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ABSTRACT 

An important step in controlling biomimetic amyloid systems is understanding the self-assembly 

reaction kinetics. We are interested in a family of such materials characterized by symmetric sequences 

of amino acids flanking a pi-conjugated functional core. Many of these materials rapidly self assemble 

into long fibers upon protonation in an acidic environment. Despite extensive investigation of these 

materials’ properties, little is yet understood regarding their reaction kinetics. Based on previous studies 

we have chosen DFAG-4T-GAFD as a representative system and conducted molecular dynamics 

simulations to show that although large-scale assembly is induced by lowering pH, some degree of 

assembly is thermodynamically favorable in high-pH non-protonating environments. These results are 

consistent with findings for other systems such as DFAG-OPV-GAFD. The non-protonated aggregation 

also appears to be concentration dependent, occurring at concentrations of 100 nM and above. Single 

molecule measurements using fluorescence correlation spectroscopy provide experimental support for 

these computational predictions. We find evidence of spontaneous aggregation in aqueous solutions of 

peptides with concentrations as low as 100 nM; however, 10 nM solutions appear to be largely 

homogeneous solutions of unassembled monomer. These results indicate that the simplest explanations 
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for kinetics of acid-mediated assembly—protonation-induced nucleation by monomeric addition 

followed by subsequent stages of aggregation and elongation—are inappropriate in this system. In fact, 

the system only exists as pure monomer in very low concentrations, nucleation actually occurs in the 

absence of protonating elements at concentrations typically used for experiments, and pH triggered 

assembly proceeds from these preassembled aggregates. Accordingly, triggered assembly must be 

considered to operate outside the domain of nucleation-dependent models. 

INTRODUCTION 

Understanding the specific kinetics of assembly in amyloid-forming systems is a valuable step toward 

understanding how best to control such systems 1. This is especially true in bio-inspired materials 

attempting to harness the potential of natural self-assembly to create functionalized devices with 

microscale or nanoscale order. Such biomimetic materials are researched for, and implemented in, a 

wide suite of applications ranging from cell growth and bioengineering 2to photovoltaics 3. The synthetic 

oligopeptide system consisting of a pi-conjugated core flanked by symmetric sequences of amino acids 

has been explored in various permutations 2,4–7, including recent work exploring the acid-mediated 

assembly of DFAG-π-GAFD, where π can be one of various pi-conjugated systems including 

quaterthiophene (4T), oligo(p-phenylene vinylene) (OPV3), and perylene-diimide (PDI). The pi-

conjugated cores of these materials can be tuned for the specific applications desired, such as making p-

type semiconductors with 4T and OPV3 cores and n-type with PDI. The pKa of the carboxyl terminus and 

C-terminal aspartic acid are 2.09 and 3.86, respectively 8. Under the Henderson-Hasselbalch formalism, 

we can estimate that at pH 5 or higher the monomers are essentially completely deprotonated carrying 

a formal charge of (-4)e that precludes large-scale assembly by Coulombic repulsion. At pH 1 or lower 

they are essentially completely protonated and electrically neutral, eliminating the Coulombic repulsion 

and favoring assembly through van der Waals, hydrophobic, hydrogen bonding, and pi-pi stacking 
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interactions 9. Upon introduction to an acidic environment the titratable sites become fully protonated, 

and as a result peptide hydrophobicity, and peptide interaction via van der Waals forces, hydrogen 

bonding, hydrophobic interactions, and pi-pi stacking of the cores drive the peptides to assemble to 

form beta sheet-like aggregates 10,11 . Ideally these unassembled units would continue to stack in a 

ladder-like fashion with a helical twist (Figure 1A & 1B) ultimately forming long fibers. Although these 

fibers can be seen experimentally (Figure 1D), very little is understood about their assembly dynamics. 

Theoretical models suggest a variety of mechanisms by which these amyloid structures may form, with 

the classic example being an initial nucleation stage followed successive elongation stages. 12,13 However, 

reaction speed upon introduction of acid to this system has made characterization of the initial stages 

difficult.  

