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ABSTRACT

In this work, we introduce an online model for communication
complexity. Analogous to how online algorithms receive their input
piece-by-piece, our model presents one of the players, Bob, his
input piece-by-piece, and has the players Alice and Bob cooperate
to compute a result each time before the next piece is revealed to
Bob. This model has a closer and more natural correspondence to
dynamic data structures than classic communication models do,
and hence presents a new perspective on data structures.

We first present a tight lower bound for the online set intersec-
tion problem in the online communication model, demonstrating a
general approach for proving online communication lower bounds.
The online communication model prevents a batching trick that
classic communication complexity allows, and yields a stronger
lower bound. We then apply the online communication model to
prove data structure lower bounds for two dynamic data structure
problems: the Group Range problem and the Dynamic Connectiv-
ity problem for forests. Both of the problems admit a worst case
O(log n)-time data structure. Using online communication com-
plexity, we prove a tight cell-probe lower bound for each: spending
o(log n) (even amortized) time per operation results in at best an
exp(—62n) probability of correctly answering a (1/2 + §)-fraction
of the n queries.
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1 INTRODUCTION

One major hallmark of complexity theory is Yao’s cell-probe model
[24], a powerful model of computation that manages to capture the
inherent complexity found in a variety of data structure problems.
The titular feature of this model is that the data structure is only
charged for the number of memory cells that it accesses (or probes),
and not for any computation it needs to perform on the contents
of those cells. Since this model is so strong — data structures are
given the power of ‘free computation’ — proving lower bounds
here yields lower bounds for most other models of data structure
computation. Many lower bounds in the cell-probe model are de-
rived via connections to communication complexity, wherein two
players try to jointly compute a function but are only charged for
the bits that they communicate to each other and again, not for any
computation [1, 2, 11, 12, 16, 22, 25].

Unfortunately, the sheer power granted to the data structure
by the cell-probe model can often make it difficult to prove strong
lower bounds. In fact, in many cases a matching lower bound in the
cell-probe model may be impossible; counting just cell probes in lieu
of actual computation time might indeed make several problems
easier [10]. Partly as a result of this difficulty, only a few techniques
are known for proving cell-probe lower bounds. In this paper, we
propose a new technique to add to our growing toolbox. We propose
a new model of communication complexity which we call online
communication. We give tools for proving lower bounds in this new
model, and then use these tools to show how the model results
in new robust lower bounds for two fundamental data structure
problems.

1.1 Online Communication Model

Inspired by the fact that a data structure must answer one query
before it sees the next, we propose a novel model of communication:
the online communication model. The salient feature of our model is
that one of the players, Bob, does not receive his entire input at once.
Whereas Alice receives her entire input X, Bob receives a small
piece Y7 and the two must jointly compute a function fi(X, Y1)
before Bob receives the next piece Y2, and so on. As usual, we care
about the total amount of communication that Alice and Bob use.
Intuitively, this model is designed to rule out batching techniques;
in usual offline models of communication, it may be cheaper for
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Bob to discuss all the pieces of his input together, but in the online
model, this is impossible since he only receives one piece at a time.

It stands to reason that we should be able to prove better lower
bounds now that communication protocols have one fewer trick
to work with. In this paper, we develop techniques that relate this
model to more familiar entire-input-at-once models. In order to
demonstrate how things are different in the online model, we turn
to perhaps one of the most important communication problems:
set disjointness.

1.2 Online Set Disjointness

The testbed for our new model is the quintessential problem, set
disjointness. In the basic version of this problem, Alice and Bob
are each given subsets over [n] and want to compute whether their
subsets are disjoint. This problem has long been a favored source of
hardness, and along with its many variations, it has been thoroughly
studied by theorists; see e.g. the surveys [4, 18].

In the context of our model, this problem manifests as the online
set intersection problem. Alice is given an entire subset X C [n] of
size k while Bob is only given single elements y; of another subset
Y C [n] of size k one at a time. The players need to decide whether
y; ¢ X before Bob receives the next element. We show that:

THEOREM 1.1 (INFORMAL). Whenn > k2, the online set intersec-
tion problem requires Q(k log log k) bits of total communication.

In fact, our proof shows that deciding whether X and Y are dis-
joint requires Q(k loglog k) bits of communication in the online
model; it cannot be done more effiicently even if Alice and Bob
may stop after finding an intersecting element. We also give a fairly
straightforward protocol which solves the problem in O(k log log k)
bits of communication, showing that this bound is tight. This stands
in contrast to known bounds for the classical communication model,
in which the set disjointness problem can be solved with just O(k)
bits by using a batching trick to test all elements of Y simultane-
ously [8].

1.3 Group Range Problem

The first data structure problem we consider is a generalization of
the Partial Sums problem (from e.g. [14]), and which has connec-
tions to a family of problems studied by Frandsen, Miltersen, and
Skyum [6]. In the Group Range Problem, we have a group G along
with a binary encoding of the group elements (any injective func-
tion) e : G — {0, 1}°. We would like a data structure which stores
a sequence of n group elements ay, . . ., a,—1 While supporting the
following operations:

o Update(i, a) sets entry a; < a.

e Query(Z,r, i) returns the i’ h bit of the binary encoding of

the group product agapiq -+ - ar—1ar.

We focus on the case where the cell-size is w = O(log n) and the
group is polynomially-sized: log |G| = O(w).

Regarding upper-bounds, there is a folklore data structure which
solves the problem with O(log n) time per operation. This is a worst-
case (not just amortized) guarantee, and the data structure is de-
terministic. There is a matching Q(log n) cell-probe lower-bound
by Patrascu and Demaine for the Partial Sums problem, wherein
queries need to return the entire product rather than a single bit [14].
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This lower bound holds for Las Vegas randomized data structures
(the number of cell probes is considered in expectation) and amor-
tized operation cost.

