an even or odd position.

Since we assume w = Q(lg n), combining this with Theorem 3
immediately proves the following:

COROLLARY 2. Any cell probe data structure for range selection,
having cell size w, worst case update time t,, and expected query time
lg3/ Zn

tq must satisfy:
tg =Q| —=——|.
! (1g3<ruw>)

Furthermore, this holds even if we force i = 0 in queries (i, j, k) and
require only that we return whether the k’th smallest element in
A[0], ..., A[j] is stored at an even or odd position.

While range selection is not a boolean data structure problem,
it is still a fundamental problem and for the same reasons as men-
tioned under 2D range counting, the previous lower bound tech-
niques seem incapable of proving w(lgn) lower bounds for the
dynamic version. Thus we find our new lower bound very valuable
despite the problem not beeing boolean . Also, we do in fact manage
to prove the same lower bound for the boolean version where we
need only determine whether the index of the k’th smallest element
is even or odd.

For the static version of the problem, Jorgensen and Larsen [JL11]
proved a lower bound of t; = Q(Ign/lg(Sw/n)). Their proof was
rather technical and a new contribution of our work is that their
static lower bound now follows by reduction also from Pétragcu’s
lower bound for reachability oracles in the Butterfly graph. For the
dynamic version of the problem, no lower bound stronger than the
tq = Q(gn/lg(t,w)) bound following from the static bound was
previously known.

On the upper bound side, Brodal et al. [BGJS11] gave a linear
space static data structure with query time t4 = O(lg n/lglgn). This
matches the lower bound of Jergensen and Larsen. They also gave
a dynamic data structure with t4 = t, = O((Ign/lglg n)?).

Since we prove our lower bound for the version of range selection
where i = 0, also known as prefix selection, we can re-execute a
reduction of Jergensen and Larsen [JL11]. This means that we also
get a lower bound for the fundamental range median problem.
Range median is the natural special case of range selection where

k=[G-i+1)/2].

COROLLARY 3. Any cell probe data structure for range median,
having cell size w, worst case update time t,, and expected query time

tq must satisfy:
1 3/2
g=o| 2"
lg”(tuw)

Furthermore, this holds even if we are required only to return whether
the median amongst A[i], . . ., A[j] is stored at an even or odd position.

We note that the upper bound of Brodal et al. for range selection
is also the best known upper bound for range median.

984

4 ORGANIZATION OF SUBSEQUENT
SECTIONS

In Section 5 we introduce both the dynamic cell probe model and
the one-way communication model, which is the main proxy for
our results. In Section 6 we state the formal version of Theorem 1
and give its proof. Due to space constraints, the proof of the Peak-
to-Average lemma, as well as the proofs of all our lower bounds for
concrete data structure problems, are deferred to the full version of
this paper.

5 PRELIMINARIES

The dynamic cell probe model. A dynamic data structure in the
cell probe model consists of an array of memory cells, each of which
can store w bits. Each memory cell is identified by a w-bit address,
so the set of possible addresses is [2"]. It is natural to assume that
each cell has enough space to address (index) all update operations
performed on it, hence we assume that w = Q(lg n) when analyzing
a sequence of n operations.

Upon an update operation, the data structure can perform read
and write operations to its memory so as to reflect the update,
by probing a subset of memory cells. This subset may be an arbi-
trary function of the update and the content of the memory cells
previously probed during this process. The update time of a data
structure, denoted by ¢, is the number of probes made when pro-
cessing an update (this complexity measure can be measured in
worst-case or in an amortized sense). Similarly, upon a query op-
eration, the data structure performs a sequence of probes to read
a subset of the memory cells in order to answer the query. Once
again, this subset may by an arbitrary (adaptive) function of the
query and previous cells probed during the processing of the query.
The query time of a data structure, denoted by tg, is the number of
probes made when processing a query.

5.1 One-way Protocols and “Epoch"”
Communication Games

A useful way to abstract the information-theoretic bottleneck of
dynamic data structures is communication complexity. Our main
results (both upper and lower bounds) are cast in terms of the
following two-party communication games, which are induced by
dynamic data structure problems:

DEFINITION 1 (EPOocH COMMUNICATION GAMES G;,). Let P be
a dynamic data structure problem, consisting of a sequence of n up-
date operations divided into epochs U = (Ug,Uj_q, ..., Uy), where
|U;| = n; (and 3; n;j = n), followed by a single query q € Q. For
each epoch i € [{], the two-party communication game Gi? induced
by P is defined as follows:

o Alice receives all update operations U = (Up,Uj_q, ..., Uy).

o Bob receives U_; := U \ {U;} (i.e.,, all updates except those in
epoch i) and a query q € Q for P.

o The goal of the players is to output the correct answer to q, that
is, to output P(q, U).

