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Abstract—Latent Dirichlet Allocation (LDA) has been widely
used in text mining to discover topics from documents. One
major approach to learn LDA is Gibbs sampling. The basic
Collapsed Gibbs Sampling (CGS) algorithm requires O(NZ)
computations to learn an LDA model with Z topics from a
corpus containing N tokens. Existing approaches that improve
the complexity of CGS focus on reducing the factor Z.

In this work, we propose a novel and general Sub-Gibbs
Sampling (SGS) strategy to improve the Gibbs-Sampling com-
putation by reducing the sample space. This new strategy
targets at reducing the factor N by sampling only a subset of
the whole corpus. The design of the SGS strategy is based on
two properties that we observe: (i) topic distributions of tokens
are skewed and (ii) a subset of documents can approximately
represent the semantics of the whole corpus. We prove that
the SGS strategy can achieve comparable effectiveness (with
bounded errors) and significantly reduce the complexity of
existing Gibbs sampling algorithms. Extensive experiments
on large real-world data sets show that the proposed SGS
strategy is much faster than several state-of-the-art fast Gibbs
sampling algorithms and the proposed SGS strategy can learn
comparable LDA models as other Gibbs sampling algorithms.
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I. INTRODUCTION AND RELATED WORKS

Latent Dirichlet Allocation (LDA) is a widely used topic

model ever since its introduction by Blei et al. [1]. A

basic Collapsed Gibbs Sampling (CGS) algorithm to infer

the LDA model is introduced by Griffiths et al. [2]. The

complexity of this CGS is O(NZ) where N and Z are the

total number of observed tokens and the number of latent

topics in a text corpus respectively. This O(NZ) complexity

makes CGS very expensive to run on large corpora.

To improve the basic CGS algorithm, many fast Gibbs

sampling algorithms (e.g., [3], [4], [5], [6], [7]) have been

proposed in the literature. Porteous et al. [3] propose the

FastLDA algorithm to improve the running time (not com-

plexity) of CGS by segmenting and rearranging the con-

ditional probabilities. Yao et al. [4] design the SparseLDA

algorithm and reduce the complexity to O(N(Zw + Zd))
where Zw is the number of distinct topics that are assigned

to a token w, Zd is the number of distinct topics that are

assigned to w’s corresponding document d, and Zw + Zd

is generally smaller than Z in practice. SparseLDA utilizes

an observation that word-topic and document-topic count

matrices in Gibbs sampling are sparse. Li et al. [5] design

C. Hu, H. Cao, Q. Gong are with the Department of Computer Science,
New Mexico State University, Las Cruces, NM 88003.

E-mail: chu, hcao, qgong@cs.nmsu.edu
This work is supported by NSF #1633330 and #1345232.

an O(NZd) approximate sampling algorithm, AliasLDA, by

combining the Metropolis-Hasting sampling and the alias ta-

ble method [8]. Yuan et al. [7] further improve AliasLDA by

approximating more probability components and propose the

LightLDA algorithm with an O(N) complexity. Yu et al. [6]

design the F+Nomad LDA Gibbs sampling algorithm with

an O(N logZ) time complexity by utilizing the Fenwick

tree [9] data structure. All these works focus on reducing

the factor Z through efficient calculation and maintenance

of conditional probabilities.

In this paper we propose a totally new and general strat-

egy, Sub-Gibbs Sampling (SGS), to improve Gibbs sampling

algorithms for LDA inference by reducing the sample space.

I.e, we target at reducing the factor N . SGS is based on two

properties which are not utilized in previous works.

• Skewed topic distributions. In LDA models, multiple

occurrences of one token in a document are assigned

with a few distinct topics, and the majority of the

occurrences is assigned with the same topic.

• Approximate semantics. The semantics of a corpus can

be approximately represented by a small subset of

the documents. The documents in this representative

subset are called covered-documents and the remaining

documents are called uncovered-documents.

These two properties are presented in details in Section III.

Utilizing these two properties SGS is designed to run any

Gibbs sampling algorithm (i) on a small subset of tokens

(instead of all the tokens); (ii) on covered-documents for

more iterations than on uncovered-documents.