In an effort to better understand the smaller-scale, early time assembly behaviors of DFAG, we have 

previously employed molecular dynamics simulations to probe the smaller-scale early time assembly 

behaviors of DFAG-OPV-GAFD peptides. Simulations have analyzed the impact of peptide symmetry, 10 

concentration, 14 pH, and fluid flow 15 on assembly thermodynamics, kinetics, and morphology. We 

observed a strongly favorable free energy well at ~15 kBT for the dimerization of DFAG-OPV3-GAFD 

peptide in a low pH environment.  Addition of each subsequent monomer was found to yield a further 

decrease in free energy of ~25 kBT, indicating that monomeric addition of peptides beyond dimerization 

is increasingly favorable. Our simulations suggest that aggregates at the free energy minima exist as 

well-aligned stacks with significant pi-stacking between cores. In addition, simulations probing the 

dynamics of assembly of protonated peptides beginning in the monomeric state indicated that peptides 

rapidly coalesce into spherical micelle-like structures, and then structurally ripen to form the well-

ordered β-sheet stacks observed in free energy simulations on times scales larger than several tens of 

ns. The spontaneous formation of these self-assembled stacks in free energy simulations and the 

increasingly favorable changes in free energy upon further aggregation agree well with the suspected 
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amyloid-like nucleation and monomeric addition and elongation into larger 1-D fibers that have been 

observed experimentally. 4–6,9 

Surprisingly, simulations of DFAG-OPV-GAFD under high-pH conditions also exhibited favorable 

dimerization with a change in free energy of ~4kBT due to hydrophobicity, pi-stacking, and dispersion 

interactions. 9 Furthermore, the formation of higher order structures such as pentamers remain 

thermodynamically favorable with free energy change of ~5kBT. 9 These simulations suggest a paradigm 

in which early-stage assembly consists of light aggregates which rapidly assemble and subsequently 

reorganize into more thermodynamically stable beta-sheet-like structures, which in turn grow and 

elongate as further oligomeric units are added and structurally relaxed in a low-pH environment. The 

high-pH assembly predicted furthermore implies that when acid-mediated assembly is induced, the 

peptide precursor solution exists in a pre-nucleated state, significantly impacting how one should view 

the assembly kinetics in acid-mediated assembly experiments when analyzing through the lens of 

amyloid formation dynamics. 

While most of the low-pH simulation observations support what has already been observed 

experimentally, 6 other work has provided support for the possibility of spontaneous assembly at high-

pH 16. These recent microrheological observations demonstrate peptide assembly only down 

concentrations of 0.1 mM with no evidence of assembly below that concentration. This lack of 

experimental evidence is in large part due to the length scales and numbers of molecules under 

consideration. Microrheology relies on large, brightly fluorescing probes to correlate observed 

fluorescence with material properties. The microrheologically observed critical fiber formation 

concentration is likely due to limitations of the technique rather than actual physical phenomena. Thus, 

we have turned to fluorescence correlation spectroscopy (FCS), a single-molecule technique that allows 

us to directly detect peptide fluorescence to measure molecule size and to distinguish between low 

order aggregates of different sizes. Additionally, as our experiments utilized a close cousin of the 
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previously modeled peptides—DFAG flanking sequences with a quaterthiophene (4T) instead of oligo(p-

phenylene vinylene)3 (OPV3)—we conducted additional simulations specific to the currently used 

peptide in order to verify consistency of the computationally observed phenomena. 

 

EXPERIMENTAL METHODS 

Fluorescence correlation spectroscopy allows single-molecule observation by confocally focusing a 

laser spot down to a femtoliter-scale volume (Figure 1C). As fluorescent molecules diffuse into and out 

of this volume, the fluctuations in fluorescence intensity observed can be time-correlated to gain 

information about the diffusion characteristics of the molecular species. Aggregates at different stages 

of self-assembly will of course have different sizes and mass, differences which are detected as they 

pass through the beam spot (Figure 1B and 1C), and can be extracted from the correlation data. The 

intensity fluctuations are related by means of a normalized autocorrelation function G’(τ): 

 𝐺"(𝜏) = 1 + 〈𝛿𝐹(0)𝛿𝐹(𝜏)〉〈𝐹〉.  (1) 

 

The autocovariance of F(t) is the autocorrelation function of the fluorescence fluctuations and is 

conventionally referred to as the “autocorrelation function,” G(τ): 

 𝐺(𝜏) = 〈𝛿𝐹(0)𝛿𝐹(𝜏)〉
〈𝐹〉.  (2) 

 

where F(t) is the fluorescence intensity at time t, and τ is the time between measured fluorescence 

events. The δ refers to the fluctuation in intensity relative to the average value. Further, the measured 

intensity can be written as a function of brightness, B; collection efficiency, CEF(r); excitation intensity, 

I(r); and the distribution of fluorophores, C(r,t): 

