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Sub-Gibbs Sampling: a New Strategy for Inferring LDA

Chuan Hu, Huiping Cao, Qixu Gong

Abstract—Latent Dirichlet Allocation (LDA) has been widely
used in text mining to discover topics from documents. One
major approach to learn LDA is Gibbs sampling. The basic
Collapsed Gibbs Sampling (CGS) algorithm requires O(NZ2)
computations to learn an LDA model with Z topics from a
corpus containing N tokens. Existing approaches that improve
the complexity of CGS focus on reducing the factor Z.

In this work, we propose a novel and general Sub-Gibbs
Sampling (SGS) strategy to improve the Gibbs-Sampling com-
putation by reducing the sample space. This new strategy
targets at reducing the factor N by sampling only a subset of
the whole corpus. The design of the SGS strategy is based on
two properties that we observe: (i) topic distributions of tokens
are skewed and (ii) a subset of documents can approximately
represent the semantics of the whole corpus. We prove that
the SGS strategy can achieve comparable effectiveness (with
bounded errors) and significantly reduce the complexity of
existing Gibbs sampling algorithms. Extensive experiments
on large real-world data sets show that the proposed SGS
strategy is much faster than several state-of-the-art fast Gibbs
sampling algorithms and the proposed SGS strategy can learn
comparable LDA models as other Gibbs sampling algorithms.

Keywords-Topic Models, Gibbs Sampling, Sub-sampling

I. INTRODUCTION AND RELATED WORKS

Latent Dirichlet Allocation (LDA) is a widely used topic
model ever since its introduction by Blei et al. [1]. A
basic Collapsed Gibbs Sampling (CGS) algorithm to infer
the LDA model is introduced by Griffiths et al. [2]. The
complexity of this CGS is O(NZ) where N and Z are the
total number of observed tokens and the number of latent
topics in a text corpus respectively. This O(N Z) complexity
makes CGS very expensive to run on large corpora.

To improve the basic CGS algorithm, many fast Gibbs
sampling algorithms (e.g., [3], [4], [5], [6], [7]) have been
proposed in the literature. Porteous et al. [3] propose the
FastLDA algorithm to improve the running time (not com-
plexity) of CGS by segmenting and rearranging the con-
ditional probabilities. Yao et al. [4] design the SparseLDA
algorithm and reduce the complexity to O(N(Zy, + Z4))
where Z,, is the number of distinct topics that are assigned
to a token w, Z; is the number of distinct topics that are
assigned to w’s corresponding document d, and Z,, + Z4
is generally smaller than Z in practice. SparseLDA utilizes
an observation that word-topic and document-topic count
matrices in Gibbs sampling are sparse. Li et al. [5] design
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an O(N Z,) approximate sampling algorithm, AliasLDA, by
combining the Metropolis-Hasting sampling and the alias ta-
ble method [8]. Yuan et al. [7] further improve AliasLDA by
approximating more probability components and propose the
LightLDA algorithm with an O(NN) complexity. Yu et al. [6]
design the F+Nomad LDA Gibbs sampling algorithm with
an O(Nlog Z) time complexity by utilizing the Fenwick
tree [9] data structure. All these works focus on reducing
the factor Z through efficient calculation and maintenance
of conditional probabilities.

In this paper we propose a totally new and general strat-
egy, Sub-Gibbs Sampling (SGS), to improve Gibbs sampling
algorithms for LDA inference by reducing the sample space.
L.e, we target at reducing the factor N. SGS is based on two
properties which are not utilized in previous works.

o Skewed topic distributions. In LDA models, multiple
occurrences of one token in a document are assigned
with a few distinct topics, and the majority of the
occurrences is assigned with the same topic.

o Approximate semantics. The semantics of a corpus can
be approximately represented by a small subset of
the documents. The documents in this representative
subset are called covered-documents and the remaining
documents are called uncovered-documents.

These two properties are presented in details in Section III.
Utilizing these two properties SGS is designed to run any
Gibbs sampling algorithm (i) on a small subset of tokens
(instead of all the tokens); (ii) on covered-documents for
more iterations than on uncovered-documents.

