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Abstract

This paper deals with the construction of random field models for spatially-dependent anisotropic strain energy functions

indexed by complex geometries. The approach relies on information theory and the principle of maximum entropy, which are

invoked in order to construct the family of first-order marginal probability distributions in accordance with fundamental constraints

such as polyconvexity, coerciveness and consistency at small strains. We then address the definition of a sampling methodology

able to perform on domains that are non-homotopic to a sphere, with the aim to generate the non-Gaussian random fields on

non-simplified geometries—such as patient-specific geometries in computational biomechanics. The algorithm is based on the

construction of a diffusion field that involves local geometrical features of the manifolds defining domain boundaries. We finally

present numerical applications on vascular tissues, including the case of an arterial wall defined by real patient-specific data.

c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The mathematical representation of uncertainties is a key ingredient in predictive science and engineering [1].

In continuum mechanics, uncertainties in constitutive laws can arise from subscale (morphological) randomness,

especially when the so-called separation of scales does not hold [2], or from fluctuations in the properties of the

constitutive phases. This variability can notably be inherited from processing in the case of engineered composites, or

from various factors including age, gender or physiological state when biological tissues are concerned. Experimental

evidences of stochasticity in the response of biological tissues can be found in e.g. [3–14]. In this context, the

question as to how properly model, identify and simulate such randomness is a central challenge in both computational

mechanics and mechanics of materials.
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Within the framework of uncertainty quantification [15,16], popularized by the seminal work from Ghanem and

Spanos [17], this stochastic modeling task has been mostly addressed by resorting to polynomial chaos expansions

(PCE) [18,19] of random variables [20,21] and random fields [22]. In particular, detailed derivations focusing on the

PCE-based representation of tensor-valued coefficients for stochastic elliptic operators (hence encompassing the case

of linear elasticity) can be found in the recent work [23]. Statistical approaches based on Bayesian inference have also

received considerable attention, with the promise to accommodate data paucity through data-driven methodologies [1]

(see also [24] for an application to PCE). Algebraic decompositions of random fields for stochastic three-dimensional

elasticity were further constructed in [25–30] and validated on various multiscale or multimodel problems in e.g.

[31–33]. Spectral expansions for elasticity random fields were finally obtained in [34] for all material symmetry

classes.

In contrast, the construction of stochastic models in nonlinear elasticity has received much less consideration to

date, and most of the efforts were basically focused on the propagation of PCE through nonlinear computational

models (see e.g. [35,36] for applications in elastoplasticity). A noticeable contribution relying on a Bayesian

formulation and accounting for both spatial variability and non-simplified domains can be found in [37]. Here, a

parameter defining the isotropic strain energy function of interest is modeled as a non-Gaussian (translation) random

field for which (i) the first-order marginal probability function is selected a priori; (ii) the covariance (exponential)

kernel defining the underlying centered Gaussian field is chosen with no reliance on the geometry (see also [38]).

The construction of information-theoretic stochastic models for random isotropic strain energy functions was recently

tackled in [39–41] (see the references therein for surveys), for both compressible and incompressible materials. These

models, which can appropriately be used in order to define first-order marginal probability laws for random fields,

were further identified and validated with experiments on various soft biological tissues (including brain and liver

tissues, as well as spinal cord white matter) in [41].

The aim of this paper is to address the construction of a prior stochastic model for spatially-dependent anisotropic

strain energy functions. Such a prior model essentially allows admissible samples of the strain energy functions to be

drawn, in accordance with fundamental theoretical results in finite elasticity, and can subsequently be used to solve

underdetermined statistical inverse problems or combined with Bayesian approaches [42]. Envisioned applications

include large-scale computational analysis in biomechanics, particularly for soft biological tissues such as vascular

vessels, and the modeling of composite materials at large strains. This construction raises two main challenging issues.

First of all, the consideration of anisotropic strain energy functions leads to higher-dimensional parametrizations and

more complex constraints between the variables. In addition, it requires the construction of stochastic models for non-

Gaussian vector-valued random fields. Second, the simulation of these models necessitates describing the correlation

structure and sampling the random fields on non-simplified geometries where boundaries typically take the form of

smooth manifolds.

The rest of this paper is organized as follows. The fundamentals of continuum mechanics and hyperelasticity are

first briefly exposed in Section 2. In particular, the definition of a prototypical strain energy function is presented,

and theoretical requirements raised by the analysis of the nonlinear boundary value problems are highlighted. The

stochastic framework is next introduced in Section 3. Here, a new random field model is derived within the framework

of information theory. This probabilistic modeling effort is subsequently complemented, in Section 4, with the

definition of a sampling methodology. The computational approach relies on solving a stochastic partial differential

equation, the coefficients of which are specifically defined in accordance with the geometry under consideration. This

allows, in particular, the case of non-simplified domains to be handled in an efficient and robust manner. Various

applications, including the case of an arterial wall defined by a patient-specific geometry and undergoing inner

pressure, are finally presented in Section 5 to assess and illustrate the modeling capability of the proposed stochastic

framework and algorithms.

2. Deterministic modeling of anisotropic hyperelastic materials

2.1. Kinematics

In this section, we recall the continuum mechanics framework that is relevant to the modeling of anisotropic

materials at finite strains. The interested reader is referred to classical textbooks (e.g. [43–45]) for a more extensive

exposure.
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Let B denote a fixed stress-free reference configuration occupied by a body P in R
3, with boundary ∂B. The

body undergoes a deformation ϕ : B → D , where D is the deformed configuration and ϕ belongs to some

suitable space C [43]. Any material point in the reference configuration is identified with its position vector x.

Following standard notation, the deformation gradient is defined as F(x) := ∇xϕ(x), with det(F(x)) > 0, and the right

Cauchy tensor is denoted by C(x) := F(x)TF(x). The associated Green–Lagrange deformation tensor E is defined as

E(x) := (C(x)− I)/2. The body of interest is typically assumed to exhibit a hyperelastic response, characterized by the

stored energy function w : B×M
+
3 → R (with M

+
3 the set of (3×3) real matrices with strictly positive determinant).

The function w is assumed to be frame-invariant, so that there exists a stored energy function w̃ : B × S
+
3 → R such

that w̃(x,C) = w(x,F) for all right Cauchy tensor C = FTF (here, S+
3 is the set of symmetric positive-definite real

matrices of order 3).

