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ABSTRACT

An important step in controlling biomimetic amyloid systems is understanding the self-assembly
reaction kinetics. We are interested in a family of such materials characterized by symmetric sequences
of amino acids flanking a pi-conjugated functional core. Many of these materials rapidly self assemble
into long fibers upon protonation in an acidic environment. Despite extensive investigation of these
materials’ properties, little is yet understood regarding their reaction kinetics. Based on previous studies
we have chosen DFAG-4T-GAFD as a representative system and conducted molecular dynamics
simulations to show that although large-scale assembly is induced by lowering pH, some degree of
assembly is thermodynamically favorable in high-pH non-protonating environments. These results are
consistent with findings for other systems such as DFAG-OPV-GAFD. The non-protonated aggregation
also appears to be concentration dependent, occurring at concentrations of 100 nM and above. Single
molecule measurements using fluorescence correlation spectroscopy provide experimental support for
these computational predictions. We find evidence of spontaneous aggregation in aqueous solutions of
peptides with concentrations as low as 100 nM; however, 10 nM solutions appear to be largely

homogeneous solutions of unassembled monomer. These results indicate that the simplest explanations



for kinetics of acid-mediated assembly—protonation-induced nucleation by monomeric addition
followed by subsequent stages of aggregation and elongation—are inappropriate in this system. In fact,
the system only exists as pure monomer in very low concentrations, nucleation actually occurs in the
absence of protonating elements at concentrations typically used for experiments, and pH triggered
assembly proceeds from these preassembled aggregates. Accordingly, triggered assembly must be

considered to operate outside the domain of nucleation-dependent models.

INTRODUCTION

Understanding the specific kinetics of assembly in amyloid-forming systems is a valuable step toward
understanding how best to control such systems . This is especially true in bio-inspired materials
attempting to harness the potential of natural self-assembly to create functionalized devices with
microscale or nanoscale order. Such biomimetic materials are researched for, and implemented in, a
wide suite of applications ranging from cell growth and bioengineering *to photovoltaics 3. The synthetic
oligopeptide system consisting of a pi-conjugated core flanked by symmetric sequences of amino acids
has been explored in various permutations #*”, including recent work exploring the acid-mediated
assembly of DFAG-ni-GAFD, where 1 can be one of various pi-conjugated systems including
guaterthiophene (4T), oligo(p-phenylene vinylene) (OPV3), and perylene-diimide (PDI). The pi-
conjugated cores of these materials can be tuned for the specific applications desired, such as making p-
type semiconductors with 4T and OPV3 cores and n-type with PDI. The pKa of the carboxyl terminus and
C-terminal aspartic acid are 2.09 and 3.86, respectively®. Under the Henderson-Hasselbalch formalism,
we can estimate that at pH 5 or higher the monomers are essentially completely deprotonated carrying
a formal charge of (-4)e that precludes large-scale assembly by Coulombic repulsion. At pH 1 or lower
they are essentially completely protonated and electrically neutral, eliminating the Coulombic repulsion

and favoring assembly through van der Waals, hydrophobic, hydrogen bonding, and pi-pi stacking



interactions®. Upon introduction to an acidic environment the titratable sites become fully protonated,
and as a result peptide hydrophobicity, and peptide interaction via van der Waals forces, hydrogen
bonding, hydrophobic interactions, and pi-pi stacking of the cores drive the peptides to assemble to

form beta sheet-like aggregates 1%

. Ideally these unassembled units would continue to stack in a
ladder-like fashion with a helical twist (Figure 1A & 1B) ultimately forming long fibers. Although these
fibers can be seen experimentally (Figure 1D), very little is understood about their assembly dynamics.
Theoretical models suggest a variety of mechanisms by which these amyloid structures may form, with
the classic example being an initial nucleation stage followed successive elongation stages. !*** However,
reaction speed upon introduction of acid to this system has made characterization of the initial stages
difficult.