However, this lower bound leaves open several plausible ways
to improve the running time. What if we really only care about a
single bit of each query? What if we are willing to tolerate errors?
Our main result shows that even if we permit these concessions,
the Q(log n) barrier still stands:

THEOREM 1.2. There exists a distribution over n updates and queries
for the Group Range Problem with binary encoding of the group ele-
ments e : G — {0, 1}°, such that for any randomized cell-probe data
structure D with word size w = ©(log n), which with probability p
answers at least a (% + 0) fraction of queries correctly and spends
enlogn total running time, we must have p < exp(—6°n), as long as
s < (1+¢)log |G|, 82 > € = Q(1/logn), and n is sufficiently large.!

Put another way, Theorem 1.2 settles the trade-off between run-
ning time and accuracy of the output for the Group Range Problem.
There are two possible regimes. If we are willing to pay ©(log n)
time per operation, then there exists a deterministic worst-case
data structure. Otherwise, if we require the data structure to spend
o(log n) time per operation, then Theorem 1.2 shows that we can-
not hope to do much better than outputting a random bit for each
query, up to a constant factor improvement in §. To the best of
our knowledge, this bound and our other lower bound we describe
shortly are the first tight data structure lower bounds in such a high
error regime, where a data structure may answer barely more than
half of the queries correctly, and do so even with a small success
probability.

1.4 Dynamic Connectivity

Next, we consider a fundamental problem in graph data structures:
Dynamic Connectivity. In this problem, we would like a data struc-
ture which stores an undirected graph G = (V, E) on n vertices,
while supporting the following operations:

e insert(u,v) adds edge (u,v) to E.

o delete(u,v) removes edge (u,v) from E.

e query(u,v) returns whether or not there currently exists a

path between nodes u and v.

Like before, we look at this problem in the cell-probe model with
cell size w = O(logn). The link/cut tree data structure [19] and
Euler tour tree data structure [9] for the problem take O(log n) time
per update or query. A matching Q(log n) lower bound was given
by Patrascu and Demaine [15]. However, their lower bound holds
for Las Vegas or Monte Carlo data structures with amortization,
where they assume that the error probability for each query is n™°¢
for some large constant c.

Patragcu and Demaine still leave open the question of what can
be done if we insist on o(log n) time per operation. Their lower
bound asserts that we cannot answer each query correctly with
better than 1 — n=¢ probability. However, for one example, it could
still be possible to design a data structure which answers all queries
correctly simultaneously with probability, say 1 — 1/log n, and such
that each individual query is correct with probability lower than
1 —n~¢. Such a data structure would not violate the existing lower

UIn this paper, we use exp(f (n)) to mean 290 ("),
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bounds, and its success probability would be good enough in many
applications, as it only incurs an additive 1/log n overall error prob-
ability.

Again, our new technique yields a robust lower bound, ruling
out such data structures:

THEOREM 1.3. There exists a distribution over O(n) updates and
queries for the dynamic connectivity problem, such that for any ran-
domized cell-probe data structure D with word-size w = O(logn),
which with probability p answers at least a (% + 8)-fraction of the
queries correctly and spends enlogn total running time, we must
have p < exp(—82n) as long as 6% > 1/log(1/€) and e > Q(1/logn)
and n is sufficiently large. Moreover, the graph is always a forest
throughout the sequence of updates.

Similar to before, this essentially settles the complexity of the
Dynamic Connectivity problem in forests (where the graph is al-
ways a forest throughout the sequence of updates). If one wants
o(log n) per update and query, then one cannot do better than out-
putting the flip of a random coin to answer each query, again up to
a constant factor in §.

Our lower bound almost matches the best known upper bound
for Dynamic Connectivity in general graphs of O(log nlog® log n)
by Thorup [21]. Dynamic Connectivity with higher error than
Patrascu and Demaine allowed for, although still lower error than
we consider, was studied by Fredman and Saks [7], but for worst-
case update time instead of amortized, and for the problem where
edge deletions are not allowed; the only updates allowed are edge
insertions. They showed that any 1/32-error data structure for Dy-
namic Connectivity without deletions with expected query time ¢4

and worst-case update time ¢, must have t;, > Q(log(n)/log(t, log(n))).

Ramamoorthy and Rao [17] recently gave a simplified proof of Fred-
man and Saks’ result as well.

1.5 Further Results

We also prove some complementary results to our two data struc-
ture lower bounds.

1.5.1  Group Range Problem. The Group Range Problem is stated
very broadly about general groups G. Although it may help the
reader to imagine a more common group like Z,, or a permutation
group while reading the proof, there are other important cases.
For example, Theorem 1.2 holds when G is the direct product of
many smaller groups. In this case, the problem can be viewed as
many disjoint copies of the Group Range problem on the smaller
component groups with simultaneous updates.

The case where G is the general linear group of invertible matri-
ces also has many applications; see the full paper for a discussion
of applications to physics and to other dynamic data structure
problems. For this case, we show how the matrix structure can be
exploited to prove even stronger results. For example, as a variant
of the original problem, consider the Matrix Product Problem, where
queries can only ask for a bit about the bottom-right entry of the
product of the entire range of matrices, rather than any bit about
the product of any subrange. In the full version of the paper we
show that the lower bound still applies:

COROLLARY 1.4. Theorem 1.2 holds for the Matrix Product Problem.
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We show a similar result for upper-triangular matrices as well
in the full version.

