
Arti cl e

Tr a nsiti o n st at e cl ust e ri n g:
U ns u p e r vis e d s u r gi c al t r aj e ct o r y
s e g m e nt ati o n f o r r o b ot l e a r ni n g

T h e I nt er n ati o n al J o ur n al of

R o b oti cs R es e ar c h

2 0 1 7, Vol. 3 6(1 3 – 1 4) 1 5 9 5 – 1 6 1 8

© T h e A ut h or(s) 2 0 1 7

R e pri nts a n d p er missi o ns:

s a g e p u b. c o. u k/j o ur n als P er missi o ns. n a v

D OI: 1 0. 1 1 7 7/ 0 2 7 8 3 6 4 9 1 7 7 4 3 3 1 9

j o ur n als.s a g e p u b. c o m/ h o m e/ijr

S a nj a y K ris h n a n 1, ∗ , A ni m es h G a r g 1, ∗ , S a c hi n P atil1 , C oli n L e a2 ,
G r e g o r y H a g e r 2 , Pi et e r A b b e el1 a n d K e n G ol d b e r g 1

A bst r a ct

D e m o nstr ati o n tr aj e ct ori es c oll e ct e d fr o m a s u p er vis or i n t el e o p er ati o n ar e wi d el y us e d f or r o b ot l e ar ni n g, a n d t e m p or all y
s e g m e nti n g t h e tr aj e ct ori es i nt o s h ort er, l ess- v ari a bl e s e g m e nts c a n i m pr o v e t h e ef fi ci e n c y a n d r eli a bilit y of l e ar ni n g al g o-
rit h ms. Tr aj e ct or y s e g m e nt ati o n al g orit h ms c a n b e s e nsiti v e t o n ois e, s p uri o us m oti o ns, a n d t e m p or al v ari ati o n. We pr es e nt
a n e w u ns u p er vis e d s e g m e nt ati o n al g orit h m, tr a nsiti o n st at e cl ust eri n g (T S C), w hi c h l e v er a g es r e p e at e d d e m o nstr ati o ns
of a t as k b y cl ust eri n g s e g m e nt e n d p oi nts a cr oss d e m o nstr ati o ns. T S C c o m pl e m e nts a n y m oti o n- b as e d s e g m e nt ati o n al g o-
rit h m b y i d e ntif yi n g c a n di d at e tr a nsiti o ns, cl ust eri n g t h e m b y ki n e m ati c si mil arit y, a n d t h e n c orr el ati n g t h e ki n e m ati c
cl ust ers wit h a v ail a bl e s e ns or y a n d t e m p or al f e at ur es. T S C us es a hi er ar c hi c al Diri c hl et pr o c ess G a ussi a n mi xt ur e m o d el
t o a v oi d s el e cti n g t h e n u m b er of s e g m e nts a pri ori . We pr es e nt si m ul at e d r es ults t o s u g g est t h at T S C si g ni fi c a ntl y r e d u c es
t h e n u m b er of f als e- p ositi v e s e g m e nts i n d y n a mi c al s yst e ms o bs er v e d wit h n ois e as c o m p ar e d wit h s e v e n pr o b a bilisti c a n d
n o n- pr o b a bilisti c s e g m e nt ati o n al g orit h ms. We a d diti o n all y c o m p ar e al g orit h ms t h at us e pi e c e wis e li n e ar s e g m e nt m o d-
els, a n d fi n d t h at T S C r e c o v ers s e g m e nts of a g e n er at e d pi e c e wis e li n e ar tr aj e ct or y wit h gr e at er a c c ur a c y i n t h e pr es e n c e
of pr o c ess a n d o bs er v ati o n n ois e. At t h e m a xi m u m n ois e l e v el, T S C r e c o v ers t h e gr o u n d tr ut h 4 9 % m or e a c c ur at el y t h a n
alt er n ati v es. F urt h er m or e, T S C r u ns 1 0 0 × f ast er t h a n t h e n e xt m ost a c c ur at e alt er n ati v e a ut or e gr essi v e m o d els, w hi c h
r e q uir e e x p e nsi v e M ar k o v c h ai n M o nt e C arl o (M C M C)- b as e d i nf er e n c e. We als o e v al u at e d T S C o n 6 7 r e c or di n gs of s ur gi-
c al n e e dl e p assi n g a n d s ut uri n g. We s u p pl e m e nt e d t h e ki n e m ati c r e c or di n gs wit h m a n u all y a n n ot at e d vis u al f e at ur es t h at
d e n ot e gr as p a n d p e n etr ati o n c o n diti o ns. O n t his d at as et, T S C fi n ds 8 3 % of n e e dl e p assi n g tr a nsiti o ns a n d 7 3 % of t h e
s ut uri n g tr a nsiti o ns a n n ot at e d b y h u m a n e x p erts.

K e y w o r ds

tr aj e ct or y s e g m e nt ati o n, s ur gi c al r o b oti cs, r o b ot l e ar ni n g

1. I nt r o d u cti o n

D es cri bi n g a c o m pl e x t as k i n t er ms of m oti o n pri miti v es
h as b e e n a n i m p ort a nt ar e a of r es e ar c h si n c e t h e e arl y d a ys
of r o b oti c pl a n ni n g (Br o o ks, 1 9 8 6; Fi k es et al., 1 9 7 2). A n
i m p ort a nt s u b- pr o bl e m of pri miti v e- b as e d t as k pl a n ni n g is
s e g m e nt ati o n , w h er e gi v e n a s et of o bs er v ati o n tr aj e ct ori es,
o n e n e e ds t o i d e ntif y t h e st art a n d e n d ti m es of t h e u n d er-
l yi n g pri miti v es i n e a c h tr aj e ct or y (f or a n o v er vi e w, s e e
Li n et al., 2 0 1 6). T h e s e g m e nt ati o n pr o bl e m is cr u ci al f or
a n al y zi n g a n d m o d eli n g e x p ert d e m o nstr ati o n d at a (Ar g all
et al., 2 0 0 9), si n c e it f a cilit at es l e ar ni n g l o c ali z e d c o ntr ol
p oli ci es (K o ni d aris et al., 2 0 1 1; M ur ali et al., 2 0 1 5; Ni e k u m
et al., 2 0 1 2), a n d a d a pt ati o n t o u ns e e n s c e n ari os (Ijs p e ert
et al., 2 0 0 2; U d e et al., 2 0 1 0).

W hil e o n e c o ul d i nf er s e g m e nt ati o n crit eri a fr o m m a n-
u al a n n ot ati o ns or m at c hi n g t o pr e- d e fi n e d di cti o n ari es of
m oti o n t e m pl at es, l a b eli n g c o nsist e n c y a n d s u p er vis or y
b ur d e n ar e c o n c er ns i n s u p er vis e d a p pr o a c h es. C o m pl e x,

hi g h- di m e nsi o n al d at a c a n r e q uir e a l ar g e a m o u nt of l a b els
b ef or e a vi a bl e s e g m e nt ati o n m o d el c a n b e l e ar n e d. Si mi-
l arl y, di cti o n ari es of pri miti v es c a n b e i n c o m pl et e. T o a v oi d
t h es e pr o bl e ms, u ns u p er vis e d s e g m e nt ati o n m et h o ds h a v e
l o n g b e e n st u di e d (M or ass o, 1 9 8 3; St er n a d a n d S c h a al,
1 9 9 9; Vi vi a ni a n d C e n z at o, 1 9 8 5). R e c e ntl y, s e v er al n e w
pr o b a bilisti c a p pr o a c h es h a v e b e e n pr o p os e d t h at p os e s e g-
m e nt ati o n as a pr o b a bilisti c i nf er e n c e pr o bl e m (Al v ar e z
et al., 2 0 1 0; B ar bi č et al., 2 0 0 4; C hi a p p a a n d P et ers, 2 0 1 0;
Kr ü g er et al., 2 0 1 2; Ni e k u m et al., 2 0 1 2; W ä c ht er a n d

1 U ni v ersit y of C alif or ni a, B er k el e y, U S A
2 J o h ns H o p ki ns U ni v ersit y, U S A
∗ T h es e a ut h ors c o ntri b ut e d e q u all y.

C o r r es p o n di n g a ut h o r:
S a nj a y Kris h n a n, S o d a H all, U ni v ersit y of C alif or ni a – B er k el e y, C A
9 4 7 2 0, U S A.
E m ail: s a nj a y @ e e cs. b er k el e y. e d u

http://sagepub.co.uk/journalsPermissions.nav
http://doi.org/10.1177/0278364917743319
http://sagepub.co.uk/journalsPermissions.nav
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364917743319&domain=pdf&date_stamp=2017-11-24

1596 The International Journal of Robotics Research 36(13–14)

Asfour, 2015). The approaches model a trajectory as gen-

erated from a mixture of parametrized dynamical regimes,

and an inference procedure learns the dynamical parame-

ters that can be used to identify time segments at which each

regime is active.

Explicitly modeling the dynamics can require a large

number of parameters to be learned. This makes such

approaches somewhat sensitive to any noise in the dataset,

especially when the datasets are small. This sensitivity

leads to challenges in applications such as robotic surgery.

The adoption of robot-assisted minimally invasive surgery

(RMIS) generating datasets of kinematic and video record-

ings of surgical procedures (Gao et al., 2014), and where

trajectories are collected from teleoperation interfaces.

With such interfaces, we have observed significant jitter

in motion and noise due to time delays Figure 1 plots 10

expert demonstrations of a surgical training task (Chuck

et al., 2017; Liang et al., 2017). In such a setting, the

robustness and stability of the segmentation algorithm are

a key concern in surgical segmentation, and to the best of

the authors’ knowledge, prior work mitigates this issue by

leveraging pre-defined dictionaries of motion segments (Lin

et al., 2005, 2006).

In many important tasks, while the demonstration

motions may vary and be noisy, each demonstration

contains roughly the same order of true segments, e.g.

well-defined surgical training procedures. This consistent,

repeated structure can be exploited to infer global segmen-

tation criteria. By assuming known sequential segment-to-

segment transitions, the problem reduces to identifying a

common set of segment-to-segment transition events, not

corresponding to the entirety of trajectory segments across

the whole dataset. This allows us to apply coarser, imper-

fect motion-based segmentation algorithms first that cre-

ate a large set of candidate transitions. Then, we can fil-

ter this set by identifying transition events that occurred

at similar times and states. Our experiments suggest that

this approach has improved robustness and sample effi-

ciency, while approximating the behavior of more compli-

cated dynamical systems-based approaches in many real

problems.