The contributions of this work are as follows.

« We identify two new useful properties in LDA, skewed
topic distributions and approximate semantics.
Utilizing the two properties, we propose a novel Sub-
Gibbs Sampling (SGS) strategy to reduce the sampling
space of existing Gibbs sampling algorithms.

We conduct extensive experiments to demonstrate that
SGS strategy reduces the running time significantly and
achieves similar effectiveness.

II. BACKGROUND AND NOTATIONS

Latent Dirichlet Allocation (LDA) is introduced in [1]
as a generative probabilistic model to learn topics in text
corpora. LDA assumes that the observed tokens in each
document are generated from a mixture (document-to-topic
distributions #) of several multinomial distributions (topic-
to-word distributions ¢). The detailed generative process of
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LDA is in Fig. 1. The Collapsed Gibbs Sampling (CGS)
algorithm [2] is a widely accepted approach to learn the
parameter values in LDA. CGS estimates latent topics for
tokens by iteratively drawing samples for each token from
conditional probabilities. The CGS algorithm is shown in
Fig. 2. The notations of LDA and CGS are listed in TA-
BLE L

[ Symbol | Meaning |

a, B Hyper-parameters of Dirichlet distribution

0; Multinomial topic distribution of document d;
(Z;,,-, Multinomial word distribution of topic z;

D # of documents

w # of distinct tokens (vocabulary size)

N Total # of tokens in the corpus

Z # of latent topics

d; The ith document in the corpus

l; The length of the document d;

Wi The jth token in the document d;

Zij The latent topic of the token w;;

Ndz # of times that topic z is assigned to document d
Ndw # of times that token w occurs document d

ng Total # of tokens in document d
Nwz # of times that topic z is assigned to token w
n, # of times that topic z is assigned for the corpus

Table 1
NOTATIONS FOR LDA AND CGS

1) For each latent topic z;, 1
Dirichlet(B)
2) For each document d;, ¢ € {1,2,...,D}
a) Draw 0; ~ Dirichlet(c)
b) For j € {1,2,...1;}, where [; is the length of document d;

~

e {1,2,...,2}, daw &;

i) Draw the latent topic z;; ~ multinomial(d;)
ii) Draw the observed token w;; ~ multinomial(¢z,;)

Figure 1. Generative Process of LDA [1]

1) For each iteration ¢ = 1,2, - - -
a) For each token w in each document d

i) Let z be the topic assignment to w in the previous iteration
ii) Decrement ng.,Ng, Nwz, N, by one
iii) Sample a new topic z for w from a multinomial distribution
p(z = kl-z), ke {1,2,...,Z}

Nwk + B nak +

— k= Dwk TP Ndk T &
p(z ! Z)(XnkJrWB ng + Zo

[e))

iv) Increment ng., ng, Nwz, N, by one

Figure 2. Collapsed Gibbs Sampling (CGS) algorithm to learn LDA [10]

III. SUB-GIBBS SAMPLING STRATEGY

This section presents the strategy of Sub-Gibbs Sampling
(SGS). SGS utilizes two properties in LDA models to
reduce the sample space: (i) tokens have very skewed topic
distribution patterns, and (ii) the semantics of a corpus can
be approximated using a subset of documents. We denote
these two properties as Skewed Topic Distributions and
Approximate Semantics. The idea of SGS is using a subset
of tokens in a document and a subset of documents in a
corpus to learn LDA models.