Once the functional form of the strain energy function has been selected, the local constitutive equations can be

formulated in terms of the second Piola–Kirchhoff stress tensor S : B × S
+
3 → S

+
3 , defined as

S(x,C) := 2DC w̃(x,C) = 2
∂w̃(x,C)

∂Ci j

e(i) ⊗ e( j) , (1)

where Einstein summation convention is used (this convention is adopted from now on). The fourth-order tangent

modulus tensor [[L]] is given by

[[L(x,C)]] := 4D2
C w̃(x,C) = 4

∂2w̃(x,C)

∂Ci j∂Ckℓ

e(i) ⊗ e( j) ⊗ e(k) ⊗ e(ℓ) , (2)

with {e(i)}3
i=1 the canonical basis of R3, while the Cauchy stress tensor σ : B × M

+
3 → S3 is obtained as

σ (x,F) = 1

det(F)
DFw(x,F)FT = 1

det(F)
FS(x,FT

F)FT . (3)

In this work, we focus our attention on anisotropic materials, in which case the stored energy function w̃ satisfies

the additional invariance property

w̃(x,C) = w̃(x,QT
CQ) , ∀ Q ∈ G , (4)

where G denotes the symmetry group under consideration. The construction of such anisotropic models has recently

attracted much attention, and various applications focusing on soft biological tissues can be found in e.g. [46–50]

(see [51] for a recent survey). As for the case of isotropic models, admissible anisotropic models are required to

satisfy mathematical constraints related to the existence of solutions for the associated nonlinear boundary value

problem [43], as well as constraints raised by physical and phenomenological consistency. The first set of constraints

involve, in most of the settings derived thus far, polyconvexity arguments [52] and suitable growth conditions that

together ensure that either the total potential energy or the associated variational functional is sequentially weakly

lower semicontinuous and coercive [53]. The second set of constraints usually involves invariance properties with

respect to the action of a group of isometries, hence characterizing the underlying anisotropy, the consideration of

prestressed or stress-free configurations at rest and asymptotic behaviors at vanishing and infinite strain states. In

particular, the consideration of phenomenological aspects and experimental fitting concerns has led to the construction

of a large variety of models (see the aforementioned references and the references therein). It should then be

noticed that this work does not aim at providing a review on such deterministic models, nor at deriving stochastic

extensions for all of them. Adopting a more constructive approach, this paper is alternatively concerned with the

probabilistic extension of a given anisotropic functional form that is, on the one hand, representative of most

anisotropic formulations, and on the other hand raises all the technical issues which could be faced while considering

any other strain energy function. The definition of this prototypical strain energy function is addressed in the next

section.

2.2. Selection of a prototypical anisotropic constitutive model

Hereinafter, we consider the case of anisotropic hyperelastic materials exhibiting two non-orthogonal preferred

directions, defined by the vector fields x ↦→ a(ℓ)(x), ℓ = 1, 2, and schematically identified with the directions of

two families of aligned fiber. This case is especially relevant to the modeling of arterial walls in computational
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biomechanics (see Section 5.3) and allows the case of transversely isotropic composite plies to be recovered (by

selecting a(1)(x) = a(2)(x) = a for all x in B). The construction of a suitable form for the strain energy function

is based on the earlier works in [46,54] (see also [55] for a discussion about the volumetric–isochoric multiplicative

decomposition), and relies on the definition of fields of structural tensors, denoted as x ↦→ M(ℓ)(x) for ℓ = 1, 2, such

that M(ℓ)(x) := a(ℓ)(x) ⊗ a(ℓ)(x) [56,57]. More specifically, the strain energy function writes

w(x,F) =µ1(x)
∥F∥2

(det(F))2/3
+ µ2(x)

∥Cof(F)∥3

(det(F))2
+ µ3(x)h(det(F))

+ µ4(x)

β4

2∑

ℓ=1

exp
(
β4⟨∥Fa(ℓ)(x)∥2 − 1⟩2

m

)
− e(x) ,

(5)

where e(x) = w(x, I), ⟨g⟩m denotes the Macaulay Bracket (that is, ⟨g⟩m := max(0, g)) and h : ]0,+∞[ → [0,+∞[

is the convex function defined as

h(δ) := δβ3 + δ−β3 − 2 . (6)

The first three terms in the right hand side of Eq. (5) represent an isochoric Mooney–Rivlin-like contribution, while

the term with summation represents the anisotropic part in the strain energy function. In what follows, it is assumed

that the material parameters are uniformly bounded from below by strictly positive real numbers, µ j (x) ⩾ µmin
j > 0

for all x in B, and that β3 > 2 and β4 > 0. It can then be shown that strain energy function defined by Eq. (5) satisfies

the following fundamental properties.

1. Polyconvexity. The stored energy function w is polyconvex, meaning that there exists a convex function

w⋆(x, ·, ·, ·) : M3 × M3 × ]0,+∞[ → R such that w(x,F) = w⋆(x,F,Cof(F), det(F)) (the proof follows

from standard arguments; see [54,58,59]). Moreover, it also satisfies the Legendre–Hadamard condition [52]

(see also [43,53] for theoretical treatments).

2. Coercivity. The function w⋆ satisfies the coercivity inequality:

w⋆(x,F,H, δ) ⩾ k0

(
∥F∥p + ∥H∥q + δβ3

)
− k1 ∀ x ∈ B , (7)

wherein k0 > 0, k1 ∈ R and

3

2
< p = 6β3

3β3 + 2
< 2 ,

3

2
< q = 3β3

β3 + 2
< 3 . (8)

The two above properties (polyconvexity and coercivity) ensure the existence of at least one solution to the

nonlinear boundary value problem [52,54].