This paper formalizes this intuition into a new hier-

archical clustering algorithm for unsupervised segmenta-

tion called transition state clustering (TSC). The proposed

approach is also relevant to problems in other domains,

but this paper will focus on results from surgical applica-

tions. TSC first applies a motion-based segmentation model

over the noisy trajectories and identifies a set of candidate

segment transitions in each. TSC then clusters the transi-

tion states (states at times transitions occur) in terms of

kinematic, sensory, and temporal similarity. The clustering

process is hierarchical where the transition states are first

assigned to Gaussian mixture clusters according to kine-

matic state, then these clusters are sub-divided using the

sensory features, and finally by time. We present experi-

ments where these sensory features are constructed from

video. The learned clustering model can be applied to

Fig. 1. Plot of 10 trajectories of the end-effector (x, y, z) posi-

tions on an identical circle cutting task on the da Vinci Research

Kit (dVRK). This plot illustrates the variability of demonstrations

even when the task is identical.

segment previously unseen trajectories by the same global

criteria. To avoid setting the number of clusters at each

level of the hierarchy in advance, the number of regions

are determined by a Dirichlet process (DP) prior. A series

of merging and pruning steps remove sparse clusters and

repetitive loops.

Example: As an example of how noise can affect seg-

mentation, consider a system where a spherical ball is

dropped until it bounces off a block. Under noiseless condi-

tions, most classical segmentation techniques that look for

changes in direction (e.g. zero-velocity crossings) or local

linearity of motion would identify two segments (Figure 2).

If the observations are perturbed by noise, these approaches

tend to “over segment,” where noise can be confused for

actual changes in direction. If we collect five demonstra-

tions from the same system, and plot the estimated seg-

ment transitions (state of the end point) for each of the

noisy demonstrations: we would find that the densest clus-

ters correspond to actual segment endpoints. TSC exploits

this property to improve the robustness of motion-based

segmentation.

This paper is a substantially revised and expanded ver-

sion of Krishnan et al. (2015). This version includes sev-

eral new experiments evaluating TSC against a broader set

of alternative algorithms, an expanded technical discussion

about the model, and revised accuracy metrics consistent

with recent segmentation work in robotics and computer

vision.

2. Related work

This section provides an overview of the development of

unsupervised segmentation with a focus on the recent trend

of probabilistic models. The study of trajectory segmenta-

tion algorithms has a long history, especially in the context

of decomposing human motion into primitives. For exam-

ple, Viviani and Cenzato (1985) explored using the “two-

thirds” powerlaw coefficient to determine segment bound-

aries in handwriting. Similarly, Morasso (1983) showed that

rhythmic 3D motions of a human arm could be modeled

as piecewise linear. Mao et al. (2014) considered a seg-

mentation model that classified human arm motions into

three phases: (1) a reach phase where the arm moves until

it comes in contact with an object; (2) a manipulation phase

Garg et al. 1597

Fig. 2. Challenges of unsupervised segmentation in the presence of noise. A change in velocity condition can lead to spurious segments.

Clustering segment end-points over repeated demonstrations can help remove artifacts of noise as in TSC.

where the arm manipulates the object; and (3) a withdraw

phase where the arm releases the object. Other approaches

rely on thresholds on metrics such as curvature changes,

zero-velocity crossings, and jerk criteria (Faria et al., 2012;

Fod et al., 2002; Sahbani et al., 2008). Temporal segmen-

tation is also studied in the motion capture community

(Moeslund and Granum, 2001). Motivated by segmenting

human motions, these models make strong assumptions

kinematics of end-effector that generates the motions. This

motivates the development of probabilistic segmentation

models that can estimate local structure to mitigate such

assumptions.

2.1. Fully unsupervised approaches

One approach is to use a mixture model, and many unsuper-

vised segmentation techniques are based on hidden Markov

models (HMMs) with Gaussian emissions (Asfour et al.,

2008; Calinon et al., 2010; Gehrig et al., 2011; Kruger

et al., 2010; Kulic et al., 2009; Vakanski et al., 2012). Con-

sider a continuous-time vector-valued trajectory, which is

a sequence of T vectors xt in some vector space R
p. One

can write a generative model where the observed trajectory

is composed of a sequence of k latent primitive behaviors.

These behaviors have Markovian dynamics and transition

based on a latent Markov chain, and conditioned on the cur-

rent behavior the observed state is drawn from a particular

Gaussian mixture component. One challenge is that tuning

the number of segments is a key hyper-parameter. This basic

model was extended by Krüger et al. (2012) to flexibly set

the number of mixture components using a DP. Lee et al.

(2015) further explored using dimensionality reduction and

tune the number of mixture components using the Bayesian

information criterion.

This basic logic has been extended to more complex tran-

sition dynamics such as the hidden semi-Markov model,

which additionally models the amount of time spent in a

given state (Tanwani and Calinon, 2016). There are also

extensions that consider changes to emission model in addi-

tion to the high-level transitions. Willsky et al. (2009) pro-

posed a beta process autoregressive HMM, which has also

been applied by in robotics (Niekum and Chitta, 2013;

Niekum et al., 2012). This model fits an autoregressive

model to time series, where xt+1 is a linear function of states

xt−k , . . . , xt. The linear function switches according to a

HMM with states parametrized by a beta-Bernoulli model

(i.e. beta process).

It is important to note that the HMM-based approaches

were first designed in the context of signal processing. The

goal was to segment a long continuous stream of observa-

tions into a relatively small number of distinct symbols. In

these HMM approaches, one learns the high-level transition

structure as well as the low-level primitives. Demonstration

data differs from this context as it is episodic in nature (mul-

tiple repeated demonstrations), may have a large number

of primitives, and a relatively fixed transition structure. As

a result we find that TSC, which explicitly leverages this

structure, is more data efficient and robust to un-modeled

noise. This weakness of HMMs is well-established, where

“the low-level dynamics within a segment are more struc-

tured and predictable than the higher-level dynamics that

govern transitions between segments” (Saeedi et al., 2016).

1598 The International Journal of Robotics Research 36(13–14)

We compare against several representative approaches from

this family of algorithms and find that TSC is more robust

for small noisy datasets.

There are also several control-theoretic formulations of

segmentation (Alvarez et al., 2010, 2013; Sternad and

Schaal, 1999). In a seminal paper, Sternad and Schaal

(1999) provided a formal framework for control-theoretic

segmentation of trajectories. Alvarez et al. (2010) used a

latent-force model, where variables are modeled as coupled

by a dynamical system. Switching behavior in the coupling

system are used to derive segmentation criteria. TSC can

be interpreted as fitting local linear dynamics models to the

demonstrations, and to improve robustness, we have multi-

ple levels of clustering and pruning steps that remove sparse

clusters. However, in this paper, we primarily consider kine-

matics and hope to explore segmentation with dynamics in

the future.

2.2. Label-based approaches

There are also several methods that leverage labeled data

to segment trajectories. That is, an expert annotates a small

set of trajectories with labels and a model extrapolates seg-

mentation properties on unlabeled trajectories (Lea et al.,

2015; Lin et al., 2014; Quellec et al., 2014; Tao et al.,

2013; Varadarajan et al., 2009; Zappella et al., 2013). This

approach is very common in robotic surgery; however,

it involves the time-consuming the process of identifying

surgemes in existing data sources for use as training and

testing data (Lea et al., 2015; Tao et al., 2013; Varadara-

jan et al., 2009). For example, given manually segmented

videos, Zappella et al. (2013) used features from both the

videos and kinematic data to classify surgical motions. Sim-

ilarly, Quellec et al. (2014) use manually segmented exam-

ples as training for segmentation and recognition of surgical

tasks based on archived cataract surgery videos.

2.3. Dictionary or library-based approaches

An alternative viewpoint to the fully unsupervised

approaches is to have a small library of primitive templates

that are modulated and combined to construct more com-

plex behaviors (Chiappa and Peters, 2010; Meier et al.,

2011; Pastor et al., 2013). Chiappa and Peters (2010) gen-

erated the observations from a set of movement templates.

The observed time series is generated from a composi-

tion of these templates modulated by a noisy transforma-

tion. Parameter inference can be done with a Markov chain

Monte Carlo (MCMC) method or a variational approxi-

mation. Some of these approaches use a approach based

on dynamic movement primitives (DMPs) (Schaal, 2006).

DMPs are a mathematical formalization of the composi-

tion of primitives. Each DMP is a nonlinear dynamical

system with well-specified, stable behavior and a forcing

term that makes it follow a trajectory of interest. There are

also a number of interesting challenges in applying such

approaches when the trajectories are periodic or have a

rotational topology (Ude et al., 2010), and when the primi-

tives are probabilistic (Paraschos et al., 2013). Likewise, the

surgical robotics literature has also often leveraged a pre-

defined dictionary called surgemes (Lin et al., 2005, 2006).

These surgemes were constructed through domain exper-

tise and careful examination of expert surgeons. TSC can be

seen as automatically bootstrapping the library of primitives

through clustering. It first takes a coarse model that detects

transitions and clusters this into corresponded segments.

2.4. Two-step segmentation

While library-based approaches have been very popular,

building a library of primitives can be challenging. One

way to address this problem is to have a two-step pro-

cedure. The first step applies a less-complex model that

over-segments each trajectory, i.e. a set candidate segment

endpoints that are a superset of the true segment endpoints.

For example, Meier et al. (2012) found minima in the veloc-

ity and/or acceleration profile of the trajectories. These can-

didates describe potential segment endpoints, but they do

not assign the segment labels to any partial trajectories.

These approaches then apply a subsequent probabilistic

inference step that refines the candidates (Lioutikov et al.,

2015; Meier et al., 2012). Both of these works are very

similar in spirit to TSC. In both, the first step generates can-

didates (that we call transition states), which are refined by a

probabilistic model (clustering). We additionally present an

option for automatically generating these initial candidates

using GMMs. We find that this approach experimentally

works across a number of domains. The particulars of the

refinement step are different in all of the works. For exam-

ple, we use a hierarchical DP mixture model, Meier et al.

(2012) fitted a parametrized DMP model and filters for the

most likely segment candidates, and Lioutikov et al. (2015)

used a probabilistic movement primitives model with a mes-

sage passing inference algorithm. In this work, we did not

consider the relationship between TSC and DMPs, and we

hope to compare to these two approaches in future work.

2.5. TSC contributions

Segmentation is a very well-studied field and TSC cer-

tainly builds on several seminal works, such as Calinon

et al. (2010) and Krüger et al. (2012). The goal of this

paper is to explore to what extent an unsupervised approach

(no dictionary and no labels) can segment realistic surgi-

cal data reliably. To the best of the authors’ knowledge,

prior work in surgical robotics has only considered super-

vised segmentation using either segmented examples or

dictionaries.

We present a framework that uses GMMs to coarsely

segment a trajectory and hierarchical clustering to cor-

respond segments across trajectories. TSC makes a key

Garg et al. 1599

assumption about sequential segment-to-segment transi-

tions, and the problem reduces to identifying a common set

of segment-to-segment transition events, not corresponding

to the entirety of the trajectory segments across the whole

dataset. We present a through experimental comparison of

deterministic models, probabilistic models, and replacing

various components of TSC.