We shall consider the following restricted model of communica-
tion for solving such communication games.
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DEFINITION 2 (ONE-WAY RANDOMIZED COMMUNICATION PROTO-
coLs). Let f : X x Y +— {0,1} be a two-party boolean function. A
one-way communication protocol  for f(x,y) under input distribu-
tion u proceeds as follows:

o Alice and Bob have shared access to a public random string R
of their choice.
o Alice sends Bob a single message, M a(x, R), which is only a
function of her input and the public random string.
e Based on Alice’s message, Bob must output a value vy
vn(y’ R, MA) € {O’ 1}'
We say that 7 e-solves f under p with cost m, if :

e For any input x, Alice never sends more than m bits to Bob, i.e.,
[Ma(x,R)| < m, forall x,r.
b Pr(x,y)~p,R[vﬂ = f(x7 y)] >1/2+e.

Let us denote by

—_
adv(f, p, m) := sup{e | 3 one-way protocol =
that e-solves f under y with cost m}

the largest advantage e achievable for predicting f under y via an
m-bit one-way communication protocol. For example, when applied
to the boolean communication problem GZ,, we say that G;) has
an m-bit one-way communication protocol with advantage e, if

—_— .
adv(GlP, i, m) > €. We remark that we sometimes use the notation
||| to denote the message-length (i.e., number of bits m) of the
communication protocol 7.

6 ONE-WAY WEAK SIMULATION OF
DYNAMIC DATA STRUCTURES

In this section we prove our main result, Theorem 1. For any dy-
namic decision problem $, we show that if  admits an efficient
data structure D with respect to a random sequence of n updates
divided into ¢ := lgﬁ n epochs U = (Ug,Up_q,...,Uq), then we
can use it to devise an efficient one-way communication protocol
for the underlying two-party communication problem GiP of some
(large enough) epoch i, with a nontrivial success (advantage over
random guessing).

Throughout this section, let us denote the size of epoch i by
n; := |U;| = B, where we require § = (w- tu)g(l), and Zle n; =n.
We prove the following theorem.

Theorem 1 (restated). Let P be a dynamic boolean data structure
problem, with n rqndom updates grouped into epochs U = {Ui}le,
such that |U;| = f*, followed by a single query q € Q. If P admits a
dynamic data structure D with worst-case update time t,, and average
(over Q) expected query time tq satisfying tq(w - t,,)**! < n!/2, then
there exists some epoch i € [£/2, €] for which

adv (G, U, mif(w- 1))
exp (—tq 1g%(w - tu)/\/lg_n)

aslongasff = (w- )W > (w . 1,)2 for a constant a > 1.

>

ProoF. Consider the memory state M = M(U) of D after the
entire update sequence U, and for each cell ¢ € M, define its
associated epoch E(c) to be the last epoch in [¢] during which ¢
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was probed (note that E(c) is a random variable over the random
update sequence U). For each query q € @, let Ty be the random
variable denoting the number of probes made by D on query g (on
the random update sequence). For each query ¢ and epoch i, let T,;
denote the number of probes on query g to cells associated with
epoch i (i.e., cells ¢ for which E(c) = i).

By definition, we have ﬁ 2qeBlTgl =tgand Ty = Zle Té.
Then by averaging, there exists one epoch i € [£/2,{] such that
ﬁ 2geQ ]E[Té] < 2tq/t. By Markov’s inequality and a union
bound, there exists a subset Q" C Q of |Q|/2 queries such that both

E[T;] <8tq/¢ and  E[T,] <8tq, (1)

for every query g € Q. By Markov’s inequality and union bound,
for each g € Q’, we have

I(Z[T; < 32tq/C, Ty < 32t4] > 1/2. (2)
Note that, while Bob cannot identify the event “T} < 324/, Ty <
32t4" (as it depends on Alice’s input as well), he does know whether
his query g is in Q” or not, which is enough to certify (2).
Now, suppose that Alice samples each cell associated with epoch
i in M independently with probability p, where
1

b= (w- t,)?

