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ABSTRACT
In this work, we introduce an online model for communication

complexity. Analogous to how online algorithms receive their input

piece-by-piece, our model presents one of the players, Bob, his

input piece-by-piece, and has the players Alice and Bob cooperate

to compute a result each time before the next piece is revealed to

Bob. This model has a closer and more natural correspondence to

dynamic data structures than classic communication models do,

and hence presents a new perspective on data structures.

We first present a tight lower bound for the online set intersec-
tion problem in the online communication model, demonstrating a

general approach for proving online communication lower bounds.

The online communication model prevents a batching trick that

classic communication complexity allows, and yields a stronger

lower bound. We then apply the online communication model to

prove data structure lower bounds for two dynamic data structure

problems: the Group Range problem and the Dynamic Connectiv-

ity problem for forests. Both of the problems admit a worst case

O(logn)-time data structure. Using online communication com-

plexity, we prove a tight cell-probe lower bound for each: spending

o(logn) (even amortized) time per operation results in at best an

exp(−δ2n) probability of correctly answering a (1/2 + δ )-fraction
of the n queries.
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1 INTRODUCTION
One major hallmark of complexity theory is Yao’s cell-probe model

[24], a powerful model of computation that manages to capture the

inherent complexity found in a variety of data structure problems.

The titular feature of this model is that the data structure is only

charged for the number of memory cells that it accesses (or probes),
and not for any computation it needs to perform on the contents

of those cells. Since this model is so strong – data structures are

given the power of ‘free computation’ – proving lower bounds

here yields lower bounds for most other models of data structure

computation. Many lower bounds in the cell-probe model are de-

rived via connections to communication complexity, wherein two

players try to jointly compute a function but are only charged for

the bits that they communicate to each other and again, not for any

computation [1, 2, 11, 12, 16, 22, 25].

Unfortunately, the sheer power granted to the data structure

by the cell-probe model can often make it difficult to prove strong

lower bounds. In fact, in many cases a matching lower bound in the

cell-probemodel may be impossible; counting just cell probes in lieu

of actual computation time might indeed make several problems

easier [10]. Partly as a result of this difficulty, only a few techniques

are known for proving cell-probe lower bounds. In this paper, we

propose a new technique to add to our growing toolbox.We propose

a new model of communication complexity which we call online
communication. We give tools for proving lower bounds in this new

model, and then use these tools to show how the model results

in new robust lower bounds for two fundamental data structure

problems.

1.1 Online Communication Model
Inspired by the fact that a data structure must answer one query

before it sees the next, we propose a novel model of communication:

the online communicationmodel. The salient feature of ourmodel is

that one of the players, Bob, does not receive his entire input at once.

Whereas Alice receives her entire input X , Bob receives a small

piece Y1 and the two must jointly compute a function f1(X ,Y1)
before Bob receives the next piece Y2, and so on. As usual, we care

about the total amount of communication that Alice and Bob use.

Intuitively, this model is designed to rule out batching techniques;

in usual offline models of communication, it may be cheaper for
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Bob to discuss all the pieces of his input together, but in the online

model, this is impossible since he only receives one piece at a time.

It stands to reason that we should be able to prove better lower

bounds now that communication protocols have one fewer trick

to work with. In this paper, we develop techniques that relate this

model to more familiar entire-input-at-once models. In order to

demonstrate how things are different in the online model, we turn

to perhaps one of the most important communication problems:

set disjointness.

1.2 Online Set Disjointness
The testbed for our new model is the quintessential problem, set

disjointness. In the basic version of this problem, Alice and Bob

are each given subsets over [n] and want to compute whether their

subsets are disjoint. This problem has long been a favored source of

hardness, and alongwith its many variations, it has been thoroughly

studied by theorists; see e.g. the surveys [4, 18].

In the context of our model, this problem manifests as the online
set intersection problem. Alice is given an entire subset X ⊆ [n] of
size k while Bob is only given single elements yi of another subset
Y ⊆ [n] of size k one at a time. The players need to decide whether

yi < X before Bob receives the next element. We show that:

Theorem 1.1 (informal). When n ≥ k2, the online set intersec-
tion problem requires Ω(k log logk) bits of total communication.

In fact, our proof shows that deciding whether X and Y are dis-

joint requires Ω(k log logk) bits of communication in the online

model; it cannot be done more effiicently even if Alice and Bob

may stop after finding an intersecting element. We also give a fairly

straightforward protocol which solves the problem inO(k log logk)
bits of communication, showing that this bound is tight. This stands

in contrast to known bounds for the classical communication model,

in which the set disjointness problem can be solved with just O(k)
bits by using a batching trick to test all elements of Y simultane-

ously [8].

1.3 Group Range Problem
The first data structure problem we consider is a generalization of

the Partial Sums problem (from e.g. [14]), and which has connec-

tions to a family of problems studied by Frandsen, Miltersen, and

Skyum [6]. In the Group Range Problem, we have a group G along

with a binary encoding of the group elements (any injective func-

tion) e : G → {0, 1}s . We would like a data structure which stores

a sequence of n group elements a0, . . . ,an−1 while supporting the

following operations:

• Update(i ,a) sets entry ai ← a.

• Query(ℓ, r , i) returns the ith bit of the binary encoding of

the group product aℓaℓ+1 · · ·ar−1ar .

We focus on the case where the cell-size is w = Θ(logn) and the

group is polynomially-sized: log |G | = O(w).
Regarding upper-bounds, there is a folklore data structure which

solves the problemwithO(logn) time per operation. This is a worst-

case (not just amortized) guarantee, and the data structure is de-

terministic. There is a matching Ω(logn) cell-probe lower-bound
by Pǎtraşcu and Demaine for the Partial Sums problem, wherein

queries need to return the entire product rather than a single bit [14].

This lower bound holds for Las Vegas randomized data structures

(the number of cell probes is considered in expectation) and amor-

tized operation cost.