3. Problem statement and definitions

This section describes the problem setting, assumptions,

and notation. Let D = {di} be a set of demonstrations of

a robotic task. Each demonstration of a task d is a discrete-

time sequence of T state vectors in a feature-space X . The

feature space is a concatenation of kinematic features X

(e.g. robot position) and sensory features V (e.g. visual

features from the environment).

Definition 1 (Segmentation). A segmentation of a task is

defined as a function S that assigns each state in every

demonstration trajectory to an integer 1, 2, . . . , k:

S : d 7→(an)1,...,|d| , an ∈ 1, . . . , k

and S is a non-decreasing function in time (no repetitions).

3.1. Candidate transitions

Suppose we are given a function that just identifies candi-

date segment endpoints based on the kinematic features.

Such a function is weaker than a segmentation function

since it does not globally label the detected segments. This

leads to the following definition.

Definition 2 (Transition indicator function). A transition

indicator function T is a function that maps each kinematic

state in a demonstration d to {0, 1}:

T : d 7→(an)1,...,|d| , an ∈ 0, 1

The above definition naturally leads to a notion of transi-

tion states, the states and times at which transitions occur.

Definition 3 (Transition states). For a demonstration di, let

oi,t denote the kinematic state, visual state, and time (x, v, t)

at time t. Transition states are the set of state–time tuples

where the indicator is 1:

0 =

N
⋃

i

{oi,t ∈ di : T(di)t = 1}

The goal of TSC is to take the transition states 0 and

recover a segmentation function S. This segmentation func-

tion is stronger than the provided T since it not only indi-

cates that a transition has occurred but labels the segment

transition consistently across demonstrations.

3.2. Assumptions

We assume that all possible true segments are represented

in each demonstration by at least one transition (some might

be false positives). Given the segmentation function S(di),

one can define a set of true transition states:

0∗ = {oi,t ∈ di : S(di)t−1 6= S(di)t , t > 0}

These satisfy the following property:

0∗ ⊆ 0

In other words, we assume that a subset of transition states

discovered by the indicator function correspond with the

true segment transitions. There can be false positives but

no false negatives (a demonstration where a segment tran-

sition is missed by the transition indicator function). Since

the segmentation function is sequential and in a fixed order,

this leads to a model where we are trying to find the k − 1

true segment–segment transition points in 0.

3.3. Problem statement and method overview

These definitions allow us to formalize the transition state

clustering problem.

Problem 1 (Transition state clustering). Given a set of reg-

ular demonstrations D and transition identification function

T, find a segmentation S.

Candidate transitions: To implement T, TSC fits a Gaus-

sian mixture model (GMM) to sliding windows over each

of the demonstration trajectories and identifies consecutive

times with different most-likely mixture components.

Transition state clusters: The states at which those transi-

tions occur are called transition states. TSC uses a GMM to

cluster the transition states in terms of spatial and temporal

similarity to find S.

Optimizations: To avoid setting the number of clusters

at each level of the hierarchy in advance, the number of

regions are determined by a DP prior. A series of merg-

ing and pruning steps remove sparse clusters and repetitive

loops.

4. Transition state clustering

In this section, we describe how to take a set of given

transition states 0, and cluster them across demonstrations.

The next section describes one approach to automatically

generate 0.

4.1. Non-parametric mixture models

Hyper-parameter selection is a known problem in mixture

models. Recent results in Bayesian statistics can mitigate

some of these problems by defining a soft prior of the num-

ber of mixtures. Consider the process of drawing samples

1600 The International Journal of Robotics Research 36(13–14)

Algorithm 1: Transition State Clustering

1: Input: 0 transition states, ρ pruning parameter

2: Fit a mixture model to the set of transition states 0 in the kinematic states.

3: Fit a mixture model to the sensory features for transitions within every kinematic cluster i.

4: Fit a mixture model to the times from every kinematic and sensory cluster pair (i, j).

5: Remove clusters that contain fewer than transition states from fewer than ρ · N distinct demonstrations.

6: Output: A set of transitions, which are regions of the state-space and temporal intervals defined by Gaussian

confidence intervals.

from a GMM. We first sample some c from a categorical

distribution, one that takes on values from (1 . . . m), with

probabilities φ, where φ is a m dimensional simplex:

c ∼ cat(m, φ)

Then, conditioned on the event {c = i}, we sample from a

multivariate Gaussian distribution:

xi ∼ N(µi, 6i)

We can see that sampling a GMM is a two-stage process

of first sampling from the categorical distribution and then

conditioning on that sample.

The key insight of Bayesian non-parametrics is to add

another level (or multiple levels) to this model. The DP

defines a distribution over discrete distributions; in other

words, a categorical distribution with certain probabilities

and setting of m itself is a sample from a DP (Kulis and

Jordan, 2012). To sample from the DP-GMM, one must

first sample from the DP, then sample from the categorical

distribution, and finally sample from the Gaussian:

(m, φ) ∼ DP(H , α) , c ∼ cat(m, φ) , x ∼ N(µi, 6i)

The parameters of this model can be inferred with vari-

ational expectation maximization (see Appendix A). We

use this model in TSC at each layer of the hierarchi-

cal clustering. For each layer, the inference procedure is

independent.

4.2. Clustering algorithm

We now present the clustering algorithm, which is summa-

rized in Algorithm 1. In a first pass, the transition states

are clustered with respect to the kinematic states, then sub-

clustered with respect to the sensory states, and then, we

temporally sub-cluster. The sub-clusters can be used to

formulate the segmentation criteria.

Kinematic step: We want our model to capture that transi-

tions that occur in similar positions in the state-space across

all demonstrations are actual transitions, and we would like

to aggregate these transitions into logical events. Hypothet-

ically, if we had infinite demonstrations, 0 would define a

density of transition events throughout the state space. The

modes of the density that intuitively represent a propensity

of a state x to trigger a segment change are of key interest

to us.

We can think of the set of identified transition states 0

as a sample of this density. We fit a DP-GMM to kinematic

features of the transition states. Each transition state will

have an assignment probability to one of the mixture com-

ponents. We convert this to a hard assignment by assigning

the transition state to the most likely component.

Sensory step: Then, we apply the second level of DP-GMM

fitting over the sensory features (if available). Within each

kinematic cluster, we fit a DP-GMM to find sub-clusters

in the sensory features. Note that the transitions were only

identified with kinematic features. This step grounds the

detected transitions in sensory clusters.

Temporal step: Finally, we apply the last level of DP-GMM

fitting over the time axis. Without temporal localization, the

transitions may be ambiguous. For example, in a figure-of-

eight motion, the robot may pass over a point twice in the

same task. Conditioned on the particular state-space cluster

assignment, we can fit a DP-GMM each to each subset of

times. The final result contains sub-clusters that are indexed

both in the state space and in time.

Enforcing consistency: The learned clusters will vary in

size as some may consist of transitions that appear only in

a few demonstrations. The goal of TSC is to identify those

clusters that correspond to state and time transition condi-

tions common to all demonstrations of a task. We frame

this as a pruning problem, where we want to enforce that all

learned clusters contain transitions from a fraction of ρ dis-

tinct demonstrations. Clusters whose constituent transition

states come from fewer than a fraction of ρ demonstrations

are pruned. Here ρ should be set based on the expected rar-

ity of outliers. For example, if ρ is 100%, then the only

mixture components that are found are those with at least

one transition state from every demonstration (i.e. the reg-

ularity assumption). If ρ is less than 100%, then it means

that every mixture component must cover some subset of

the demonstrations. In our experiments, we set the param-

eter ρ to 80% and show the results with and without this

step.

Segmentation criteria: Finally, if there are k remaining

clusters {C1, . . . , Ck}, we can use these clusters to form a

criteria for segmentation. Each cluster is formed using a

GMM triplet in the kinematic state, visual state, and time.

Garg et al. 1601

The quantiles of the three GMMs will define an ordered

sequence of regions [ρ1, . . . , ρk] over the state space and

each of these regions has an associated time interval defined

by the Gaussian confidence interval for some confidence

level zα .

5. Algorithm analysis

TSC is a hierarchical clustering algorithm that groups

together transition events with similar time, kinematic, and

sensory features. Next, we analyze some of the algorithm

design choices and interpretations of the different steps.

5.1. Hierarchical clustering interpretation

TSC is a form of top-down divisive hierarchical clustering.

Given a set of transitions, it groups those transitions based

on kinematics, sensory input, and temporal conditions. The

hierarchical clustering allows this clustering to be jagged,

where parent clusters can have varying sizes of sub-clusters.

One design choice was to treat the time and state axes in two

different clustering steps, while other authors have proposed

augmenting the state space with time (Lee et al., 2015). We

empirically found that the scaling differences between the

temporal features and the state features made augmenting

the state space with time difficult to tune in practice. A hier-

archical approach ensures that logically grouped features

are clustered together.

5.2. Probabilistic model

Kinematics only: It can also be viewed probabilistically.

Let us first consider a single layer of the hierarchy, where

transitions are only clustered in the kinematic state. Over

all of the demonstrations D, there is a corresponding set 0

of all transition states. We model the set 0 as samples from

an underlying parametrized distribution over the state space

x ∈ Rp:

0 ∼ fθ (x)

Then, we can model the distribution as a GMM:

fθ (x) = GMM(π , {µ1, . . . , µk}, {61, . . . , 6k})

The interpretation of this distribution is π describes the

fraction of transitions assigned to each mixture component,

µi describes the centroid of the mixture component, and 6i

describes the covariance. One can think of these as defining

ellipsoids in the state-space that characterize regions where

transitions occur.

Multiple layers: With multiple layers of clustering hierar-

chy the probabilistic interpretation is a bit more compli-

cated. However, it can be seen defining a GMM conditioned

on the parent layer’s assignment to a mixture component.

Suppose, we have both kinematic and visual states:

0 ∼ fθ (x, v)

Using the chain rule, we can decompose fθ (x, v) into two

independently parametrized densities p, q:

fθ (x, t) = pθp (x) · qθq (v | x)

We can model both p and q as mixture models, and with the

simplifying assumption that the state-space mixture compo-

nent is a sufficient statistic for qθq , the hierarchical cluster-

ing process is a hard-assignment version of this inference

problem.

6. Gaussian mixture transition identification

Although we can use any transition identification function

to obtain 0 (as long as it satisfies the assumptions), we

present one implementation based of Gaussian mixtures

that we used in a number of our experiments. We found

that this GMM approach was scalable (in terms of data

and dimensionality) and had fewer hyper-parameters to tune

than more complex models. Combined with the subsequent

hierarchical clustering, this approach proved to be robust in

all of our experiments.