A. SGS Utilizing Skewed Topic Distributions

We conduct a pre-study to examine the topic distributions
of tokens. In this pre-study, we run the CGS algorithm on the
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NYTimes data set. After CGS terminates, we group tokens by
their term frequency (tf) and examine the topic distribution
of tokens. Let the group of tokens with ¢f = m be denoted
as Gm. Le., Gm = {w”|z el D, j el.. .li, Ndjw;; =
m}. The topic distribution of tokens in the token group G,
is the proportion of tokens that are assigned with Z'(< Z)
distinct topics, which is calculated as

T(Z" m) {wij |1Uij €Gm, [{z/ \‘J;;€1|...li, wij/:wij}\:Z’} | '
We plot the topic distributions of tokens with different term

frequencies for several m values in Fig. 3.
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Figure 3. Topic distribution patterns learned by CGS for several token
groups on NYTimes data set with Z = 100; ¢f = X represents G x
We can observe (Fig. 3) that multiple occurrences (tf =
m) of the same token in a document are only assigned
with a few distinct (much fewer than min(m, Z)) topics.We
denote this observation as the property of skewed topic
distributions. Previous works [5], [4], [7] utilize the sparsity
in parameters n,,, and ng, to design fast Gibbs sampling
algorithms. This parameter-sparsity property denotes that as
the sampling process proceeds most elements in 7, ng,
become zero. Our skewed topic distributions property is
very different. We study the effect of the sparsity on the
distributions of the number of distinct topics.

Input: base Gibbs sampling algorithm for LDA (GS), group partition algorithm
(GP)
1) For each iteration ¢ = 1,2, - - -
a) For each distinct token w in each document d

i) Partition m occurrences of w into groups g1, g2, ..., gs of
size my, ma, ..., ms (3__; m; = m) utilizing GP
For each group g; for token w
A)
B)
9]
D)

ii)
Let z be the topic assignment to g; in the previous iteration
Decrement nq., g, Nz, and n, by m;

Sample z for g; using GS

Increment ng.,ng, Nwz, Nz by m;

Figure 4. SGS utilizing skewed topic distributions

The property of skewed topic distributions suggests that,
when running CGS to learn LDA, it is unnecessary to sample
each individual occurrence of a token. Instead, we can draw
one topic and assign this topic to several occurrences of a
token. We propose the SGS strategy by utilizing the skewed
topic distribution property in Fig. 4. The SGS strategy takes
as input (a) a base Gibbs sampling algorithm for LDA (G.S),
which can be any LDA Gibbs Sampling algorithm, and
(b) a group partition algorithm (GP), which is explained
in Section III-Al. It works in two steps. The first step
partitions the multiple occurrences of token w, whose term
frequency is m, into s (s < m) groups gi,g2,...,gs Of



size my, ma,...,ms (>.;_, m; = m) by utilizing GP. The
second step samples one representative topic for each group
g; by calling GS. These two steps are repeated on all the
distinct tokens in each document. This strategy can reduce
the time complexity of sampling m occurrences of a token
from O(Zm) to O(Zs) (s < m) if CGS is taken as the base
GS. We denote a base GS algorithm implementing the SGS
strategy as an SGS algorithm in later discussions.

1) Group Partition Algorithm: We design a uniform size
group partition (USGP) algorithm. In USGP, a subsampling
ration ¢ € [0,1.0] is defined to control the group size.
Given ¢, the m occurrences of a token is partitioned into
s groups. The group sizes are [mq], [mq],...,m — (s —
1)[mgq]. If [mgq] < 1, we put all m occurrences into one
group. Even USGP generates uniform size groups, the LDA
model learned by SGS algorithms that utilize USGP still
shows skewed topic distribution patterns. This has been
verified with detailed experimental results in our technical
report [11].

2) Error Bound Analysis: The sampling process of an
SGS algorithm and its corresponding base G'S algorithm (as
shown in Fig. 2 and Fig. 4) are different. It has shown [12]
that it is intractable to derive their accumulated difference
through the whole sampling process. Nevertheless, to get
a basic idea of the error that the subsampling brings, we
analyze the difference between an SGS algorithm and its
corresponding base G.S algorithm in the sampling process
for one token. We define 4., = |[p — p’||1, in which p’ and
p are conditional probabilities (Eq. (1)) of an SGS algorithm
and its corresponding G'S respectively. We prove that, given
the same count matrices (ng,, Ny., and n,), 04, has a
limited upper bound d4,, < (1 + a)e which is close to 0.
The detailed proof and analysis are shown in [11].