It would be interesting to extend Theorem 1.2 to hold for an
even wider class of algebraic structures. For instance, some past
work (e.g. [14]) considers the partial sums problem where G is any
semi-group. However, we show that such an extension is impossible,
not only to semi-groups, but even just to monoids (a type of alge-
braic structure between groups and semi-groups, which satisfies
all the group axioms except the existence of inverses). Indeed, we
demonstrate in the full version that the Q(log n) lower bound can
be beaten for the Monoid Range Problem (the same as the Group
Range Problem except that G can be any monoid), so no general
lower bound applies:

THEOREM 1.5. There exists a family of monoids (Gp)p such that
logn
loglogn
operation worst-case deterministically in the cell-probe model.

the Monoid Range Problem can be solved in O ( ) time per

1.5.2  Dynamic Connectivity. Dynamic Graph Connectivity is
one of the most basic and versatile dynamic graph problems. As
such, we can extend Theorem 1.3 to hold for a number of other
graph problems. Some examples include:

e Dynamic Entire Graph Connectivity: Maintain a dynamic
undirected graph, where queries ask whether the entire
graph is connected.

e Dynamic Minimum Spanning Forest: Maintain a dynamic
undirected graph, where queries ask for the size of a mini-
mum spanning forest.

e Dynamic Planarity Testing: Maintain a dynamic undirected
graph, such that edge insertions are guaranteed to maintain
that the graph is planar, and where queries ask whether
inserting a specific new edge would result in a non-planar

graph.

COROLLARY 1.6. Theorem 1.3 holds for Dynamic Entire Graph
Connectivity, Dynamic Minimum Spanning Forest, and Dynamic
Planarity Testing.

Corollary 1.6 follows from some straightforward reductions
given in [15, Section 9].

1.6 Our Technique and Related Work

Next, we discuss our plan of attack for using the online commu-
nication model along with other ideas to prove our data structure
lower bounds, Theorems 1.2 and 1.3, and we compare it with the
approaches of past work. A more detailed overview of our proofs
is given later in Section 3.

Our high-level strategy is similar to previous techniques based on
communication complexity for proving cell-probe lower bounds [16,
22, 25]. We first “decompose” the computation being done into sev-
eral communication games, and show that an efficient data structure
would induce efficient protocols for these games. We then prove
communication lower bounds for these games, ruling out these
supposed efficient protocols. The communication games we wind
up with consist of a random sequence of interleaved updates and
queries divided into two consecutive blocks of operations. Roughly
speaking, in each communication game, the first block is only re-
vealed to Alice while the second block is only revealed to Bob. All
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other operations are revealed to both players. The goal of the game
is for Alice and Bob to cooperatively answer all the queries in Bob’s
interval.

The choice of what communication model to use in this strategy
is crucial. The first step, transforming a fast data structure into an
efficient protocol, can be done more efficiently in a stronger model
(e.g. randomized over deterministic). On the other hand, the second
step, proving communication lower bounds, is more difficult in
a stronger model. Designing the right communication model to
balance these two proof phases is a crucial ingredients in these
types of proofs.

In this paper, we analyze the communication games in our online
communication model. Compared to other models used in previous
work, our model has a more natural correspondence to the task that
data structures face: answering queries in sequential order. Studying
these communication games in our online communication model
yields a more fine-grained view of the situation. See Section 3 and
the full version for more details on this connection between online
communication complexity and dynamic data structures.

1.6.1  Group Range Problem. To illustrate this point, consider
the communication games induced by the Group Range Problem.
When one analyzes these games in the classical communication
models considered by past work, where both players receive their
inputs at once, there is a protocol which is too efficient to prove
a tight lower bound?. In other words, it is provably impossible to
use any of the previous communication models at this point in the
proof; the communication game is simply not “hard” in any of them.
We will see that these communication games are hard enough to
prove strong lower bounds in our online communication model.

As stated before, Patragcu and Demaine [14] proved a Q(log n)
lower bound for the Partial Sums problem (queries want entire prod-
uct rather than a single bit), when no error is allowed in answering
queries. Their information-transfer technique does not apply directly
to our task, since it relies on the fact that each query outputs many
bits and hence reveals a lot of information, and that the data struc-
ture has no errors. Their technique was later generalized [15] to
prove lower bounds for problems with single-bit output, but their
argument mostly focuses on the query which the data structure
spends the least amount of time on. It is hard to apply this gen-
eralization directly when both overall running time and overall
accuracy need to be taken into account. However, it is worth noting
that their argument does apply to our Group Range Problem if only
zero-error data structures are considered.

1.6.2  Dynamic Connectivity. The high-level structure of our
Dynamic Connectivity lower bound proof'is close to that of Patragcu
and Demaine’s proof [15]. To prove an Q(nlog n) lower bound on
the total running time on O(n) operations, both proofs reduce the
task to proving that given an initial graph, k updates and k queries,
if we perform the updates on the initial graph and then ask the k
queries, then there must be a big, Q(k)-size intersection between
the set of cells probed and written to during the insertions, and the
set of cells probed during the queries. Intuitively, we need to show

2For some G, Bob has a succinct encoding of his queries and can send the compressed
input to Alice in order to solve the problem more efficiently than the trivial protocol
would.
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that the data structure must learn enough information about the
updates in order to answer the queries.

The two proofs then diverge from this point onwards. Patrascu
and Demaine first set up a hard distribution on updates and queries
such that when the answers to all k queries are Yes, one is able
to reconstruct the k updates exactly based on these queries. Then
they use an encoding argument to show that if the data structure
only probes o(k) such cells, then the k updates can be encoded very
efficiently, contradicting an information theoretical lower bound
that they prove using the distribution itself. Roughly speaking,
they encode the k updates so that one is able to “simulate” a data
structure on any sequence of k queries after the updates based only
on the encoding. Then one can iterate over all possible queries,
simulate the data structure on all of them, and find the one with k
Yes answers, which can be used to reconstruct the updates.