 𝐹(𝑡) = 𝐵1𝐶𝐸𝐹(𝑟)𝐼(𝑟)𝐶(𝑟, 𝑡)𝑑𝑉 (3) 
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For conventional one photon FCS, the confocal volume is isolated using an imaged pinhole.  The 

experimental volume can be well approximated as a three-dimensional (3D) Gaussian ellipsoid with 

semi-minor axis—radius—r and semi-major axis—length—l. Assuming isotropic translational diffusion in 

such a volume for the distribution of fluorophores and plugging eq (3) into eq (2) yields an 

autocorrelation function: 

 𝐺(𝜏) = 1
𝑁 :1 +

𝜏
𝜏;<

=> :1 + ?𝑟𝑙A
. 𝜏
𝜏;<

=>/.
 (4) 

 

where N is the average number of particles in the observation volume, with 1/N being G(0), and τD is the 

diffusion time for the volume: 

 𝜏; = 𝑟.
4𝐷 (5) 

 

The average fluorophore concentration can also be gleaned from N via the relation 

 𝐶̅ = 𝑁
𝑉eff (6) 

 

where Veff is the effective volume. This effective volume is different from the actual volume for an 

ellipsoid in that it represents the observation volume—π3/2r2l for a 3D Gaussian—and it is critical to 

know this geometry to extract an accurate measure of the diffusion coefficient, D, from the diffusion 

time using eq (5). Thus, all FCS experiments are first calibrated by measuring the effective volume via a 

fluorophore with known diffusion coefficient. We used a ~1 nM aqueous solution of Rhodamine 110, 

with known D ≈ 340 μm2s-1 to calibrate the system each new day an experiment was run (see Supporting 

Information). 17,18 Other phenomena leading to signal depletion such as inter-system crossing to a triplet 

state, can be accounted for by incorporation into the correlation function.  In general, these effects are 
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negligible to the phenomenon of interest and can be filtered out through time-bracketing of analyzed 

data. 19–21 

Furthermore, as the effects of multiple species on the autocorrelation function is linear, multiple 

components can be accounted for by summing over all species such that 

 𝐺(𝜏) =H𝑎J
K

JL>
:1 + 𝜏

𝜏;J<
=> :1 + ?𝑟𝑙A

. 𝜏
𝜏;J<

=>.
 (7) 

 

and ai represents the relative amplitude of each species. 

Finally, while control of the confocal volume can be achieved using pinhole optics, two-photon 

illumination is often a better alternative when available.   (Here the system is naturally confocal with 

volume defined by the nonlinear excitation dependence.  Only molecules near the optical excitation 

focus contribute to the detected signal and no pinhole is needed.)  Operating at such low concentrations 

increases the importance of each fluorescence photon and inclines the experimenter to use a larger 

pinhole aperture to reject fewer photons; however, as aperture increases so does the danger of optical 

artefacts skewing observations in ways that are mitigated by two-photon illumination, such as the false 

appearance of multiple species. 22 The illumination volume of a two-photon system is also 

advantageously smaller than the one photon case and is more accurately modeled by a 2D Gaussian in 

the plane of observation but a Lorentzian in the axial direction. It should be noted, though, that the 

Gaussian-Lorentzian model is a complicated solution without a closed form equation and can usually be 

approximated well enough by a 3D Gaussian for the sake of data analysis. 23 

All FCS experiments were performed on a Nikon Eclipse Ti inverted microscope equipped with an ISS 

Alba FCS scanning mirror module, using a 60x (1.2 NA) water immersion lens. Pinhole confocal 

experiments utilized a 470 nm diode laser with 3 mW power at the objective and two-photon excitation 

was accomplished using a mode-locked Ti:Sapphire laser system (Tsunami and Millennia, Spectral 

Physics) with 80 MHz pulse repetition rate and ~100 fs pulse width. The system has both a TCSPC board 
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and ISS FastFLIM card for time-tagged-time-resolved data acquisition. Autocorrelation functions were 

analyzed using the ISS Vista software. Samples were contained in μ-Slide 8-well glass slides (Ibidi). Wells 

coated with bovine serum albumin (BSA) or with aminosilane were compared to uncoated slides with no 

significant difference found. Thus, uncoated well slides were used for all experiments. Due to limitations 

of detectable fluorescence intensity, peptide concentrations below 10 nM were not investigated. 