In an effort to better understand the smaller-scale, early time assembly behaviors of DFAG, we have
previously employed molecular dynamics simulations to probe the smaller-scale early time assembly
behaviors of DFAG-OPV-GAFD peptides. Simulations have analyzed the impact of peptide symmetry, 1
concentration, ** pH, and fluid flow **> on assembly thermodynamics, kinetics, and morphology. We
observed a strongly favorable free energy well at ~15 kgT for the dimerization of DFAG-OPV3-GAFD
peptide in a low pH environment. Addition of each subsequent monomer was found to yield a further
decrease in free energy of ~25 k;T, indicating that monomeric addition of peptides beyond dimerization
is increasingly favorable. Our simulations suggest that aggregates at the free energy minima exist as
well-aligned stacks with significant pi-stacking between cores. In addition, simulations probing the
dynamics of assembly of protonated peptides beginning in the monomeric state indicated that peptides
rapidly coalesce into spherical micelle-like structures, and then structurally ripen to form the well-
ordered B-sheet stacks observed in free energy simulations on times scales larger than several tens of

ns. The spontaneous formation of these self-assembled stacks in free energy simulations and the

increasingly favorable changes in free energy upon further aggregation agree well with the suspected



amyloid-like nucleation and monomeric addition and elongation into larger 1-D fibers that have been
observed experimentally. 4%°

Surprisingly, simulations of DFAG-OPV-GAFD under high-pH conditions also exhibited favorable
dimerization with a change in free energy of ~4ksT due to hydrophobicity, pi-stacking, and dispersion
interactions. ° Furthermore, the formation of higher order structures such as pentamers remain
thermodynamically favorable with free energy change of ~5ksT.° These simulations suggest a paradigm
in which early-stage assembly consists of light aggregates which rapidly assemble and subsequently
reorganize into more thermodynamically stable beta-sheet-like structures, which in turn grow and
elongate as further oligomeric units are added and structurally relaxed in a low-pH environment. The
high-pH assembly predicted furthermore implies that when acid-mediated assembly is induced, the
peptide precursor solution exists in a pre-nucleated state, significantly impacting how one should view
the assembly kinetics in acid-mediated assembly experiments when analyzing through the lens of
amyloid formation dynamics.

While most of the low-pH simulation observations support what has already been observed
experimentally, ® other work has provided support for the possibility of spontaneous assembly at high-
pH 8. These recent microrheological observations demonstrate peptide assembly only down
concentrations of 0.1 mM with no evidence of assembly below that concentration. This lack of
experimental evidence is in large part due to the length scales and numbers of molecules under
consideration. Microrheology relies on large, brightly fluorescing probes to correlate observed
fluorescence with material properties. The microrheologically observed critical fiber formation
concentration is likely due to limitations of the technique rather than actual physical phenomena. Thus,
we have turned to fluorescence correlation spectroscopy (FCS), a single-molecule technique that allows
us to directly detect peptide fluorescence to measure molecule size and to distinguish between low

order aggregates of different sizes. Additionally, as our experiments utilized a close cousin of the



previously modeled peptides—DFAG flanking sequences with a quaterthiophene (4T) instead of oligo(p-
phenylene vinylene)3 (OPV3)—we conducted additional simulations specific to the currently used

peptide in order to verify consistency of the computationally observed phenomena.

EXPERIMENTAL METHODS

Fluorescence correlation spectroscopy allows single-molecule observation by confocally focusing a
laser spot down to a femtoliter-scale volume (Figure 1C). As fluorescent molecules diffuse into and out
of this volume, the fluctuations in fluorescence intensity observed can be time-correlated to gain
information about the diffusion characteristics of the molecular species. Aggregates at different stages
of self-assembly will of course have different sizes and mass, differences which are detected as they
pass through the beam spot (Figure 1B and 1C), and can be extracted from the correlation data. The

intensity fluctuations are related by means of a normalized autocorrelation function G’(1):
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The autocovariance of F(t) is the autocorrelation function of the fluorescence fluctuations and is

conventionally referred to as the “autocorrelation function,” G(1):
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where F(t) is the fluorescence intensity at time t, and t is the time between measured fluorescence
events. The 6 refers to the fluctuation in intensity relative to the average value. Further, the measured
intensity can be written as a function of brightness, B; collection efficiency, CEF(r); excitation intensity,

I(r); and the distribution of fluorophores, C(r,t):

F(t) = BJ CEF(m)I(r)C(r,t)av (3)