Since the information about updates is only hidden in the all-Yes
queries, and one needs to simulate on a large number of queries
before k Yes queries are found, Patragcu and Demaine’s argument
fails if the data structure is allowed high two-sided error. In fact,
their proof only applies to the case where the error probability of
each query is 1/n° for some large constant c. It is not hard to prove
that under their input distribution, one will not be able to learn
much from the simulations if the error probability of each query is
higher than about 1/+/n.

In order to resolve this issue in our Dynamic Connectivity lower
bound, we first construct a different hard distribution such that
not only the all-Yes queries, but even a random set of queries
reveals a sufficient amount of information about the updates with
high probability. To prove our lower bound, we then use a very
different encoding argument, based on the transcript of an online
communication protocol. We prove that if an efficient data structure
exists, then there is an efficient online communication protocol for
the problem where Alice receives the k updates, Bob receives the
k queries one at a time, and the goal is to answer all queries. Our
encoding argument is more similar to those used in [5] and [22].
See Section 3.2 for a more detailed overview of our approach.

Fredman and Saks [7] and Ramamoorthy and Rao [17] proved
a lower bound for the insert-only version of Dynamic Connec-
tivity, where deletion updates are not allowed. They proved that
for data structures with worst-case update time and constant er-
ror probability, the insert-only version of the problem has to take
Q(logn/loglogn) time per operation. However, the insert-only
regime is very different from our fully dynamic regime. For worst-
case data structures, the logn/loglogn bound is tight [3, 20]. If
we allow amortization, the standard union-find solution solves the
problem in O(a(n)) time per operation. Thus, it is difficult to apply
their technique to the fully dynamic regime.

1.7 Organization

We first formally define the online communication model in Sec-
tion 2, and then in Section 3 we give an overview of all three of
our lower bound proofs. We then prove the online set intersection
lower bound in Appendix A. We prove our remaining results, in-
cluding the cell-probe lower bounds for the Group Range Problem
and Dynamic Connectivity, in the full version.
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2 THE ONLINE COMMUNICATION MODEL

In this section, we define the online communication model, and
then throughout the rest of the paper we present some approaches
for proving lower bounds in it. We intentionally try to keep the
model quite general. In Appendix A, we showcase our approach
by proving a tight lower bound for the natural variation of set-
intersection for this setting, and thereafter we use the model to
prove cell-probe data structure lower bounds.

In the online communication model, there are two players, Alice
and Bob. Alice is given her entire input X € X at the beginning.
Bob will be given his input Y7, Y, ..., Y; € Y gradually. The two
of them want to compute f1(X, Y1), (X, Y2), ..., fr(X, Yi) under
the following circumstances:

(1) The game consists of k stages. The players remember the
transcript from previous stages.

(2) At the beginning of Stage i for i € [k], ¥; is revealed to Bob.

(3) Next, the players communicate as if they were in the classical
communication model. After that, Bob must output f;(X, Y;).

(4) At the end of Stage i, Y; is revealed to Alice, and the players
proceed to the next stage.

Note that the number of stages, k, is fixed and known up-front
when designing a protocol. In a deterministic (resp. randomized)
online communication protocol, the players communicate as if they
were in the deterministic (resp. randomized) communication model
in the second step of each stage.

We desire protocols that use the minimum amount of total com-
munication. A protocol is free to perform a different amount of
communication in each stage. However, there is a natural tension
on the proper time to communicate: in earlier stages the players
have less information, but they still need to solve their current task
at hand before they can proceed. Later on, we will see that the total
communication will correspond nicely with the amortized cost of
data structure operations.

3 PROOF OVERVIEWS

3.1 Online Set Intersection Lower Bound

In this section we give a high-level overview of how we prove
our communication lower bound for online set intersection (OSI).
Although the lower bound for OSI is not explicitly used in our data
structure lower bounds later, the data structure lower bounds do
use online communication lower bounds for other problems which
we prove using some common techniques. Our OSI lower bound is,
in a sense, a warm-up for the more complex proofs to come.

The main idea behind our OSI lower bound is a very general re-
duction showing how online communication lower bounds can be
proved using techniques from offline communication lower bounds.
Consider an offline communication problem called the Index prob-
lem, where Alice is given a set X C {1,2,...,n} of size |X| = k,
and Bob is only given a single element y € {1,2,...,n}, and their
task is to determine whether y € X. One can view the OSI problem
as k iterations of Alice and Bob solving the offline Index problem.

That said, it is insufficient to simply prove a lower bound for the
Index problem. Since Alice has the same set X in all k iterations,
Bob can learn information about it throughout the rounds of the
protocol, and so it is plausible that later rounds can be completed
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with less communication than earlier rounds. In order to circumvent
this issue, we prove:

LEMMA 3.1. (informal) There is a protocol for OSI which in total
uses g(n, k) bits of communication in expectation if and only if there
is a protocol for Index where

(1) Alice first sends O(g(n, k)) bits in expectation, then
(2) Alice and Bob speak an additional O(g(n, k)/k) bits in expec-
tation.

The high-level idea for proving the ‘only if” direction of Lemma 3.1
is that Alice can begin by telling Bob a cleverly-crafted message
containing the information that Bob would learn about X during
the OSI protocol on a random sequence of inputs. Thereafter, Alice
and Bob can pretend they are in the ‘easiest’ round of their OSI
protocol, which only takes O(g(n, k)/k) bits in expectation to solve.
Once we prove Lemma 3.1, it remains to prove a lower bound for
the Index problem in the usual offline communication model, which
can be done using standard counting techniques.

We actually prove a more general version of Lemma 3.1 for
any online communication problem in which Alice and Bob are
computing the same function f = f; in each round (in the case of
OSI, f is the Index problem). Unfortunately, for our data structure
lower bound proofs, the communication games do not have this
property, and more care will be needed.