3. Elastic behavior at small strains. The elasticity tensor [[C]] at small strains is given by

[[C(x)]] = 6µ3(x)β2
3 [[J ]] +

(
4µ1(x) + 6

√
3µ2(x)

)
[[K ]] + 8µ4(x)

2∑

ℓ=1

1Sℓ
(E)M(ℓ) ⊗ M

(ℓ) , (9)

where Sℓ denotes the set of deformation tensors E such that Tr(EM(ℓ)) > 0, [[J ]] and [[K ]] are the following

fourth-order projectors:

[[J ]] := 1

3
I ⊗ I , [[K ]] := [[I ]] − [[J ]] , (10)

with [[I ]] the identity tensor of fourth rank. Eq. (9) shows that the hyperelastic material exhibits an isotropic

behavior at small strains, with the bulk and shear moduli respectively defined as 2µ3(x)β2
3 and 2µ1(x) +

33/2µ2(x), whenever compression is undergone along the two directions defined by a(1)(x) and a(2)(x). When a

local stretch is prescribed along the direction defined by, say a(1)(x), then the elasticity tensor exhibits transverse

isotropy with respect to a(1)(x) (see [48]). Apart from these two situations, the elastic behavior at small strains

turns out to be anisotropic.
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3. Construction of a random field model

3.1. Methodological aspects

Let {Wε(x,F), (x,F) ∈ B ×M
+
3 } be the strain energy function random field (defined on a given probability space)

corresponding to the probabilistic modeling of the strain energy functionw : B×M
+
3 → R introduced in the previous

section. In order to algebraically ensure the well-posedness of the nonlinear boundary value problem (see [23] for a

discussion focusing on elliptic boundary value problems), the following ε-regularization is introduced:

Wε(x,F) := 1

1 + ε
(W (x,F) + εE{W (x,F)}) , (11)

where 0 < ε ≪ 1 is the regularizing parameter (the value of which can be arbitrarily chosen, e.g. ε = 10−6) and

{W (x,F), (x,F) ∈ B × M
+
3 } is the random field such that

W (x,F) = G1(x)
∥F∥2

(det(F))2/3
+ G2(x)

∥Cof(F)∥3

(det(F))2
+ G3(x)h(det(F))

+ G4(x)

β4

2∑

ℓ=1

exp
(
β4⟨∥F a(ℓ)(x)∥2 − 1⟩2

m

)
− E(x) ,

(12)

where E(x) = W (x, I) and h is the convex function defined by Eq. (6). In Eq. (12), {G(x) = (G1(x), . . . ,G4(x)), x ∈
B} is the random field with values in (R∗

+)4 associated with the randomization of the material parameters, and

the parameters β3 > 2 and β4 > 0 are kept deterministic in the present framework (whenever necessary, these

two parameters can be made random as well). Moreover, it is assumed that the mean function x ↦→ E{G(x)} of

{G(x), x ∈ B} is homogeneous over B, that is E{G(x)} = g = (g
1
, . . . , g

4
) for any x in B, and such that the mean

strain energy function x ↦→ E{W (x,F)} satisfies a uniform coercivity property. Following this construction, and upon

substituting Eq. (12) in Eq. (11), the strain energy function Wε(x,F) reads as

Wε(x,F) = Gε,1(x)
∥F∥2

(det(F))2/3
+ Gε,2(x)

∥Cof(F)∥3

(det(F))2
+ Gε,3(x)h(det(F))

+ Gε,4(x)

β4

2∑

ℓ=1

exp
(
β4⟨∥F a(ℓ)(x)∥2 − 1⟩2

m

)
− E(x) ,

(13)

where Gε, j (x), 1 ⩽ j ⩽ 4, can be identified as

Gε, j (x) = 1

1 + ε
(G j (x) + ε g

j
) . (14)

Furthermore, it follows that

Gε, j (x) ⩾ µmin
j > 0 (15)

almost surely, ∀ x ∈ B, with

µmin
j = ε

1 + ε
g

j
. (16)

Following the discussion in Section 2.2, Eq. (15) then implies that the stochastic nonlinear boundary value problem

is well posed, and serves as an a posteriori motivation to resort on the regularized functional defined in Eq. (12). In

addition, the elasticity tensor random field {[[Cε(x)]], x ∈ B} associated with the regularized strain energy function

can be obtained through a classical linearization procedure (see e.g. [58]) and is given by

[[Cε(x)]] = 1

1 + ε

(
[[C(x)]] + ε [[C(x)]]

)
, (17)

in which [[C(x)]] and the mean value [[C(x)]] := E{[[C(x)]]} are defined, by identification, as

[[C(x)]] = 6G3(x)β2
3 [[J ]] +

(
4G1(x) + 6

√
3G2(x)

)
[[K ]]  

Isotropic contribution

+ 8G4(x)

2∑

ℓ=1

1Sℓ
(E)M(ℓ) ⊗ M

(ℓ)

  
Anisotropic contribution

(18)
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and

[[C(x)]] = 6g
3
β2

3 [[J ]] +
(
4g

1
+ 6

√
3g

2

)
[[K ]]

  
Isotropic contribution

+ 8g
4

2∑

ℓ=1

1Sℓ
(E(x))M(ℓ)(x) ⊗ M

(ℓ)(x)

  
Anisotropic contribution

. (19)

It should be noticed that while the mean function of {G(x), x ∈ B} is chosen as independent of the spatial location, the

mean function of the elasticity tensor is, in general, spatially-dependent due to the presence of the indicator function

x ↦→ 1Sℓ
(E(x)). By construction, the mean function x ↦→ [[C(x)]] is such that the linearized elasticity problem is well

posed, and the form defined by Eq. (17) subsequently ensures that the random bilinear form involved in the stochastic

linearized boundary value problem is uniformly elliptic (see [25] for a discussion). By definition, the isotropic part of

[[Cε(x)]] can be written as

3Cε,1(x)[[J ]] + 2Cε,2(x)[[J ]] , (20)

where Cε,1(x) and Cε,2(x) are the regularized bulk and shear moduli, and [[J ]] and [[K ]] are the tensors defined in

Eq. (10). Summing up the isotropic contributions in Eqs. (18) and (19), and taking into account Eq. (14), it follows

from Eq. (20) that

Cε,1(x) = 2β2
3 Gε,3(x) (21)

and

Cε,2(x) = 2Gε,1(x) + 3
√

3Gε,2(x) . (22)

Similarly, the isotropic part of [[C(x)]] is given by 3C1(x)[[J ]] + 2C2(x)[[K ]], with C1(x) = 2β2
3 G3(x) > 0 and

C2(x) = 2G1(x) + 3
√

3G2(x) > 0. The consistency at small strains then implies that

G3(x) = C1(x)

2β2
3

, G2(x) = 3−3/2 (C2(x) − 2G1(x)) , (23)

and does not involve parameter G4(x). The above equation allows a more convenient representation of the stochastic

strain energy function to be introduced. To this aim, note that a normalized random variable U1(x), with values in

]0, 1[, can be defined such that

2G1(x) = C2(x)U1(x) , (24)

so that the random variable G2(x) can equivalently be written (see the second equation in Eq. (23)) as

G2(x) = 3−3/2C2(x) (1 − U1(x)) . (25)

Two strategies can be pursued at this stage.