(note that, by definition of G!, Alice can indeed generate the mem-
ory state M and compute the associated epoch for each cell, as her
input consists of the entire update sequence). Let Cy be the resulting
set of cells sampled by Alice. Alice sends Bob Cy (both addresses
and contents). For a query g € Q’, let ‘W, denote the event that
the set of cells Cy Bob receives, contains all Té cells associated with
epoch i and probed by the data structure. By Equation (2), we have
that for every q € Q'

Pr [ Wy, Ty < 32t4] >
co,fu[ 7 Tq ql
p3all 'Ifo[Tqi < 32tq/C,Tq < 32tq] >

P32tq/€/2~ (3)

If Bob align detect the event "Wq, we would be done. Indeed, let Cy
denote the set of (addresses and contents of) cells associated with all
future epochs j < i, i.e., all the cells probed by D succeeding epoch
i. Due to the geometrically decreasing sizes of epochs, sending Cy
requires less than n;/(w - t,,)*"! bits of communication. Since Bob
has all the updates preceding epoch i, he can simulate the data
structure and generate the correct memory state of D right before
epoch i. In particular, Bob knows for every cell, assuming it is not
probed since epoch i (thus associated with some epoch j > i), what
its content will be. Therefore, when he is further given the messages
(co, c2), Bob would be able to simulate the data structure perfectly
on query g, assuming the event Wy occurs. If Bob could detect
Wy, he could simply output a random bit if it does not occur, and
follow the data structure if it does. This strategy would have already
produced an advantage 0fp32tq/{ > exp(—tgq 1g%(w-t,)/1g n), which
would have finished the proof. As explained in the introduction,
Bob has no hope of certifying the occurrence of the event ‘W,
hence we must take a fundamentally different approach for arguing
that condition (3) can nevertheless be (implicitly) used to devise a
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strategy for Bob with a nontrivial advantage. This is the heart of
the proof.

To this end, note that, given a query g € Q’, a received sample ¢y
and all cells ¢z associated with some epoch j < i, Bob can simulate D
on his partial update sequence (u—;), filling in the memory updates
according to ¢ and ¢y, and pretending that all cells in the query-
path of g which are associated with epoch i are actually sampled in
co (i.e., pretending that the event ‘W occurs). See Step 5 of Figure 1
for the formal simulation argument. Let M’(u_;, ¢o, c2) denote the
resulting memory state obtained by Bob’s simulation in the figure,
given u_; and his received sets of cells co, c2.

Now, let us consider the (deterministic) sequence of cells Sy that
D would probe given query g in the above simulation with respect
to Bob’s memory state M’ (u—;, co, c2). Let us say that the triple
(u—i, co, c2) is good for a query q € Q' if Pry, [ Wy|U-; = u—;,Co =
c0,C2 = c2] > p32t‘1/€/4 and |Sq| < 32t4. That is, (u-j, co, c2) is
good for g, if the posterior probability of ‘Wj is (relatively) high
and Sy is not too large. By Equation (3) and Markov’s inequality,
the probability that the triple (u—;, co, cz) satisfies Prq;[Wg, T <
32tqlu-i,co,c2] 2 p32t‘1/[/4, is at least p32tq/€/4 (indeed, the ex-
pectation in (3) can be rewritten as

U_i,Igo,Cz gl;[qu, Tq < 32tq|U_i, Co, C2],

since C; is a deterministic function of U). Note that when W
occurs, the value of Ty is completely determined given u—;, co and
¢z, in which case |Sq| = Ty, and thus the probability that (u-;, co, c2)
is good is at least p°**a/¢ /4. From now on, let us focus only on the
case that (u—;, co, c2) that Alice sends is good, since Bob can identify
whether u_;, ¢o, ¢z is good based on q and Alice’s message, and if it
is not, he will output a random bit.

We caution that Sq is simply a set of memory addresses in M,
not necessarily the correct one - in particular, while the addresses
of the cells Sy are determined by the above simulation, the contents
of these cells (in M) are not — they are a random variable of U;, as
the sample ¢ is very unlikely to contain all the associated cells).
For any assignment z € [2"]%4 to the contents of the cells in Sq. let
us denote by

Hq(z) = E?[Sq — z|u—, co, c2]

the probability that the memory content of the sequence of cells
Sq is equal to z, conditioned on u—, co, cz.