The contributions of this work are as follows.

• We identify two new useful properties in LDA, skewed

topic distributions and approximate semantics.

• Utilizing the two properties, we propose a novel Sub-

Gibbs Sampling (SGS) strategy to reduce the sampling

space of existing Gibbs sampling algorithms.

• We conduct extensive experiments to demonstrate that

SGS strategy reduces the running time significantly and

achieves similar effectiveness.

II. BACKGROUND AND NOTATIONS

Latent Dirichlet Allocation (LDA) is introduced in [1]

as a generative probabilistic model to learn topics in text

corpora. LDA assumes that the observed tokens in each

document are generated from a mixture (document-to-topic

distributions θ) of several multinomial distributions (topic-

to-word distributions φ). The detailed generative process of

2017 IEEE International Conference on Data Mining

2374-8486/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDM.2017.113

907



LDA is in Fig. 1. The Collapsed Gibbs Sampling (CGS)

algorithm [2] is a widely accepted approach to learn the

parameter values in LDA. CGS estimates latent topics for

tokens by iteratively drawing samples for each token from

conditional probabilities. The CGS algorithm is shown in

Fig. 2. The notations of LDA and CGS are listed in TA-

BLE I.

Symbol Meaning

α, β Hyper-parameters of Dirichlet distribution
�θi Multinomial topic distribution of document di

�φi Multinomial word distribution of topic zi
D # of documents

W # of distinct tokens (vocabulary size)

N Total # of tokens in the corpus

Z # of latent topics

di The ith document in the corpus

li The length of the document di

wij The jth token in the document di

zij The latent topic of the token wij

ndz # of times that topic z is assigned to document d

ndw # of times that token w occurs document d

nd Total # of tokens in document d

nwz # of times that topic z is assigned to token w

nz # of times that topic z is assigned for the corpus

Table I
NOTATIONS FOR LDA AND CGS

1) For each latent topic zi, i ∈ {1, 2, . . . , Z}, draw �φi ∼
Dirichlet(β)

2) For each document di, i ∈ {1, 2, . . . , D}

a) Draw �θi ∼ Dirichlet(α)
b) For j ∈ {1, 2, . . . li}, where li is the length of document di

i) Draw the latent topic zij ∼ multinomial(�θi)

ii) Draw the observed token wij ∼ multinomial(�φzij
)

Figure 1. Generative Process of LDA [1]

1) For each iteration i = 1, 2, · · ·

a) For each token w in each document d

i) Let z be the topic assignment to w in the previous iteration

ii) Decrement ndz, nd, nwz, nz by one

iii) Sample a new topic z for w from a multinomial distribution

p(z = k|¬z), k ∈ {1, 2, . . . , Z}

p(z = k|¬z) ∝
nwk + β

nk + Wβ
·
ndk + α

nd + Zα
(1)

iv) Increment ndz, nd, nwz, nz by one

Figure 2. Collapsed Gibbs Sampling (CGS) algorithm to learn LDA [10]

III. SUB-GIBBS SAMPLING STRATEGY

This section presents the strategy of Sub-Gibbs Sampling

(SGS). SGS utilizes two properties in LDA models to

reduce the sample space: (i) tokens have very skewed topic

distribution patterns, and (ii) the semantics of a corpus can

be approximated using a subset of documents. We denote

these two properties as Skewed Topic Distributions and

Approximate Semantics. The idea of SGS is using a subset

of tokens in a document and a subset of documents in a

corpus to learn LDA models.

A. SGS Utilizing Skewed Topic Distributions

We conduct a pre-study to examine the topic distributions

of tokens. In this pre-study, we run the CGS algorithm on the

NYTimes data set. After CGS terminates, we group tokens by

their term frequency (tf ) and examine the topic distribution

of tokens. Let the group of tokens with tf = m be denoted

as Gm. I.e., Gm = {wij |i ∈ 1 . . . D, j ∈ 1 . . . li, ndiwij
=

m}. The topic distribution of tokens in the token group Gm

is the proportion of tokens that are assigned with Z ′(≤ Z)
distinct topics, which is calculated as

r(Z ′,m) =

∣

∣

{

wij

∣

∣wij∈Gm, |{zij′ |j
′∈1...li, wij′=wij}|=Z′

}
∣

∣

|Gm| .