• In a first modeling approach, the strain energy function is considered as a function of {G(x), x ∈ B}. In this case,

the assumptions raised by the mathematical formulation do not introduce cross-related information among the

variables, and the fields {G i (x), x ∈ B} and {G j (x), x ∈ B}, i ̸= j , would hence be statistically independent.

• In a second approach, the strain energy function is alternatively parametrized by the random fields {Ci (x), x ∈
B}, i = 1, 2, {U1(x), x ∈ B} and {G4(x), x ∈ B}. Here, the consistency at small strains (see Eqs. (24)–(25))

raises relations that generate statistical dependencies in the variables defining W (x,F), and the fields

{G1(x), x ∈ B}, {G2(x), x ∈ B} and {G3(x), x ∈ B} are defined in terms of the aforementioned random

fields using the one-to-one mappings given by Eqs. (24), (25) and the first equation in (23).

Clearly, the former strategy turns out to be easier to handle in terms of both technical derivations and sampling

issues. The latter choice raises, by contrast, more complex calculations, but offers the benefit of relying, at least

in part, on information at small strains. This property may be found useful, especially for identification issues, and

motivates the selection of this approach hereinafter. Let then {P(x) := (C1(x),C2(x),U1(x),G4(x)), x ∈ B} be the

vector-valued random field of model parameters. Following the standard approach to the modeling of non-Gaussian

processes, the random field is defined through the memoryless transformation

P(x) := H (Ξ (x)) , ∀ x ∈ B , (26)
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where {Ξ (x) = (Ξ1(x), . . . ,Ξ4(x)), x ∈ R
3} is a second-order centered Gaussian random field defined by the

covariance function (which may be inferred either from measurements or expertise)

RΞ (x, y) = E{Ξ (x) ⊗ Ξ (y)} := diag(R1(x, y), . . . , R4(x, y)) , (27)

where RΞ (x, x) = I and (x, y) ↦→ Ri (x, y) denotes the correlation function of the real-valued Gaussian random

field {Ξi (x), x ∈ R
3}. Eq. (27) implies that the random fields {Ξ j (x), x ∈ Ω} and {Ξk(x), x ∈ Ω}, j ̸= k, are

statistically independent from one another. In this work, the nonlinear transformation H is obtained by constructing

the first-order marginal probability distribution of {P(x), x ∈ B}, or equivalently of the stored energy function random

field. Here, this distribution is chosen as independent of x in order to simplify exposure, and spatial dependencies can

be considered in a straightforward manner. Once the correlation function RΞ (x, y) associated with the underlying

vector-valued Gaussian field {Ξ (x), x ∈ R
3} and mapping H are specified, Eq. (26) completely defines the system of

marginal probability distributions for the random field {P(x), x ∈ B}. The construction of H is specifically addressed

in the next section.

Remark 3.1. The selection of G2(x) as an independent variable in the consistency relations is irrelevant, since similar

expressions would be obtained by choosing G1(x) in lieu of G2(x). More specifically, one shall first extract G1(x) as

G1(x) = 1

2

(
C2(x) − 33/2G2(x)

)
, (28)

and upon introducing the random variable U2(x) such that C2(x)U2(x) = 33/2G2(x), it is seen that

2G1(x) = C2(x)(1 − U2(x)) . (29)

The similitude in the expressions thus obtained follows by comparing Eq. (29) with Eq. (25).

3.2. Information-theoretic formulation

As previously indicated, the mapping H is defined by constructing the first-order marginal probability distribution

of the random field {P(x), x ∈ B}, which corresponds to the probability distribution of the vector-valued random

variable P(x), x being fixed in B. Based on the previous section, minimal requirements include that C1(x), C2(x) and

G4(x) are strictly positive almost surely, and that 0 < U1(x) < 1 almost surely. Additionally, it is assumed that the

mean values of random variables C1(x), C2(x) and G4(x) are known. From a probabilistic point of view, the former

constraints can be accounted for by generating repulsive terms in the probability law. As demonstrated in [60], this

can be achieved by imposing the following constraint:

E{log(Pj (x))} = ϖ j , |ϖ j | < +∞ , j = 1, 2, (30a)

E{log(P3(x))} = ζ1 , |ζ1| < +∞ , (30b)

E{log(1 − P3(x))} = ζ2 , |ζ2| < +∞ , (30c)

E{log(P4(x))} = ς4 , |ς4| < +∞ , (30d)

where it is recalled that P1(x) = C1(x), P2(x) = C2(x), P3(x) = U1(x) and P4(x) = G4(x) by convention. The latter

constraints related the mean values take the natural form

E{Pj (x)} = c j , j = 1, 2 , (31a)

E{P4(x)} = g
4
. (31b)

It should be noticed that the properties G1(x) > 0 and G2(x) > 0 (almost surely) readily follow, by construction

(see Eqs. (24) and (25)). The probability density function fP(x) defining P(x), with support SP, is next constructed by

invoking the framework of information theory [61,62]. Within this framework, the most objective choice for fP(x) is

obtained by maximizing Shannon’s differential entropy [63], which writes

E ( f ) = −
∫

SP

f (z) log( f (z)) dz (32)
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for any probability density function f supported over SP ⊂ R
4 (with dz the Lebesgue measure on R

4), under the

aforementioned set of constraints (defined by Eqs. (30a)–(31b)). In practice, this functional optimization problem is

solved by proceeding to the calculus of variation on the associated Lagrangian, and the solution reads in the present

case as

fP(x)(p) = 1SP
(p)c0 exp{−Υ (p)} , (33)

where c0 is the normalization constant and the function Υ is defined as

Υ (p) = λ(1)
1 p1 + λ

(1)
2 log(p1)  

Information on P1(x)

(see Eqs. (30a)–(31a))

+ λ(2)
1 p2 + λ

(2)
2 log(p2)  

Information on P2(x)

(see Eqs. (30a)–(31a))

+ λ
(3)
1 log(p3) + λ

(3)
2 log(1 − p3)  

Information on P3(x)

(see Eqs. (30b)–(30c))

+ λ(4)
1 p4 + λ

(4)
2 log(p4)  

Information on P4(x)

(see Eqs. (30d)–(31b))

.
(34)

In Eq. (34), λ
(i)
1 and λ

(i)
2 are Lagrange multipliers associated with variable Pi (x), and the set of multipliers is such

that fP(x) is integrable over R4. Since the indicator function 1SP
is separable in the present case, Eqs. (33) and (34)

show that fP(x) has also a separable structure, so that the random variables P1(x), P2(x), U1(x) and G4(x) (x being

fixed in Ω ) are statistically independent. Moreover, and upon performing a change of variables between the Lagrange

multipliers and the hyperparameters associated with labeled statistical distributions, it can be deduced that:

• For j ∈ {1, 2}, the parameter Pj (x) follows a Gamma distribution with shape and scale parameters defined by

δ−2
C j

and c jδ
2
C j

(with c j and δC j
the mean and coefficient of variation of C j (x)).