Every content assignment Z = z to S4, generates some posterior
distribution on the correct query path (i.e., with respect to the true
memory state M) and therefore on the output £(q, U) of the query
q with respect to U. Hence we may look at the joint probability
distribution of the event “P(g, U) = 1" and the assignment Z which
is

nq(2) = gr[?(q,ﬂ) =1, Sq « z | u—j,co, cz].

Now, consider the function

@ = f epen®) = 1402 = 5 - g (2). @

Equivalently, conditioned on u_;, co and ¢z, f(z) is the bias of the
random varaible P (g, U) conditioned on Sg « z, multiplied by the
probability of Sg « z.

Note that, since 114(z) < pq(z) for every assignment z, we have
|f(2)| < pg(z)/2, and since 14(z) is a probability distribution, this

986

fact implies that: (i) >, |f(z)| < % Furthermore, we shall argue
that Pr[ Wy | u—i, co,c2] 2 p32ta /e /4 (as we always condition on
good u—;, cg, c2), in which case the contents of Sy are completely
determined by u_;, co, c2 (we postpone the formal argument to the
Analysis section below). Denoting by z* the content assignment to
Sq induced by u_;, cg, c2, we observe that conditioned on ’VVq, Sq
will be precisely the correct set of cells probed by D on ¢, in which
case P(q, U) is determined by z*, g, u—;, co, c2. Formally, this fact
means that: (ii) | f(z*)| = 1 - Pr[Sq « 2* | uj, o, c2] = Q(p32a/?),

Conditions (i)+(ii) above imply that f = fl?_i,cO’Q satisfies the
premise of the Peak-to-Average Lemma (Lemma 1) with ¥ :=
[2%],k := O(tg), € = Q(p*?tal’) = exp(~tq lg?(w - t,)/1g n). Recall
that the lemma guarantees there is a not-too-large subset Y C Sg of
coordinates (= addresses) of Sg, which Bob can privately compute,
such that if the values of the coordinates in Y are also revealed,
then the conditional expectation of fl?,,»,co,cy namely

E

SqlY

Pr [P(q.U) = 1] u_i,co.c2.Sqly] — 1/2,

which is the average of Bob’s “maximum-likelihood" estimate for
P(gq, U), is non-negligible (the formal details are postponed to the
Analysis section below).

Given this insight, a natural strategy for the players is for Alice
to further send Bob the contents of cells in the subset Y. While
Alice does not know the subset Y,° she can use public randomness
to sample yet another random set C; of cells from the entire memory
M, where now every cell is sampled with equal probability p, and
send the subset of C; that is associated with epoch i to Bob. (Note
that it is important that this time the players use public randomness
to subsample from the entire memory state M, since Alice does not
know Y and yet Bob must be absolutely certain that all cells in Y
were subsampled. Notwithstanding, to keep communication low;, it
is crucial that Alice sends Bob only the contents of cells associated
with epoch i). Since |Y| is guaranteed to be relatively small (of order
O(+y/k1g(1/€))), the probabilityp|Y| that all cells in Y get sampled
will be sufficiently noticeable, in which case we shall argue that
Bob’s maximum-likelihood strategy will output the correct answer
€ {0, 1} with the desired nontrivial advantage. The formal one-way
protocol 7 that the parties execute is described in Figure 1.

Analysis. We now turn to the formal analysis of the protocol 7.
We need to show

e (Communication cost) ||| < O(n;/(w - t,)*71).

e (Correctness) PrG;',~'u,qeRQ [ﬂ(G;,) = P(q, ’LI)] > 1/2 +
exp (—tq 1g%(w - t,)/4/lg n).

Communication. In both Step 2 and Step 3, Alice sends at most
2p|Ui|ty - (2w) + 1 bits. In Step 4, Alice sends at most [U<;| - t; -
(2w) = X j<i |Uj| - ty - (2w) bits. Since |Uj| = nj = B/, the total
communication cost is at most

O(p - nj - tyw) + O(ﬁi_l “tyw) < O(nif(w - tu)a_l)-

SIndeed, Y is only a function of q,fuq_l.’ ¢o,¢2 and the prior distribution on U,

€p.C2°
and Bob possesses all this information.