6.1. Transition identification algorithm

Each demonstration trajectory di is a trajectory of Ti state

vectors [x1, . . . , xTi
]. For a given time t, we can define a

window of length ` as

w
(`)
t = [xt−`, . . . , xt]

ᵀ

Then, for each demonstration trajectory we can also gener-

ate a trajectory of Ti − ` windowed states:

d
(`)
i = [w

(`)
` , . . . , w

(`)
Ti

]

Over the entire set of windowed demonstrations, we collect

a dataset W of all of the w
(`)
t vectors. We fit a DP-GMM to

these vectors. This model defines m multivariate Gaussian

distributions and a probability that each observation w
(`)
t is

sampled from each of the m distributions. We annotate each

observation with the most likely mixture component. Times

such that w
(`)
t and w

(`)
t+1 have different most likely compo-

nents are marked as transitions. This algorithm is summa-

rized in Algorithm 2. For each demonstration it returns a

candidate set of transitions. Which can be used to construct

the set of transition states 0.

6.2. Capturing dynamics through windowing

The role of windowing is to capture some information about

the dynamics of the trajectory. Consider the case when

` = 1, this means that W is just a dataset of all of the states

observed over all trajectories. Fitting a GMM to this data,

identifies clusters in the distribution of states visited by the

demonstrations.

1602 The International Journal of Robotics Research 36(13–14)

Algorithm 2: Transition Identification

1: Input: D demonstrations, ` a window size, and α a DP prior.

2: For each demonstration, generate a set of sliding windows of w
(`)
t = [xt−`, . . . , xt]

ᵀ. Let W be the set of all sliding

windows across all demonstrations.

3: Fit a mixture model to W assigning each state to its most likely component.

4: Identify times t in each demonstration when wt has a different most likely mixture component than wt+1, start and

finish times (t = 0, t = Ti) are automatically transitions.

5: Return: A set of transition states 0, the (x, v, t) tuples at which transitions occur.

Windowing (` > 1) finds clusters in the distribution of

sequences of states. To interpret what this means, we high-

light a well-known result from Bayesian statistics. Ghahra-

mani and Jordan (1993) explained how GMMs are equiva-

lent to Bayesian local linear regression, where each mixture

component defines a regression surface. With this interpre-

tation, a windowed GMM can be interpreted as finding the

windows that not only lie near the same states but also

lie on the same regression surface, i.e. similar local linear

transition laws.

For intuition, consider the following discrete-time

dynamical system:

xt+1 = ξ (xt)

Suppose, we want to model the behavior of this system

around a state µ. Let xt be drawn from a Gaussian dis-

tribution xt ∼ N(µ, 6), and measure how this Gaussian

distribution propagates through the system. This models

the distribution of states that will be observed around the

neighborhood of xt = µ.

If ξ is linear, then each pair of states xt, xt+1 are related

by

xt+1 = Axt

It follows that the vector
(

xt

xt+1

)

is a multivariate Gaus-

sian centered at
(

µ

Aµ

)

. Then, the problem of learning ξ in

this neighborhood (i.e. recovering the local dynamics A)

reduces to finding the parameters of this Gaussian distri-

bution. For multivariate Gaussians, the conditional expec-

tation over any projection is a linear estimate, and we can

see that it is equivalent to regression:

arg min
A

T−1
∑

t=1

‖Axt − xt+1‖ = E[xt+1 | xt]

A natural extension is a ξ that is piecewise-linear and

can be modeled as switched linear dynamical system. That

is, there exists m d × d matrices {A(1), . . . , A(m)}:

xt+1 = Atxt + wt : At ∈ {A(1), . . . , A(m)} (1)

Assuming that each of these m linear regimes is active in a

small neighborhood centered at {µ1, . . . , µm}, respectively,

the Gaussian model extends to a GMM with m components.

7. Loop compaction

Next, we describe our approach to make the model resilient

to noise in the form of loops.

7.1. “Loops” in surgical demonstrations

Loops are common in surgical demonstrations. For exam-

ple, a surgeon may attempt to insert a needle two or three

times before success. These looping actions will occur a

varying number of times in each demonstration leading

to temporal variability. This challenge is not merely the-

oretical, and practical datasets often contain a significant

number of these looping motions. For example, the 30 Knot

Tying demonstrations from the JIGSAWS dataset contain

25 looping motions (Gao et al., 2014). To be able to extract

a consistent segmentation criteria, we must “compact” these

loops into a single logical motion. We apply this step after

Algorithm 1 (transition identification).

7.2. Compaction algorithm

The key question is how to differentiate between repetitions

that are part of the demonstration and those that correspond

to looping actions. The sequence might contain repetitions

not due to looping. As a heuristic, we threshold the L2 dis-

tance between consecutive segments with repeated transi-

tions. If the L2 distance is low, we know that the consecutive

segments are happening in a similar location as well. In our

datasets, this is a good indication of looping behavior.

For each demonstration, we define a segment s(j)[t] of

states between each transition state. The challenge is that

s(j)[t] and s(j+1)[t] may have a different number of obser-

vations and may be at different time scales. To address this

challenge, we apply dynamic time warping (DTW). Since

segments are locally similar up to small time variations,

DTW can find a most-likely time alignment of the two

segments.

Let s(j+1)[t∗] be a time aligned (with respect to s(j)) ver-

sion of s(j+1). Then, after alignment, we define the L2 metric

between the two segments:

d(j, j + 1) =
1

T

T
∑

t=0

(s(j)[i] − s(j+1)[i∗])2

Garg et al. 1603

When d ≤ δ, we compact two consecutive segments. Here

δ is chosen empirically and a larger δ leads to a sparser dis-

tribution of transition states, and a smaller δ leads to more

transition states. For our needle passing and suturing exper-

iments, we set δ to correspond to the distance between two

suture/needle insertion points; thus, differentiating between

repetitions at the same point versus at others. However,

since we are removing points from a time series, from every

following observation, we shift the time stamp back by the

length of the compacted segments.

8. Results

We evaluate TSC’s robustness in the following way.

1. Precision. Results suggest that TSC significantly

reduces the number of false-positive segments in sim-

ulated examples with noise.

2. Recall. Among algorithms that use piecewise linear seg-

ment models, results suggest TSC recovers segments

of a generated piecewise linear trajectory more con-

sistently in the presence of process and observation

noise.

3. Applicability to real-world data. Result suggest that

TSC recovers qualitatively relevant segments in real

surgical trajectory data.

8.1. Precision in synthetic examples

Our first experiment evaluates the following hypothesis:

TSC significantly reduces the number of false-positive seg-

ments in a simple simulated example with noise. These

experiments evaluate TSC against algorithms with a single

level of clustering.

We now provide a comparison of seven alternative seg-

mentation criteria.

1. Zero-Velocity Crossing (VEL): This algorithm detects a

change in the sign of the velocity.

2. Smoothed Zero-Velocity Crossing (VELS): This algo-

rithm applies a low-pass filter (exponentially weighted

moving average) to the trajectory, and then detects a

change in the sign of the velocity.

3. Acceleration (ACC): This algorithm detects any change

in the velocity by looking for non-zero acceleration.

4. Gaussian Mixture Model (GMM): This algorithm

applies a GMM model to the observed states and detects

changes in most likely assignment. The number of

clusters was set to two.

5. Windowed Gaussian Mixture Model (GMMW): This

algorithm is the first phase of TSC. It applies a GMM

to windows of size two, and detects changes in most

likely assignment. The number of clusters was set to

two, unlike in TSC where we use the DP to set the

number of clusters.

6. Auto-Regressive Mixture (AR): This model fits a piece-

wise linear transition law to the observed data.

7. Coresets (CORE): We evaluate against a standard core-

set model (Sung et al., 2012; Volkov et al., 2015), and

the particular variant is implemented with weighted

k-means. We applied this to the same augmented state

vector as in the previously mentioned GMM.

8. Transition state clustering (TSC): Our proposed

approach with a pruning threshold of 0.8 and no loop

compaction.

8.1.1. Bouncing ball. We first revisit the example in the

introduction of the bouncing ball, which can be modeled as

the following 1D double-integrator system:

ẍ = −9.8 m/s2

This system is observed with additive Gaussian white noise

with std 10 (moderate noise):

y = x + N(0, 10)

and std 20 (high noise):

y = x + N(0, 20)

The system is initialized at x0 = 122.5 and bounces when

x = 20, at which point the velocity is negated. Figure 3

illustrates the ideal trajectory and noisy realizations of these

trajectories.

We apply the segmentation algorithms to the trajectories

and plot the results in Figure 4. When there is no noise, all

of the algorithms are equally precise, and there is no trouble

with corresponding segments across demonstrations. All of

the “rate-of-change” methods (VEL, VELS, ACC) reliably

identify the point where the ball bounces. The GMM and

the CORE methods do not segment the trajectory at the

bounce point. On the other hand, the windowed GMM takes

two consecutive positions and velocities into account dur-

ing the clustering. Similarly, the autoregressive model can

accurately identify the bounce point. With no noise, TSC

has little difference with the windowed GMM.

Differences arise when we observe the trajectory with

additive Gaussian noise. The “rate-of-change” methods

have some spurious segmentation points due to noise. The

GMM-based methods are more robust to this noise, and

they retain similar precision. This motivates our choice of

the first phase of the TSC algorithm using a windowed

GMM approach. However, the GMM approaches still have

some spurious transitions. With these spurious points, it

becomes challenging to reliably correspond trajectories

across segments. Thus, TSC applies a second phase of clus-

tering to correspond the transitions and prune the sparse

clusters. This results in accurate segmentation even in the

presence of noise.

As the noise increases, TSC is still able to find accu-

rate segments. In the high-noise case, the bounce point is

still identified in four out of five trajectories. It is impor-

tant to note that we do not claim that one segmentation

1604 The International Journal of Robotics Research 36(13–14)

Fig. 3. (Top) Position and velocity of the bouncing ball without noise. (Bottom) Five trajectories of the ball with different realizations

of the noise.

Fig. 4. Plots of the identified transitions with each segmentation algorithm with and without noise. Whereas all techniques are precise

when there is no noise, TSC is the most robust in the presence of noise.

Garg et al. 1605

algorithm is more accurate than another, or that TSC more

accurately reflects “real” segments. These results only sug-

gest that TSC is more precise than alternatives; that is, given

the assumptions in TSC it consistently recovers segments

according to those assumptions. The next experiments will

study the recall characteristics.

8.1.2. Bouncing ball with air resistance. In the first set

of experiments, we illustrate TSC’s robustness to variance

in the state space. Next, we illustrate how TSC can still

correspond segments with temporal variation. Consider the

dynamics of the bouncing ball with an term to account for

air resistance:

ẍ = −9.8 m/s2 + Kvẋ

We draw the air-resistance constant Kv uniformly from

Kv ∼ U[1, 5]. The consequence is that the ball will bounce

at different times in different trajectories.

Figure 5 illustrates the results. In the five trajectories, the

ball bounces between time steps 5 and 7. With no noise

VEL, VELS, ACC, GMMW, and TSC can identify the

bounce point. Then, the system is observed with additive

Gaussian white noise with std 10:

y = x + N(0, 10)

We find that TSC recovers a consistent set of segments even

with the temporal variation.