• The random variable U1(x) is distributed according to a Beta distribution, with parameters (U1,U2). Denoting

by δU1
the coefficient of variation of U1(x), one has:

u1 := E{U1} = U1

U1 + U2

, δ2
U1

= U2

U1(1 + U1 + U2)
. (35)

• The parameter G4(x) also follows a Gamma distribution with shape and scale parameters defined by δ−2
G4

and

g
4
δ2

G4
(with similar notations).

It then follows that the non-Gaussian random fields of interest can be defined as follows:

C j (x) := (G−1
k j ,θ j

◦ Φ)(Ξ j (x)) , k j = δ−2
C j
, θ j = c jδ

2
C j
, j ∈ {1, 2} , (36a)

U1(x) := (B−1
U1,U2

◦ Φ)(Ξ3(x)) , (36b)

G4(x) := (G−1
k4,θ4

◦ Φ)(Ξ4(x)) , k4 = δ−2
G4
, θ4 = g

4
δ2

G4
, (36c)

where G−1
k,θ is the inverse cumulative distribution function of the Gamma distribution with shape parameter k and scale

parameter θ , B−1
s1,s2

is inverse cumulative distribution function of the Beta distribution with parameters (s1, s2), and Φ

is the cumulative distribution function of the standard normal distribution. The nonlinear transformation H introduced

in Eq. (26) is thus completely defined by Eq. (36), and the strain energy function random field is finally defined by

combining Eqs. (23)–(25) with Eqs. (12)–(14). By construction, the random fields {P1(x), x ∈ B}, {P2(x), x ∈ B},
{U1(x), x ∈ B}, and {G4(x), x ∈ B} are statistically independent. However, it is a noticeable effect of the construction

that the random fields {G1(x), x ∈ B} and {G2(x), x ∈ B} end up being dependent, following Eqs. (24) and (25). By

contrast, the random fields {G3(x), x ∈ B} and {G4(x), x ∈ B} remain statistically independent from all other random

fields. It should also be noticed that the aforementioned hyperparameters become spatially-dependent whenever the

terms in the right-hand sides of the constraint equations (considered while maximizing the entropy) depend on spatial

location—in which case the family of first-order marginal probability laws, indexed by B, can be constructed through

the proposed approach. In the next section, a sampling algorithm for the proposed random field model is presented.

4. Sampling the random field model on manifolds

Within the proposed framework, realizations of the strain energy function random field can be obtained by

combining realizations of the Gaussian random field {Ξ (x), x ∈ B} and Eqs. (26), (12) and (14). When the domain
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B is homotopic to a simple (simplified) geometry, typically a sphere, covariance models (satisfying potentially some

symmetry or periodicity properties) for the Gaussian fields {Ξ j (x), x ∈ B}, 1 ⩽ j ⩽ 4, can be easily constructed,

inferred from experiments or selected in suitable (e.g. Matérn-type) classes of covariance kernels. Standard sampling

techniques, including direct or iterative factorization methods [64] and spectral approaches [65], can subsequently be

applied in order to generate independent realizations of the field.

In this work, we focus on the more intricate situation where the domain B is not homotopic to a sphere and involves

boundaries defined by arbitrary smooth manifolds. In order to tackle this challenging issue, and following [66], our

approach relies on defining each random field {Ξ j (x), x ∈ B} as the solution (see [67,68]) of the spatial stochastic

partial differential equation (SPDE)

[
γ 2(x) − ⟨∇,H(x)∇⟩

R3

]ζ/2
Ξ j (x) = Ẇ (x) , x ∈ B , (37)

where γ (x) > 0 is parameter controlling the correlation range, H(x) is the positive-definite diffusion matrix, ζ ∈ N
+
∗

and {Ẇ (x), x ∈ B} is the spatial normalized Gaussian white noise. In three-dimensional applications, the integer ζ

satisfies the equality ζ = ν + 3/2, where ν > 0 controls the smoothness of the solution. When the above SPDE

is analytically solved over R
3, the complete class of Matérn covariance kernels (which include the widely-used

exponential and square-exponential kernels) can be recovered, and the solution field can be shown to be ⌊ν − 1⌋
differentiable. It should be noticed that other types of (e.g. oscillating) covariance functions can also be considered

by using nested SPDEs, as discussed in [66,69]. The definition of the diffusion field x ↦→ H(x) is a key ingredient of

the proposed methodology, since it allows an ad-hoc covariance structure to be defined, albeit in a non-explicit form,

on the complex geometry of interest. This can be achieved, for instance, by selecting a diagonal form for the field

x ↦→ H(x):

H(x) :=
3∑

i=1

τ̂i ê
(i)

(x) ⊗ ê
(i)

(x) ∀ x ∈ B , (38)

where {ê(i)
(x)}3

i=1 is a local basis that can capture, for instance, the features of the considered geometry and {τ̂i }3
i=1

is a set of strictly positive parameters controlling the magnitude of the local anisotropy. Illustrative two-dimensional

examples can be found in [67,68] for stationary and non-stationary cases, and a detailed application of this strategy to

vascular vessels is presented in Section 5.