®Indeed, Y is a function of q.
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One-way protocol 7 for Gfp

Henceforth, by “sending a cell”, we mean sending the address and (up to date) content of the cell in M.

Encoding.

(1) Alice generates the memory state M of D by simulating the data structure on U, and computes the associated epoch for each cell.

(2) Alice samples each cell associated with epoch i independently with probability p. Let ¢ be the set of sampled cells. If |co| > 2p|U;|-t,,
Alice sends a bit 0 and aborts. Otherwise, she sends a bit 1, followed by all cells in cg.

(3) Alice uses public randomness to sample every cell in M independently with probability p. Let ¢ be the set of sampled cells. If there
are more than 2p|U;| - t, cells in ¢; that are associated with epoch i, Alice sends a bit 0 and aborts. Otherwise, she sends a bit 1,
followed by all cells in c; that are associated with epoch i.

(4) Alice sends Bob all cells associated with epoch j for all j < i, i.e., all the cells probed by D succeeding epoch i. Denote this set of
(address and contents of) cells by c;.

Decoding.

(5) Given his query q € Q, Bob simulates the data structure D on u; and obtains a memory state My. He updates the contents of ¢y
and ¢z in My, obtains a memory state M’ = M’(u—;, co, c2), and then simulates the query algorithm of D on query q and memory
state M’. Let Sg be the set of (memory addresses of) cells probed by D in this simulation. If any of the following events occur, Bob
outputs a random bit and aborts:

@) g¢Q,
(ii) Bob receives a bit 0 before ¢j or cq,
(iii) (u—i, co, c2) is not good for gq.
(6) Let Y C Sq be a subset of cells of size x := |Y| < O (\/k -lg 1/6) guaranteed by Lemma 1, when applied with f := fz?_,-,co,cy

= [2%] k = |Sql < 32t4, € := p¥?tall )4,
(recall that Bob can privately compute the set Y).

(7) If'Y € ¢q (ie., if the sample c¢1 sent by Alice does not contain all cells in Y), Bob outputs a random bit. Otherwise, let y € [2¥]Y
denote the content of the cells Y according to c1. Let Sq|y < y denote the event that the memory content of Y is assigned the
value y. Bob outputs 1 iff

Ef [P(q,ﬂ) =1]u-j,co,c2,Sqly y] > 1/2.

Otherwise, Bob outputs 0.

Figure 1: The one-way weak simulation protocol of data structure D.

Correctness. Let 7’ be the variant of the protocol 7 in which, = -+ Z Pr[(SqIY — ) | u-i,co,cz]
when executing Step 2 and Step 3, Alice ignores the condition yelzv]Y Ui
of whether the samples Cy or C; exceed the specified size limit,
i.e., she always sends a bit 1 followed by all sampled cells. For .
simplicity of analysis, we will first show that 7’ has the claimed
success probability, and then show that the impact of the above _1 4 Z
event (i.e., conditioning on Cy and C; being within the size bound) 2
is negligible, as it occurs with extremely high probability.

We first claim that the probability (over U and an average query | u_y, co, Cz] _ 1 Pr{(Sqly < y) | u-i,co, cz]
q €r Q) that n’” reaches Step 6 is not too small. By (1) and Markov’s 2 v

DN | =

Pr[P(q.U) =11 (Sqly  y). u-is o, 2] = 1/2

i

Pr [sv(q, U =164l =)
ye[zw]Y

inequality, and by the discussion below (3), the probability that _1 + Z Z Pr [ P U) =1
q € Q' and (u—;,co,cz) is “good" for q is at least Q(p*%*a/¢) > 2 4 < u |t ’
exp(—tq 1g%(w - t,,)/lg n). This is precisely the probability that 7z’ yelz ]t zel2Pzly=y
reaches Step 6. (Sq < 2) | u,i,co,cz] _! “Pr[Sq « z| u,i,co,cz])
We now calculate the success probability of 7’ conditioned on 2 v
reaching Step 6. To this end, fix a set Y C Sq of size k. Then by Step .
7, the success probability of 7 conditioned on u_;, ¢y, ¢z and the =+ Z Z fz?,,»,co,cz ()| , (5)
event “Y C Cq"is 2 yel2W]Y |ze[29]5 : z|y=y

where the last transition is by the definition of f,J 1.co,c, i (4). Note
+ SE[ Er [?(q, U)=1| u_i,co,cz,5q|y] -1/2 that for any z, it holds that |f(z)| < % -Pr[Sq — z | u-j,co,c2].
qlYy