However, this lower bound leaves open several plausible ways

to improve the running time. What if we really only care about a

single bit of each query? What if we are willing to tolerate errors?

Our main result shows that even if we permit these concessions,

the Ω(logn) barrier still stands:

Theorem 1.2. There exists a distribution overn updates and queries
for the Group Range Problem with binary encoding of the group ele-
ments e : G → {0, 1}s , such that for any randomized cell-probe data
structure D with word size w = Θ(logn), which with probability p
answers at least a ( 1

2
+ δ ) fraction of queries correctly and spends

ϵn logn total running time, we must have p ≤ exp(−δ2n), as long as
s ≤ (1+ ϵ) log |G |, δ2 ≫ ϵ ≥ Ω(1/logn), and n is sufficiently large.1

Put another way, Theorem 1.2 settles the trade-off between run-

ning time and accuracy of the output for the Group Range Problem.

There are two possible regimes. If we are willing to pay Θ(logn)
time per operation, then there exists a deterministic worst-case

data structure. Otherwise, if we require the data structure to spend

o(logn) time per operation, then Theorem 1.2 shows that we can-

not hope to do much better than outputting a random bit for each

query, up to a constant factor improvement in δ . To the best of

our knowledge, this bound and our other lower bound we describe

shortly are the first tight data structure lower bounds in such a high

error regime, where a data structure may answer barely more than

half of the queries correctly, and do so even with a small success

probability.

1.4 Dynamic Connectivity
Next, we consider a fundamental problem in graph data structures:

Dynamic Connectivity. In this problem, we would like a data struc-

ture which stores an undirected graph G = (V , E) on n vertices,

while supporting the following operations:

• insert(u,v) adds edge (u,v) to E.
• delete(u,v) removes edge (u,v) from E.
• query(u,v) returns whether or not there currently exists a

path between nodes u and v.

Like before, we look at this problem in the cell-probe model with

cell size w = O(logn). The link/cut tree data structure [19] and

Euler tour tree data structure [9] for the problem takeO(logn) time

per update or query. A matching Ω(logn) lower bound was given

by Pǎtraşcu and Demaine [15]. However, their lower bound holds

for Las Vegas or Monte Carlo data structures with amortization,

where they assume that the error probability for each query is n−c

for some large constant c .
Pǎtraşcu and Demaine still leave open the question of what can

be done if we insist on o(logn) time per operation. Their lower

bound asserts that we cannot answer each query correctly with

better than 1 − n−c probability. However, for one example, it could

still be possible to design a data structure which answers all queries
correctly simultaneously with probability, say 1− 1/logn, and such
that each individual query is correct with probability lower than

1 − n−c . Such a data structure would not violate the existing lower

1
In this paper, we use exp(f (n)) to mean 2

Θ(f (n))
.
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bounds, and its success probability would be good enough in many

applications, as it only incurs an additive 1/logn overall error prob-

ability.

Again, our new technique yields a robust lower bound, ruling

out such data structures:

Theorem 1.3. There exists a distribution over O(n) updates and
queries for the dynamic connectivity problem, such that for any ran-
domized cell-probe data structure D with word-size w = Θ(logn),
which with probability p answers at least a ( 1

2
+ δ )-fraction of the

queries correctly and spends ϵn logn total running time, we must
have p ≤ exp(−δ2n) as long as δ2 ≫ 1/log(1/ϵ) and ϵ ≥ Ω(1/logn)
and n is sufficiently large. Moreover, the graph is always a forest
throughout the sequence of updates.

Similar to before, this essentially settles the complexity of the

Dynamic Connectivity problem in forests (where the graph is al-

ways a forest throughout the sequence of updates). If one wants

o(logn) per update and query, then one cannot do better than out-

putting the flip of a random coin to answer each query, again up to

a constant factor in δ .
Our lower bound almost matches the best known upper bound

for Dynamic Connectivity in general graphs of O(logn log3 logn)
by Thorup [21]. Dynamic Connectivity with higher error than

Pǎtraşcu and Demaine allowed for, although still lower error than

we consider, was studied by Fredman and Saks [7], but for worst-

case update time instead of amortized, and for the problem where

edge deletions are not allowed; the only updates allowed are edge

insertions. They showed that any 1/32-error data structure for Dy-

namic Connectivity without deletions with expected query time tq
andworst-case update time tu must have tu ≥ Ω(log(n)/log(tu log(n))).
Ramamoorthy and Rao [17] recently gave a simplified proof of Fred-

man and Saks’ result as well.

1.5 Further Results
We also prove some complementary results to our two data struc-

ture lower bounds.

1.5.1 Group Range Problem. The Group Range Problem is stated

very broadly about general groups G. Although it may help the

reader to imagine a more common group like Zm or a permutation

group while reading the proof, there are other important cases.

For example, Theorem 1.2 holds when G is the direct product of

many smaller groups. In this case, the problem can be viewed as

many disjoint copies of the Group Range problem on the smaller

component groups with simultaneous updates.

The case where G is the general linear group of invertible matri-

ces also has many applications; see the full paper for a discussion

of applications to physics and to other dynamic data structure

problems. For this case, we show how the matrix structure can be

exploited to prove even stronger results. For example, as a variant

of the original problem, consider theMatrix Product Problem, where

queries can only ask for a bit about the bottom-right entry of the

product of the entire range of matrices, rather than any bit about

the product of any subrange. In the full version of the paper we

show that the lower bound still applies:

Corollary 1.4. Theorem 1.2 holds for the Matrix Product Problem.

We show a similar result for upper-triangular matrices as well

in the full version.