We plot the topic distributions of tokens with different term

frequencies for several m values in Fig. 3.

tf = 20 tf = 40

Figure 3. Topic distribution patterns learned by CGS for several token
groups on NYTimes data set with Z = 100; tf = X represents GX

We can observe (Fig. 3) that multiple occurrences (tf =
m) of the same token in a document are only assigned

with a few distinct (much fewer than min(m,Z)) topics.We

denote this observation as the property of skewed topic

distributions. Previous works [5], [4], [7] utilize the sparsity

in parameters nwz and ndz to design fast Gibbs sampling

algorithms. This parameter-sparsity property denotes that as

the sampling process proceeds most elements in nwz, ndz

become zero. Our skewed topic distributions property is

very different. We study the effect of the sparsity on the

distributions of the number of distinct topics.

Input: base Gibbs sampling algorithm for LDA (GS), group partition algorithm

(GP)

1) For each iteration i = 1, 2, · · ·

a) For each distinct token w in each document d

i) Partition m occurrences of w into groups g1, g2, . . . , gs of

size m1,m2, . . . ,ms (
∑s

i=1
mi = m) utilizing GP

ii) For each group gi for token w

A) Let z be the topic assignment to gi in the previous iteration

B) Decrement ndz, nd, nwz , and nz by mi

C) Sample z for gi using GS

D) Increment ndz, nd, nwz, nz by mi

Figure 4. SGS utilizing skewed topic distributions

The property of skewed topic distributions suggests that,

when running CGS to learn LDA, it is unnecessary to sample

each individual occurrence of a token. Instead, we can draw

one topic and assign this topic to several occurrences of a

token. We propose the SGS strategy by utilizing the skewed

topic distribution property in Fig. 4. The SGS strategy takes

as input (a) a base Gibbs sampling algorithm for LDA (GS),

which can be any LDA Gibbs Sampling algorithm, and

(b) a group partition algorithm (GP ), which is explained

in Section III-A1. It works in two steps. The first step

partitions the multiple occurrences of token w, whose term

frequency is m, into s (s ≤ m) groups g1, g2, . . . , gs of
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size m1,m2, . . . ,ms (
∑s

i=1 mi = m) by utilizing GP . The

second step samples one representative topic for each group

gi by calling GS. These two steps are repeated on all the

distinct tokens in each document. This strategy can reduce

the time complexity of sampling m occurrences of a token

from O(Zm) to O(Zs) (s < m) if CGS is taken as the base

GS. We denote a base GS algorithm implementing the SGS

strategy as an SGS algorithm in later discussions.

1) Group Partition Algorithm: We design a uniform size

group partition (USGP) algorithm. In USGP, a subsampling

ration q ∈ [0, 1.0] is defined to control the group size.

Given q, the m occurrences of a token is partitioned into

s groups. The group sizes are ⌈mq⌉, ⌈mq⌉, . . . ,m − (s −
1)⌈mq⌉. If ⌈mq⌉ < 1, we put all m occurrences into one

group. Even USGP generates uniform size groups, the LDA

model learned by SGS algorithms that utilize USGP still

shows skewed topic distribution patterns. This has been

verified with detailed experimental results in our technical

report [11].

2) Error Bound Analysis: The sampling process of an

SGS algorithm and its corresponding base GS algorithm (as

shown in Fig. 2 and Fig. 4) are different. It has shown [12]

that it is intractable to derive their accumulated difference

through the whole sampling process. Nevertheless, to get

a basic idea of the error that the subsampling brings, we

analyze the difference between an SGS algorithm and its

corresponding base GS algorithm in the sampling process

for one token. We define δdw = ||p− p′||1, in which p′ and

p are conditional probabilities (Eq. (1)) of an SGS algorithm

and its corresponding GS respectively. We prove that, given

the same count matrices (ndz , nwz , and nz), δdw has a

limited upper bound δdw < (1 + a)ǫ which is close to 0.