8.1.3. Hybrid approaches. In the previous experiments,

we presented TSC using a windowed GMM approach to

identify transitions. Next, we consider TSC with alternative

transition identification functions. Consider a “figure-of-

eight” trajectory defined parametrically as

x = cos(t)

y = 0.5 sin(2t)

The trajectory is visualized in Figure 6. The trajectory starts

at the far right and progresses until it returns to the same

spot. Velocity-based segmentation finds one transition point

where there is a change in direction (far left of the trajec-

tory; Figure 7). A windowed GMM where the number of

clusters is set by a DP finds three transition points. These

three points correspond to the far left point as well as

the crossing point in the figure-of-eight (happens twice).

These are two different segmentation criteria, and both are

reasonable with respect to their respective assumptions.

Next, this parametric trajectory is observed with additive

Gaussian noise of std 0.1 (Figure 6). We see that both the

GMM approach and the velocity approach have several spu-

rious transitions (Figure 7). TSC can improve the precision

of both techniques by adding a layer of clustering.

8.2. Rotations

Handling orientations is a challenging problem due to the

topology of SO(3) (Ude et al., 2014). As an example of what

can go wrong consider a 2D square rotating in the plane.

We construct a 1 × 1 m2 2D square and track a point on

the corner of the 2D square. The 2D square rotates clock-

wise in π
10

rad/s for 10 time steps, then switches, and rotates

the other direction at the same angular speed. The state

of the system is the (x, y) position of the corner. We add

0.1 m standard deviation Gaussian observation noise to the

observed trajectories.

We apply the segmentation algorithms to five trajectories

and plot the results in Figure 8. As before, with no noise, all

of the techniques are equally precise. In this example, there

is a difference between how the different techniques seg-

ment the trajectories. The rate-of-change methods segment

the trajectory at the point when the block changes rotation

direction. The GMM and the windowed GMM approaches

cuts the trajectory into three even segments, missing the

direction change. TSC cuts the trajectory into four seg-

ments including the direction change. TSC differs from the

windowed GMM because it sets the number of clusters

using the DP prior. With noise, the rate-of-change tech-

niques have a number of spurious segments. The GMM-

based approaches are more robust and TSC improves the

windowed GMM even further by clustering the detected

transitions. However, if the initial transitions were found in

angular space, then TSC would have found one segment. In

this sense, the definition of the state-space changes the seg-

ments found. We hope to explore these issues in more detail

in future work.

8.3. Recall in synthetic examples

Comparing different segmentation models can be challeng-

ing due to differing segmentation criteria. However, we

identified some algorithms that identify locally linear or

near-linear segments. We developed a synthetic dataset gen-

erator to generate piecewise linear segments and compared

the algorithms on the generated dataset. Note, we do not

intend this to be a comprehensive evaluation of the accu-

racy of the different techniques, but more a characterization

of the approaches on a locally linear example to study the

key tradeoffs.

8.3.1. Overview. We model the trajectory of a point robot

with two-dimensional position state (x, y) between k goal

points {g1, . . . , gk}. We apply position control to guide the

robot to the targets and without disturbance, this motion is

linear (Figure 9(a)). We add various types of disturbances

(and in varying amounts) including Gaussian observation

noise, low-frequency process noise, and repetitive loops

(Figure 9(b)–(d)). We report noise values in terms of stan-

dard deviations. Figure 10 illustrates the relative magni-

tudes. A demonstration di is a sample from the following

system.

Task: Every segmentation algorithm will be evaluated in

its ability to identify the k − 1 segments (i.e. the paths

1606 The International Journal of Robotics Research 36(13–14)

Fig. 5. Plots of the identified transitions with each segmentation algorithm with and without noise. In this example, temporal variation

is added by incorporating a random “air resistance” factor. TSC is consistent even in the presence of this temporal variation.

Fig. 6. A “figure-of-eight” trajectory in the plane and five noisy demonstrations. The trajectory starts at the far right and progresses

until it returns to the same spot.

between the goal points). Furthermore, we evaluate algo-

rithms on random instances of this task. In the begin-

ning, we select three random goal points. From a fixed

initial position, we control the simulated point robot to

the goal points with position control. Without any dis-

turbance, this follows a linear motion. For a given noise

setting, we sample demonstrations from this system and

apply/evaluate each algorithm. We present results aggre-

gated over 20 such random instances. This is important

since many of the segmentation algorithms proposed in lit-

erature have some crucial hyper-parameters, and we present

results with a single choice of parameters averaged over

multiple tasks. In this way, the hyper-parameter tuning can-

not overfit to any given instance of the problem and has

to be valid for the entire class of tasks. We believe that

this is important since tuning these hyper-parameters in

practice (i.e. not in simulation) is challenging since there

is no ground truth. The experimental code is available at:

http://berkeleyautomation.github.io/tsc/.

Five algorithms: We compare TSC against alternatives

where the authors explicitly find (or approximately find)

locally linear segments. It is important to reiterate that

different segmentation techniques optimize different objec-

tives, and this benchmark is meant to characterize the per-

formance on a common task. All of the techniques are based

on Gaussian distributions or linear autoregressive models.

1. (GMM) (same as previous experiment). In this experi-

ment, we set the parameter to the optimal choice of three

without automatic tuning.

Garg et al. 1607

Fig. 7. Plots of the identified transitions with each segmentation algorithm with and without noise. Velocity-based segmentation finds

one transition point where there is a change in direction. A windowed GMM where the number of clusters is set by a DP finds three

transition points. TSC can improve the precision of both techniques.

Fig. 8. Plots of the identified transitions with each segmentation algorithm with and without noise. Although all techniques are precise

when there is no noise, TSC is the most robust in the presence of noise but finds additional segments.

2. (GMM+HMM). A natural extension to this model is

to enforce a transition structure on the regimes with

a latent Markov chain (Asfour et al., 2008; Cali-

non and Billard, 2004; Kruger et al., 2010; Vakanski

et al., 2012). We use the same state vector as above,

without time augmentation as this is handled by the

HMM. We fit the model using the forward–backward

algorithm.

3. Coresets (same as previous experiment).

4. HSMM. We evaluated a Gaussian hidden semi-Markov

model as used by Tanwani and Calinon (2016). We

applied this model directly to the demonstrations with

no augmentation or normalization of features. This was

implemented with the package pyhsmm. We applied

this model directly to the demonstrations with no aug-

mentation as in the GMM approaches. We ran our

MCMC sampler for 10,000 iterations, discarding the

first 2,500 as burn-in and thinning the chain by 15.

1608 The International Journal of Robotics Research 36(13–14)

Fig. 9. One of 20 instances with random goal points G1, G2, G3: (a) observations from a simulated demonstration with three regimes;

(b) observations corrupted with Gaussian white sensor noise; (c) observations corrupted with low-frequency process noise; and (d)

observations corrupted with an inserted loop. See Figure 13 for evaluation on loops.

Fig. 10. (a) Nominal trajectory, (b) 1 std of high-frequency observation noise, (c) 2 std of high-frequency observation noise, (d) 1 std

of low-frequency process noise, and (e) 2 std of low-frequency process noise.

5. AR-HMM. We evaluated a Bayesian autoregressive

HMM model as used in Niekum et al. (2012). This

was implemented with the packages pybasicbayes and

pyhsmm-ar. The autoregressive order was 10 and we

ran our MCMC sampler for 10,000 iterations, discard-

ing the first 2,500 as burn-in and thinning the chain

by 15.

Evaluation metric: There is considerable debate on

metrics to evaluate the accuracy of unsupervised segmen-

tation and activity recognition techniques, e.g. frame accu-

racy (Wu et al., 2015) and hamming distance (Fox et al.,

2009). Typically, these metrics have two steps: (1) seg-

ments to ground-truth correspondence; and (2) then mea-

suring the similarity between corresponding segments. We

have made this feature extensible and evaluated some dif-

ferent accuracy metrics (Jaccard similarity, frame accuracy,

segment accuracy, intersection over union). We found that

the following procedure led to the most insightful results,

differentiating the different techniques.

In the first phase, we match segments in our predicted

sequence to those in the ground truth. We do this with a

procedure identical to that proposed by Wu et al. (2015). We

define a bi-partite graph of predicted segments to ground-

truth segments, and add weighted edges where weights

represent the overlap between a predicted segment and

a ground-truth segment (i.e. the recall over time-steps).

Each predicted segment is matched to its highest weighted

ground-truth segment. Each predicted segment is assigned

to exactly one ground-truth segment, while a ground-truth

segment may have none, one, or more corresponding pre-

dictions.

After establishing the correspondence between predic-

tions and ground truth, we consider a true positive (a

ground-truth segment is correctly identified) if the overlap

(intersection-over-union) between the ground-truth seg-

ment and its corresponding predicted segments is more

Garg et al. 1609

Fig. 11. Each data point represents 20 random instances of a three-segment problem with varying levels of high-frequency noise,

low-frequency noise, and demonstrations. We measure the segmentation accuracy for the compared approaches. (a) TSC finds a more

accurate segmentation than all of the alternatives even under significant high-frequency observation noise, (b) TSC is more robust

to low-frequency process noise than the alternatives, (c) the Bayesian techniques solved with MCMC (ARHMM, HSMM) are more

sensitive to the number of demonstrations provided than the others.

than a default threshold 60%. Then, we compute segment
accuracy as the ratio of the ground-truth segments that

are detected correctly. Wu et al. (2015) used a 40% thresh-

old but apply the metric to real data. Since this is a syn-

thetic example, we increase this threshold to 60%, which

we empirically found accounted for boundary effects, espe-

cially in the Bayesian approaches (i.e. repeated transitions

around segment endpoints).

8.3.2. Accuracy versus noise. In our first experiment, we

measured the segment accuracy for each of the algorithms

for 50 demonstrations. We also varied the amount of pro-

cess and observation noise in the system. As Figure 10

illustrates, this is a very significant amount of noise in

the data, and successful techniques must exploit the struc-

ture in multiple demonstrations. Figure 11(a) illustrates the

performance of each of the techniques as a function of

high-frequency observation noise. Results suggest that TSC

is more robust to noise than the alternatives (nearly 20%

more accurate for 2.5 std of noise). The Bayesian ARHMM

approach is nearly identical to TSC when the noise is low

but quickly loses accuracy as more noise is added. We

Fig. 12. TSC is about six time slower than using Coresets or the

direct GMM approach, but it is over 100× faster than the MCMC

for the ARHMM model.

attribute this robustness to the TSC’s pruning step which

ensures that only transition state clusters with sufficient

coverage across all demonstrations are kept. These results

are even more pronounced for low-frequency process noise

(Figure 11(b)). TSC is 49% more accurate than all competi-

tors for 2.5 std of noise added. We find that the Bayesian

1610 The International Journal of Robotics Research 36(13–14)

approaches are particularly susceptible to such noise. Fur-

thermore, Figure 11(c) shows TSC requires no more data

than the alternatives to achieve such robustness. Another

point to note is that TSC is solved much more efficiently

than ARHMM or HSMM that require expensive MCMC

samples. Although parameter inference on these models can

be solved more efficiently (but approximately) with mean-

field stochastic variational inference, we found that the

results were not as accurate. TSC is about six times slower

than using Coresets or the direct GMM approach, but it is

over 100× faster than the MCMC for the ARHMM model.