It would be interesting to extend Theorem 1.2 to hold for an

even wider class of algebraic structures. For instance, some past

work (e.g. [14]) considers the partial sums problem where G is any

semi-group. However, we show that such an extension is impossible,

not only to semi-groups, but even just to monoids (a type of alge-

braic structure between groups and semi-groups, which satisfies

all the group axioms except the existence of inverses). Indeed, we

demonstrate in the full version that the Ω(logn) lower bound can

be beaten for the Monoid Range Problem (the same as the Group

Range Problem except that G can be any monoid), so no general

lower bound applies:

Theorem 1.5. There exists a family of monoids (Gn )n such that

the Monoid Range Problem can be solved in O
(

logn
log logn

)
time per

operation worst-case deterministically in the cell-probe model.

1.5.2 Dynamic Connectivity. Dynamic Graph Connectivity is

one of the most basic and versatile dynamic graph problems. As

such, we can extend Theorem 1.3 to hold for a number of other

graph problems. Some examples include:

• Dynamic Entire Graph Connectivity: Maintain a dynamic

undirected graph, where queries ask whether the entire

graph is connected.

• Dynamic Minimum Spanning Forest: Maintain a dynamic

undirected graph, where queries ask for the size of a mini-

mum spanning forest.

• Dynamic Planarity Testing: Maintain a dynamic undirected

graph, such that edge insertions are guaranteed to maintain

that the graph is planar, and where queries ask whether

inserting a specific new edge would result in a non-planar

graph.

Corollary 1.6. Theorem 1.3 holds for Dynamic Entire Graph
Connectivity, Dynamic Minimum Spanning Forest, and Dynamic
Planarity Testing.

Corollary 1.6 follows from some straightforward reductions

given in [15, Section 9].

1.6 Our Technique and Related Work
Next, we discuss our plan of attack for using the online commu-

nication model along with other ideas to prove our data structure

lower bounds, Theorems 1.2 and 1.3, and we compare it with the

approaches of past work. A more detailed overview of our proofs

is given later in Section 3.

Our high-level strategy is similar to previous techniques based on

communication complexity for proving cell-probe lower bounds [16,

22, 25]. We first “decompose” the computation being done into sev-

eral communication games, and show that an efficient data structure

would induce efficient protocols for these games. We then prove

communication lower bounds for these games, ruling out these

supposed efficient protocols. The communication games we wind

up with consist of a random sequence of interleaved updates and

queries divided into two consecutive blocks of operations. Roughly

speaking, in each communication game, the first block is only re-

vealed to Alice while the second block is only revealed to Bob. All
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other operations are revealed to both players. The goal of the game

is for Alice and Bob to cooperatively answer all the queries in Bob’s

interval.

The choice of what communication model to use in this strategy

is crucial. The first step, transforming a fast data structure into an

efficient protocol, can be done more efficiently in a stronger model

(e.g. randomized over deterministic). On the other hand, the second

step, proving communication lower bounds, is more difficult in

a stronger model. Designing the right communication model to

balance these two proof phases is a crucial ingredients in these

types of proofs.

In this paper, we analyze the communication games in our online

communication model. Compared to other models used in previous

work, our model has a more natural correspondence to the task that

data structures face: answering queries in sequential order. Studying

these communication games in our online communication model

yields a more fine-grained view of the situation. See Section 3 and

the full version for more details on this connection between online

communication complexity and dynamic data structures.

1.6.1 Group Range Problem. To illustrate this point, consider

the communication games induced by the Group Range Problem.

When one analyzes these games in the classical communication

models considered by past work, where both players receive their

inputs at once, there is a protocol which is too efficient to prove

a tight lower bound
2
. In other words, it is provably impossible to

use any of the previous communication models at this point in the

proof; the communication game is simply not “hard” in any of them.

We will see that these communication games are hard enough to

prove strong lower bounds in our online communication model.

As stated before, Pǎtraşcu and Demaine [14] proved a Ω(logn)
lower bound for the Partial Sums problem (queries want entire prod-

uct rather than a single bit), when no error is allowed in answering

queries. Their information-transfer technique does not apply directly
to our task, since it relies on the fact that each query outputs many

bits and hence reveals a lot of information, and that the data struc-

ture has no errors. Their technique was later generalized [15] to

prove lower bounds for problems with single-bit output, but their

argument mostly focuses on the query which the data structure

spends the least amount of time on. It is hard to apply this gen-

eralization directly when both overall running time and overall

accuracy need to be taken into account. However, it is worth noting

that their argument does apply to our Group Range Problem if only

zero-error data structures are considered.

1.6.2 Dynamic Connectivity. The high-level structure of our

Dynamic Connectivity lower bound proof is close to that of Pǎtraşcu

and Demaine’s proof [15]. To prove an Ω(n logn) lower bound on

the total running time on O(n) operations, both proofs reduce the

task to proving that given an initial graph, k updates and k queries,

if we perform the updates on the initial graph and then ask the k
queries, then there must be a big, Ω(k)-size intersection between

the set of cells probed and written to during the insertions, and the

set of cells probed during the queries. Intuitively, we need to show

2
For someG , Bob has a succinct encoding of his queries and can send the compressed

input to Alice in order to solve the problem more efficiently than the trivial protocol

would.

that the data structure must learn enough information about the

updates in order to answer the queries.

The two proofs then diverge from this point onwards. Pǎtraşcu

and Demaine first set up a hard distribution on updates and queries

such that when the answers to all k queries are Yes, one is able
to reconstruct the k updates exactly based on these queries. Then

they use an encoding argument to show that if the data structure

only probes o(k) such cells, then the k updates can be encoded very

efficiently, contradicting an information theoretical lower bound

that they prove using the distribution itself. Roughly speaking,

they encode the k updates so that one is able to “simulate” a data

structure on any sequence of k queries after the updates based only

on the encoding. Then one can iterate over all possible queries,

simulate the data structure on all of them, and find the one with k
Yes answers, which can be used to reconstruct the updates.