The detailed proof and analysis are shown in [11].

B. SGS Utilizing Approximate Semantics

To further reduce N we propose the SGS utilizing ap-

proximate semantics which is described in the remaining of

this section. The document-word representation of a corpus

can be viewed as a bipartite graph. Fig. 5 shows an example

of a small corpus. Let us use semantics to denote the set

of distinct tokens (vocabulary) in the corpus. The idea of

approximate semantics is inspired by the observation that a

few documents can cover the overall semantics of a corpus.

d1 d2 d3 d4

w1 w2 w3 w4 w5 w6 w7

Figure 5. Bipartite representation of a small corpus

A natural question is which subset we should choose

to approximately represent the semantics of the corpus.

We formulate the problem of choosing the representative

document subset from a corpus as a set cover problem

on a bipartite graph. The document-word representation of

Input: bipartite graph representation of a corpus G = (V,E) in which

V = D∪W , base Gibbs sampling algorithm for LDA GS, subsampling

ratio r
1) Use greedy set cover algorithm [13] to find a subset of documents S that

covers the semantics of G
2) For each iteration i = 1, 2, · · ·

a) Run GS on S
b) If i mod (10 ∗ r) = 0, run GS on D − S

Figure 6. SGS utilizing approximate semantics

a corpus is formulated as a bipartite graph G = (V,E).
The graph has two types of nodes V = D ∪ W , in

which D = {d1, d2, · · · , dD} is the set of documents and

W = {w1, w2, · · · , wW } is the set of distinct tokens.

A graph edge (di, wj) ∈ E indicates that document di
contains token wj . To find a document subset to represent

the semantics of the corpus, we adopt the greedy set cover

algorithm [13] to find a subset of documents that contains all

the distinct tokens in the corpus. Recall that the documents

in the representative set are called covered-documents, and

the remaining documents are called uncovered-documents.

The SGS strategy utilizing the approximate semantics

property is shown in Fig. 6. For this strategy, we define

a subsampling ratio r ∈ [0, 1.0] to control the frequency

that a GS algorithm runs on uncovered-documents. This

strategy works as follows. It first uses a greedy set cover

algorithm to find the representative subset S. It then runs a

base Gibbs sampling algorithm GS on S in each iteration.

If the iteration number i satisfies that i mod (10 ∗ r) = 0,

GS also runs on uncovered-documents D − S. We limit

the subsampling ratio r in range [0, 1.0] and set the con-

sistent factor as 10 because out experiments show that

when 10 ∗ r > 10 the effectiveness of SGS algorithms is

unacceptable. Assuming that each document has L words on

average and the base GS algorithm has complexity O(Zf )
for sampling each token, then the complexity of the base

GS algorithm is O(DLZf ) and the corresponding SGS

algorithm has complexity O((|S|+ (D− |S|) ∗ 1
10∗r )LZf ).

Because S is a small subset of D, |S|+(D−|S|)∗ 1
10∗r ≪ D,

which means that the complexity of the SGS algorithm is

much lower than the base GS algorithm. The cost of greedy

set cover algorithm is demonstrated in [11].

Data set W D N

NIPS 12,419 1,500 746,316

ENRON 28,102 37,861 3,710,420

NYTimes 102,660 300,000 69,679,427

PubMed 141,043 8,200,000 483,450,157

Table II
STATISTICS OF DATA SETS

C. Discussions

We use sgs GS(q, r) to denote the SGS algorithm uti-

lizing the skewed topic distribution property with subsam-

pling ratio q and the approximate semantics property with

subsampling ratio r. GS denotes the input base Gibbs

Sampling algorithm. Parameters q = 0 or r = 0 means
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that the corresponding property is not utilized. To achieve

the maximum speedup, we set q = 1.0 and r = 1.0.