 

COMPUTATIONAL METHODS 

For the generic aggregation process in which molecular species A and B form a complex AB 

𝐴 + 𝐵	 ↔ 𝐴𝐵 

the thermodynamic equilibrium constant can be estimated from molecular simulation as 24,25 

 𝐾⊖ = 𝐾𝑐⊖ = 1
𝑣⊖𝜎UV1 𝑑𝑟	4𝜋𝑟.𝑒=YZ([)

[\

]
 (8) 

where 𝜎UV is the symmetry number (2 for A=B, 1 otherwise),	𝑟   is the center of mass cutoff distance 

below which an aggregate is considered to have formed, β = (𝑘V𝑇)=>, 𝐹(𝑟) is the calculated potential of 

mean force at a center of mass separation value of 𝑟, and  𝑐⊖ = 1/𝑣⊖  is the standard number 

concentration. The thermodynamic equilibrium constant may be related to the concentrations of the 

reactants and product as 

 𝐾⊖ = 𝑐⊖[𝐴𝐵]
[𝐴][𝐵]  (9) 

where [X] is the number concentration of species X, 𝑐⊖ = 1/𝑣⊖ is the standard concentration, and it is 

assumed that the system is sufficiently dilute that concentrations may be used instead of activities. So, 

by combining (8) and (9) and given the potential of mean force (PMF) for the aggregation of A and B to 

form complex AB, we can predict concentration equilibrium constants, 
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 𝐾 = 𝐾⊖𝑣⊖ = [𝐴𝐵]
[𝐴][𝐵] =

1
𝜎UV1 𝑑𝑟	4𝜋𝑟.𝑒=YZ([)

[\

]
 (10) 

For a system of monomeric self-assembly, by conservation of mass we have that the concentration of 

peptide in the system can be expressed as 

 [𝑃] = 	 [𝑀] + 	2[𝐷] + 	3[𝑇] + 	⋯ (11) 

where [𝑃] is the total peptide concentration, [𝑀] is the concentration of peptides that exist as 

monomers, [𝐷] is the concentration of peptides that exist as dimers, [𝑇] is the concentration of 

peptides that exist as trimers etc. From (10) and (11) we then have 

 [𝑃] = 	 [𝑀] + 	2𝐾.[𝑀]. + 	3𝐾.𝐾h[𝑀]h +	⋯ (12) 

where 𝐾. is the equilibrium constant for the formation of dimers by 𝑀+𝑀	 ↔ 𝐷, 𝐾h is the equilibrium 

constant for the formation of trimers by 𝐷 +𝑀	 ↔ 𝑇, etc. Eq (12) defines a polynomial in the peptide 

monomer concentration that can be solved for [𝑀] and from which all higher aggregate concentrations 

can be computed using the calculated values of 𝐾., 𝐾h, etc. 26 For the peptides and concentrations 

investigated in this work, the equilibrium concentrations of aggregates heavier than six peptides are 

sufficiently low that the root of the polynomial is insensitive to truncation beyond the 6th term, so it is 

only necessary to compute equilibrium constants for the hexamers and lighter aggregates. We have 

verified the insensitivity of the polynomial solution by incorporating terms up to 200 employing 

extrapolated equilibrium constants, and find that the computed value of [𝑀] changes by less than 

0.01%. 

We use GROMACS 4.6.7 27,28  to conduct all molecular dynamics simulations, with the AMBER99SB 

force field 29,30 and used the GlycoBioChem PRODRG2 Server 31  to obtain initial peptide geometries. The 
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terminal Asp residues and carboxyl termini were fully deprotonated to simulate a high pH (pH ≥ 5) 

environment in which each peptide carries a formal (-2)e charge at each terminus 8,9.  We conducted 

explicit solvent simulations in TIP3P water 32 with initial velocities generated from a Maxwell-Boltzmann 

distribution. Electrostatics were treated using the Particle Mesh Ewald scheme 33 with a cutoff of 1.0 nm 

and a 0.12 nm Fourier grid spacing. Lennard-Jones interactions were smoothly shifted to zero at a cutoff 

of 1.0 nm. Bond lengths were fixed using the LINCS algorithm 34 , and Lorentz-Berthelot combining rules 

were used to determine interaction parameters between unlike atoms 35. The system was integrated 

using the leap-frog algorithm with a 2 fs time step 36. 

Energy minimization was conducted using the method of steepest descents until the maximum force 

on any atom was less than 1000 kJ mol-1 nm-1. The system was then equilibrated in an NVT ensemble 

using a stochastic velocity rescaling thermostat 37 to a constant temperature of 298 K. Further 

simulations were conducted in an NVT ensemble using a Nosé-Hoover thermostat 38,39 with a time 

constant of 0.5 ps.   