Figure 12 compares the runtime of each of the algorithms

as a function of the number of demonstrations.

8.3.3. TSC hyper-parameters. Next, we explored the

dependence of the performance on the hyper-parameters for

TSC. We focus on the window size and the pruning parame-

ter. Figure 13(a) shows how varying the window size affects

the performance curves. Larger window sizes can reject

more low-frequency process noise. However, larger win-

dows are also less efficient when the noise is low. Similarly,

Figure 13(b) shows how increasing the pruning param-

eter affects the robustness to high-frequency observation

noise. However, a larger pruning parameter is less efficient

at low noise levels. Based on these curves, we selected

(w = 3, ρ = 0.3) in our synthetic experiments.

8.3.4. Loops. Finally, we evaluated four algorithms on

how well they can detect and adjust for loops. TSC com-

pacts adjacent motions that are overly similar, while HMM-

based approaches correspond similar looking motions. A

HMM grammar over segments is clearly more expressive

than TSC’s, and we explore whether it is necessary to learn

a full transition structure to compensate for loops. We com-

pare the accuracy of the different segmentation techniques

in detecting that a loop is present (Figure 14). Figure 14(a)

shows that TSC is competitive with the HMM approaches

as we vary the observation noise; however, the results sug-

gest that ARHMM provides the most accurate loop detec-

tion. On the other hand, Figure 14(b) suggests that process

noise has a very different effect. TSC is actually more accu-

rate than the HMM approaches when the process noise is

high, even without learning a transition structure.

8.3.5. Scaling with dimensionality. We investigate how the

accuracy of TSC scales with the dimensionality of the

state space. As in the previous experiments, we measured

the segment accuracy for each of the algorithms for 50

demonstrations. This time we generated the line segments

in increasingly higher-dimensional spaces (from 2 to 35

dimensions). The noise added to the trajectories has a

std of 0.1. Figure 15(a) plots the segment accuracy as a

function of the dimensionality of the state space. While

the accuracy of TSC does decreases as the dimensionality

increases it is more robust than some of the alternatives:

ARHMM and HSMM. One possible explanation is that

both of those techniques rely on Gibbs sampling for infer-

ence, which is a little more sensitive to dimensionality than

the expectation-maximization inference procedure used in

GMM and GMM+HMM. Figure 15(b) shows one aspect of

TSC that is more sensitive to the dimensionality. The loop

compaction step requires a dynamic time-warping and then

a comparison to fuse repeated segments together. This step

is not as robust in higher-dimensional state spaces. This is

possibly due to the use of the L2 distance metric to compare

partial trajectories to compact. TSC runs in 4 seconds on the

two-dimensional case, 16 seconds on the 10-dimensional

case, and in 59 seconds on the 35-dimensional case.

8.4. Surgical data experiments

We describe the three tasks used in our evaluation and the

corresponding manual segmentation (Figure 16). This will

serve as ground truth when qualitatively evaluating our seg-

mentation on real data. This set of experiments primarily

evaluates the utility of segments learned by TSC. Data was

collected beforehand as a part of prior work. Our hypoth-

esis is that even though TSC is unsupervised, it identifies

segments that often align with manual annotations. In all of

our experiments, the pruning parameter ρ is set to 80% and

the compaction heuristic δ is to 1 cm.

The state-space is the 6D end-effector position. In some

experiments, we augment this state space with the following

visual features.

1. Grasp: 0 if empty; 1 otherwise.

2. Needle penetration. We use an estimate of the penetra-

tion depth based on the robot kinematics to encode this

feature. If there is no penetration (as detected by video),

the value is 0; otherwise the value of penetration is the

robot’s z position.

Our goal with these features was to illustrate that TSC

applies to general state-spaces as well as spatial ones, and

not to address the perception problem. These features were

constructed via manual annotation, where the grasp and

needle penetration were identified by reviewing the videos

and marking the frames at which they occurred.

Circle cutting: A 5 cm diameter circle drawn on a piece of

gauze. The first step is to cut a notch into the circle. The

second step is to cut clockwise half-way around the circle.

Next, the robot transitions to the other side cutting counter

clockwise. Finally, the robot finishes the cut at the meet-

ing point of the two cuts. As the left arm’s only action is to

maintain the gauze in tension, we exclude it from the analy-

sis. In Figure 16(a), we mark six manually identified transi-

tions points for this task from Murali et al. (2015): (1) start,

(2) notch, (3) finish first cut, (4) cross-over, (5) finish sec-

ond cut, and (6) connect the two cuts. For the circle cutting

task, we collected 10 demonstrations by researchers who

were not surgeons but familiar with operating the da Vinci

Research Kit (dVRK).

Garg et al. 1611

Fig. 13. (a) Performance curves of different choices of windows as a function of the process noise. Larger windows can reject higher

amounts of process noise, but are less efficient at low noise levels. (b) Performance curves of different choices of the pruning threshold.

Larger pruning thresholds are more robust to high amounts of observation noise but less accurate in the low-noise setting. We selected

(w = 3, ρ = 0.3) in our synthetic experiments.

Fig. 14. (a) Accuracy of TSC’s compaction step as a function of observation noise. TSC is competitive with the HMM-based approaches

without having to model the full transition matrix. (b) TSC is actually more robust to low-frequency process noise in the loops than the

HMM-based approaches.

We also perform experiments using the JIGSAWS dataset

(Gao et al., 2014) consisting of surgical activity for human

motion modeling. The dataset was captured using the da

Vinci Surgical System from eight surgeons with different

levels of skill performing five repetitions each of needle

passing and suturing.

Needle passing: We applied TSC to 28 demonstrations of

the needle passing task. The robot passes a needle through a

hoop using its right arm, then its left arm to pull the needle

through the hoop. Then, the robot hands the needle off from

the left arm to the right arm. This procedure is repeated

four times as illustrated with a manual segmentation in

Figure 16(b).

Suturing: Next, we explored 39 examples of a 4 throw

suturing task (Figure 16(c)). Using the right arm, the first

step is to penetrate one of the points on the right-hand side.

The next step is to force the needle through the phantom to

the other side. Using the left arm, the robot pulls the needle

out of the phantom and then the robot hands it off to the

right arm for the next point.

8.4.1. Pruning and compaction. In Figure 19, we highlight

the benefit of pruning and compaction using the suturing

task as an example. First, we show the transition states

without applying the compaction step to remove looping

transition states (Figure 19(a)). We find that there are many

more transition states at the “insert” step of the task. Com-

paction removes the segments that correspond to a loop of

the insertions. Next, we show all of the clusters found by

the first step of segmentation. The centroids of these clus-

ters are marked in Figure 19(b). Many of these clusters are

1612 The International Journal of Robotics Research 36(13–14)

Fig. 15. We investigate how the accuracy of TSC scales with the dimensionality of the state-space. In (a) we consider the problem with

no loops or compaction and in (b) we measure the accuracy of the compaction step as a function of dimensionality.

Fig. 16. Hand annotations of the three tasks: (a) circle cutting, (b) needle passing, and (c) suturing. Right arm actions are listed in dark

blue and left arm actions are listed in yellow.

Fig. 17. (a) The transition states for the task are marked in orange (left arm) and blue (right arm). (b), (c) The TSC clusters, which are

clusters of the transition states, are illustrated with their 75% confidence ellipsoid for both arms.

small containing only a few transition states. This is why

we created the heuristic to prune clusters that do not have

transition states from at least 80% of the demonstrations. In

all, 11 clusters are pruned by this rule.

8.5. Results with surgical data

Circle cutting: Figure 20(a) shows the transition states

obtained from our algorithm and Figure 20(b) shows the

TSC clusters learned (numbered by time interval midpoint).

Garg et al. 1613

Fig. 18. (a) The transition states for the task are marked in orange (left arm) and blue (right arm). (b), (c) The clusters, which are

clusters of the transition states, are illustrated with their 75% confidence ellipsoid for both arms.

Fig. 19. We first show the transition states without compaction (in black and green), and then show the clusters without pruning (in

red). Compaction sparsifies the transition states and pruning significantly reduces the number of clusters.

Fig. 20. (a) The transition states for the circle cutting task are marked in black. (b) The TSC clusters, which are clusters of the transition

states, are illustrated with their 75% confidence ellipsoid.

The algorithm found eight clusters, one of which was

pruned using our ρ = 80% threshold rule.

The remaining seven clusters correspond well to the man-

ually identified transition points. It is worth noting that there

is one extra cluster (marked 2′), that does not correspond to

a transition in the manual segmentation. At 2′, the opera-

tor finishes a notch and begins to cut. While at a logical

level notching and cutting are both penetration actions, they

correspond to two different linear transition regimes due

to the positioning of the end-effector. Thus, TSC separates

them into different clusters even though the human annota-

tors did not. This illustrates why supervised segmentation

is challenging. Human annotators segment trajectories on

boundaries that are hard to characterize mathematically, e.g.

1614 The International Journal of Robotics Research 36(13–14)

Table 1. Comparison of transitions learned by TSC and transitions identified by manual annotators in the JIGSAWS dataset. We found

that the transitions mostly aligned. Here 83% and 73% of transition clusters for needle passing and suturing respectively contained

exactly one surgeme transition when both kinematics and vision were used. Results suggest that the hierarchical clustering is more

suited to mixed video and kinematic feature spaces.

Number of surgeme segments Number of clusters seg–surgeme surgeme–seg

Needle passing TSC(Kin+Video) 14.4 ± 2.57 11 83% 74%

Needle passing TSC(Video) 14.4 ± 2.57 7 62% 69%

Needle passing TSC(Kin) 14.4 ± 2.57 16 87% 62%

Needle passing TSC(VELS) 14.4 ± 2.57 13 71% 70%

Needle passing TSC(No-H) 14.4 ± 2.57 5 28% 34%

Suturing TSC(Kin+Video) 15.9 ± 3.11 13 73% 66%

Suturing TSC(Video) 15.9 ± 3.11 4 21% 39%

Suturing TSC(Kin) 15.9 ± 3.11 13 68% 61%

Suturing TSC(VELS) 15.9 ± 3.11 17 48% 57%

Suturing TSC(No-H) 15.9 ± 3.11 9 51% 52%

is frame 34 or frame 37 the segment boundary? Supervisors

may miss crucial motions that are useful for automation or

learning.