3.2 Data Structure Lower Bounds

In this section, we give a streamlined overview of our data structure
lower bound proofs. The proofs of our lower bounds for Group
Range and Dynamic Connectivity both have a similar high-level
structure. In both proofs, the first step is to design a hard input
distribution. The distribution is supported on sequences of opera-
tions consisting of O(n) mixed updates and queries. Then by Yao’s
minimax principle [23], it suffices to prove a lower bound against
deterministic data structures dealing with inputs drawn from this
distribution.

Next, to prove a lower bound of Q(nlogn) for answering the
random sequence, we use an idea from [13], which reduces proving
a lower bound on total running time to proving lower bounds for
many subproblems. Each subproblem is defined by two adjacent
intervals of operations of equal length from this random sequence,
which are denoted by I4 and Ig, e.g., I4 is the interval consisting of
the 17th to the 32nd operation in the sequence, and Ip is the interval
consisting of the 33rd to the 48th operation. In each subproblem,
instead of the running time (i.e., the number of cell-probes), we are
interested in the number of cells that are probed in both intervals
I4 and Ig. A counting argument from [13] shows that

o if for every k and adjacent interval pair (I4, Ig) of length k,
at least Q(k) cells are probed in both I4 and Ip,
o then the total running time is at least Q(nlogn).

In order to prove a lower bound when the data structure’s goal is

only to maximize the probability of answering (1/2 + §)-fraction of
the queries correctly, we generalize the argument, and show that

e if for every &', k and adjacent interval pair (I4, Ig) of length

k, the probability that o(k) cells are probed in both I4 and

Ig and (1/2 + 8’)-fraction of the queries in I is correct is
exp(—62k),
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e then the probability that total running time is o(nlogn)
and (1/2 + §)-fraction of the queries is correct in total is
exp(=56°2n).

Thus, the tasks boil down to proving such lower bounds for all
subproblems.

3.2.1 Online Communication Simulation. We now focus on a
single subproblem (14, Ig). We would like to show that if a data
structure answers a (1/2 + §)-fraction of the queries in Ig correctly,
then it must probe many cells in Iz which were also probed and
written to in I4. Intuitively, if a data structure probes very few cells
in Ip that are probed in I4, then it learns very little information
about the updates in I4. Thus, if the answer to a random query
would reveal one bit of information about the updates in I4, but
the data structure has learned a negligible amount of information
about I4, then the data structure cannot hope to answer the query
with a nonnegligible advantage above 1/2. To formulate the above
intuition, we model this process by an online communication game.

Communication Game. We define one communication game for
each interval pair (I4, I). Fix two intervals I4 and I consisting of
k updates and queries each, all the operations O prior to these inter-
vals, all the queries Q 4 in I4 and all the updates Ug in Ig. That is, the
only undetermined operations up to the end of Ig are the updates
in I4 and the queries in Ip; everything else is common knowledge
to Alice and Bob. We embed these undetermined operations into
a communication game. In the associated online communication
game G = G(v, 0, Q4, Up), X consists of the updates in I4, and Y; is
the ith query in Ig. The goal of Stage i is to compute the i’ h query
inl B-

Now we present (an informal version of) our main lemma, which
connects the data structures to online communication.

LEMMA 3.2 (INFORMAL). For any data structure D, there is a pro-
tocol Pp for the communication game G(v, O, Q4, Up) such that

(1) Bob sends no message;
(2) Forevery f € (0, 1), the probability that
o Alice sends o(k log n) bits, and
o Pp answers a (f — o(1))-fraction of the fi(X,Y;)’s correctly
is at least the probability conditioned on O, Q4, Ug that
o o(k) cells are probed in both 14 and Ig by D, and
o D answers a f-fraction of queries in Ig correctly.

For any data structure D, we construct the protocol Pp as follows.

(1) (Preprocessing) Recall that Alice knows all the operations
up to the end of I4 and the updates in I, and Bob knows all
the operations prior to I4 and all the operations in Ip. First,
Alice simulates D up to the end of I4, and Bob simulates D
up to the beginning of I4 and skips 4. Denote the memory
state that Alice has at this moment by M 4. Next, the players
are going to simulate operations in Ip.

(2) (Stage i - Alice’s simulation) Since the (i — 1)-th query is
revealed to Alice at the end of the last stage, Alice first con-
tinues her simulation of D up to right before the i-th query.
Alice then sends Bob the cells (their addresses and contents
in M4) that are
e probed during this part of the simulation, and
e probed during I4, and
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e not probed in the previous stages.

(3) (Stage i - Bob’s simulation) Bob first updates his memory
state according to Alice’s message: For each cell in the mes-
sage, Bob replaces its content with the actual content in My.
This is the first time D probes these cells, since otherwise
Alice would have sent them earlier, and so their contents
remain the same as in M 4. Bob then continues his simulation
of D up to the beginning of i-th query.

(4) (Stage i - query answering) Bob now simulates D on query
Y;. During the simulation, Bob pretends that he has the right
memory state of D for the query, even though he skipped I4,
and has only received partial information from Alice about
it. He then outputs whatever answer D gives him. Finally,
Bob rolls back his copy of D to the version right before this
query (after the simulation described in the previous step).
Even though he was assuming his copy of D is correct, it
may have actually made a mistake, and at the beginning of
the next step, Alice will tell Bob what cells he should have
queried and changed.

The key observation to make about the above protocol is that
Bob might only give a different answer to query Y; than the real
data structure D would have if D would probe a cell that was written
to during I4 while answering Y;. Moreover, at the beginning of the
next stage, Alice would then tell Bob the true value which that cell
should have had. Hence, each cell which D would write to in 4 and
probe in Ip can cause Bob to make at most one mistake. As such,
if D would only probe a negligible number, o(k) of cells in both I4
and Ip, then Bob similarly gives the same answer as a correct D
would to all but a negligible number of his queries.