Following our previous approach 9 we also conduct molecular dynamics simulations in implicit solvent 

with a modified model that rescales interactions to more accurately match explicit solvent. Polar 

interactions between solute and solvent are treated with the Generalized Born model while nonpolar 

interactions are implemented with a solvent accessible surface area approximation 40. An analytical 

continuum electrostatic (ACE) type approximation 41 with a value of 2.259 kJ/mol.nm2 for the surface 

tension 42 is made in treating nonpolar interactions. We calculated Born radii using the method of 

Onufriev, Bashford, and Case with a relative dielectric constant of 78.3 and with the standard parameter 

set of α = 1, β = 0.8, and γ = 4.85 43. Since the peptides are not neutrally charged, implicit solvent 

simulations are conducted without the use of periodic boundary conditions. Coulombic and Lennard-

Jones interactions are smoothly shifted to zero at the large cutoff value of 3.4 nm for the sake of 

stability.  
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We employed umbrella sampling 44 to compute the PMF as a function of center of mass separation 

between peptide aggregates. To compute the PMF for the formation of an n-mer from an (n-1)-mer and 

a monomer, the initial geometry of an n-mer aggregate is obtained by stacking n peptides at a core-core 

separation of 0.45 nm. The system was first equilibrated using the method of steepest descents until the 

maximum force on any given atom was less than 1000 kJ/mol.nm. Initial velocities of atoms were then 

drawn from a Maxwell-Boltzmann distribution and the system was equilibrated for 20 ps with the 

positions of the cores restrained in an NVT ensemble at a temperature of 298 K using a Langevin 

integrator as a thermostat with a friction constant of 0.5 ps-1 42, and for another 20 ps with unrestrained 

cores under the same conditions. The system was then simulated for 1.5 ns and the configuration at the 

end of each 0.5 ns served as the initial configuration for a series of three independent simulations. Each 

initial configuration was then pulled both closer together and farther apart at a rate of 0.04 nm/ps using 

a harmonic biasing potential with a spring constant of 1000 kJ/mol.nm2 between the center of mass of 

(n-1) peptides and the center of mass of the remaining monomer. These simulations were run for a 

sufficiently long time to allow the monomer to reach a distance from the (n-1)-mer at which the two 

were no longer able to interact. From these three separate pulling simulations, we then conducted three 

different umbrella sampling simulations by utilizing configurations over the course of each pulling 

simulation as the initial geometries for the restrained umbrella sampling. Windows were selected at 

evenly spaced intervals of 0.1 nm, were restrained using the same harmonic potential as the pulling 

simulation, and were run for 20 ns each. The first nanosecond of each simulation at each window was 

discarded to allow the system to equilibrate. We then used the weighted histogram analysis method 

(WHAM) 45,46 to reconstruct the unbiased PMF. Statistical errors in each PMF were computed using 100 

bootstrap resamples of the data, and sampling errors were computed as the standard of deviation 

between each of the three umbrella runs. In each case, the −2𝑘𝑇 log 𝑟 non-interacting entropic 

contribution to the PMF was removed in order to give the PMFs a well-defined plateau and in order to 
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avoid double counting this entropic contribution which is already contained in the 4𝜋𝑟. Jacobian of eq 

(10) 42,47. 

 

RESULTS AND DISCUSSION 

Computing the PMF for the formation of aggregates of sizes 2-6 by means of monomeric addition at 

neutral pH (Figure 2), we observe free energy changes favoring aggregation on the order of 10 kBT in 

each case. The dimerization of two peptides exhibits the largest free energy change at DF = (-15.2 ± 1.1) 

kBT, while larger aggregates exhibit smaller free energy changes, although the formation of larger 

aggregates remains thermodynamically favorable. Despite repulsion between negatively charged 

termini, the minimum free energy configurations for each aggregate size exhibit a high degree of core-

core stacking. Aggregates of 4 or fewer peptides also display a high degree of alignment in this stacking 

and frequently adopt linear stacks of parallel peptides. Aggregates of 5-6 peptides often favor 

configurations of 2-4 peptides existing in the same well aligned linear stacks with the remaining peptides 

stacking with one another. These results indicate that hydrophobic and pi-pi stacking interactions 

between the conjugated cores mean that it is favorable for peptides to form oligomeric aggregates even 

at neutral pH where the deprotonated Asp termini mediate substantial electrostatic repulsion. 