Needle passing: In Figure 17(a), we plot the transition

states in (x, y, z) end-effector space for both arms. We find

that these transition states correspond well to the logical

segments of the task (Figure 16(b)). These demonstrations

are noisier than the circle cutting demonstrations, and there

are more outliers. The subsequent clustering finds nine

clusters (two pruned). Next, Figure 17(b) and (c) illustrate

the TSC clusters. We find that again TSC learns a small

parametrization for the task structure with the clusters cor-

responding well to the manual segments. However, in this

case, the noise does lead to a spurious cluster (four marked

in green). One possible explanation is that the demonstra-

tions contain many adjustments to avoid colliding with

the needle hoop and the other arm while passing the nee-

dle through leading to numerous transition states in that

location.

Suturing: In Figure 18, we show the transition states and

clusters for the suturing task. As before, we mark the left

arm in orange and the right arm in blue. This task was far

more challenging than the previous tasks as the demonstra-

tions were inconsistent. These inconsistencies were in the

way the suture is pulled after insertion (some pull to the left,

some to the right, etc.), leading to transition states all over

the state space. Furthermore, there were numerous demon-

strations with looping behaviors for the left arm. In fact, the

DP-GMM method gives us 23 clusters, 11 of which rep-

resent less than 80% of the demonstrations and thus are

pruned (we illustrate the effect of the pruning in the next

section). In the early stages of the task, the clusters clearly

correspond to the manually segmented transitions. As the

task progresses, we see that some of the later clusters do

not.

8.6. Comparison with surgemes

Surgical demonstrations have an established set of primi-

tives called surgemes, and we evaluate whether segments

discovered by our approach correspond to surgemes. In

Table 1, we compare the number of TSC segments for

needle passing and suturing to the number of annotated

surgeme segments. We apply different variants of the TSC

algorithm and evaluate its ability to recover segments sim-

ilar to surgemes. We consider: (Kin+Video), which is the

full TSC algorithm; (Kin), which only uses kinematics;

(Video), which only uses the visual annotations; (VELS),

which uses the zero-crossing velocity heuristic to obtain

the initial transitions; and (NO-H), which treats all of the

variables as one big feature space and does not hierarchi-

cally cluster. A key difference between our segmentation

and number of annotated surgemes is our compaction and

pruning steps. To account for this, we first select a set of

surgemes that are expressed in most demonstrations (i.e.

simulating pruning), and we also apply a compaction step

to the surgeme segments. When surgemes appear consec-

utively, we only keep the one instance of each. We explore

two metrics: seg-surgeme, the fraction of TSC clusters with

only one surgeme switch (averaged over all demonstra-

tions); and surgeme-seg, the fraction of surgeme switches

that fall inside exactly one TSC cluster.

We found that the transitions learned by TSC with both

the kinematic and video features were the most aligned with

the surgemes. Here 83% and 73% of transition clusters for

needle passing and suturing respectively contained exactly

one surgeme transition when both were used. For the needle

passing task, we found that the video features alone could

give a reasonably accurate segmentation. However, this did

not hold for the suturing dataset. The manual video features

are low dimensional and tend to under-segment. For the

suturing dataset, a combination of the visual and kinematic

features was most aligned with the surgemes. Similarly, this

Garg et al. 1615

scaling problem affects the variant that does not hierarchi-

cally cluster, leading to a small number of clusters, and

inaccuracy.

9. Future work

These results suggest several avenues for future work. First,

we will explore using convolutional neural networks to

automatically extract visual features for segmentation. This

will alleviate a key challenge in applying TSC to new

datasets. We will also explore how other results in deep

learning such as autoencoders and recurrent networks can

be used to segment data without linearity assumptions.

Segmentation is the first step in a broader robot learning

pipeline, and we are actively exploring using segmentation

to construct rewards for reinforcement learning.

10. Conclusion

We have presented TSC, which leverages the consistent

structure of repeated demonstrations to robustly learn seg-

mentation criteria. To learn these clusters, TSC uses a hier-

archical DP-GMM with a series of merging and prun-

ing steps. Our results on a synthetic example suggest that

this approach is more robust than five other segmenta-

tion algorithms. We further applied our algorithm to three

surgical datasets and found that the transition state clus-

ters correspond well to manual annotations and transitions

with respect to motions from a pre-defined surgical motion

dictionary (surgemes).

Acknowledgments

We are grateful to Florian Pokorny, Jeff Mahler, and Michael

Laskey for feedback and discussions.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

research was supported in part by a seed grant from the UC Berke-

ley Center for Information Technology in the Interest of Society

(CITRIS), the UC Berkeley AMPLab, and by the US National

Science Foundation (Award IIS-1227536: Multilateral Manipula-

tion by Human-Robot Collaborative Systems). This work has been

supported in part by funding from Google and Cisco.

References

Alvarez M, Peters JR, Lawrence ND and Schölkopf B (2010)

Switched latent force models for movement segmentation.

In: Advances in Neural Information Processing Systems, pp.

55–63.

Alvarez MA, Luengo D and Lawrence ND (2013) Linear latent

force models using gaussian processes. IEEE Transactions on

Pattern Analysis and Machine Intelligence 35(11): 2693–2705.

Argall BD, Chernova S, Veloso M and Browning B (2009) A

survey of robot learning from demonstration. Robotics and

Autonomous Systems 57(5): 469–483.

Asfour T, Azad P, Gyarfas F and Dillmann R (2008) Imitation

learning of dual-arm manipulation tasks in humanoid robots.

International Journal of Humanoid Robotics 5(2): 183–202.

Barbič J, Safonova A, Pan JY, Faloutsos C, Hodgins JK and Pol-

lard NS (2004) Segmenting motion capture data into distinct

behaviors. In: Proceedings of Graphics Interface 2004. Cana-

dian Human–Computer Communications Society, pp. 185–

194.

Brooks R (1986) A robust layered control system for a mobile

robot. IEEE Journal on Robotics and Automation 2(1): 14–23.

Calinon S and Billard A (2004) Stochastic gesture production and

recognition model for a humanoid robot. In: 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems,

Sendai, Japan, 28 September–2 October 2004, pp. 2769–2774.

Calinon S, D’halluin F, Sauser EL, Caldwell DG and Billard AG

(2010) Learning and reproduction of gestures by imitation.

IEEE Robotics and Automation Magazine 17(2): 44–54.

Chiappa S and Peters JR (2010) Movement extraction by detect-

ing dynamics switches and repetitions. In: Advances in Neural

Information Processing Systems. pp. 388–396.

Chuck C, Laskey M, Krishnan S, Joshi R, Fox R and Goldberg

K (2017) Statistical data cleaning for deep learning of automa-

tion tasks from demonstrations. In: Conference on Automation

Sciences and Engineering CASE 2017.

Faria DR, Martins R, Lobo J and Dias J (2012) Extracting

data from human manipulation of objects towards improv-

ing autonomous robotic grasping. Robotics and Autonomous

Systems 60(3): 396–410.

Fikes RE, Hart PE and Nilsson NJ (1972) Learning and executing

generalized robot plans. Artificial intelligence 3: 251–288.

Fod A, Matarić MJ and Jenkins OC (2002) Automated derivation

of primitives for movement classification. Autonomous robots

12(1): 39–54.

Fox E, Jordan MI, Sudderth EB and Willsky AS (2009) Shar-

ing features among dynamical systems with beta processes.

In: Advances in Neural Information Processing Systems, pp.

549–557.

Gao Y, Vedula SS, Reiley CE, et al. (2014) The Jhu-Isi gesture

and skill assessment dataset (JIGSAWS): A surgical activity

working set for human motion modeling. In: Medical Image

Computing and Computer-Assisted Intervention (MICCAI).

Gehrig D, Krauthausen P, Rybok L, et al. (2011) Combined inten-

tion, activity, and motion recognition for a humanoid house-

hold robot. In: 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, pp. 4819–4825.

Ghahramani Z and Jordan MI (1993) Supervised learning from

incomplete data via an EM approach. In: Advances in Neu-

ral Information Processing Systems 6, [7th NIPS Conference],

Denver, CO, 1993, pp. 120–127.

Ijspeert A, Nakanishi J and Schaal S (2002) Learning attractor

landscapes for learning motor primitives. In: Neural Informa-

tion Processing Systems (NIPS), pp. 1523–1530.

Konidaris G, Kuindersma S, Grupen R and Barto A (2011) Robot

learning from demonstration by constructing skill trees. The

International Journal of Robotics Research 31(3): 360–375.

Krishnan S, Garg A, Patil S, et al. (2015) Transition state clus-

tering: Unsupervised surgical trajectory segmentation for robot

learning. In: International Symposium of Robotics Research.

Springer STAR.

1616 The International Journal of Robotics Research 36(13–14)

Kruger V, Herzog D, Baby S, Ude A and Kragic D (2010) Learn-

ing actions from observations. IEEE Robotics and Automation

Magazine 17(2): 30–43.

Krüger V, Tikhanoff V, Natale L and Sandini G (2012) Imita-

tion learning of non-linear point-to-point robot motions using

Dirichlet processes. In: 2012 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, pp. 2029–2034.

Kulic D, Takano W and Nakamura Y (2009) Online segmenta-

tion and clustering from continuous observation of whole body

motions. IEEE Transactions on Robotics 25(5): 1158–1166.

Kulis B and Jordan MI (2012) Revisiting k-means: New algo-

rithms via Bayesian nonparametrics. In: Proceedings of the

29th International Conference on Machine Learning (ICML

2012), Edinburgh, Scotland, UK, 26 June–1 July 2012.

Lea C, Hager GD and Vidal R (2015) An improved model

for segmentation and recognition of fine-grained activities

with application to surgical training tasks. In: Proceedings

of WACV.

Lee SH, Suh IH, Calinon S and Johansson R (2015) Autonomous

framework for segmenting robot trajectories of manipulation

task. Autonomous Robots 38(2): 107–141.

Liang J, Mahler J, Laskey M, Li P and Goldberg K (2017)

Using dVRK teleoperation to facilitate deep learning of

automation tasks for an industrial robot. Research report, UC

Berkeley. Available at: http://goldberg.berkeley.edu/pubs/2017-

Liang-DY-Teleop_CASE_CAMERA_READY.pdf

Lin HC, Shafran I, Murphy TE, Okamura AM, Yuh DD and Hager

GD (2005) Automatic detection and segmentation of robot-

assisted surgical motions. In: Proceedings 8th International

Conference Medical Image Computing and Computer-Assisted

Intervention (MICCAI 2005), Palm Springs, CA, 26–29 Octo-

ber 2005, Part I, pp. 802–810.

Lin HC, Shafran I, Yuh D and Hager GD (2006) Towards auto-

matic skill evaluation: Detection and segmentation of robot-

assisted surgical motions. Computer Aided Surgery 11(5):

220–230.

Lin JFS, Joukov V and Kulic D (2014) Full-body multi-primitive

segmentation using classifiers. In: 2014 14th IEEE-RAS Inter-

national Conference on Humanoid Robots (Humanoids). IEEE,

pp. 874–880.