IV. EXPERIMENTS

We implement the proposed SGS strategy on four

Gibbs sampling algorithms, CGS [2], SparseLDA [4],

AliasLDA [5], and F+Nomad LDA [6]. They are denoted as

cgs, splda, alias, and flda. The Gibbs sampling algorithms

implementing the SGS strategy are denoted as sgs cgs,

sgs splda, sgs alias, and sgs flda, which are called sgs GS

or SGS algorithms in later discussions. All the implementa-

tions are based on the open-source code in [6]. Due to limit

of space, we only present representative experimental results

and their analysis. More detailed experimental analysis is

shown in our technical report [11].

A. Data Sets

We conduct extensive experiments on four data sets, NIPS,

ENRON, NYTimes, and PubMed, which are downloaded

from UCI Bag of Words data collection [14]. The statistics

of these data sets are shown in TABLE II.

B. Evaluation Measures and Parameter Settings

1. Log-likelihood (llh). We use the likelihood defined in [15]
which is defined as follows.

p(w, z|α, β) =
(

D
∏

i=1

∏Z
j=1

Γ(α + ndizj
)

Γ(Zα + ndi
)

)

·
(

Z
∏

i=1

∏W
j=1

Γ(β + nwjzi
)

Γ(Wβ + nzi
)

)

We define log-likelihood ratio (llh-ratio) to measure the
effectiveness difference between GS and sgs GS. The llh-
ratio of sgs GS over GS is defined as

llh-ratio(sgs GS,GS) = abs
( llh(sgs GS) − llh(GS)

llh(GS)

)

Smaller llh-ratio indicates sgs GS and GS have similar llh.

2. KL-divergence. To further examine whether sgs GS can

learn similar topics as what GS learns, we utilize KL-

divergence. Given that �φi = (φi1, φi2, . . . , φiW ) (a topic

learned by GS) and �φ′
j = (φ′

j1, φ
′
j2, . . . , φ

′
jW ) (a topic

learned by sgs GS), the KL-divergence from �φ′
j to �φi is

defined as Ki,j =
W
∑

w=1
φiw ln φiw

φ′

jw

.

3. Running time and speedup ratio. To measure how SGS

strategy improves GS in efficiency, we record the average

running time per iteration, and also calculate speedup ratios

of sgs GS and GS algorithms over cgs algorithm.

4. Parameter Settings. We set α = 50/Z and β = 0.01,

which are also used in [6].

C. Effectiveness Analysis
First, we examine the quality of the topics learned by SGS

algorithms. Let the topics learned by cgs and sgs cgs(q, 0)
with q = 0.5, and 1.0 be denoted as φ, φ′

0.5, and φ′
1.0

respectively. Fig. 7 shows the KL-divergence matrix of the

NIPS data set. In TABLE III we show the representative

words of the topics learned from the NIPS data set using

(a) From φ to φ (b) From φ′

0.5 to φ (b) From φ′

1.0 to φ

Figure 7. KL-divergence matrix from φ′ (learned by sgs cgs) to φ (learned
by cgs) on NIPS (Z = 10)

(a) Llh over iteration of sgs cgs(q, 0) (b) Llh over iteration of sgs cgs(0, r)

(c) Llh over time of sgs cgs(q, 0) (d) Llh over time of sgs cgs(0, r)

Figure 8. Log-likelihood trend over iterations and wall time of
sgs cgs(q, r) and cgs on NYTimes (Z = 1000)

cgs and sgs cgs(q, 0). These observations demonstrate that

SGS algorithms learn similar topics as CGS.

Second, we examine how the subsampling ratio q affects

the effectiveness of SGS algorithms. Fig. 8(a) and Fig. 8(c)

show the llh trends of sgs cgs(q, 0) and cgs on the NY-

Times data set. Fig. 8(a) shows that the models learned by

sgs cgs(q, 0) and cgs have similar llh values at the end.