For conventional one photon FCS, the confocal volume is isolated using an imaged pinhole. The
experimental volume can be well approximated as a three-dimensional (3D) Gaussian ellipsoid with
semi-minor axis—radius—r and semi-major axis—length—/. Assuming isotropic translational diffusion in
such a volume for the distribution of fluorophores and plugging eq (3) into eq (2) yields an

autocorrelation function:
cm==(1+2) (1+()' D) )
4 N Tp l/ tp

where N is the average number of particles in the observation volume, with 1/N being G(0), and tp is the

diffusion time for the volume:

TD = - (5)

The average fluorophore concentration can also be gleaned from N via the relation

_ N
C=— (6)
Vesr

where Ve is the effective volume. This effective volume is different from the actual volume for an

322 for a 3D Gaussian—and it is critical to

ellipsoid in that it represents the observation volume—rn
know this geometry to extract an accurate measure of the diffusion coefficient, D, from the diffusion
time using eq (5). Thus, all FCS experiments are first calibrated by measuring the effective volume via a
fluorophore with known diffusion coefficient. We used a ~1 nM aqueous solution of Rhodamine 110,
with known D = 340 um?s to calibrate the system each new day an experiment was run (see Supporting

Information). 1”8 Other phenomena leading to signal depletion such as inter-system crossing to a triplet

state, can be accounted for by incorporation into the correlation function. In general, these effects are



negligible to the phenomenon of interest and can be filtered out through time-bracketing of analyzed
data. 1921
Furthermore, as the effects of multiple species on the autocorrelation function is linear, multiple

components can be accounted for by summing over all species such that

m 1

G(r) = 2 a (1 + i)_l (1 + (f)z i) ’ (7)
= Tpi L tp;
and a; represents the relative amplitude of each species.

Finally, while control of the confocal volume can be achieved using pinhole optics, two-photon
illumination is often a better alternative when available. (Here the system is naturally confocal with
volume defined by the nonlinear excitation dependence. Only molecules near the optical excitation
focus contribute to the detected signal and no pinhole is needed.) Operating at such low concentrations
increases the importance of each fluorescence photon and inclines the experimenter to use a larger
pinhole aperture to reject fewer photons; however, as aperture increases so does the danger of optical
artefacts skewing observations in ways that are mitigated by two-photon illumination, such as the false
appearance of multiple species. 22 The illumination volume of a two-photon system is also
advantageously smaller than the one photon case and is more accurately modeled by a 2D Gaussian in
the plane of observation but a Lorentzian in the axial direction. It should be noted, though, that the
Gaussian-Lorentzian model is a complicated solution without a closed form equation and can usually be
approximated well enough by a 3D Gaussian for the sake of data analysis. %

All FCS experiments were performed on a Nikon Eclipse Ti inverted microscope equipped with an ISS
Alba FCS scanning mirror module, using a 60x (1.2 NA) water immersion lens. Pinhole confocal
experiments utilized a 470 nm diode laser with 3 mW power at the objective and two-photon excitation
was accomplished using a mode-locked Ti:Sapphire laser system (Tsunami and Millennia, Spectral

Physics) with 80 MHz pulse repetition rate and ~100 fs pulse width. The system has both a TCSPC board



and ISS FastFLIM card for time-tagged-time-resolved data acquisition. Autocorrelation functions were

analyzed using the ISS Vista software. Samples were contained in p-Slide 8-well glass slides (Ibidi). Wells
coated with bovine serum albumin (BSA) or with aminosilane were compared to uncoated slides with no
significant difference found. Thus, uncoated well slides were used for all experiments. Due to limitations

of detectable fluorescence intensity, peptide concentrations below 10 nM were not investigated.