Lin JFS, Karg M and Kulić D (2016) Movement primitive seg-

mentation for human motion modeling: A framework for anal-

ysis. IEEE Transactions on Human–Machine Systems 46(3):

325–339.

Lioutikov R, Neumann G, Maeda G and Peters J (2015) Prob-

abilistic segmentation applied to an assembly task. In: 2015

IEEE-RAS 15th International Conference on Humanoid Robots

(Humanoids). IEEE, pp. 533–540.

Mao R, Yang Y, Fermüller C, Aloimonos Y and Baras JS (2014)

Learning hand movements from markerless demonstrations for

humanoid tasks. In: 2014 14th IEEE-RAS International Confer-

ence on Humanoid Robots (Humanoids). IEEE, pp. 938–943.

Meier F, Theodorou E and Schaal S (2012) Movement seg-

mentation and recognition for imitation learning. In: Artificial

Intelligence and Statistics, pp. 761–769.

Meier F, Theodorou E, Stulp F and Schaal S (2011) Movement

segmentation using a primitive library. In: 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS). IEEE, pp. 3407–3412.

Moeslund TB and Granum E (2001) A survey of computer vision-

based human motion capture. Computer Vision and Image

Understanding 81(3): 231–268.

Morasso P (1983) Three dimensional arm trajectories. Biological

Cybernetics 48(3): 187–194.

Murali A, Sen S, Kehoe B, et al. (2015) Learning by observation

for surgical subtasks: Multilateral cutting of 3D viscoelastic

and 2D orthotropic tissue phantoms. In: IEEE International

Conference on Robotics and Automation (ICRA 2015), Seattle,

WA, 26–30 May 2015, pp. 1202–1209.

Niekum S and Chitta S (2013) Incremental semantically

grounded learning from demonstration. In: Proceedings of RSS

2013.

Niekum S, Osentoski S, Konidaris G and Barto AG (2012) Learn-

ing and generalization of complex tasks from unstructured

demonstrations. In: 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2012), Vilamoura,

Algarve, Portugal, 7–12 October 2012, pp. 5239–5246.

Paraschos A, Daniel C, Peters J and Neumann G (2013) Proba-

bilistic movement primitives. In: Burges C, Bottou L, Welling

M, Ghahramani Z and Weinberger K (eds.) Advances in Neural

Information Processing Systems 26, pp. 2616–2624.

Pastor P, Kalakrishnan M, Meier F, et al. (2013) From dynamic

movement primitives to associative skill memories. Robotics

and Autonomous Systems 61(4): 351–361.

Quellec G, Lamard M, Cochener B and Cazuguel G (2014) Real-

time segmentation and recognition of surgical tasks in cataract

surgery videos. IEEE Transactions on Medical Imaging 33(12):

2352–2360.

Saeedi A, Hoffman M, Johnson M and Adams R (2016) The seg-

mented ihmm: A simple, efficient hierarchical infinite HMM.

arXiv preprint arXiv:1602.06349.

Sahbani A, Dias J and Menezes P (2008) Grasp and task learn-

ing by imitation. In: IROS-2008 Workshop on Grasp and Task

Learning By Imitation.

Schaal S (2006) Dynamic movement primitives-a framework for

motor control in humans and humanoid robotics. In: Adaptive

Motion of Animals and Machines. Springer, pp. 261–280.

Sternad D and Schaal S (1999) Segmentation of endpoint trajec-

tories does not imply segmented control. Experimental Brain

Research 124(1): 118–136.

Sung C, Feldman D and Rus D (2012) Trajectory clustering for

motion prediction. In: 2012 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, pp.

1547–1552.

Tanwani AK and Calinon S (2016) Learning robot manipu-

lation tasks with task-parameterized semitied hidden semi-

Markov model. IEEE Robotics and Automation Letters 1(1):

235–242.

Tao L, Zappella L, Hager GD and Vidal R (2013) Surgical gesture

segmentation and recognition. In: Medical Image Computing

and Computer-Assisted Intervention (MICCAI 2013). Springer,

pp. 339–346.

Ude A, Gams A, Asfour T and Morimoto J (2010) Task-specific

generalization of discrete and periodic dynamic movement

primitives. IEEE Transactions on Robotics 26(5): 800–815.

Ude A, Nemec B, Petrić T and Morimoto J (2014) Orientation in

cartesian space dynamic movement primitives. In: 2014 IEEE

International Conference on Robotics and Automation (ICRA).

IEEE, pp. 2997–3004.

Vakanski A, Mantegh I, Irish A and Janabi-Sharifi F (2012)

Trajectory learning for robot programming by demonstration

using hidden Markov model and dynamic time warping. IEEE

Transactions on Systems, Man, and Cybernetics, Part B 42(4):

1039–1052.

Garg et al. 1617

Varadarajan B, Reiley C, Lin H, Khudanpur S and Hager G (2009)

Data-derived models for segmentation with application to sur-

gical assessment and training. In: Medical Image Computing

and Computer-Assisted Intervention (MICCAI 2009). Springer,

pp. 426–434.

Viviani P and Cenzato M (1985) Segmentation and coupling

in complex movements. Journal of Experimental Psychology:

Human Perception and Performance 11(6): 828.

Volkov M, Rosman G, Feldman D, Fisher JW and Rus D (2015)

Coresets for visual summarization with applications to loop

closure. In: 2015 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, pp. 3638–3645.

Wächter M and Asfour T (2015) Hierarchical segmentation of

manipulation actions based on object relations and motion

characteristics. In: 2015 International Conference on Advanced

Robotics (ICAR). IEEE, pp. 549–556.

Willsky AS, Sudderth EB, Jordan MI and Fox EB (2009) Shar-

ing features among dynamical systems with beta processes.

In: Advances in Neural Information Processing Systems, pp.

549–557.

Wu C, Zhang J, Savarese S and Saxena A (2015) Watch-n-patch:

Unsupervised understanding of actions and relations. In: Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 4362–4370.

Zappella L, Haro BB, Hager GD and Vidal R (2013) Surgical

gesture classification from video and kinematic data. Medical

Image Analysis 17(7): 732–745.

Appendix A: An introduction to variational

inference

Let X be a set of random variables {X1, X2, . . . , XN }. There

is a probability density p(·) defined over the domain of X :

p(X) = p(x1, x2, . . . , xN)

Suppose that only a subset of the random variables are

observed O ⊂ X .

In Bayesian parameter inference, we are interested in the

posterior distribution of the remaining unobserved random

variables H = X − O:

p(H | O) =
p(X)

∫

H
p(X) ∂H

=
p(X)

p(H)

This expression is usually intractable due to difficulty of

integrating over the entire parameter space in the denomina-

tor p(H). One approach is to use MCMC to approximately

compute the integral in the denominator by sampling from

the distribution p(H). This approach, while widely used, can

be very slow and inefficient.

In variational inference, instead of sampling to calcu-

late p(H), a parametrized version of the distribution is

optimized. Let us instead pretend that we had choice over

q(·) ≈ p(·), a density over the hidden variables H:

p(H) =

∫

H

p(X) ∂H

p(H) =

∫

H

p(X)
q(H)

q(H)
∂H

p(H) = Eq

(

p(X)

q(H)

)

log p(H) = log Eq

(

p(X)

q(H)

)

This gives a lower bound via Jensen’s inequality:

log p(H) ≥ Eq(log p(X)) − Eq(log q(H))

This function is called the evidence lower bound (ELBO)

function:

L(q) = Eq(log p(X)) −Eq(log q(H))

The key idea in variational inference is to choose a q(H)

that approximates p(H) but is tractable to compute the

expectations Eq. This function has two terms: (1) the likeli-

hood term evaluating whether the distribution is supported

by p; (2) the entropy term maximizing the entropy of hidden

variables.

A.1. Mean-field approximation

One way to select q(·) is to use a density where all the

random variables are conditionally independent:

q(H) = 5Xi∈Hqi(Xi)

Then, it follows that the “entropy” term of the ELBO

function is
∑

i∈H

Ei log qi(Xi)

For the “likelihood” term, we can apply the chain rule to

p(X), to obtain

p(X) = p(H | O) p(O)

p(X) = p(O) 5ip(Hi | Hj 6=i,O)

It follows that the mean-field ELBO function is

L(q) = log(p(O)) +
∑

i∈H

Ei log p(Hi | Hj 6=i,O)

+Ei log qi(Xi)

which becomes

L(q) = const +
∑

i∈H

Ei log p(Hi | Hj 6=i,O) +Ei log qi(Xi)

A.2. Variational inference

The goal of variational inference is to optimize the ELBO

function:

max
q

L(q)

In principle, we could apply standard techniques such

as gradient descent, suppose we had q parametrized by

some λ:

λ(k) = λ(k−1) − λ∇λL(qλ)

1618 The International Journal of Robotics Research 36(13–14)

However, since we are really optimizing over the space of

distributions, this has some complicated issues. In other

words, q is not a Euclidean point, it is a distribution, and

accordingly this changes the metric space. The gradient is

weighted accordingly with a matrix G(λ)− 1. This is analo-

gous to gradient descent on a manifold where distances are

measured by different metric. It turns out that if you use

the Kullback–Leibler (KL) divergence as this metric, G(λ)

is a matrix called the Fisher information matrix. Then, the

updates have a really straightforward form.

Appendix B: Mean-field variational inference

For DP-GMM

To derive a mean-field variational procedure for the DP-

GMM, we first define a generative model:

Hyper-parameters: α initial concentration parameter, G0

base distribution of Gaussian parameters, K max number of

clusters.

1. Draw Vi ∼ Beta(1, α), i = 1, 2, . . . , K

2. θ = Vi

∏i−1
j=1(1 − Vi)

3. Draw ηi ∼ G0, i = 1, 2, . . . , K

4. For each data point n:

(a) Zn ∼ Multinomial(θ)

(b) Xn ∼ Normal(ηzn)

Optimization algorithm: Based on this generative model,

we can derive the ELBO function:

log p(X|α, G0) ≥ E[log p(V|α)]

+ E[log p(η|G0)]

+

N
∑

i=0

E[log p(Zn|V)]

+ E[log p(xn|Zn)]

–E[log q(Z, V, η)]

Then, we approximate q with a mean-field approximation:

q(Z, V, η) =

K
∏

i=1

q1(vi)

K
∏

i=1

q2(ηi)

N
∏

i=1

q3(zn)

To infer the parameters of this generative model, we apply

the following coordinate ascent algorithm:

q(zn = i) = φn,i

q(zn > i) =

K
∑

i=1

φn,i

E[log Vi] = DiGamma(γi,1) −DiGamma(γi,1 + γi,2)

E[log(1−Vi)] = DiGamma(γi,2) −DiGamma(γi,1 +γi,2)

γi,1 =

N
∑

n=0

φn,i

γi,2 = α +

N
∑

n=0

K
∑

j=i+1

φn,j