Fig. 8(c) shows that sgs cgs(q, 0) can achieve higher llh

than cgs within the same amount of time and sgs cgs(q, 0)
converges faster than cgs. The sgs GS algorithms with other

base GS show similar patterns. This demonstrates that SGS

algorithms can learn models that are similar to the GS

and converge as the base GS. We further examine llh-

(a) NYTimes (b) PubMed

Figure 9. llh-ratio v.s. subsampling ratio q (Z = 1000)
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Algorithm Top-2 words from 10 topics Overlapping ratio

cgs function, neuron, network, algorithm, image, object, system, cell, circuit, speech, learning, error,

model, data, signal, unit

1.0

sgs cgs(0.2, 0) function, training, neuron, word, network, algorithm, image, object, system, cell, circuit,

set, learning, input, model, data

0.82

sgs cgs(0.6, 0) function, control, training, object, word, network, neural, image, neuron, system, cell, set,

learning, input, model, data, recognition

0.80

sgs cgs(1.0, 0) function, control, set, image, object, learning, data, recognition, network, neural, pattern,

presented, system, cell, memory, model, neuron

0.78

Table III
REPRESENTATIVE WORDS OF CGS AND SGS CGS ON NIPS (Z = 10); OVERLAPPED WORDS ARE HIGHLIGHTED

(a) NYTimes (b) PubMed

Figure 10. llh-ratio v.s. subsampling ratio r (Z = 1000)

ratio(sgs GS, GS) which is shown in Fig. 9. We can observe

that llh-ratio(sgs GS, GS) is higher when q is greater. This

indicates that sgs GS with higher subsampling ratio q learns

a LDA model whose llh is more biased from that of GS. The

small absolute llh-ratio shows that sgs GS(q, 0) can achieve

very similar llh as GS.

Third, we examine how the subsampling ratio r affects

the effectiveness of SGS algorithms. Fig. 8(b) and Fig. 8(d)

show the llh trends of sgs cgs(0, r) and cgs. From Fig. 8(b)

we can observe that sgs cgs(0, r) with the lower subsam-

pling ratio r learns models with the more similar llh as

the models learned by cgs. sgs cgs(0, r) shows a zig-zag

llh trend because cgs runs on uncovered-documents every

10∗r iterations in sgs cgs. Fig. 8(d) shows that sgs cgs(0, r)
achieve lower llh than cgs within the same amount of time

and sgs cgs(0, r) still converges as the cgs finally. We

also observe that the final llh of sgs cgs(0, r) with higher

subsampling ratio r is biased more from cgs. To study the

effect of r on effectiveness of SGS algorithms, we present

the llh-ratio(sgs GS, GS) in Fig. 10. We can observe that

higher r results in larger ratios.

D. Efficiency Analysis

We investigate how the subsampling ratio q affects

the efficiency of SGS algorithms. The speedup ratios of

sgs GS(q, 0) and GS over cgs are shown in Fig. 11. First,

sgs GS(q, 0) consistently has higher speedup ratio than the

corresponding GS. It means sgs GS(q, 0) is faster than GS.

Second, when q grows, the speedup ratio also grows because

higher q means that less groups (more tokens within one

group) are sampled in every iteration.

We also examine how the subsampling ratio r affects the

efficiency of SGS algorithms. The speedup ratios of GS and

(a) NYTimes (b) PubMed

Figure 11. Comparison of speedup of sgs GS methods v.s. subsampling
ratio q (Z = 1000)

(a) NYTimes (b) PubMed

Figure 12. Comparison of speedup of sgs GS methods v.s. subsampling
ratio r (Z = 1000)

sgs GS(1.0, r) over cgs are shown in Fig. 12. The figure

shows that sgs GS(1.0, r) consistently has higher speedup

ratio than the corresponding GS. In addition, when r grows,

the speedup ratio of sgs GS(1.0, r) also grows.

Finally, we check the efficiency of sgs GS under dif-

ferent model complexities Z. The speedup ratios of GS

and sgs GS over cgs are shown in TABLE IV. Overall the

sgs GS algorithms significantly improves the corresponding

GS algorithms. An impressive example is that, cgs takes 5

hours to run one iteration on PubMed with Z = 5000; with

the same setting, sgs cgs(1.0, 0.3) takes only 0.5 hours.