B. SGS Utilizing Approximate Semantics

To further reduce N we propose the SGS utilizing ap-
proximate semantics which is described in the remaining of
this section. The document-word representation of a corpus
can be viewed as a bipartite graph. Fig. 5 shows an example
of a small corpus. Let us use semantics to denote the set
of distinct tokens (vocabulary) in the corpus. The idea of
approximate semantics is inspired by the observation that a
few documents can cover the overall semantics of a corpus.

Bipartite representation of a small corpus

Figure 5.

A natural question is which subset we should choose
to approximately represent the semantics of the corpus.
We formulate the problem of choosing the representative
document subset from a corpus as a set cover problem
on a bipartite graph. The document-word representation of
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Input: bipartite graph representation of a corpus G = (V, E) in which
V' = DUW, base Gibbs sampling algorithm for LDA G S, subsampling
ratio r

Use greedy set cover algorithm [13] to find a subset of documents .S that
covers the semantics of G

For each iteration 7 = 1,2, - - -

a) Run GS on S
b) If ¢ mod (10*r) =0,run GS on D — S

2)

Figure 6. SGS utilizing approximate semantics

a corpus is formulated as a bipartite graph G = (V, E).
The graph has two types of nodes V. = D U W, in
which D = {d;,da, -+ ,dp} is the set of documents and
W = {wi,wsa, -+ ,ww} is the set of distinct tokens.
A graph edge (d;,w;) € E indicates that document d;
contains token w;. To find a document subset to represent
the semantics of the corpus, we adopt the greedy set cover
algorithm [13] to find a subset of documents that contains all
the distinct tokens in the corpus. Recall that the documents
in the representative set are called covered-documents, and
the remaining documents are called uncovered-documents.

The SGS strategy utilizing the approximate semantics
property is shown in Fig. 6. For this strategy, we define
a subsampling ratio r € [0,1.0] to control the frequency
that a G'S algorithm runs on uncovered-documents. This
strategy works as follows. It first uses a greedy set cover
algorithm to find the representative subset S. It then runs a
base Gibbs sampling algorithm G'S on S in each iteration.
If the iteration number i satisfies that ¢ mod (10 %) = 0,
GS' also runs on uncovered-documents D — S. We limit
the subsampling ratio r in range [0,1.0] and set the con-
sistent factor as 10 because out experiments show that
when 10 x r > 10 the effectiveness of SGS algorithms is
unacceptable. Assuming that each document has L words on
average and the base G.S algorithm has complexity O(Z¢)
for sampling each token, then the complexity of the base
GS algorithm is O(DLZy) and the corresponding SGS
algorithm has complexity O((|S| + (D —|5]) * 197 ) LZy).
Because S is a small subset of D, |S|+(D7|S|)*ﬁ < D,
which means that the complexity of the SGS algorithm is
much lower than the base GS algorithm. The cost of greedy
set cover algorithm is demonstrated in [11].

[ Dataset | W ] D [ N |
NIPS 12,419 1,500 746,316
ENRON 28,102 37,861 3,710,420
NYTimes 102,660 300,000 69,679,427
PubMed 141,043 8,200,000 483,450,157
Table 11

STATISTICS OF DATA SETS
C. Discussions

We use sgs_GS(q,r) to denote the SGS algorithm uti-
lizing the skewed topic distribution property with subsam-
pling ratio ¢ and the approximate semantics property with
subsampling ratio r. GS denotes the input base Gibbs
Sampling algorithm. Parameters ¢ = 0 or » = 0 means



that the corresponding property is not utilized. To achieve
the maximum speedup, we set ¢ = 1.0 and r = 1.0.

IV. EXPERIMENTS

We implement the proposed SGS strategy on four
Gibbs sampling algorithms, CGS [2], SparseLDA [4],
AliasLDA [5], and F+Nomad LDA [6]. They are denoted as
cgs, splda, alias, and flda. The Gibbs sampling algorithms
implementing the SGS strategy are denoted as sgs_cgs,
sgs_splda, sgs_alias, and sgs_flda, which are called sgs_GS
or SGS algorithms in later discussions. All the implementa-
tions are based on the open-source code in [6]. Due to limit
of space, we only present representative experimental results
and their analysis. More detailed experimental analysis is
shown in our technical report [11].