Since the information about updates is only hidden in the all-Yes
queries, and one needs to simulate on a large number of queries

before k Yes queries are found, Pǎtraşcu and Demaine’s argument

fails if the data structure is allowed high two-sided error. In fact,

their proof only applies to the case where the error probability of

each query is 1/nc for some large constant c . It is not hard to prove
that under their input distribution, one will not be able to learn

much from the simulations if the error probability of each query is

higher than about 1/
√
n.

In order to resolve this issue in our Dynamic Connectivity lower

bound, we first construct a different hard distribution such that

not only the all-Yes queries, but even a random set of queries

reveals a sufficient amount of information about the updates with

high probability. To prove our lower bound, we then use a very

different encoding argument, based on the transcript of an online

communication protocol. We prove that if an efficient data structure

exists, then there is an efficient online communication protocol for

the problem where Alice receives the k updates, Bob receives the

k queries one at a time, and the goal is to answer all queries. Our

encoding argument is more similar to those used in [5] and [22].

See Section 3.2 for a more detailed overview of our approach.

Fredman and Saks [7] and Ramamoorthy and Rao [17] proved

a lower bound for the insert-only version of Dynamic Connec-

tivity, where deletion updates are not allowed. They proved that

for data structures with worst-case update time and constant er-

ror probability, the insert-only version of the problem has to take

Ω(logn/log logn) time per operation. However, the insert-only

regime is very different from our fully dynamic regime. For worst-

case data structures, the logn/log logn bound is tight [3, 20]. If

we allow amortization, the standard union-find solution solves the

problem in O(α(n)) time per operation. Thus, it is difficult to apply

their technique to the fully dynamic regime.

1.7 Organization
We first formally define the online communication model in Sec-

tion 2, and then in Section 3 we give an overview of all three of

our lower bound proofs. We then prove the online set intersection

lower bound in Appendix A. We prove our remaining results, in-

cluding the cell-probe lower bounds for the Group Range Problem

and Dynamic Connectivity, in the full version.

1006



Cell-Probe Lower Bounds from Online Communication Complexity STOC’18, June 25–29, 2018, Los Angeles, CA, USA

2 THE ONLINE COMMUNICATION MODEL
In this section, we define the online communication model, and

then throughout the rest of the paper we present some approaches

for proving lower bounds in it. We intentionally try to keep the

model quite general. In Appendix A, we showcase our approach

by proving a tight lower bound for the natural variation of set-

intersection for this setting, and thereafter we use the model to

prove cell-probe data structure lower bounds.

In the online communication model, there are two players, Alice

and Bob. Alice is given her entire input X ∈ X at the beginning.

Bob will be given his input Y1,Y2, . . . ,Yk ∈ Y gradually. The two

of them want to compute f1(X ,Y1), f2(X ,Y2), . . . , fk (X ,Yk ) under
the following circumstances:

(1) The game consists of k stages. The players remember the

transcript from previous stages.

(2) At the beginning of Stage i for i ∈ [k], Yi is revealed to Bob.
(3) Next, the players communicate as if they were in the classical

communication model. After that, Bob must output fi (X ,Yi ).
(4) At the end of Stage i , Yi is revealed to Alice, and the players

proceed to the next stage.

Note that the number of stages, k , is fixed and known up-front

when designing a protocol. In a deterministic (resp. randomized)

online communication protocol, the players communicate as if they

were in the deterministic (resp. randomized) communication model

in the second step of each stage.

We desire protocols that use the minimum amount of total com-

munication. A protocol is free to perform a different amount of

communication in each stage. However, there is a natural tension

on the proper time to communicate: in earlier stages the players

have less information, but they still need to solve their current task

at hand before they can proceed. Later on, we will see that the total

communication will correspond nicely with the amortized cost of

data structure operations.

3 PROOF OVERVIEWS
3.1 Online Set Intersection Lower Bound
In this section we give a high-level overview of how we prove

our communication lower bound for online set intersection (OSI).

Although the lower bound for OSI is not explicitly used in our data

structure lower bounds later, the data structure lower bounds do

use online communication lower bounds for other problems which

we prove using some common techniques. Our OSI lower bound is,

in a sense, a warm-up for the more complex proofs to come.

The main idea behind our OSI lower bound is a very general re-

duction showing how online communication lower bounds can be

proved using techniques from offline communication lower bounds.

Consider an offline communication problem called the Index prob-

lem, where Alice is given a set X ⊆ {1, 2, . . . ,n} of size |X | = k ,
and Bob is only given a single element y ∈ {1, 2, . . . ,n}, and their

task is to determine whether y ∈ X . One can view the OSI problem

as k iterations of Alice and Bob solving the offline Index problem.

That said, it is insufficient to simply prove a lower bound for the

Index problem. Since Alice has the same set X in all k iterations,

Bob can learn information about it throughout the rounds of the

protocol, and so it is plausible that later rounds can be completed

with less communication than earlier rounds. In order to circumvent

this issue, we prove:

Lemma 3.1. (informal) There is a protocol for OSI which in total
uses g(n,k) bits of communication in expectation if and only if there
is a protocol for Index where

(1) Alice first sends O(g(n,k)) bits in expectation, then
(2) Alice and Bob speak an additional O(g(n,k)/k) bits in expec-

tation.

The high-level idea for proving the ‘only if’ direction of Lemma 3.1

is that Alice can begin by telling Bob a cleverly-crafted message

containing the information that Bob would learn about X during

the OSI protocol on a random sequence of inputs. Thereafter, Alice

and Bob can pretend they are in the ‘easiest’ round of their OSI

protocol, which only takesO(g(n,k)/k) bits in expectation to solve.

Once we prove Lemma 3.1, it remains to prove a lower bound for

the Index problem in the usual offline communication model, which

can be done using standard counting techniques.

We actually prove a more general version of Lemma 3.1 for

any online communication problem in which Alice and Bob are

computing the same function f = fi in each round (in the case of

OSI, f is the Index problem). Unfortunately, for our data structure

lower bound proofs, the communication games do not have this

property, and more care will be needed.