3.22  Online Communication Lower Bounds. The tasks now re-
duce to proving online communication lower bounds. We prove
the communication lower bounds for Group Range and Dynamic
Connectivity using different approaches.

Communication lower bounds for Group Range. We design the
hard distribution such that the k updates in I4 have entropy about
k log n. Hence, if Alice sends only o(k log n) bits to Bob, then Bob
knows very little about those updates. In particular, we carefully
design the queries such that there is a ©(k log n)-bit encoding of the
k updates, and each query is essentially asking for one random bit
of this encoding. Then on average, every bit is still close to unbiased
even after Bob sees Alice’s message. That is, Bob will not be able to
predict the answer with much better probability than 1/2.

Furthermore, we prove the above conditioned on whether Bob
answered the previous queries correctly. Therefore, the sequence
of numbers consisting of, for each 1 < i < k, the number of correct
answers in the first i queries minus its expected value, forms a
supermartingale. Applying the Azuma-Hoeffding inequality shows
that the probability that at least a (1/2 + §)-fraction of the queries
is correct is at most exp(—62k).

Communication lower bounds for Dynamic Connectivity. The
lower bound for the Dynamic Connectivity problem is proved in a
different way. To prove the communication lower bound, we first
show that it suffices to prove that the probability that all k queries
are correct is at most 2-(1=°K This would in particular imply
that the probability that all k queries are wrong is also at most
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2-(1=0(k 11 fact, for any fixed sequence of choices of whether
each query is correct or not, we show that this sequence happens
with probability no more than 2-(1=0(k This is, in particular, at
most a 2°K) factor more than the probability of achieving the fixed
sequence by outputting uniformly independent bits. This implies
that the probability that a (1/2 + §)-fraction of the queries is correct
is at most 2°(k) times the probability of the same event when all
the bits are independent, which is exp(—52k).

Next, we prove that when the inputs to the communication
problem are independent and Bob does not speak, we may assume
without loss of generality that Alice only speaks before the first
stage,® which we call the Monologue lemma:

LEMMA 3.3 (MONOLOGUE LEMMA (INFORMAL)). Suppose that Al-
ice’s input X and Bob’s inputs Y1, . . ., i are independent, and there
is a protocol P such that:

(1) Only Alice talks.

(2) At most C bits are sent.

(3) All k queries are answered correctly with probability p
Then there is another protocol P’ with the following properties:

(1) Only Alice talks, and she only does so in the first stage.

(2) C + O(log 1/p) bits are sent in expectation.

(3) All k queries are answered correctly with probability at least

p.

Using this lemma, we will be able to prove the communication
lower bound. Assume for the sake of contradiction that Alice sends
o(k log n) bits and Bob answers k queries correctly with probability
at least 279-9F The high-level idea is to let Alice simulate the
protocol and send a message about her input, which takes o(k log n)
bits. Since Bob is able to complete the protocol with no further
communication, we know that a random sequence of k queries can
be answered correctly based solely on this message with probability
270-99% The players then treat the public random string as repeated
samples of queries. On average, there is one entirely-correct sample
of queries in every 270.9% samples from the public randomness.
Thus, it only takes about 0.99k bits for Alice to specify each sample
that would be answered entirely correctly by Bob. Ideally, each
of these samples of k queries reveals k bits of information about
Alice’s input. That is, in the ideal situation, Alice will be able to
save about 0.01k bits each time at the cost of sending o(k log n)
extra bits in the beginning. If Alice managed to repeat this much
more than 0.001 log n times, and each time revealed about k extra
bits of information, she would have revealed 0.001k log n bits of
information in total using only (0.00099 + o(1))k log n bits, which
yields a contradiction.

A ONLINE SET-INTERSECTION LOWER
BOUND

Online Set-Intersection. In the online set-intersection problem
(OSI), Alice is given one set X of size k over the universe [n]. In
each stage, Bob is given an input Y; € [n], which is an element
in the same universe. The goal of this stage is to verify whether
Y; € X. Equivalently, the inputs are two (multi-)sets X, Y C [n] of

3Note that even if Bob does not speak during an online communication protocol, Alice
still learns what Bob’s inputs are each time Bob finishes answering a query.
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size k each. Each element of the set Y is revealed one by one. The
goal is to compute their intersection.

TuroreM A.1. Forn > k?, any zero-error OSI protocol using public
randomness must have expected total communication cost at least
Q(k loglogk).

It is not hard to see that Q(|X N Y|logn) is also a lower bound,
since Alice and Bob need to confirm that their elements in common
are actually equal; in other words, our combined lower bound is
Q(kloglogk + |X N Y|logn). Before we prove Theorem A.1, we
give a protocol which shows that this bound is tight.

LEMMA A.2. Thereis a zero-error OSI protocol using public random-
ness with expected communication cost O(k loglogk + |X N Y|log n).