A. Data Sets

We conduct extensive experiments on four data sets, NIPS,
ENRON, NYTimes, and PubMed, which are downloaded
from UCI Bag of Words data collection [14]. The statistics
of these data sets are shown in TABLE II.

B. Evaluation Measures and Parameter Settings

1. Log-likelihood (/Ii). We use the likelihood defined in [15]
which is defined as follows.

D szzl F(a + ndizj)
p(w, zla, B) = (E T T(Zatna)

We define 10%-likelihood ratio (/lh-ratio) to measure the
effectiveness difference between GS and sgs_GS. The llh-
ratio of sgs_GS over GS is defined as

4

)- (11

i=1

e, re+ Nuwjz;)
T(WB+n.,)

Ih(sgs_GS) — lL(GS)
1Ih(GS)

llh-ratio(sgs_GS, GS) = abs(

)

Smaller llh-ratio indicates sgs_GS and GS have similar //A.
2. KL-divergence. To further examine whether sgs_GS can
learn similar topics as what GS learns, we utilize KL-
divergence. Given that gz?z = (¢i1,Pi2,...,Piw) (a topic
learned by GS) and (Z_% = (91, P25, ) (a topic
learned by sgs_GS), the KL-divergence from &; to é; is

3. Running time aﬁa speedup ratio. To measure how SGS
strategy improves GS in efficiency, we record the average
running time per iteration, and also calculate speedup ratios
of sgs_GS and GS algorithms over cgs algorithm.

4. Parameter Settings. We set o = 50/Z and 8 = 0.01,
which are also used in [6].

C. Effectiveness Analysis ]
First, we examine the quality of the topics learned by SGS

algorithms. Let the topics learned by cgs and sgs_cgs(q, 0)
with ¢ = 0.5, and 1.0 be denoted as ¢, ¢} 5, and ¢}
respectively. Fig. 7 shows the KL-divergence matrix of the
NIPS data set. In TABLE III we show the representative
words of the topics learned from the NIPS data set using
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Figure 7. KL-divergence matrix from ¢’ (learned by sgs_cgs) to ¢ (learned
by cgs) on NIPS (Z = 10)
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Figure 8. Log-likelihood trend over iterations and wall time of
sgs_cgs(q,r) and cgs on NYTimes (Z = 1000)

cgs and sgs_cgs(q,0). These observations demonstrate that
SGS algorithms learn similar topics as CGS.

Second, we examine how the subsampling ratio ¢ affects
the effectiveness of SGS algorithms. Fig. 8(a) and Fig. 8(c)
show the Ilh trends of sgs_cgs(q,0) and cgs on the NY-
Times data set. Fig. 8(a) shows that the models learned by
sgs_cgs(q,0) and cgs have similar llh values at the end.
Fig. 8(c) shows that sgs_cgs(q,0) can achieve higher ilh
than cgs within the same amount of time and sgs_cgs(g,0)
converges faster than cgs. The sgs_GS algorithms with other
base GS show similar patterns. This demonstrates that SGS
algorithms can learn models that are similar to the GS
and converge as the base GS. We further examine I/h-

Ilh-ratio v.s. ¢. r=0

BH sgs_alias
30 sgs_fida

Ilh-ratio v.s. g. r=0
@-® sgs_cgs
GO sgs_splda

0.008
0.007
-S 0.006 oo
o
- 0.005
e
= 0.004
0.003)"
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0% 704 06 08
Subsampling ratio ¢

@-® sgs_cgs

| sgs_alias
G+ sgs_splda

300 sgs_fida

IIh-ratio

0.2

0.4
Subsampling ratio ¢

1.0 0.6 0.8 1.0

(a) NYTimes
Figure 9.