In this paper, the value ν = 1/2 is selected (hence, ζ = 2), so that a classical Galerkin method can be used to

solve Eq. (37) with homogeneous Neumann boundary conditions. By assuming that the discretization of the domain

B involves nd nodes, the stochastic weak solution of the SPDE is then expanded as follows

Ξ j (x) ≈
nd∑

i=1

ηiψi (x) (39)

where {ψi }n
i=1 is the finite element basis consisting of piece-wise linear functions. It can then be shown that the weights

η1, . . . , ηnd
are distributed according to a Gaussian distribution and such that the random vector η := (η1, . . . , ηnd

) is

centered and exhibits a covariance matrix denoted by Q−1, where Q is the precision matrix defined as

Q := (M + K)T
N

−1(M + K) . (40)

In the equation above, the (nd × nd ) matrices M, K and N are defined component-wise as

Mi j :=
∫

B

γ 2(x)ψi (x)ψ j (x) dx , Ki j :=
∫

B

⟨∇ψi (x),H(x)∇ψ j (x)⟩
R3 dx (41)

for 1 ⩽ i, j ⩽ nd and

Ni j :=
∫

B

ψi (x)ψ j (x) dx . (42)

Due to the structure of the right-hand side in Eq. (40), the precision matrix Q turns out to be full and consequently,

the computation of its Cholesky factorization may be very time-consuming. In order to circumvent this drawback, one

may alternatively consider the following sparse approximation (see [66] for a discussion):

Q ≈ (M + K)T
N

−1
d (M + K) , (43)
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in which Nd is the diagonal matrix with entries (Nd )i i :=
∑nd

j=1Ni j , 1 ⩽ i ⩽ nd . In practice, realizations of

{Ξ j (x), x ∈ B} are then obtained by sampling the random vector η according to the centered Gaussian law with

covariance matrix Q−1, with Q defined either by Eq. (40) or (43) [93], and by using Eq. (39).

A few comments regarding the pros and cons of the aforementioned method are relevant at this point. First of all,

the stochastic solver for the SPDE involves a finite element mesh which may coincide with the mesh related to the

nonlinear mechanical problem, hence allowing for substantial computational savings when complex geometries are

under consideration. Moreover, such a sampling strategy does not involve the storage of the full covariance matrix

and can thus accommodate very large and dense meshes. Since the precision matrix is, by construction, sparse,

fast factorization techniques can also be employed while sampling the random vector η. Regarding disadvantages,

one may first notice that the analytical form of the covariance kernel is unknown for bounded domains and/or

spatially-dependent parameters fields. Furthermore, and as reported in [66–68], variance fluctuations may be observed

while solving the SPDE on bounded domains or when heterogeneous diffusion fields are involved. In this case, the

solution must be subsequently rescaled in order to ensure a zero mean and unit variance—which may increase the

computational cost. Finally, the sparse inverse approximation N−1 of the matrix N can be shown to be singular

for piecewise quadratic interpolations in two- and three-dimensional applications, so that other non-singular sparse

inverse approximation for N−1 must be introduced in this case.

5. Uncertainty quantification in mechanics of arterial walls

This section is concerned with uncertainty modeling and propagation for soft biological tissues [41], with a

specific emphasis on the mechanics of vascular vessels [46]. The latter are very prone to uncertainties raised by

various sources including age, gender, and health state (see e.g. [70,71] for experimental evidences). For applications

where the constitutive model of the wall plays an important role (e.g. in the computational study of atherosclerosis

evolution [72] and failure for vascular grafts, for which compliance mismatch was reported to generate postoperative

complications [73,74]; see [75] for a complementary discussion), such intrinsic variability must then be accounted for

in numerical simulations. Although arterial walls are typically seen as a three-layer structure, with each layer being

composed of an isotropic ground matrix reinforced by families of collagen fibers, the analysis is presently restricted,

for illustration purposes, to the modeling of the intermediate layer, named the media. In this work, Monte Carlo

simulations are used as the stochastic solver (note that discussions regarding the design of efficient stochastic solvers

for nonlinear computational models are outside the scope of this paper; see [42] for a broad survey on uncertainty

propagation), and the nonlinear boundary value problem is solved with the finite element method and a total

Lagrangian formulation [76,77]; see [78,79] for a discussion about advanced techniques for the numerical modeling

of arterial walls. In order to circumvent the well-known locking phenomenon raised by quasi-incompressibility, a

three-field formulation with static condensation (mean dilatation method) is considered [80–82]. More specifically, a

P2–P0–P0 discretization is used, and the displacement-based formulation is solved with a standard Newton–Raphson

algorithm. The parallel finite element solver was implemented within Sandia’s C++ Trilinos packages [83,84], and

validated by using numerical benchmarks provided elsewhere.

The reminder of this section is organized as follows. In Section 5.1, the particular case of a homogeneous media

strip under tension is first considered. Here, forward simulations are performed in order to get an insight about the

influence of model hyperparameters on the variability of the stress response. In Section 5.2, heterogeneous media

strips are next considered to investigate the impact of the correlation structure. Finally, an application to an arterial

wall defined by a patient-specific geometry is presented in Section 5.3.

5.1. Case of homogeneous strips

As a first illustration, a homogeneous media strip undergoing a simple tensile test is considered. In this particular

case, where only random variables (and not random fields) are involved, the stochastic parameters are easily sampled

by using standard algorithms for univariate probability laws. It is assumed that the two preferred directions defining

the anisotropic contributions in the stochastic strain energy function are defined as

a(1) = cos(θ )e(1) + sin(θ )e(2) , a(2) = cos(θ )e(1) − sin(θ )e(2) , (44)

where e(1) and e(2) span the median plane of the strip. The mean values of the random variables, the deterministic

exponents β3 and β4 and the angle θ are identified by solving a least squares optimization problem where the
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Fig. 1. Confidence regions (at a 90% probability level) of the Cauchy stress for a uniaxial tensile test. Left panel: δC1
= δG4

= δU1
= 0.1,

δC2
∈ {0.1, 0.2, 0.3}. Right panel: δC1

= δG4
= δU1

= δC2
= δ ∈ {0.2, 0.4, 0.6}. The mean responses are represented in dashed lines.

relative error between the mean Cauchy stress and the experimental data provided in [85] is minimized. Here, a

near incompressible solution is sought by adding a classical penalty term in the objective function. The obtained mean

parameters are given by g
1

= 4.1543, g
2

= 2.5084, g
3

= 9.7227 and g
4

= 19.285 (in kPa). The values for the

remaining deterministic parameters were obtained as β3 = 3.6537, β4 = 500.02 and θ = 46.274 (degrees). By using

the consistency relations with linearized elasticity, it is found that the mean values of the bulk and shear moduli are

given by c1 = 259.59 and c2 = 21.343 (in kPa). Note that by combining Eqs. (23)–(25) with Eq. (35), the Lagrange

multipliers associated with U1 must satisfy the relations

U1 =
2g

1

33/2g
2

U2 , U2 =
1 − δ2

U1

η(1 + η)δ2
U1

, (45)

with 0 < δU1
< 1, hence leaving U2 as the only free hyperparameter in the probability distribution of U1.

