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Abstract

Demonstration trajectories collected from a supervisor in teleoperation are widely used for robot learning, and temporally
segmenting the trajectories into shorter, less-variable segments can improve the efficiency and reliability of learning algo-
rithms. Trajectory segmentation algorithms can be sensitive to noise, spurious motions, and temporal variation. We present
a new unsupervised segmentation algorithm, transition state clustering (TSC), which leverages repeated demonstrations
of a task by clustering segment endpoints across demonstrations. TSC complements any motion-based segmentation algo-
rithm by identifying candidate transitions, clustering them by kinematic similarity, and then correlating the kinematic
clusters with available sensory and temporal features. TSC uses a hierarchical Dirichlet process Gaussian mixture model
to avoid selecting the number of segments a priori. We present simulated results to suggest that TSC significantly reduces
the number of false-positive segments in dynamical systems observed with noise as compared with seven probabilistic and
non-probabilistic segmentation algorithms. We additionally compare algorithms that use piecewise linear segment mod-
els, and find that TSC recovers segments of a generated piecewise linear trajectory with greater accuracy in the presence
of process and observation noise. At the maximum noise level, TSC recovers the ground truth 49% more accurately than
alternatives. Furthermore, TSC runs 100x faster than the next most accurate alternative autoregressive models, which
reguire expensive Markov chain Monte Carlo (MCMC)-based inference. We also evaluated TSC on 67 recordings of surgi-
cal needle passing and suturing. We supplemented the kinematic recordings with manually annotated visual features that
denote grasp and penetration conditions. On this dataset, TSC finds 83% of needle passing transitions and 73% of the
sufuring transifions annotated by human experts.
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trajectory segmentation, surgical robotics, robot learning

1. Introduction

Describing a complex task in terms of motion primitives
has been an important area of research since the early days
of robotic planning (Brooks, 1986; Fikes et al., 1972). An
important sub-problem of primitive-based task planning is
segmentation, where given a set of observation trajectories,
one needs to identify the start and end times of the under-
lying primitives in each trajectory (for an overview, see
Lin et al., 2016). The segmentation problem is crucial for
analyzing and modeling expert demonstration data ( Argall
et al., 2009), since it facilitates learning localized control
policies (Konidaris et al., 2011; Murali et al., 2015; Niekum
et al., 2012), and adaptation to unseen scenarios (Ijspeert
et al., 2002; Ude et al., 2010).

While one could infer segmentation criteria from man-
ual annotations or matching to pre-defined dictionaries of
motion templates, labeling consistency and supervisory
burden are concerns in supervised approaches. Complex,

high-dimensional data can require a large amount of labels
before a viable sepmentation model can be learned. Simi-
larly, dictionaries of primitives can be incomplete. To avoid
these problems, unsupervised sepmentation methods have
long been studied (Morasso, 1983; Sternad and Schaal,
1999; Viviani and Cenzato, 1985). Recently, several new
probabilistic approaches have been proposed that pose sep-
mentation as a probabilistic inference problem (Alvarez
et al., 2010; Barbi¢ et al., 2004; Chiappa and Peters, 2010;
Kriiger et al., 2012; Niekum et al.,, 2012; Wichter and
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Asfour, 2015). The approaches model a trajectory as gen-
erated from a mixture of parametrized dynamical regimes,
and an inference procedure learns the dynamical parame-
ters that can be used to identify time segments at which each
regime is active.

Explicitly modeling the dynamics can require a large
number of parameters to be learned. This makes such
approaches somewhat sensitive to any noise in the dataset,
especially when the datasets are small. This sensitivity
leads to challenges in applications such as robotic surgery.
The adoption of robot-assisted minimally invasive surgery
(RMIS) generating datasets of kinematic and video record-
ings of surgical procedures (Gao et al., 2014), and where
trajectories are collected from teleoperation interfaces.
With such interfaces, we have observed significant jitter
in motion and noise due to time delays Figure 1 plots 10
expert demonstrations of a surgical training task (Chuck
et al., 2017; Liang et al., 2017). In such a setting, the
robustness and stability of the segmentation algorithm are
a key concern in surgical segmentation, and to the best of
the authors’ knowledge, prior work mitigates this issue by
leveraging pre-defined dictionaries of motion segments (Lin
et al., 2005, 2006).