3.2 Data Structure Lower Bounds
In this section, we give a streamlined overview of our data structure

lower bound proofs. The proofs of our lower bounds for Group

Range and Dynamic Connectivity both have a similar high-level

structure. In both proofs, the first step is to design a hard input

distribution. The distribution is supported on sequences of opera-

tions consisting of O(n) mixed updates and queries. Then by Yao’s

minimax principle [23], it suffices to prove a lower bound against

deterministic data structures dealing with inputs drawn from this

distribution.

Next, to prove a lower bound of Ω(n logn) for answering the

random sequence, we use an idea from [13], which reduces proving

a lower bound on total running time to proving lower bounds for

many subproblems. Each subproblem is defined by two adjacent

intervals of operations of equal length from this random sequence,

which are denoted by IA and IB , e.g., IA is the interval consisting of

the 17th to the 32nd operation in the sequence, and IB is the interval

consisting of the 33rd to the 48th operation. In each subproblem,

instead of the running time (i.e., the number of cell-probes), we are

interested in the number of cells that are probed in both intervals

IA and IB . A counting argument from [13] shows that

• if for every k and adjacent interval pair (IA, IB ) of length k ,
at least Ω(k) cells are probed in both IA and IB ,
• then the total running time is at least Ω(n logn).

In order to prove a lower bound when the data structure’s goal is

only to maximize the probability of answering (1/2+ δ )-fraction of

the queries correctly, we generalize the argument, and show that

• if for every δ ′,k and adjacent interval pair (IA, IB ) of length
k , the probability that o(k) cells are probed in both IA and

IB and (1/2 + δ ′)-fraction of the queries in IB is correct is

exp(−δ ′2k),
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• then the probability that total running time is o(n logn)
and (1/2 + δ )-fraction of the queries is correct in total is

exp(−δ2n).

Thus, the tasks boil down to proving such lower bounds for all

subproblems.

3.2.1 Online Communication Simulation. We now focus on a

single subproblem (IA, IB ). We would like to show that if a data

structure answers a (1/2+ δ )-fraction of the queries in IB correctly,

then it must probe many cells in IB which were also probed and

written to in IA. Intuitively, if a data structure probes very few cells

in IB that are probed in IA, then it learns very little information

about the updates in IA. Thus, if the answer to a random query

would reveal one bit of information about the updates in IA, but
the data structure has learned a negligible amount of information

about IA, then the data structure cannot hope to answer the query

with a nonnegligible advantage above 1/2. To formulate the above

intuition, we model this process by an online communication game.

Communication Game. We define one communication game for

each interval pair (IA, IB ). Fix two intervals IA and IB consisting of

k updates and queries each, all the operationsO prior to these inter-

vals, all the queriesQA in IA and all the updatesUB in IB . That is, the
only undetermined operations up to the end of IB are the updates

in IA and the queries in IB ; everything else is common knowledge

to Alice and Bob. We embed these undetermined operations into

a communication game. In the associated online communication

gameG = G(v,O ,QA,UB ),X consists of the updates in IA, andYi is

the ith query in IB . The goal of Stage i is to compute the ith query

in IB .
Now we present (an informal version of) our main lemma, which

connects the data structures to online communication.

Lemma 3.2 (informal). For any data structure D, there is a pro-
tocol PD for the communication game G(v,O ,QA,UB ) such that

(1) Bob sends no message;
(2) For every β ∈ (0, 1), the probability that
• Alice sends o(k logn) bits, and
• PD answers a (β −o(1))-fraction of the fi (X ,Yi )’s correctly
is at least the probability conditioned on O ,QA,UB that
• o(k) cells are probed in both IA and IB by D, and
• D answers a β-fraction of queries in IB correctly.

For any data structureD, we construct the protocol PD as follows.

(1) (Preprocessing) Recall that Alice knows all the operations

up to the end of IA and the updates in IB , and Bob knows all

the operations prior to IA and all the operations in IB . First,
Alice simulates D up to the end of IA, and Bob simulates D
up to the beginning of IA and skips IA. Denote the memory

state that Alice has at this moment byMA. Next, the players

are going to simulate operations in IB .
(2) (Stage i - Alice’s simulation) Since the (i − 1)-th query is

revealed to Alice at the end of the last stage, Alice first con-

tinues her simulation of D up to right before the i-th query.

Alice then sends Bob the cells (their addresses and contents

inMA) that are

• probed during this part of the simulation, and

• probed during IA, and

• not probed in the previous stages.

(3) (Stage i - Bob’s simulation) Bob first updates his memory

state according to Alice’s message: For each cell in the mes-

sage, Bob replaces its content with the actual content inMA.

This is the first time D probes these cells, since otherwise

Alice would have sent them earlier, and so their contents

remain the same as inMA. Bob then continues his simulation

of D up to the beginning of i-th query.

(4) (Stage i - query answering) Bob now simulates D on query

Yi . During the simulation, Bob pretends that he has the right
memory state of D for the query, even though he skipped IA,
and has only received partial information from Alice about

it. He then outputs whatever answer D gives him. Finally,

Bob rolls back his copy of D to the version right before this

query (after the simulation described in the previous step).

Even though he was assuming his copy of D is correct, it

may have actually made a mistake, and at the beginning of

the next step, Alice will tell Bob what cells he should have

queried and changed.

The key observation to make about the above protocol is that

Bob might only give a different answer to query Yi than the real

data structureD would have ifD would probe a cell that was written

to during IA while answering Yi . Moreover, at the beginning of the

next stage, Alice would then tell Bob the true value which that cell

should have had. Hence, each cell which D would write to in IA and

probe in IB can cause Bob to make at most one mistake. As such,

if D would only probe a negligible number, o(k) of cells in both IA
and IB , then Bob similarly gives the same answer as a correct D
would to all but a negligible number of his queries.

3.2.2 Online Communication Lower Bounds. The tasks now re-

duce to proving online communication lower bounds. We prove

the communication lower bounds for Group Range and Dynamic

Connectivity using different approaches.