COMPUTATIONAL METHODS
For the generic aggregation process in which molecular species A and B form a complex AB

A+B < AB
the thermodynamic equilibrium constant can be estimated from molecular simulation as 4%

Tp
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where 0,45 is the symmetry number (2 for A=B, 1 otherwise), 1, is the center of mass cutoff distance
below which an aggregate is considered to have formed, B = (kgT) ™1, F(r) is the calculated potential of
mean force at a center of mass separation value of r, and ¢© = 1/v® is the standard number
concentration. The thermodynamic equilibrium constant may be related to the concentrations of the

reactants and product as

KO =22 (9)

where [X] is the number concentration of species X, c® = 1/179 is the standard concentration, and it is
assumed that the system is sufficiently dilute that concentrations may be used instead of activities. So,
by combining (8) and (9) and given the potential of mean force (PMF) for the aggregation of A and B to

form complex AB, we can predict concentration equilibrium constants,
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For a system of monomeric self-assembly, by conservation of mass we have that the concentration of

peptide in the system can be expressed as

[P] = [M]+ 2[D]+ 3[T]+ - (11)

where [P] is the total peptide concentration, [M] is the concentration of peptides that exist as
monomers, [D] is the concentration of peptides that exist as dimers, [T] is the concentration of

peptides that exist as trimers etc. From (10) and (11) we then have

[P] = [M] + 2K,[M]? + 3K,K5[M]3 + - (12)

where K, is the equilibrium constant for the formation of dimersby M + M < D, K5 is the equilibrium
constant for the formation of trimersby D + M & T, etc. Eq (12) defines a polynomial in the peptide
monomer concentration that can be solved for [M] and from which all higher aggregate concentrations
can be computed using the calculated values of K,, K3, etc. ?® For the peptides and concentrations
investigated in this work, the equilibrium concentrations of aggregates heavier than six peptides are
sufficiently low that the root of the polynomial is insensitive to truncation beyond the 6" term, so it is
only necessary to compute equilibrium constants for the hexamers and lighter aggregates. We have
verified the insensitivity of the polynomial solution by incorporating terms up to 200 employing
extrapolated equilibrium constants, and find that the computed value of [M] changes by less than
0.01%.

We use GROMACS 4.6.7 28 to conduct all molecular dynamics simulations, with the AMBER99SB

force field 2°*° and used the GlycoBioChem PRODRG2 Server3! to obtain initial peptide geometries. The
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terminal Asp residues and carboxyl termini were fully deprotonated to simulate a high pH (pH > 5)
environment in which each peptide carries a formal (-2)e charge at each terminus®°. We conducted
explicit solvent simulations in TIP3P water 32 with initial velocities generated from a Maxwell-Boltzmann
distribution. Electrostatics were treated using the Particle Mesh Ewald scheme 33 with a cutoff of 1.0 nm
and a 0.12 nm Fourier grid spacing. Lennard-Jones interactions were smoothly shifted to zero at a cutoff
of 1.0 nm. Bond lengths were fixed using the LINCS algorithm 34, and Lorentz-Berthelot combining rules
were used to determine interaction parameters between unlike atoms *. The system was integrated
using the leap-frog algorithm with a 2 fs time step >°.

Energy minimization was conducted using the method of steepest descents until the maximum force
on any atom was less than 1000 kJ mol™ nm™. The system was then equilibrated in an NVT ensemble
using a stochastic velocity rescaling thermostat ®” to a constant temperature of 298 K. Further
simulations were conducted in an NVT ensemble using a Nosé-Hoover thermostat *33° with a time
constant of 0.5 ps.

Following our previous approach® we also conduct molecular dynamics simulations in implicit solvent
with a modified model that rescales interactions to more accurately match explicit solvent. Polar
interactions between solute and solvent are treated with the Generalized Born model while nonpolar
interactions are implemented with a solvent accessible surface area approximation *°. An analytical
continuum electrostatic (ACE) type approximation ** with a value of 2.259 kJ/mol.nm? for the surface
tension *? is made in treating nonpolar interactions. We calculated Born radii using the method of
Onufriev, Bashford, and Case with a relative dielectric constant of 78.3 and with the standard parameter
setof a=1,B=0.8, and y = 4.85%. Since the peptides are not neutrally charged, implicit solvent
simulations are conducted without the use of periodic boundary conditions. Coulombic and Lennard-
Jones interactions are smoothly shifted to zero at the large cutoff value of 3.4 nm for the sake of