(b) PubMed
IIh-ratio v.s. subsampling ratio ¢ (Z = 1000)



Algorithm Top-2 words from 10 topics Overlapping ratio
cgs function, neuron, network, algorithm, image, object, system, cell, circuit, speech, learning, error, 1.0

model, data, signal, unit

sgs_cgs(0.2,0) function, training, neuron, word, network, algorithm, image, object, system, cell, circuit, 0.82
set, learning, input, model, data

sgs_cgs(0.6,0) function, control, training, object, word, network, neural, image, neuron, system, cell, set, 0.80
learning, input, model, data, recognition

sgs_cgs(1.0,0) function, control, set, image, object, learning, data, recognition, network, neural, pattern, 0.78
presented, system, cell, memory, model, neuron

Table III
REPRESENTATIVE WORDS OF CGS AND SGS_CGS ON NIPS (Z = 10); OVERLAPPED WORDS ARE HIGHLIGHTED

Ilh-ratio v.s.r. ¢=1.0 Ilh-ratio v.s.r. ¢=1.0

0.50
0.14| 9@ sgs.cgs MM sgs_alias 0.45/ ®® sgscgs WM sgs_alias
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%%z oz 06 08 Lo %97 oz 06 08 Lo
Subsampling ratio r Subsampling ratio r
(a) NYTimes (b) PubMed

Figure 10. llh-ratio v.s. subsampling ratio r (Z = 1000)

ratio(sgs_GS, GS) which is shown in Fig. 9. We can observe
that llh-ratio(sgs_GS, GS) is higher when ¢ is greater. This
indicates that sgs_GS with higher subsampling ratio ¢ learns
a LDA model whose /[ is more biased from that of GS. The
small absolute /lh-ratio shows that sgs_GS(q, 0) can achieve
very similar [[h as GS.

Third, we examine how the subsampling ratio r affects
the effectiveness of SGS algorithms. Fig. 8(b) and Fig. 8(d)
show the lih trends of sgs_cgs(0,7) and cgs. From Fig. 8(b)
we can observe that sgs_cgs(0,r) with the lower subsam-
pling ratio r learns models with the more similar //h as
the models learned by cgs. sgs_cgs(0,r) shows a zig-zag
lIh trend because cgs runs on uncovered-documents every
107 iterations in sgs_cgs. Fig. 8(d) shows that sgs_cgs (0, r)
achieve lower //h than cgs within the same amount of time
and sgs_cgs(0,7) still converges as the cgs finally. We
also observe that the final /lh of sgs_cgs(0,r) with higher
subsampling ratio r is biased more from cgs. To study the
effect of r on effectiveness of SGS algorithms, we present
the llh-ratio(sgs_GS, GS) in Fig. 10. We can observe that
higher r results in larger ratios.

D. Efficiency Analysis

We investigate how the subsampling ratio ¢ affects
the efficiency of SGS algorithms. The speedup ratios of
sgs_GS(q,0) and GS over cgs are shown in Fig. 11. First,
sgs_GS(q,0) consistently has higher speedup ratio than the
corresponding GS. It means sgs_GS(q,0) is faster than GS.
Second, when g grows, the speedup ratio also grows because
higher ¢ means that less groups (more tokens within one
group) are sampled in every iteration.

We also examine how the subsampling ratio r affects the
efficiency of SGS algorithms. The speedup ratios of GS and
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Figure 12. Comparison of speedup of sgs_GS methods v.s. subsampling

ratio r (Z = 1000)

sgs_GS(1.0,7) over cgs are shown in Fig. 12. The figure
shows that sgs_GS(1.0,r) consistently has higher speedup
ratio than the corresponding GS. In addition, when r grows,
the speedup ratio of sgs_GS(1.0,7) also grows.