1
2 i
Thus, ZZE[Z“’]Sq If(2)] < % On the other hand, since we always
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condition on good (u-;, cp, c2), we have Pr[Wy | u—j,co,c2] 2
p*%all /4. That is, with probability at least p>2/a/¢ /4 all cells in
Sq associated with epoch i are contained in co. In this case, the
contents of S4 are completely determined by u_;, co, c2. Indeed, the
contents of the cells associated with epoch < i are determined
by c2; the cells associated with epoch i are determined by c; the
remaining cells are determined by us ;. Let z* denote the assignment
to Sg, induced by u—; and the contents of cg, cz conditioned on the
occurrence of Wy. By the definition of Sg, when Wy happens,
Sq will be exactly the set of cells the data structure probes. Thus,
the output of g is also determined. We therefore have |f(z*)| =
% “Pr[Sq « 2* | u—j,co.c2] = Q(p32t‘1/[). We conclude that the
function f = ff_heo’ez satisfies the premise of the Peak-to-Average
lemma (Lemma 1) with

e X =[2Y];

o k=1S4] < O(tg);

¢ :p32tq/f/4 > exp(~tq 1g%(w - t,)/1gn).”

Without loss of generality, we may assume lg(w - t;,) < +/lgn, and
thus € € [279(K) 1].8 Therefore, the lemma guarantees there is a
set Y C S4 of cells that has size at most

IY|=x <O (\/klg 1/e) <0 (tq lg(w - tu)/\/lg_n) ,

for which

22

yel2v]Y |ze[2w]59 : z|y=y
exp (—tq lg(w - ty) /g n) .

This justifies Step 6 of the protocol. It follows that, for any ¢ € Q’,
the probability that the sample C; of cells contains the set Y is at
least

q
fu,i,co,cz (Z) 2

Pr(y < Cy] =pl| - pOltatstrsaiien)
1

exp (~tq 12w - 1)/ Vign) . ©)

Equation (5) therefore implies that, conditioned on the event that
|Y| € Cy, the probability that z” outputs a correct answer is

1/2 + exp (—tq lg(w - tu)/\/lg_n) ,

and combining this with (6) and the probability that 7’ reaches Step
6, we conclude that the overall success probability of 7, conditioned
on the protocol not aborting when ¢ or ¢; is too large, is

12+ exp (~tq 1g(w - 1)/ Vign) @)

To finish the proof, it therefore suffices to argue that the prob-
ability that 7 aborts due to this event is tiny. To this end, let A;
denote the random variable representing the number of associated
cells with epoch i. We know that A; < |U;| - t, = n; - t, (since
the worst-case update time of D is ¢, by assumption). Now, let &g
denote the event that Alice’s sample in Step 2 of the protocol is

"We used the fact that £ = @(lgﬁ n)and f = (w - ,)°0.

81n fact, if Ig(w - £,,) = Q(@), the right-hand side of the inequality in the theorem
statement is less than ptq ,hence the statement becomes trivial. Indeed, with probability
p'4, Alice samples all cells probed by the data structure on query q.
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too large, i.e., that “|Cy| > 2p|U;]| - t,,”. Similarly, let &; denote the
event that in Step 3 of the protocol, “|C1| > 2p|U;| - t;,”. Denote
& := &g V &1 (note that this is the event (ii) in Step 5 of ). Since
both sets Cy and C; are i.i.d samples where each cell is sampled in-
dependently with probability p, a standard Chernoff bound implies
that

Pr(&] < 2Pr[|Co| > 2E[ICol]] < exp(=p(ni - tu))

< exp(—ni/(w - ty)?). ®)

Finally, since i > ¢/2 and thus n; > n'/2 > tg(w - t,)* 1, by (7), (8)
and a union bound, we conclude that

(Lljr [7(q) # P(q. U)]

>

<1/2—exp (—tq 1g%(w - tu)/\/lg_n) +Pr[E]
< 1/2 - exp (~tq 1g20w - 1)/ \ign)

+exp(—tq - (w- ty))
< 1/2- exp (~tq1g20w - 1)/ Vign)

which completes the proof of the entire theorem.
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