stability.
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We employed umbrella sampling ** to compute the PMF as a function of center of mass separation
between peptide aggregates. To compute the PMF for the formation of an n-mer from an (n-1)-mer and
a monomer, the initial geometry of an n-mer aggregate is obtained by stacking n peptides at a core-core
separation of 0.45 nm. The system was first equilibrated using the method of steepest descents until the
maximum force on any given atom was less than 1000 kJ/mol.nm. Initial velocities of atoms were then
drawn from a Maxwell-Boltzmann distribution and the system was equilibrated for 20 ps with the
positions of the cores restrained in an NVT ensemble at a temperature of 298 K using a Langevin
integrator as a thermostat with a friction constant of 0.5 ps*#2, and for another 20 ps with unrestrained
cores under the same conditions. The system was then simulated for 1.5 ns and the configuration at the
end of each 0.5 ns served as the initial configuration for a series of three independent simulations. Each
initial configuration was then pulled both closer together and farther apart at a rate of 0.04 nm/ps using
a harmonic biasing potential with a spring constant of 1000 kJ/mol.nm? between the center of mass of
(n-1) peptides and the center of mass of the remaining monomer. These simulations were run for a
sufficiently long time to allow the monomer to reach a distance from the (n-1)-mer at which the two
were no longer able to interact. From these three separate pulling simulations, we then conducted three
different umbrella sampling simulations by utilizing configurations over the course of each pulling
simulation as the initial geometries for the restrained umbrella sampling. Windows were selected at
evenly spaced intervals of 0.1 nm, were restrained using the same harmonic potential as the pulling
simulation, and were run for 20 ns each. The first nanosecond of each simulation at each window was
discarded to allow the system to equilibrate. We then used the weighted histogram analysis method
(WHAM) #54¢ to reconstruct the unbiased PMF. Statistical errors in each PMF were computed using 100
bootstrap resamples of the data, and sampling errors were computed as the standard of deviation
between each of the three umbrella runs. In each case, the —2kT log r non-interacting entropic

contribution to the PMF was removed in order to give the PMFs a well-defined plateau and in order to
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avoid double counting this entropic contribution which is already contained in the 4772 Jacobian of eq

(10) 42,47.

RESULTS AND DISCUSSION

Computing the PMF for the formation of aggregates of sizes 2-6 by means of monomeric addition at
neutral pH (Figure 2), we observe free energy changes favoring aggregation on the order of 10 ksT in
each case. The dimerization of two peptides exhibits the largest free energy change at AF = (-15.2 £ 1.1)
ksT, while larger aggregates exhibit smaller free energy changes, although the formation of larger
aggregates remains thermodynamically favorable. Despite repulsion between negatively charged
termini, the minimum free energy configurations for each aggregate size exhibit a high degree of core-
core stacking. Aggregates of 4 or fewer peptides also display a high degree of alignment in this stacking
and frequently adopt linear stacks of parallel peptides. Aggregates of 5-6 peptides often favor
configurations of 2-4 peptides existing in the same well aligned linear stacks with the remaining peptides
stacking with one another. These results indicate that hydrophobic and pi-pi stacking interactions
between the conjugated cores mean that it is favorable for peptides to form oligomeric aggregates even
at neutral pH where the deprotonated Asp termini mediate substantial electrostatic repulsion.

The thermodynamics of self-assembling systems involve a nontrivial interaction between competing
interactions 8, Different interactions including hydrogen-bonding, pi-pi interactions, hydrophobic
interactions, and entropy all contribute to the thermodynamics governing peptide assembly. In order to
more fully understand some of these contributions to the aggregation of our system, we follow a similar
approach to Ref. [°] and break the free energy of aggregation down into constituent components. In the
implicit solvent systems studied, the change in free energy for the formation of an aggregate of size n

may be written as:
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AFn — AU}qntrapeptide +AU£eptide—peptide +AU;L)eptide—water +Avaater—water _ TASn (13)

where AU,lftrapePtlde is the change in intramolecular peptide energy upon aggregation (including
changes in intramolecular Lennard-Jones and Coulombic interactions, as well as angular stretching and

dihedral torsions), AU,geptlde_peptlde is the change in intermolecular interactions between peptides

tide— t . . . .
U,fep 1EemWAT 3ccounts for the change in dispersion and electrostatic

upon peptide association, A
interactions between peptide and solvent, AUVater—Water js the change in energy due to solvent-solvent
interactions, T is the temperature, and AS,, accounts for the change in entropy of the system on
aggregation. To elucidate different contributing factors, we divide peptide-peptide interactions into
their Lennard-Jones and Coulombic components. The entropic contribution may be divided into changes

in solvent entropy and changes in peptide entropy. Grouping all solvent related terms together, we

define,

AFnsolvent = AUﬁeptide—water + Avaater—water _ TAS,\{vater. (14)