Communication lower bounds for Group Range. We design the

hard distribution such that the k updates in IA have entropy about

k logn. Hence, if Alice sends only o(k logn) bits to Bob, then Bob

knows very little about those updates. In particular, we carefully

design the queries such that there is aΘ(k logn)-bit encoding of the
k updates, and each query is essentially asking for one random bit

of this encoding. Then on average, every bit is still close to unbiased

even after Bob sees Alice’s message. That is, Bob will not be able to

predict the answer with much better probability than 1/2.

Furthermore, we prove the above conditioned on whether Bob

answered the previous queries correctly. Therefore, the sequence

of numbers consisting of, for each 1 ≤ i ≤ k , the number of correct

answers in the first i queries minus its expected value, forms a

supermartingale. Applying the Azuma-Hoeffding inequality shows

that the probability that at least a (1/2 + δ )-fraction of the queries

is correct is at most exp(−δ2k).

Communication lower bounds for Dynamic Connectivity. The
lower bound for the Dynamic Connectivity problem is proved in a

different way. To prove the communication lower bound, we first

show that it suffices to prove that the probability that all k queries

are correct is at most 2
−(1−o(1))k

. This would in particular imply

that the probability that all k queries are wrong is also at most
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2
−(1−o(1))k

. In fact, for any fixed sequence of choices of whether

each query is correct or not, we show that this sequence happens

with probability no more than 2
−(1−o(1))k

. This is, in particular, at

most a 2
o(k )

factor more than the probability of achieving the fixed

sequence by outputting uniformly independent bits. This implies

that the probability that a (1/2+δ )-fraction of the queries is correct

is at most 2
o(k )

times the probability of the same event when all

the bits are independent, which is exp(−δ2k).
Next, we prove that when the inputs to the communication

problem are independent and Bob does not speak, we may assume

without loss of generality that Alice only speaks before the first

stage,
3
which we call the Monologue lemma:

Lemma 3.3 (Monologue Lemma (informal)). Suppose that Al-
ice’s input X and Bob’s inputs Y1, . . . ,Yk are independent, and there
is a protocol P such that:

(1) Only Alice talks.
(2) At most C bits are sent.
(3) All k queries are answered correctly with probability p

Then there is another protocol P ′ with the following properties:
(1) Only Alice talks, and she only does so in the first stage.
(2) C +O(log 1/p) bits are sent in expectation.
(3) All k queries are answered correctly with probability at least

p.

Using this lemma, we will be able to prove the communication

lower bound. Assume for the sake of contradiction that Alice sends

o(k logn) bits and Bob answers k queries correctly with probability

at least 2
−0.99k

. The high-level idea is to let Alice simulate the

protocol and send a message about her input, which takes o(k logn)
bits. Since Bob is able to complete the protocol with no further

communication, we know that a random sequence of k queries can

be answered correctly based solely on this message with probability

2
−0.99k

. The players then treat the public random string as repeated

samples of queries. On average, there is one entirely-correct sample

of queries in every 2
−0.99k

samples from the public randomness.

Thus, it only takes about 0.99k bits for Alice to specify each sample

that would be answered entirely correctly by Bob. Ideally, each

of these samples of k queries reveals k bits of information about

Alice’s input. That is, in the ideal situation, Alice will be able to

save about 0.01k bits each time at the cost of sending o(k logn)
extra bits in the beginning. If Alice managed to repeat this much

more than 0.001 logn times, and each time revealed about k extra

bits of information, she would have revealed 0.001k logn bits of

information in total using only (0.00099 + o(1))k logn bits, which

yields a contradiction.

A ONLINE SET-INTERSECTION LOWER
BOUND

Online Set-Intersection. In the online set-intersection problem

(OSI), Alice is given one set X of size k over the universe [n]. In
each stage, Bob is given an input Yi ∈ [n], which is an element

in the same universe. The goal of this stage is to verify whether

Yi ∈ X . Equivalently, the inputs are two (multi-)sets X ,Y ⊆ [n] of

3
Note that even if Bob does not speak during an online communication protocol, Alice

still learns what Bob’s inputs are each time Bob finishes answering a query.

size k each. Each element of the set Y is revealed one by one. The

goal is to compute their intersection.

TheoremA.1. Forn ≥ k2, any zero-error OSI protocol using public
randomness must have expected total communication cost at least
Ω(k log logk).

It is not hard to see that Ω(|X ∩ Y | logn) is also a lower bound,

since Alice and Bob need to confirm that their elements in common

are actually equal; in other words, our combined lower bound is

Ω(k log logk + |X ∩ Y | logn). Before we prove Theorem A.1, we

give a protocol which shows that this bound is tight.

LemmaA.2. There is a zero-error OSI protocol using public random-
ness with expected communication costO(k log logk + |X ∩Y | logn).

Proof. The protocol is as follows:

(1) The players use public randomness to sample two uniformly

random hash functions h1 : [n] → [k2] and h2 : [k2] →
[k logk], and define h : [n] → [k logk] by h = h2 ◦ h1.

(2) Alice sends Bob the seth(X ) inO(log
(k logk

k
)
) = O(k log logk)

bits
4
.

(3) For each Yi :
(a) If h(Yi ) is not in h(X ), Bob returns “NO” immediately.

(b) Otherwise, Bob sends Alice h1(Yi ), and Alice tells Bob

whether it is in h1(X ). If not, Bob returns “NO” immedi-

ately.

(c) Otherwise, for eachX j ∈ X such thath1(X j ) = h1(Yi ), Al-
ice and Bob determine whetherX j = Yi . They do this with
the zero-error protocol for equality which uses O(logn)
bits of communication if X j = Yi and O(1) bits of commu-

nication in expectation if X j , Yi . If X j = Yi they return

“YES”, and if X j , Yi for each such X j ∈ X , they return

“NO”.