The thermodynamics of self-assembling systems involve a nontrivial interaction between competing 

interactions 1,48. Different interactions including hydrogen-bonding, pi-pi interactions, hydrophobic 

interactions, and entropy all contribute to the thermodynamics governing peptide assembly. In order to 

more fully understand some of these contributions to the aggregation of our system, we follow a similar 

approach to Ref. [ 9] and break the free energy of aggregation down into constituent components. In the 

implicit solvent systems studied, the change in free energy for the formation of an aggregate of size n 

may be written as: 
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∆𝐹n =	∆𝑈npqrstuvurpwv + ∆𝑈nuvurpwv=uvurpwv + ∆𝑈nuvurpwv=xtrvs + ∆𝑈nxtrvs=xtrvs − 𝑇∆𝑆n  (13) 

where ∆𝑈npqrstuvurpwv is the change in intramolecular peptide energy upon aggregation (including 

changes in intramolecular Lennard-Jones and Coulombic interactions, as well as angular stretching and 

dihedral torsions), ∆𝑈nuvurpwv=uvurpwv is the change in intermolecular interactions between peptides 

upon peptide association, ∆𝑈nuvurpwv=xtrvs  accounts for the change in dispersion and electrostatic 

interactions between peptide and solvent, ∆𝑈nxtrvs=xtrvs is the change in energy due to solvent-solvent 

interactions, 𝑇 is the temperature, and ∆𝑆n 	accounts for the change in entropy of the system on 

aggregation. To elucidate different contributing factors, we divide peptide-peptide interactions into 

their Lennard-Jones and Coulombic components. The entropic contribution may be divided into changes 

in solvent entropy and changes in peptide entropy. Grouping all solvent related terms together, we 

define, 

∆𝐹nz{|}vqr ≡	∆𝑈nuvurpwv=xtrvs + ∆𝑈nxtrvs=xtrvs − 𝑇∆𝑆nxtrvs. (14) 

Assuming that the peptide configurational entropy does not change substantially upon aggregation 

allowing us to neglect the entropy change of the peptides 9, we then have 

∆𝐹n ≈	∆𝑈npqrstuvurpwv + ∆𝑈nuvurpwv=uvurpwv	�� + ∆𝑈nuvurpwv=uvurpwv	�{�|{�� + ∆𝐹nz{|}vqr. (15) 

The change in free energy ∆𝐹n on the left-hand side is precisely the well depth of the PMF computed by 

umbrella sampling. The three energetic terms on the right-hand side ∆𝑈npqrstuvurpwv,  

∆𝑈nuvurpwv=uvurpwv	��, and ∆𝑈nuvurpwv=uvurpwv	�{�|{�� can be computed directly from our simulations from 
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the energies of the various aggregate sizes averaged over 20 ns unbiased MD simulations. The solvent 

contributions ∆𝐹nz{|}vqr follow from the residual on the right-hand side of eq 15.  

We illustrate the results of this analysis for peptide aggregates ranging from two to six peptides in 

Figure 3. For each aggregate size we observe small favorable contributions in both intrapeptide 

interaction and LJ interaction between peptides. As anticipated, the most significant unfavorable 

contribution is due to Coulombic repulsion, but that this is balanced by a large favorable solvent 

contribution and smaller favorable dispersion and intrapeptide energetic contributions. We do observe 

that this decomposition was computed for an implicit solvent model, and that a more detailed analysis 

would employ a fully explicit solvent model with a polarizable force field. 

From eq (10), the equilibrium constants for the formation of aggregates are computed from these 

PMFs along with 90% confidence intervals (Table 1). Confidence intervals are estimated by randomly 

generating 106 PMFs by shifting each point on the PMF by the product of the bootstrap error at that 

point with a single number randomly generated from a Gaussian distribution with zero mean and unit 

standard deviation. Each PMF is then integrated over the binding region to obtain 106 different values 

for each equilibrium constant, the middle 90% of which defines the confidence interval. 

Despite the favorable PMFs, low overall peptide concentrations favor light aggregate distributions. 

From eqs (10) and (12), we calculate the predicted distribution of aggregate sizes in deprotonated 

peptides from the computed PMFs based on the overall peptide concentration (Figure 4). Error 

estimates are obtained by randomly sampling equilibrium constants within the 90% confidence 

intervals. We predict that at a concentration of 10 nM the vast majority (~96%) of the peptide tends to 

exist as isolated monomers. When the peptide concentration is increased to 100 nM we observe a 

significant shift in the distribution of peptide sizes that indicates an appreciable amount of aggregation 
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of peptide into larger aggregates, including dimers (22%) and trimers (2%). Such a transition is in 

qualitative agreement with what is observed experimentally. 