Assuming that the peptide configurational entropy does not change substantially upon aggregation

allowing us to neglect the entropy change of the peptides®, we then have

AF, ~ AU}qntrapeptide +AU£eptide—peptide LJ +AU£eptide—peptide Coulomb +AFnSOlvent. (15)

The change in free energy AF, on the left-hand side is precisely the well depth of the PMF computed by

umbrella sampling. The three energetic terms on the right-hand side AU,iftrapePtide

7

tide—peptide L tide—peptide Coulomb . . .
Ay PePHeeTheptce ) and AyPePHECTREPRACEOUOMD can be computed directly from our simulations from
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the energies of the various aggregate sizes averaged over 20 ns unbiased MD simulations. The solvent

contributions AES°Vent follow from the residual on the right-hand side of eq 15.

We illustrate the results of this analysis for peptide aggregates ranging from two to six peptides in
Figure 3. For each aggregate size we observe small favorable contributions in both intrapeptide
interaction and LJ interaction between peptides. As anticipated, the most significant unfavorable
contribution is due to Coulombic repulsion, but that this is balanced by a large favorable solvent
contribution and smaller favorable dispersion and intrapeptide energetic contributions. We do observe
that this decomposition was computed for an implicit solvent model, and that a more detailed analysis

would employ a fully explicit solvent model with a polarizable force field.

From eq (10), the equilibrium constants for the formation of aggregates are computed from these
PMFs along with 90% confidence intervals (Table 1). Confidence intervals are estimated by randomly
generating 10° PMFs by shifting each point on the PMF by the product of the bootstrap error at that
point with a single number randomly generated from a Gaussian distribution with zero mean and unit
standard deviation. Each PMF is then integrated over the binding region to obtain 10° different values

for each equilibrium constant, the middle 90% of which defines the confidence interval.

Despite the favorable PMFs, low overall peptide concentrations favor light aggregate distributions.
From eqs (10) and (12), we calculate the predicted distribution of aggregate sizes in deprotonated
peptides from the computed PMFs based on the overall peptide concentration (Figure 4). Error
estimates are obtained by randomly sampling equilibrium constants within the 90% confidence
intervals. We predict that at a concentration of 10 nM the vast majority (~96%) of the peptide tends to
exist as isolated monomers. When the peptide concentration is increased to 100 nM we observe a

significant shift in the distribution of peptide sizes that indicates an appreciable amount of aggregation
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of peptide into larger aggregates, including dimers (22%) and trimers (2%). Such a transition is in
qualitative agreement with what is observed experimentally.

Measurements of peptide in aqueous solution at 10 nM reveal diffusion coefficients on average (300 +
50) um?2s? (Figure 5C, Table 2). These are consistent with particles on the order of 1 nm assuming the

Stokes-Einstein equation,

kT
™= 6nnD

(13)

provides a reasonable underestimate of particle size, where ry, is the hydrodynamic radius, ks is
Boltzmann’s constant, T is the temperature, n represents the fluid viscosity, and D is the diffusion
constant. As an added check, we utilize explicit solvent molecular dynamics simulations to compute the

diffusion constant of the peptide monomer by means of the Einstein diffusion equation

a(r?(t)) — 24D (14)
at

where (r?(t)) is the mean-squared-deviation (MSD) of the molecule as a function of lag time, and d is
the dimensionality of the system. A 50 ns unbiased simulation is conducted, the first ns of which is
ignored to allow the system to equilibrate, and the diffusion constant computed from the slope of the
linear regime of the MSD. The diffusion constant for peptide monomers is computed to be (330 + 10)
um?/s*, in good agreement with experiment. Furthermore, the measured concentrations for these
diffusion coefficients are ~1.78+0.36 nM, which correspond reasonably well with the intended
concentrations when achieved by manually pipetted dilutions.