Finally, we check the efficiency of sgs_GS under dif-
ferent model complexities Z. The speedup ratios of GS
and sgs_GS over cgs are shown in TABLE IV. Overall the
sgs_GS algorithms significantly improves the corresponding
GS algorithms. An impressive example is that, cgs takes 5
hours to run one iteration on PubMed with Z = 5000; with
the same setting, sgs_cgs(1.0,0.3) takes only 0.5 hours.
Summary: In real applications, it is a tradeoff to choose
proper subsampling ratios ¢ and 7 to have expected speedup
and acceptable effectiveness. Since g does not affect effec-
tiveness too much as shown in Fig. 9, we suggest to choose
q = 1.0 to have the maximum speedup. Since large r results
in unacceptable effectiveness, we recommend to choose a
relatively small r value depending on the data set size.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel and general strategy
Sub-Gibbs Sampling (SGS), to improve the efficiency of
any Gibbs sampling algorithms for LDA. The SGS strategy



Algorithms Z = 2000 Z = 5000 Z = 8000 Z = 10000 Z = 2000 Z = 5000 Z = 8000 Z = 10000
NIPS Enron
sgs_cgs(1.0,0) 2.61 3.00 2.67 2.54 1.71 1.62 1.72 1.74
sgs_cgs(1.0,0.3) 4.89 4.68 4.74 4.10 3.63 3.92 3.89 3.93
splda 23.56 33.90 40.66 48.57 14.75 14.76 17.03 19.46
sgs_splda(1.0, 0) 50.87 67.66 74.34 84.45 20.66 20.68 23.13 25.68
sgs_splda(1.0,0.3) 84.50 143.44 124.05 134.91 42.13 47.84 53.72 60.24
alias 5.55 12.37 17.93 29.82 6.24 11.53 20.75 24.63
sgs_alias (1.0, 0) 19.03 41.00 60.69 74.82 12.73 26.73 4191 48.44
sgs_alias(1.0,0.3) 30.30 64.19 98.53 117.34 27.38 54.86 79.90 106.21
flda 33.36 52.77 67.02 82.82 18.17 30.66 33.39 34.00
sgs_flda(1.0,0) 76.58 149.99 204.64 286.78 33.19 35.65 46.62 56.84
sgs_flda(1.0,0.3) 141.40 244.71 325.33 423.65 71.44 98.90 104.25 134.32
Algorithms Z = 2000 Z = 5000 Z = 8000 Z = 10000 Z = 1000 Z = 2000 Z = 5000
NYTimes PubMed
sgs_cgs(1.0,0) 1.43 1.43 1.42 1.44 1.52 1.54 1.57
sgs_cgs(1.0,0.3) 4.23 4.22 4.23 4.27 14.74 15.10 13.74
splda 5.02 7.35 8.94 8.47 3.95 3.08 3.49
sgs_splda(1.0, 0) 8.02 9.47 10.15 12.53 5.28 4.23 5.50
sgs_splda(1.0,0.3) 16.41 19.53 28.68 29.27 11.00 12.48 13.90
alias 4.34 10.21 13.62 18.86 4.68 7.96 13.41
sgs_alias(1.0,0) 7.06 14.24 20.88 32.13 8.27 11.45 23.80
sgs_alias(1.0,0.3) 17.15 50.77 75.22 113.48 29.63 4691 93.02
flda 7.37 8.31 8.98 10.29 5.41 3.73 4.63
sgs_flda(1.0, 0) 851 11.51 13.31 14.95 7.67 592 7.79
sgs_flda(1.0,0.3) 18.07 29.83 36.48 2991 17.48 15.67 19.43
Table IV

SPEEDUP OF SGS_GS OVER CGS VARYING Z

utilizes two properties that we observed in text corpora, the
tokens in a document have skewed topic distributions and
the semantics of a corpus can be approximately covered by
a subset of documents in this corpus. We theoretically prove
that the error of SGS algorithm is bounded by a small upper
bound. We implemented the SGS strategy on the traditional
Collapsed Gibbs Sampling (CGS) algorithm and three state-
of-the-art Gibbs sampling algorithms (FastLDA, AliasLDA,
and F+Nomad LDA). The experimental results on four real
data sets showed that the SGS algorithms can learn similar
models as those of other Gibbs sampling algorithms with
much better efficiency. In particular the proposed strategy is
2 ~ 100 times faster than CGS and 2~5 times faster than
FastLDA, AliasLDA, and F+Nomad LDA algorithms. In the
future we will explore better group partition algorithms and
find a close form error bound for the SGS strategy.
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