Measurements of peptide in aqueous solution at 10 nM reveal diffusion coefficients on average (300 ± 

50) μm2s-1 (Figure 5C, Table 2). These are consistent with particles on the order of 1 nm assuming the 

Stokes-Einstein equation, 

 𝑟� = 𝑘𝑇
6𝜋𝜂𝐷 (13) 

 

provides a reasonable underestimate of particle size, where rh is the hydrodynamic radius, kB is 

Boltzmann’s constant, T is the temperature, η represents the fluid viscosity, and D is the diffusion 

constant. As an added check, we utilize explicit solvent molecular dynamics simulations to compute the 

diffusion constant of the peptide monomer by means of the Einstein diffusion equation 

 
𝜕〈𝑟.(𝑡)〉
𝜕𝑡 = 2𝑑𝐷 (14) 

where 〈𝑟.(𝑡)〉 is the mean-squared-deviation (MSD) of the molecule as a function of lag time, and d is 

the dimensionality of the system. A 50 ns unbiased simulation is conducted, the first ns of which is 

ignored to allow the system to equilibrate, and the diffusion constant computed from the slope of the 

linear regime of the MSD. The diffusion constant for peptide monomers is computed to be (330 ± 10) 

μm2/s 42, in good agreement with experiment. Furthermore, the measured concentrations for these 

diffusion coefficients are ~1.78±0.36 nM, which correspond reasonably well with the intended 

concentrations when achieved by manually pipetted dilutions. 

Interestingly, peptide solutions of concentrations ten times greater, at 100 nM, can often no longer be 

fit to a 1-species autocorrelation model. Furthermore, when fitting data to 2-species models we find 

average diffusion coefficients ranging from ~0.1 to ~5 to ~500 μm2s-1, often with the same species 

overlapping multiple datasets (Figure 5A & 5B). These correspond to particles ranging in size from 
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monomeric to 1000 times larger coexisting within the sample volume. Thus, we are able to 

experimentally support computational predictions that at concentrations as low as 100 nM the peptides 

spontaneously assemble small aggregates even in the absence of a protonating acid solution.  

The discrepancy in aggregate sizes between simulation predictions and experimental measurements is 

understandable given that this computational approach does not account for all possible mechanisms of 

aggregate formation. The method utilized in computing equilibrium constants implicitly assumes that n-

mers are formed only by the addition of a monomer to a pre-existing, tightly bound (n-1)-mer; it does 

not allow for the possibility of a chain of weakly interacting, smaller aggregates despite the previously 

established importance of these alternate assembly pathways 12,13,49. These predictions of aggregate 

sizes then only include tightly stacked aggregates, and thus we expect this treatment to be useful in 

quantifying well-aligned aggregates, but to underestimate aggregate sizes by ignoring the existence of 

large, weakly interacting networks of peptide oligomers.  

Finally, when acid is directly added to any of the aforementioned solutions the result is a rapid and 

dramatic fluorescence quenching and decrease in the G(0) intercept of the autocorrelation curves, 

indicating a rise in measured concentration. While these effects are apparently contradictory—with 

quenching associated with assembly but assembly associated with decreased concentration—we are 

inclined to conclude that assembly occurs, given the known phenomenon of quenching as a result of 

assembly and assembly being triggered or significantly catalyzed by the addition of acid. Meanwhile, an 

alternative explanation for the increased concentration is readily available in consideration of the 

decreased fluorescence signal. The decreased fluorescence intensity also dramatically lowers the signal 

to noise ratio, making it likely that the correlations observed are artefacts of the system rather than true 

events. For this reason, autocorrelation fitting and derived parameters are not provided for these 

curves. Thus, the FCS data for these ultra-low concentration solutions nicely overlap with computational 

predictions, indicating that the peptide exists in a monomeric state in non-protonating conditions at 
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concentrations of 10 nM and lower. While the rapidity of acid-triggered assembly has precluded the 

detection of any lag phase, computations in this work as well as prior coarse-grained simulation work 

corroborate the lack of a lag phase 14. The spatial and temporal multiscale nature of systems such as 

those discussed in this work often necessitate computational methods to characterize kinetics due to 

the intractability of experimental probing. Thus, it is particularly valuable when experimental 

measurements are available to bolster conclusions that are computationally derived from theoretical 

hypotheses 48. In this instance, simulation indicates that nucleation-dependent models are unlikely to 

accurately reflect this system’s kinetics. Finally, experimental results from FCS indicate, in agreement 

with simulation, that assembly is not truly acid-triggered, but rather acid-mediated, and the fibrils 

formed upon introduction of acid initiate from a pre-nucleated state. 