Interestingly, peptide solutions of concentrations ten times greater, at 100 nM, can often no longer be
fit to a 1-species autocorrelation model. Furthermore, when fitting data to 2-species models we find
average diffusion coefficients ranging from ~0.1 to ~5 to ~500 pm?s?, often with the same species

overlapping multiple datasets (Figure 5A & 5B). These correspond to particles ranging in size from
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monomeric to 1000 times larger coexisting within the sample volume. Thus, we are able to
experimentally support computational predictions that at concentrations as low as 100 nM the peptides
spontaneously assemble small aggregates even in the absence of a protonating acid solution.

The discrepancy in aggregate sizes between simulation predictions and experimental measurements is
understandable given that this computational approach does not account for all possible mechanisms of
aggregate formation. The method utilized in computing equilibrium constants implicitly assumes that n-
mers are formed only by the addition of a monomer to a pre-existing, tightly bound (n-1)-mer; it does
not allow for the possibility of a chain of weakly interacting, smaller aggregates despite the previously
established importance of these alternate assembly pathways 1%134°, These predictions of aggregate
sizes then only include tightly stacked aggregates, and thus we expect this treatment to be useful in
quantifying well-aligned aggregates, but to underestimate aggregate sizes by ignoring the existence of
large, weakly interacting networks of peptide oligomers.

Finally, when acid is directly added to any of the aforementioned solutions the result is a rapid and
dramatic fluorescence quenching and decrease in the G(0) intercept of the autocorrelation curves,
indicating a rise in measured concentration. While these effects are apparently contradictory—with
guenching associated with assembly but assembly associated with decreased concentration—we are
inclined to conclude that assembly occurs, given the known phenomenon of quenching as a result of
assembly and assembly being triggered or significantly catalyzed by the addition of acid. Meanwhile, an
alternative explanation for the increased concentration is readily available in consideration of the
decreased fluorescence signal. The decreased fluorescence intensity also dramatically lowers the signal
to noise ratio, making it likely that the correlations observed are artefacts of the system rather than true
events. For this reason, autocorrelation fitting and derived parameters are not provided for these
curves. Thus, the FCS data for these ultra-low concentration solutions nicely overlap with computational

predictions, indicating that the peptide exists in a monomeric state in non-protonating conditions at
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concentrations of 10 nM and lower. While the rapidity of acid-triggered assembly has precluded the
detection of any lag phase, computations in this work as well as prior coarse-grained simulation work
corroborate the lack of a lag phase 1*. The spatial and temporal multiscale nature of systems such as
those discussed in this work often necessitate computational methods to characterize kinetics due to
the intractability of experimental probing. Thus, it is particularly valuable when experimental
measurements are available to bolster conclusions that are computationally derived from theoretical
hypotheses “4. In this instance, simulation indicates that nucleation-dependent models are unlikely to
accurately reflect this system’s kinetics. Finally, experimental results from FCS indicate, in agreement
with simulation, that assembly is not truly acid-triggered, but rather acid-mediated, and the fibrils
formed upon introduction of acid initiate from a pre-nucleated state.

Given the above observations, it is reasonable to generalize our findings to any acid-mediated system
that also relies upon hydrophobic and/or pi-pi interactions for self-assembly. In any such case, the
driving forces for assembly always exist and the true role of protonation is to further lower the energy
barrier to these mechanisms by counteracting electrostatic counterforces to assembly. Thus, we expect
any aid-triggered system with synergistic avenues for self-assembly such as hydrophobic, pi-pi, or other
van der Waals interactions to be in actuality an acid-mediated system beginning in a pre-nucleated
state.