In many important tasks, while the demonstration
motions may vary and be noisy, each demonstration
contains roughly the same order of true segments, e.g.
well-defined surgical training procedures. This consistent,
repeated structure can be exploited to infer global segmen-
tation criteria. By assuming known sequential segment-to-
segment transitions, the problem reduces to identifying a
common set of segment-to-segment transition events, not
corresponding to the entirety of trajectory segments across
the whole dataset. This allows us to apply coarser, imper-
fect motion-based segmentation algorithms first that cre-
ate a large set of candidate transitions. Then, we can fil-
ter this set by identifying transition events that occurred
at similar times and states. Our experiments suggest that
this approach has improved robustness and sample effi-
ciency, while approximating the behavior of more compli-
cated dynamical systems-based approaches in many real
problems.

This paper formalizes this intuition into a new hier-
archical clustering algorithm for unsupervised segmenta-
tion called transition state clustering (TSC). The proposed
approach is also relevant to problems in other domains,
but this paper will focus on results from surgical applica-
tions. TSC first applies a motion-based segmentation model
over the noisy trajectories and identifies a set of candidate
segment transitions in each. TSC then clusters the transi-
tion states (states at times transitions occur) in terms of
kinematic, sensory, and temporal similarity. The clustering
process is hierarchical where the transition states are first
assigned to Gaussian mixture clusters according to kine-
matic state, then these clusters are sub-divided using the
sensory features, and finally by time. We present experi-
ments where these sensory features are constructed from
video. The learned clustering model can be applied to

Fig. 1. Plot of 10 trajectories of the end-effector (x,y,z) posi-
tions on an identical circle cutting task on the da Vinci Research
Kit (dVRK). This plot illustrates the variability of demonstrations
even when the task is identical.

segment previously unseen trajectories by the same global
criteria. To avoid setting the number of clusters at each
level of the hierarchy in advance, the number of regions
are determined by a Dirichlet process (DP) prior. A series
of merging and pruning steps remove sparse clusters and
repetitive loops.

Example: As an example of how noise can affect seg-
mentation, consider a system where a spherical ball is
dropped until it bounces off a block. Under noiseless condi-
tions, most classical segmentation techniques that look for
changes in direction (e.g. zero-velocity crossings) or local
linearity of motion would identify two segments (Figure 2).
If the observations are perturbed by noise, these approaches
tend to “over segment,” where noise can be confused for
actual changes in direction. If we collect five demonstra-
tions from the same system, and plot the estimated seg-
ment transitions (state of the end point) for each of the
noisy demonstrations: we would find that the densest clus-
ters correspond to actual segment endpoints. TSC exploits
this property to improve the robustness of motion-based
segmentation.

This paper is a substantially revised and expanded ver-
sion of Krishnan et al. (2015). This version includes sev-
eral new experiments evaluating TSC against a broader set
of alternative algorithms, an expanded technical discussion
about the model, and revised accuracy metrics consistent
with recent segmentation work in robotics and computer
vision.

2. Related work

This section provides an overview of the development of
unsupervised segmentation with a focus on the recent trend
of probabilistic models. The study of trajectory segmenta-
tion algorithms has a long history, especially in the context
of decomposing human motion into primitives. For exam-
ple, Viviani and Cenzato (1985) explored using the “two-
thirds” powerlaw coefficient to determine segment bound-
aries in handwriting. Similarly, Morasso (1983) showed that
rhythmic 3D motions of a human arm could be modeled
as piecewise linear. Mao et al. (2014) considered a seg-
mentation model that classified human arm motions into
three phases: (1) a reach phase where the arm moves until
it comes in contact with an object; (2) a manipulation phase
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Fig. 2. Challenges of unsupervised segmentation in the presence of noise. A change in velocity condition can lead to spurious segments.

Clustering segment end-points over repeated demonstrations can help remove artifacts of noise as in TSC.

where the arm manipulates the object; and (3) a withdraw
phase where the arm releases the object. Other approaches
rely on thresholds on metrics such as curvature changes,
zero-velocity crossings, and jerk criteria (Faria et al., 2012;
Fod et al., 2002; Sahbani et al., 2008). Temporal segmen-
tation is also studied in the motion capture community
(Moeslund and Granum, 2001). Motivated by segmenting
human motions, these models make strong assumptions
kinematics of end-effector that generates the motions. This
motivates the development of probabilistic segmentation
models that can estimate local structure to mitigate such
assumptions.