Summary: In real applications, it is a tradeoff to choose

proper subsampling ratios q and r to have expected speedup

and acceptable effectiveness. Since q does not affect effec-

tiveness too much as shown in Fig. 9, we suggest to choose

q = 1.0 to have the maximum speedup. Since large r results

in unacceptable effectiveness, we recommend to choose a

relatively small r value depending on the data set size.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel and general strategy

Sub-Gibbs Sampling (SGS), to improve the efficiency of

any Gibbs sampling algorithms for LDA. The SGS strategy
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Algorithms Z = 2000 Z = 5000 Z = 8000 Z = 10000 Z = 2000 Z = 5000 Z = 8000 Z = 10000
NIPS Enron

sgs cgs(1.0, 0) 2.61 3.00 2.67 2.54 1.71 1.62 1.72 1.74

sgs cgs(1.0, 0.3) 4.89 4.68 4.74 4.10 3.63 3.92 3.89 3.93

splda 23.56 33.90 40.66 48.57 14.75 14.76 17.03 19.46

sgs splda(1.0, 0) 50.87 67.66 74.34 84.45 20.66 20.68 23.13 25.68

sgs splda(1.0, 0.3) 84.50 143.44 124.05 134.91 42.13 47.84 53.72 60.24

alias 5.55 12.37 17.93 29.82 6.24 11.53 20.75 24.63

sgs alias(1.0, 0) 19.03 41.00 60.69 74.82 12.73 26.73 41.91 48.44

sgs alias(1.0, 0.3) 30.30 64.19 98.53 117.34 27.38 54.86 79.90 106.21

flda 33.36 52.77 67.02 82.82 18.17 30.66 33.39 34.00

sgs flda(1.0, 0) 76.58 149.99 204.64 286.78 33.19 35.65 46.62 56.84

sgs flda(1.0, 0.3) 141.40 244.71 325.33 423.65 71.44 98.90 104.25 134.32

Algorithms Z = 2000 Z = 5000 Z = 8000 Z = 10000 Z = 1000 Z = 2000 Z = 5000
NYTimes PubMed

sgs cgs(1.0, 0) 1.43 1.43 1.42 1.44 1.52 1.54 1.57

sgs cgs(1.0, 0.3) 4.23 4.22 4.23 4.27 14.74 15.10 13.74

splda 5.02 7.35 8.94 8.47 3.95 3.08 3.49

sgs splda(1.0, 0) 8.02 9.47 10.15 12.53 5.28 4.23 5.50

sgs splda(1.0, 0.3) 16.41 19.53 28.68 29.27 11.00 12.48 13.90

alias 4.34 10.21 13.62 18.86 4.68 7.96 13.41

sgs alias(1.0, 0) 7.06 14.24 20.88 32.13 8.27 11.45 23.80

sgs alias(1.0, 0.3) 17.15 50.77 75.22 113.48 29.63 46.91 93.02

flda 7.37 8.31 8.98 10.29 5.41 3.73 4.63

sgs flda(1.0, 0) 8.51 11.51 13.31 14.95 7.67 5.92 7.79

sgs flda(1.0, 0.3) 18.07 29.83 36.48 29.91 17.48 15.67 19.43

Table IV
SPEEDUP OF SGS GS OVER CGS VARYING Z

utilizes two properties that we observed in text corpora, the

tokens in a document have skewed topic distributions and

the semantics of a corpus can be approximately covered by

a subset of documents in this corpus. We theoretically prove

that the error of SGS algorithm is bounded by a small upper

bound. We implemented the SGS strategy on the traditional

Collapsed Gibbs Sampling (CGS) algorithm and three state-

of-the-art Gibbs sampling algorithms (FastLDA, AliasLDA,

and F+Nomad LDA). The experimental results on four real

data sets showed that the SGS algorithms can learn similar

models as those of other Gibbs sampling algorithms with

much better efficiency. In particular the proposed strategy is

2 ∼ 100 times faster than CGS and 2∼5 times faster than

FastLDA, AliasLDA, and F+Nomad LDA algorithms. In the

future we will explore better group partition algorithms and

find a close form error bound for the SGS strategy.
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