Finally, it may be possible to further substantiate these conclusions through further experimental and
data analysis techniques. Electrospray ionization mass spectrometry (ESI-MS) of the system could be
employed for the system with concentrations varying between 10 nM and higher than 100 nM, and the
specific role of hydrophobicity in the nucleation stage might be further investigated through the use of
ionic liquids in lieu of deionized water*°. It may also be possible to achieve greater detail regarding the
diversity of oligomer sizes produced through spontaneous nucleation at various pH through the use of

maximum entropy analysis of the FCS data >'™®.
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CONCLUSIONS
We have conducted molecular dynamics simulations to confirm the consistency of assembly behavior
between previously computer DFAG-OPV3-GAFD peptides and their DFAG-4T-GAFD cousins. These
simulations demonstrate that for both materials, not only is macroscopically observable assembly
triggered by lowering a solution’s pH, but also even in non-protonating environments some degree of
aggregation is thermodynamically favorable. Single molecule measurements using fluorescence

correlation spectroscopy provide experimental support for these computational predictions. We find

that aqueous solutions of peptides in concentrations as low as 100 nM will spontaneously aggregate to

form heterogeneous solutions with sizes ranging from monomeric to 1000 times larger. However, below

100 nM solutions appear to be homogeneous solutions of unassembled monomer. These results
indicate that previously assumed paradigms of acid-mediated assembly in this system whereby
monomer aggregates upon protonation were incomplete. In fact, the system only exists as pure
monomer in very low concentrations, and under experimental conditions the high-pH untriggered

solution already exists in a pre-nucleated state.

19



Table 1. Equilibrium constants for the formation of an aggregate of size n from a tightly-bound (n-1)-mer

and a monomer.

Aggregate size Equilibrium constant, K (M™) 90% confidence Interval, (M™)
2 1.8x10° (5.1x10°, 6.4x10°)
3 6.6x10° (1.2x10%, 3.9x10°)
4 4.7x10* (4.9x103, 4.7x10°)
5 2.8x10* (3.9x103, 2.1x10°)
6 1.0x10° (9.7x103, 1.1x10°)
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Table 2. Comparing values for 10 nM vs 100 nM.?

Sample D (um2/s) C(nM) Percent
of
Solution
10 nM Solution 191 2.29
320 1.42
317 1.59
288 2.14
338 1.48
325 1.75
100 nM Solution Species1 3.78 0.0229
4.31 0.0563
4.05 0.0597
4.94 3.12
6.33 3.09
5.01 3.07
Species 2 0.125 85.7 %
0.0193 77.0%
0.162 81.1%
651 49.1 %
337 41.8%
446 40.8 %

a Data from six FCS curves each are shown for 10 nM and 100 nM samples. The 10 nM data are fit
with one species for each curve and thus show one value for each of the six curves under the diffusion
coefficient (D) and concentration (C) columns. The 100 nM solutions are fit using two species, with one
diffusion coefficient tabulated in each of the “Species 1” rows and the other in each of the “Species 2”
rows. Meanwhile concentrations for the 100 nM data are tabulated for each dataset’s species 1. And for
each species 2, its percentage of the total solution is tabulated in the last column.
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nucleation phase elongation phase

Figure 1. Illustration of DFAG-4T structure, aggregation, and FCS detection. A) Chemical structure and
idealized stacking behavior of DFAG-4T. B) Standard model for amyloid formation via nucleation-
dependent aggregation. C) Confocal spot and observation volume (ellipsoid) used for FCS. As aggregates
of various sizes pass into and out of the observation volume fluctuations in fluorescence intensity are

detected. D) Atomic Force Microscope (AFM) image of DFAG-AT fibers deposited on Si.
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Figure 2. Computational prediction for pi-pi stacked bonding when deprotonated for a) dimers, b)

trimers, c) tetramers, d) pentamers, and e) hexamers with representative configurations of aggregates

at various points along the reaction coordinate.
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Figure 4. Predicted fraction of peptide existing in various aggregate sizes at peptide concentrations of 10
nM (green) and 100 nM (blue). Lines are drawn to guide the eyes. Error bars are estimated by random

sampling of K values within the 90% confidence interval.
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Figure 5. FCS data for comparison of 10 nM vs 100 nM samples. A) Three experiments at 100 nM B)

Three other experiments also at 100 nM illustrate how data from the same sample can look very

different depending on the sizes of species passing through the confocal volume. C) Six experiments at

10 nM, demonstrating sample homogeneity. D) Residuals for the fitted curves in (A)-(C).
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