Proor. The protocol is as follows:

(1) The players use public randomness to sample two uniformly
random hash functions hy : [n] — [k?] and hy : [k?] —
[klog k], and define h : [n] — [klogk] by h = hy o hy.
(2) Alice sends Bob the set h(X) in O(log (“'%8%)) = O(k log log k)
bits*.
(3) For each Y;:
(a) If h(Y;) is not in A(X), Bob returns “NO” immediately.
(b) Otherwise, Bob sends Alice h1(Y;), and Alice tells Bob
whether it is in h1(X). If not, Bob returns “NO” immedi-
ately.
(c) Otherwise, for each X; € X such that h1(X;) = h1(Y;), Al-
ice and Bob determine whether X; = Y;. They do this with
the zero-error protocol for equality which uses O(log n)
bits of communication if X; = Y; and O(1) bits of commu-
nication in expectation if X; # Y;. If X = Y; they return
“YES”, and if X; # Y; for each such X; € X, they return
“NO”.
For each Y; ¢ X, the probability that h(Y;) € h(X) is at most 1/log k.
Since it takes O(log k) bits for Bob to send h1(Y;) to Alice, the total
expected communication cost for stage 3b over all i with Y; ¢ X is
O(k). Similarly, for each Y; ¢ X, the expected number of X; € X
such that hy(Xj) = h1(Y;)is < k- % = 1/k, and so the total expected
communication cost for stage 3c over all i with Y; ¢ X is O(1). Thus,
the above protocol has the claimed total communication cost. O

In the following, we prove the communication lower bound. First
by Yao’s Minimax Principle [23], we may fix an input distribution
and assume the protocol is deterministic. Now let us consider the
following hard distribution.

Hard distribution. We take the first k? elements from the uni-
verse, and divide them into k blocks of size k each. X will contain
one uniformly random element from each block independently.
Each Y; will be a uniformly random element from the first k? ele-
ments. Different Y;’s are chosen independently.

The high-level idea of the proof is to first reduce from OSI to a
classic (non-online) communication complexity problem. In par-
ticular, we consider the problem solved in each stage of the OSI
problem: Alice is given a set of k elements from a universe of size

“4Recall that for any integers n > m > 0 we have (:1) < (%)m Hence, (klt;(g k) <
O(log k)*.
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n and Bob is given a single element from the same universe, and
their goal is to determine if Bob’s element is in Alice’s set. This
is precisely the index problem. Then we focus on the stage that
costs the least amount of communication, and show an index lower
bound with respect to this stage. The hard distribution for OSI
induces the following hard distribution for index.

Hard distribution for index. Divide the first k% elements of the
universe into k blocks of size k each. Alice’s set X consists of one
uniformly random elements from each block independently. Bob’s
element y is chosen from the first k% elements uniformly at random.

We now prove a general lemma which relates protocols for “sym-
metric” online communication problems (in which each round is
essentially the same problem) with protocols for classical commu-
nication problems. Note that when applied to OSI, the associated
single-round problem is index. In other words, a protocol for OSI can
be transformed into a very rigid protocol for index, which will be
easier for us to bound. Additionally, since we prove an iff statement,
we know that this transformation is lossless (up to constants).

LEMMA A.3. Suppose we have a problem in our online communi-
cation model and associated input distribution D over X x Y* with
the following properties:

(1) The function that Alice and Bob want to compute in each round,
fi(X,Y;), does not depend on the round number i.

(2) Conditioned on Alice’s input X € X, Bob’s inputs Y, ..., Yy €
Y areidentically (but not necessarily independently) distributed.

The associated single-round classical problem and associated input
distribution are as follows. Alice is given an input X € X and Bob
is given an input Y € Y, and they want to compute fi(X,Y). Their
inputs are obtained by drawing an input (X, Y1,...,Yy) from D,
giving Alice X, and giving BobY = Y.

There is a protocol for the online problem which uses O(g(n, k))
bits in expectation if and only if there is a protocol for the associated
single-round problem where Alice first sends a message of expected
length O(g(n, k)) bits and then Alice and Bob only speak an additional
O(g(n, k)/k) bits in expectation.

Proor. We first prove the more nuanced forward direction. Sup-
pose we have such a protocol P for the online problem; we want a
protocol P’ for the associated single-round problem with the above
properties.

The key idea is to focus on the stage where the players send
the least bits in expectation. Choose i € [k] such that the players
only speak O(g(n, k)/k) bits in expectation in stage i. To solve the
associated single-round problem on (X, Y), we use the following
protocol P’:

o The players pretend that they were given an online input
where Alice received X and Bob received Y; = Y. They use
public randomness to sample Y7, ..., Y;_; according to D.

o Alice has all the information for the first i — 1 stages, so
she simulates those stages of P for both players. Note this
is possible because P is an online protocol, and hence this
simulation does not depend on any of Yj, ..., Y. Alice then
sends Bob the entire transcript.

e Alice and Bob then communicate to simulate stage i of P,
continuing from the transcript that Alice sent in the previous
step.
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e Bob outputs P’s decision about f;(X,Y;).

In this protocol P’, the first message is sent by Alice in step (2).
It has expected length no more than the transcript of P, which is
O(g(n, k)). The players then simulate stage i in step (3). Since the
imaginary input follows distribution D, the expected communi-
cation in this step is O(g(n, k)/k). Since the goal of stage i in the
online problem is to compute f;(X, Y;), which is precisely f1(X,Y)
by our assumption about f and choosing Y; = Y. Hence the output
of P’ is correct is P is correct.

We finish with the easier reverse direction. Suppose we have
such a protocol P’ for the associated single-round problem; we
want a protocol P for the online problem with the above properties.

By construction, when following P’, Alice first sends a message
with O(g(n, k)) bits in expectation. This message can only depend
on her input. Our protocol P also begins with Alice sending this
message before Bob begins speaking. Now, in each stage, Bob is
given an input Y;. Alice and Bob can simulate P’ on (X, Y;), but
skipping the initial message from Alice since it has already been
sent.

In our protocol P, Alice sends O(g(n, k)) bits in expectation in
her first message. Then in each stage, only O(g(n, k)/k) bits in ex-
pectation are transmitted between the players. Note that we just
used the assumption that Y; and Y; are identically distributed condi-
tioned on X; this is why P’ has the usual expected communication
cost when run on (X, Y;). Thus the total communication cost is
O(g(n, k)) bits in expectation. O

Let P’ be a zero-error protocol for index such that Alice first sends
co bits in expectation, and then Alice and Bob communicate for
c4 and cp bits respectively (in expectation). The following lemma
lower bounds ¢, ca, cB.