In order to illustrate the influence of the statistical fluctuations of the random variables, realizations of the stress

response were computed by combining analytical derivations (for the components of the Cauchy stress tensor) with

Monte Carlo simulations. The confidence interval at 90% is shown in Fig. 1 (left) for δC1
= δG4

= δU1
= 0.1

and increasing values of the coefficient of variation for the random shear modulus C2. As expected, it is observed

that the confidence region becomes wider when δC2
increases. In order to facilitate interpretation, the evolution of

the confidence region when the coefficients of variation of all input random variables are set to the same value and

increased is also shown in Fig. 1 (right). In this case, all variables simultaneously exhibit larger fluctuations, hence

making the variability much larger—even at contained stretches.

These results provide an assessment about the capability of the stochastic model associated with the first-order

marginal probability law to faithfully reproduce variability in the stress response (as it is typically encountered,

notably for soft biological tissues [41]), and are in accordance with previous results derived for isotropic hyperelastic

materials [39,40].

5.2. Case of heterogeneous strips

In this second application, numerical simulations of tensile tests on heterogeneous media strips are carried out.

Following the computational framework discussed in [47], media strips of length lstrip = 10 mm, width wstrip = 3 mm

and thickness tstip = 0.5 mm are considered. A displacement is prescribed at the top end of the specimens, while the

bottom end is totally clamped. The mean parameters obtained in the previous Section 5.1 are retained as the mean

values of the random field {G(x), x ∈ B}, and the preferred directions are given by Eq. (44). The SPDE approach

described in Section 4 is used for sampling purposes, and the diffusion tensor is chosen as homogeneous over B. The

tensor H is then written as

H := κI + τ1M
(1) + τ2M

(2) , (46)
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Fig. 2. Realizations of the Cauchy stress along the loading direction for several values of model hyperparameters.

Fig. 3. Meshed views of the patient-specific geometry (media) in its reference configuration.

regardless of the Gaussian field under consideration, with M(ℓ) = a(ℓ) ⊗ a(ℓ), ℓ = 1, 2. The parameters κ , τ1 and τ2

involved in Eq. (46) can be properly selected in order to adjust the anisotropy of the correlation structure inherited

by the Gaussian random fields. The same coefficient of variation δ is considered for all the random fields and the

remaining parameters κ , τ1 and τ2 are chosen as κ = 0.1 and τ1 = τ2 = 10. Realizations of the stress in the loading

direction are shown in Fig. 2 for γ ∈ {1, 10} and δ ∈ {0.1, 0.2}.
This figure shows how the stochastic spatial fluctuations of the strain energy function impacts the local stress field.

Moreover, it is seen that increasing the parameter γ reduces the correlation range of the strain energy function random

field. This, in turn, implies shorter correlation ranges for the local stress field, for a given set of boundary conditions.

5.3. Case of a patient-specific arterial wall

In this last section, the case of an arterial wall composed by the media layer and defined by a patient-specific

geometry is considered. The biological structure is subjected to an inner pressure mimicking blood pressure.

Computational aspects related to the finite element implementation for such simulations can be found in [77,86].

The geometry of the inner surface was extracted from the database [87] (file ID: 0098), and volume meshing was

achieved by following the methodology proposed in [88] (the Vascular Modelling Toolkit (VMTK) and GMSH

meshing software [89] were notably used). The resulting mesh (see Fig. 3) is approximatively 12 mm long and

consists of 297 828 cells and 432 250 nodes, leading to a total of 1 296 750 degrees of freedom. As in Section 5.2, the

mean stochastic stored energy function is obtained by using the parameters fitted in Section 5.1. A cornerstone of the

approach lies in the definition of the diffusion tensor x ↦→ H(x), which allows sampling on the complex geometry

defining the arterial wall. A methodology to achieve such a construction is introduced in the next section.
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Fig. 4. Plot of the solution fields x ↦→ Ψ1(x) (left) and x ↦→ Ψ2(x) (right).

Fig. 5. Local directions ê
(1)

(x) (left) and ê
(2)

(x) (right) at uniformly distributed positions in the media.

5.3.1. Definition of the diffusion field on the arterial wall

For any x fixed in B, the definition of a local basis {ê(i)
(x)}3

i=1 and preferred directions {a(ℓ)(x)}2
ℓ=1 relevant to

the arterial geometry can be performed by having recourse to the Laplace–Dirichlet Rule-Based (LDRB) algorithm

proposed in [90] (and revisited, for deterministic simulations on arteries, in [91]). In this approach, two auxiliary

Laplace boundary value problems are introduced in order to define local fields, denoted by x ↦→ Ψ1(x) and x ↦→ Ψ2(x)

respectively, the gradient fields of which can be related to the aforementioned basis and directions. More precisely,

the field x ↦→ Ψ1(x) is defined as the solution of the following Laplace problem:

△Ψ1(x) = 0 , ∀ x ∈ B , (47)

with Ψ1(x) = 0 on the inlet surface and Ψ1(x) = 1 on the outlet surface. Similarly, Ψ2 is assumed to satisfy

△Ψ2(x) = 0 , ∀ x ∈ B , (48)

and the boundary conditions write Ψ2(x) = 0 on the inner surface and Ψ2(x) = 1 on the outer surface. The plots of

the solutions are shown in Fig. 4.