Given the above observations, it is reasonable to generalize our findings to any acid-mediated system 

that also relies upon hydrophobic and/or pi-pi interactions for self-assembly. In any such case, the 

driving forces for assembly always exist and the true role of protonation is to further lower the energy 

barrier to these mechanisms by counteracting electrostatic counterforces to assembly. Thus, we expect 

any aid-triggered system with synergistic avenues for self-assembly such as hydrophobic, pi-pi, or other 

van der Waals interactions to be in actuality an acid-mediated system beginning in a pre-nucleated 

state. 

Finally, it may be possible to further substantiate these conclusions through further experimental and 

data analysis techniques. Electrospray ionization mass spectrometry (ESI-MS) of the system could be 

employed for the system with concentrations varying between 10 nM and higher than 100 nM, and the 

specific role of hydrophobicity in the nucleation stage might be further investigated through the use of 

ionic liquids in lieu of deionized water 50. It may also be possible to achieve greater detail regarding the 

diversity of oligomer sizes produced through spontaneous nucleation at various pH through the use of 

maximum entropy analysis of the FCS data 51–56. 
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CONCLUSIONS 

We have conducted molecular dynamics simulations to confirm the consistency of assembly behavior 

between previously computer DFAG-OPV3-GAFD peptides and their DFAG-4T-GAFD cousins. These 

simulations demonstrate that for both materials, not only is macroscopically observable assembly 

triggered by lowering a solution’s pH, but also even in non-protonating environments some degree of 

aggregation is thermodynamically favorable. Single molecule measurements using fluorescence 

correlation spectroscopy provide experimental support for these computational predictions. We find 

that aqueous solutions of peptides in concentrations as low as 100 nM will spontaneously aggregate to 

form heterogeneous solutions with sizes ranging from monomeric to 1000 times larger. However, below 

100 nM solutions appear to be homogeneous solutions of unassembled monomer. These results 

indicate that previously assumed paradigms of acid-mediated assembly in this system whereby 

monomer aggregates upon protonation were incomplete. In fact, the system only exists as pure 

monomer in very low concentrations, and under experimental conditions the high-pH untriggered 

solution already exists in a pre-nucleated state. 
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Table 1. Equilibrium constants for the formation of an aggregate of size n from a tightly-bound (n-1)-mer 

and a monomer. 

Aggregate size Equilibrium constant, K (M-1) 90% confidence Interval, (M-1) 

2 1.8×106  (5.1×105, 6.4×106) 

3 6.6×105  (1.2×105, 3.9×106) 

4 4.7×104  (4.9×103, 4.7×105) 

5 2.8×104  (3.9×103, 2.1×105) 

6 1.0×105  (9.7×103, 1.1×106) 
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Table 2. Comparing values for 10 nM vs 100 nM.a  

Sample D (um2/s) C (nM) Percent 

of 

Solution 

10 nM Solution 191 2.29  

320 1.42  

317 1.59  

288 2.14  

338 1.48  

325 1.75  

100 nM Solution 

 

Species 1 3.78 0.0229  

4.31 0.0563  

4.05 0.0597  

4.94 3.12  

6.33 3.09  

5.01 3.07  

Species 2 0.125  85.7 % 

0.0193  77.0 % 

0.162  81.1 % 

651  49.1 % 

337  41.8 % 

446  40.8 % 

a Data from six FCS curves each are shown for 10 nM and 100 nM samples. The 10 nM data are fit 

with one species for each curve and thus show one value for each of the six curves under the diffusion 

coefficient (D) and concentration (C) columns. The 100 nM solutions are fit using two species, with one 

diffusion coefficient tabulated in each of the “Species 1” rows and the other in each of the “Species 2” 

rows. Meanwhile concentrations for the 100 nM data are tabulated for each dataset’s species 1. And for 

each species 2, its percentage of the total solution is tabulated in the last column. 
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Figure 1. Illustration of DFAG-4T structure, aggregation, and FCS detection. A) Chemical structure and 

idealized stacking behavior of DFAG-4T. B) Standard model for amyloid formation via nucleation-

dependent aggregation. C) Confocal spot and observation volume (ellipsoid) used for FCS. As aggregates 

of various sizes pass into and out of the observation volume fluctuations in fluorescence intensity are 

detected. D) Atomic Force Microscope (AFM) image of DFAG-4T fibers deposited on Si. 
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Figure 5. FCS data for comparison of 10 nM vs 100 nM samples. A) Three experiments at 100 nM B) 

Three other experiments also at 100 nM illustrate how data from the same sample can look very 

different depending on the sizes of species passing through the confocal volume. C) Six experiments at 

10 nM, demonstrating sample homogeneity.  D) Residuals for the fitted curves in (A)-(C). 
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