LEMMA A.4. For sufficiently large k, any such P’ must have either

® o> %klogk, or
o cy>co- 9—13max{cp,1}-26°0/k

The main idea of the proof is to let Alice simulate Bob. For
simplicity, let us first assume the protocol has three rounds: Alice
sends cq bits, then Bob sends cp bits, finally Alice sends c4 bits. To
simulate Bob, Alice goes over all possible messages that Bob could
send, then for each message, sends Bob what she would say if she
received that message. If Bob sends at most cp bits in worst case,
Alice will be able to complete the above simulate in ¢ + c4 - 2°B
bits of communication. Then Bob will output whether his input Y;
is in Alice’s set X. In particular, Alice’s message depends only her
input X, and Bob can do so for any Y;. That is, Bob will be able to
recover the set X based only on this message, which yields a lower
bound on ¢, ca, cB.

Proor oF LEMMA A.4. Without loss of generality, we may first
assume c¢g > 1. By Markov’s inequality and a union bound, for any
C > 2, with probability at least 1 — 2/C, Alice sends no more than
C - ¢4 bits and Bob sends no more than C - c¢g bits after Alice’s first
message. The next step is to let Alice simulate the entire protocol,
and turn it into one-way communication.

More specifically, the transcript 7 of a conversation between
Alice and Bob is a binary string, in which each bit represents the
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message sent in the chronological order. Given 7 and a fixed pro-
tocol, there shall be no ambiguity in which bits are sent by which
player. That is, for any 7, we can always decompose it into (74, 78),
where 74 is a binary string obtained by concatenating the bits sent
by Alice in the chronological order, and similar for zg. On the
other hand, given (4, 7p), there is a unique way to combine them
into a single transcript x, since a prefix of the transcript uniquely
determines the player who speaks the next. We know that with
probability at least 1 — 2/C, |r4| < C - cg and |7g| < C - ¢p. In the
new protocol, after Alice sends the first ¢g - k bits, she goes over
all 2€°¢B strings s of length at most C - c. For each s (in alphabeti-
cal order), she sends the first C - c4 bits of 74 based on her input
assuming g = s. That is, Alice tells Bob that “if s was your first
C - cp bits of the conversation, then here is what I would say for my
first C - ¢4 bits”” In total, she sends another C - c4 - 2€¢B bits. Thus,
Bob can figure out the answer based only on the above messages,
with probability 1 — 2/C (over the random input pairs). To balance
the lengths of two messages, we set C = ﬁ log Cc—g. If C < 2, then

we have log Cc—f‘ < 4cp, and thus

cA>cCo- 2748,

which implies the second inequality in the statement (note 26c0/k >
1, so this is much stronger). Otherwise, the above argument holds,
and we have

. ¢
Cocp-2€B=Cucy- |2
CA

_ea ([a

2cp cA cA

C ¢

ScA~(,/—Olog /—0)

CA CA

¢

ScA-—O:co.

CA

Thus, Alice sends at most 2¢ bits in expectation in total. This
message only depends on her input X. By Markov’s inequality,
for at least 2/3 of the X’s, Alice sends no more than 6¢g bits. By
Markov’s inequality again, for at least 2/3 of the X’s, the probability
(over a random y) that Bob can figure out if b € A based only on
Alice’s first message is at least 6/C. Since there are kK different
possible X’s, at least k¥ /3 different X’s have both conditions hold.
Thus, there must be k¥ /3 - 276% such X’s that Alice sends the same
message M. Denote this set of X’s by 2. Moreover, when M is the
message Bob receives, there are at least (1 — 6/C)k? different y’s
such that Bob can figure out the answer based only on the value of
y and M. Denote this set of y’s by % In the combinatorial rectangle
X=X XY, foreveryy € ¥, either y € X for every X € 2,
ory ¢ X for every X € 2 . That is, # is a column-monochromatic
rectangle’ of size (kk /3. 2760 % (1 - 6/C)k2.

On the other hand, in any column-monochromatic rectangle
X = X XY for the index problem, the answer is “YES” in no more
than k columns of % (the element is in the set). This is because
each set X € 2 has size k. In order to upper bound the number
of y € # that is not in any X, let r; for 1 < i < k be the size of
the intersection of % and the i-th block of the universe. Thus, the

5 A rectangle with the same function value in every column.
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number of X’s that avoids all y € & is at most

k
(k=ri)k=rz)---(k—rg) < (k_%(rl"'"""rk))

by the AM-GM inequality. That is, at most k? — k|2 |1/k y are not
in any X. Overall, we have |Y| < k +k? — k| %|l/k. Combining this
with the parameters from the last paragraph, we get

(1- 6/C)k2 <k+ K-k ((kk/3 . 2—600))1/k .

Simplifying the inequality yields
6/C > 270/k . 3=1/k _ 1k,

When ¢y < %klogk, we have 276¢0/k . 3-1/k _ 1/k > % . g=6co/k

Co
a) and

for sufficiently large k. Pluging-in the value of C(= ﬁ log
simplifying, we obtain

_ —6cq/k
ca>co-2 13¢cp/2 .

This proves the lemma. m]

Proor oF THEOREM A.1. For any OSI protocol with total com-
munication cost ¢, by Lemma A.3 and Lemma A .4, we have either

e c> %klogk, or

L4 C/k >c- 2*13max{c/k,1}.260/k.

The second inequality simplifies to max{c/k, 1} .20(e/k) > Q(log k).
Thus, we must have ¢ > Q(k loglogk). O
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