For x fixed in B, the local basis is next defined as:

ê
(1)

(x) := ∇Ψ2(x)

∥∇Ψ2(x)∥ , ê
(2)

(x) := ê
(3)

(x) × ê
(1)

(x) , ê
(3)

(x) := ∇Ψ1(x)

∥∇Ψ1(x)∥ , (49)

and the plots of the vector fields x ↦→ ê
(1)

(x) and x ↦→ ê
(2)

(x) thus defined are shown in Fig. 5. For any x in B, the

preferred directions (defining the local anisotropic contribution) are finally expressed as

a(1)(x) = cos(θ )ê
(1)

(x) + sin(θ )ê
(2)

(x) , a(2)(x) = cos(θ )ê
(1)

(x) − sin(θ )ê
(2)

(x). (50)

5.3.2. Characterization of covariance kernels on manifolds

Based on the definition of the local basis addressed in the previous section, we now investigate through numerical

experiments some covariance kernels that can be generated with the SPDE approach. Without loss of generality, the
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Fig. 6. Estimated covariance function and realization of the Gaussian field {Ξ1(x), x ∈ B} (γ = 3).

stochastic properties of interest are characterized by considering the Gaussian field {Ξ1(x), x ∈ B}. The field of

diffusion tensor is first defined as

H(x) :=
3∑

i

τ̂i ê
(i)

(x) ⊗ ê
(i)

(x) , ∀ x ∈ B , (51)

where τ̂1, τ̂2 and τ̂3 are strictly positive parameters controlling the local anisotropy of the correlation structure. The

plot of the covariance function, estimated with 4000 independent realizations of the random field (and with respect to

a reference point that is arbitrarily chosen on the outer surface), and one realization of {Ξ1(x), x ∈ B} are shown for

γ = 3 and several values of τ̂ := (τ̂1, τ̂2, τ̂3) (see Fig. 6).

It is observed that increasing the parameter τ̂k allows for prescribing a locally anisotropic correlation structure

oriented along the associated direction ê
(k)

(x), for any k in {1, 2, 3}. In particular, selecting τ̂1 ≫ τ̂2 and τ̂1 ≫ τ̂3

leads to a longer correlation range along the longitudinal direction, and the associated realization thus exhibits a

typical signature of this correlation pattern. Similarly, the case τ̂2 ≫ τ̂1 and τ̂2 ≫ τ̂3 enables one to generate a

more pronounced correlation along the (local) circumferential direction. Finally, retaining τ̂1 = τ̂2 ≫ τ̂3 defines a

correlation structure that is locally isotropic in the plane spanned by (ê
(1)

(x), ê
(2)

(x)). Further results involving the

same directional configurations but shortest correlation ranges (obtained with a larger value of the parameter γ ) are

also shown in Fig. 7.

Next, the diffusion tensor field is defined as

H(x) := κ I + τ1 M
(1)(x) + τ2 M

(2)(x) , (52)

where κ > 0, τ1 ⩾ 0, τ2 ⩾ 0 and the structural tensors are defined with respect to the preferred orientations given by

Eq. (50) (with θ = 46.274 in degrees). Correlation functions and realizations of the Gaussian field are shown in Fig. 8

for κ = 0.1, γ = 1 and different values of τ := (τ1, τ2).

As expected (following the previous numerical experiments), it is observed that selecting τi ≫ τ j allows one to

prescribe a signature of the anisotropy along the preferred orientation a(i)(x). This feature is, in particular, relevant to

situations where the random field model must account for subscale (e.g. microstructural) details. By contrast, the case
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Fig. 7. Estimated covariance function and realization of the Gaussian field {Ξ1(x), x ∈ B} (γ = 10).

Fig. 8. Estimated covariance function and realization of the Gaussian field {Ξ1(x), x ∈ B} (κ = 0.1, γ = 1).
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Fig. 9. Estimated covariance function and realization of the non-Gaussian field {G1(x), x ∈ B} (κ = 0.1, γ = 1).

τ1 ≈ τ2 leads to an isotropic correlation structure in the plane spanned by (a(1)(x), a(2)(x)). Although the conclusions

presented here hold for the underlying Gaussian random field {Ξ1(x), x ∈ B}, it should be emphasized that the

non-Gaussian field obtained from the point-wise transformation of this field inherits from such features, as depicted

in Fig. 9 in the case of the correlation function. Finally, it should be noticed at this point that the sampling strategy

can readily accommodate randomness in the geometry (see [92] for a discussion focusing on arterial walls). In this

case, the diffusion field x ↦→ H(x) must be constructed for each sample of domain Ω , which requires in turn the two

auxiliary Laplace problems described in Section 5.3.1 to be solved.

5.3.3. Uncertainty propagation

In this final section, uncertainty propagation is performed by considering the random field model for anisotropic

strain energy functions constructed in this work, as well as the sampling methodology presented in the previous

sections. The patient-specific geometry shown in Fig. 3 is used and subjected to a 12 kPa pressure load on its inner

surface. The inlet surface is totally clamped, while a sliding boundary condition is prescribed on the outlet surface

(alternative boundary conditions for such applications can be found in [79]). The diffusion tensor field is defined as in

Eq. (52), with κ = 0.1, γ = 1, τ1 = τ2 = 10 and θ = 46.274 (deg). The coefficients of variation of the input random

fields are all set to 0.1. Realizations of the Von Mises stress field (in terms of the Cauchy stress tensor) are shown,

together with the response obtained with the nominal (mean) model, in Figs. 10 and 11.

It is seen that the fluctuations in the anisotropic strain energy functions can induce pronounced fluctuations in the

Von Mises stress, especially when compared with the mean response (which is the one that is routinely considered

in computational simulations for such vessels), and may thus have a strong impact on any subsequent calculation

(such as the computation of a failure probability). Not surprisingly, the localization patterns in the stress distribution

turn out to be rather reproducible, given the influence of the (deterministic) geometry, and reflect the signature of

the underlying anisotropy (which is raised by the selected functional form). The probability density function of the

maximum Von Mises stress, computed from a set of 500 independent realizations using the kernel estimation method,

is finally shown in Fig. 12.
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Fig. 10. Response associated with the mean model and three independent realizations of the Von Mises stress field (in kPa) on the inner surface of

the arterial wall.

Fig. 11. Response associated with the mean model and three independent realizations of the Von Mises stress field (in kPa) on the outer surface of

the arterial wall.

Fig. 12. Plot of the probability density function for the maximum value of the Von Mises stress (in Pa).
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6. Conclusion

In this work, a random field model for a prototypical anisotropic stored energy function has been presented.

The stochastic framework relies on information theory, which is invoked in order to account for the mathematical

requirements raised by the functional analysis of nonlinear boundary value problems. All the samples generated

through the proposed approach are hence admissible, and the probabilistic formulation introduces a limited modeling

bias thanks to the entropy maximization. An efficient and robust computational methodology for sampling on

complex geometries defined by smooth manifolds was additionally detailed. Various numerical applications were

finally considered. In particular, the capability of the stochastic model to produce anisotropic correlation kernels and

realizations with specific signatures was assessed. While technical derivations were achieved on a particular functional

form, the proposed framework can readily be applied to any strain energy function of interest, as well as to other

complex soft biological tissues, such as brain tissues.
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