For each Yi < X , the probability that h(Yi ) ∈ h(X ) is at most 1/logk .
Since it takes O(logk) bits for Bob to send h1(Yi ) to Alice, the total

expected communication cost for stage 3b over all i with Yi < X is

O(k). Similarly, for each Yi < X , the expected number of X j ∈ X

such thath1(X j ) = h1(Yi ) is ≤ k · 1k2
= 1/k , and so the total expected

communication cost for stage 3c over all i withYi < X isO(1). Thus,
the above protocol has the claimed total communication cost. �

In the following, we prove the communication lower bound. First

by Yao’s Minimax Principle [23], we may fix an input distribution

and assume the protocol is deterministic. Now let us consider the

following hard distribution.

Hard distribution. We take the first k2 elements from the uni-

verse, and divide them into k blocks of size k each. X will contain

one uniformly random element from each block independently.

Each Yi will be a uniformly random element from the first k2 ele-
ments. Different Yi ’s are chosen independently.

The high-level idea of the proof is to first reduce from OSI to a

classic (non-online) communication complexity problem. In par-

ticular, we consider the problem solved in each stage of the OSI

problem: Alice is given a set of k elements from a universe of size

4
Recall that for any integers n ≥ m > 0 we have

(n
m
)
≤

( n·e
m

)m
. Hence,

(k logk
k

)
≤

O (logk)k .
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n and Bob is given a single element from the same universe, and

their goal is to determine if Bob’s element is in Alice’s set. This

is precisely the index problem. Then we focus on the stage that

costs the least amount of communication, and show an index lower

bound with respect to this stage. The hard distribution for OSI

induces the following hard distribution for index.

Hard distribution for index. Divide the first k2 elements of the

universe into k blocks of size k each. Alice’s set X consists of one

uniformly random elements from each block independently. Bob’s

element y is chosen from the first k2 elements uniformly at random.

We now prove a general lemma which relates protocols for “sym-

metric” online communication problems (in which each round is

essentially the same problem) with protocols for classical commu-

nication problems. Note that when applied to OSI, the associated

single-round problem is index. In other words, a protocol for OSI can

be transformed into a very rigid protocol for index, which will be

easier for us to bound. Additionally, since we prove an iff statement,

we know that this transformation is lossless (up to constants).

Lemma A.3. Suppose we have a problem in our online communi-
cation model and associated input distribution D over X ×Yk with
the following properties:

(1) The function that Alice and Bob want to compute in each round,
fi (X ,Yi ), does not depend on the round number i .

(2) Conditioned on Alice’s inputX ∈ X, Bob’s inputsY1, . . . ,Yk ∈
Y are identically (but not necessarily independently) distributed.

The associated single-round classical problem and associated input
distribution are as follows. Alice is given an input X ∈ X and Bob
is given an input Y ∈ Y, and they want to compute f1(X ,Y ). Their
inputs are obtained by drawing an input (X ,Y1, . . . ,Yk ) from D,
giving Alice X , and giving Bob Y = Y1.

There is a protocol for the online problem which uses O(g(n,k))
bits in expectation if and only if there is a protocol for the associated
single-round problem where Alice first sends a message of expected
lengthO(g(n,k)) bits and then Alice and Bob only speak an additional
O(g(n,k)/k) bits in expectation.

Proof. We first prove the more nuanced forward direction. Sup-

pose we have such a protocol P for the online problem; we want a

protocol P ′ for the associated single-round problem with the above

properties.

The key idea is to focus on the stage where the players send

the least bits in expectation. Choose i ∈ [k] such that the players

only speak O(g(n,k)/k) bits in expectation in stage i . To solve the

associated single-round problem on (X ,Y ), we use the following
protocol P ′:

• The players pretend that they were given an online input

where Alice received X and Bob received Yi = Y . They use

public randomness to sample Y1, . . . ,Yi−1 according to D.

• Alice has all the information for the first i − 1 stages, so

she simulates those stages of P for both players. Note this
is possible because P is an online protocol, and hence this

simulation does not depend on any of Yi , . . . ,Yk . Alice then
sends Bob the entire transcript.

• Alice and Bob then communicate to simulate stage i of P ,
continuing from the transcript that Alice sent in the previous

step.

• Bob outputs P ’s decision about fi (X ,Yi ).

In this protocol P ′, the first message is sent by Alice in step (2).

It has expected length no more than the transcript of P , which is

O(g(n,k)). The players then simulate stage i in step (3). Since the

imaginary input follows distribution D, the expected communi-

cation in this step is O(g(n,k)/k). Since the goal of stage i in the

online problem is to compute fi (X ,Yi ), which is precisely f1(X ,Y )
by our assumption about f and choosing Yi = Y . Hence the output
of P ′ is correct is P is correct.

We finish with the easier reverse direction. Suppose we have

such a protocol P ′ for the associated single-round problem; we

want a protocol P for the online problem with the above properties.

By construction, when following P ′, Alice first sends a message

with O(g(n,k)) bits in expectation. This message can only depend

on her input. Our protocol P also begins with Alice sending this

message before Bob begins speaking. Now, in each stage, Bob is

given an input Yi . Alice and Bob can simulate P ′ on (X ,Yi ), but
skipping the initial message from Alice since it has already been

sent.

In our protocol P , Alice sends O(g(n,k)) bits in expectation in

her first message. Then in each stage, only O(g(n,k)/k) bits in ex-

pectation are transmitted between the players. Note that we just

used the assumption thatYi andY1 are identically distributed condi-
tioned on X ; this is why P ′ has the usual expected communication

cost when run on (X ,Yi ). Thus the total communication cost is

O(g(n,k)) bits in expectation. �

Let P ′ be a zero-error protocol for index such that Alice first sends
c0 bits in expectation, and then Alice and Bob communicate for

cA and cB bits respectively (in expectation). The following lemma

lower bounds c0, cA, cB .

Lemma A.4. For sufficiently large k , any such P ′ must have either

• c0 ≥
1

7
k logk , or

• cA ≥ c0 · 2
−13max{cB ,1}·26c0/k .

The main idea of the proof is to let Alice simulate Bob. For

simplicity, let us first assume the protocol has three rounds: Alice

sends c0 bits, then Bob sends cB bits, finally Alice sends cA bits. To

simulate Bob, Alice goes over all possible messages that Bob could

send, then for each message, sends Bob what she would say if she

received that message. If Bob sends at most cB bits in worst case,
Alice will be able to complete the above simulate in c0 + cA · 2

cB

bits of communication. Then Bob will output whether his input Yi
is in Alice’s set X . In particular, Alice’s message depends only her

input X , and Bob can do so for any Yi . That is, Bob will be able to
recover the set X based only on this message, which yields a lower

bound on c0, cA, cB .

Proof of Lemma A.4. Without loss of generality, we may first

assume cB ≥ 1. By Markov’s inequality and a union bound, for any

C ≥ 2, with probability at least 1 − 2/C , Alice sends no more than

C · cA bits and Bob sends no more than C · cB bits after Alice’s first

message. The next step is to let Alice simulate the entire protocol,
and turn it into one-way communication.

More specifically, the transcript π of a conversation between

Alice and Bob is a binary string, in which each bit represents the
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message sent in the chronological order. Given π and a fixed pro-

tocol, there shall be no ambiguity in which bits are sent by which

player. That is, for any π , we can always decompose it into (πA, πB ),
where πA is a binary string obtained by concatenating the bits sent

by Alice in the chronological order, and similar for πB . On the

other hand, given (πA, πB ), there is a unique way to combine them

into a single transcript π , since a prefix of the transcript uniquely
determines the player who speaks the next. We know that with

probability at least 1 − 2/C , |πA | ≤ C · cA and |πB | ≤ C · cB . In the

new protocol, after Alice sends the first c0 · k bits, she goes over

all 2
C ·cB

strings s of length at most C · cB . For each s (in alphabeti-

cal order), she sends the first C · cA bits of πA based on her input

assuming πB = s . That is, Alice tells Bob that “if s was your first
C · cB bits of the conversation, then here is what I would say for my

firstC · cA bits.” In total, she sends anotherC · cA · 2
C ·cB

bits. Thus,

Bob can figure out the answer based only on the above messages,

with probability 1 − 2/C (over the random input pairs). To balance

the lengths of two messages, we set C = 1

2cB log
c0
cA . If C < 2, then

we have log
c0
cA < 4cB , and thus

cA > c0 · 2
−4cB ,

which implies the second inequality in the statement (note 2
6c0/k ≥

1, so this is much stronger). Otherwise, the above argument holds,

and we have

C · cA · 2
C ·cB = C · cA ·

√
c0
cA

=
cA
2cB
·

(√
c0
cA

log

c0
cA

)
≤ cA ·

(√
c0
cA

log

√
c0
cA

)
≤ cA ·

c0
cA
= c0.

Thus, Alice sends at most 2c0 bits in expectation in total. This

message only depends on her input X . By Markov’s inequality,

for at least 2/3 of the X ’s, Alice sends no more than 6c0 bits. By
Markov’s inequality again, for at least 2/3 of theX ’s, the probability

(over a random y) that Bob can figure out if b ∈ A based only on

Alice’s first message is at least 6/C . Since there are kk different

possible X ’s, at least kk/3 different X ’s have both conditions hold.

Thus, there must be kk/3 · 2−6c0 such X ’s that Alice sends the same

messageM . Denote this set of X ’s by X . Moreover, whenM is the

message Bob receives, there are at least (1 − 6/C)k2 different y’s
such that Bob can figure out the answer based only on the value of

y andM . Denote this set ofy’s by Y . In the combinatorial rectangle

R = X × Y , for every y ∈ Y , either y ∈ X for every X ∈ X ,

or y < X for every X ∈ X . That is, R is a column-monochromatic
rectangle5 of size (kk/3 · 2−6c0 ) × (1 − 6/C)k2.

On the other hand, in any column-monochromatic rectangle

R =X ×Y for the index problem, the answer is “YES” in no more

than k columns of Y (the element is in the set). This is because

each set X ∈ X has size k . In order to upper bound the number

of y ∈ Y that is not in any X , let ri for 1 ≤ i ≤ k be the size of

the intersection of Y and the i-th block of the universe. Thus, the

5
A rectangle with the same function value in every column.

number of X ’s that avoids all y ∈ Y is at most

(k − r1)(k − r2) · · · (k − rk ) ≤

(
k −

1

k
(r1 + · · · + rk )

)k
by the AM-GM inequality. That is, at most k2 − k |X |1/k y are not

in any X . Overall, we have |Y | ≤ k +k2 −k |X |1/k . Combining this

with the parameters from the last paragraph, we get

(1 − 6/C)k2 ≤ k + k2 − k
(
(kk/3 · 2−6c0 )

)
1/k
.

Simplifying the inequality yields

6/C ≥ 2
−6c0/k · 3−1/k − 1/k .

When c0 <
1

7
k logk , we have 2−6c0/k · 3−1/k − 1/k > 12

13
· 2−6c0/k

for sufficiently large k . Pluging-in the value ofC(= 1

2cB log
c0
cA ) and

simplifying, we obtain

cA ≥ c0 · 2
−13cB/2−6c0/k .

This proves the lemma. �

Proof of Theorem A.1. For any OSI protocol with total com-

munication cost c , by Lemma A.3 and Lemma A.4, we have either

• c ≥ 1

7
k logk , or

• c/k ≥ c · 2−13max{c/k ,1}·26c/k
.

The second inequality simplifies tomax{c/k , 1}·2Θ(c/k ) ≥ Ω(logk).
Thus, we must have c ≥ Ω(k log logk). �
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