2.1. Fully unsupervised approaches

One approach is to use a mixture model, and many unsuper-
vised segmentation techniques are based on hidden Markov
models (HMMs) with Gaussian emissions (Asfour et al.,
2008; Calinon et al., 2010; Gehrig et al., 2011; Kruger
et al., 2010; Kulic et al., 2009; Vakanski et al., 2012). Con-
sider a continuous-time vector-valued trajectory, which is
a sequence of T vectors x; in some vector space R”. One
can write a generative model where the observed trajectory
is composed of a sequence of & latent primitive behaviors.
These behaviors have Markovian dynamics and transition
based on a latent Markov chain, and conditioned on the cur-
rent behavior the observed state is drawn from a particular
Gaussian mixture component. One challenge is that tuning
the number of segments is a key hyper-parameter. This basic
model was extended by Kriiger et al. (2012) to flexibly set
the number of mixture components using a DP. Lee et al.

(2015) further explored using dimensionality reduction and
tune the number of mixture components using the Bayesian
information criterion.

This basic logic has been extended to more complex tran-
sition dynamics such as the hidden semi-Markov model,
which additionally models the amount of time spent in a
given state (Tanwani and Calinon, 2016). There are also
extensions that consider changes to emission model in addi-
tion to the high-level transitions. Willsky et al. (2009) pro-
posed a beta process autoregressive HMM, which has also
been applied by in robotics (Niekum and Chitta, 2013;
Niekum et al., 2012). This model fits an autoregressive
model to time series, where X, is a linear function of states
X;—f,-..,X;. The linear function switches according to a
HMM with states parametrized by a beta-Bernoulli model
(i.e. beta process).

It is important to note that the HMM-based approaches
were first designed in the context of signal processing. The
goal was to segment a long continuous stream of observa-
tions into a relatively small number of distinct symbols. In
these HMM approaches, one learns the high-level transition
structure as well as the low-level primitives. Demonstration
data differs from this context as it is episodic in nature (mul-
tiple repeated demonstrations), may have a large number
of primitives, and a relatively fixed transition structure. As
a result we find that TSC, which explicitly leverages this
structure, is more data efficient and robust to un-modeled
noise. This weakness of HMMs is well-established, where
“the low-level dynamics within a segment are more struc-
tured and predictable than the higher-level dynamics that
govern transitions between segments” (Saeedi et al., 2016).
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We compare against several representative approaches from
this family of algorithms and find that TSC is more robust
for small noisy datasets.

There are also several control-theoretic formulations of
segmentation (Alvarez et al., 2010, 2013; Sternad and
Schaal, 1999). In a seminal paper, Sternad and Schaal
(1999) provided a formal framework for control-theoretic
segmentation of trajectories. Alvarez et al. (2010) used a
latent-force model, where variables are modeled as coupled
by a dynamical system. Switching behavior in the coupling
system are used to derive segmentation criteria. TSC can
be interpreted as fitting local linear dynamics models to the
demonstrations, and to improve robustness, we have multi-
ple levels of clustering and pruning steps that remove sparse
clusters. However, in this paper, we primarily consider kine-
matics and hope to explore segmentation with dynamics in
the future.

2.2. Label-based approaches

There are also several methods that leverage labeled data
to segment trajectories. That is, an expert annotates a small
set of trajectories with labels and a model extrapolates seg-
mentation properties on unlabeled trajectories (Lea et al.,
2015; Lin et al., 2014; Quellec et al., 2014; Tao et al.,
2013; Varadarajan et al., 2009; Zappella et al., 2013). This
approach is very common in robotic surgery; however,
it involves the time-consuming the process of identifying
surgemes in existing data sources for use as training and
testing data (Lea et al., 2015; Tao et al., 2013; Varadara-
jan et al., 2009). For example, given manually segmented
videos, Zappella et al. (2013) used features from both the
videos and kinematic data to classify surgical motions. Sim-
ilarly, Quellec et al. (2014) use manually segmented exam-
ples as training for segmentation and recognition of surgical
tasks based on archived cataract surgery videos.

2.3. Dictionary or library-based approaches

An alternative viewpoint to the fully unsupervised
approaches is to have a small library of primitive templates
that are modulated and combined to construct more com-
plex behaviors (Chiappa and Peters, 2010; Meier et al.,
2011; Pastor et al., 2013). Chiappa and Peters (2010) gen-
erated the observations from a set of movement templates.
The observed time series is generated from a composi-
tion of these templates modulated by a noisy transforma-
tion. Parameter inference can be done with a Markov chain
Monte Carlo (MCMC) method or a variational approxi-
mation. Some of these approaches use a approach based
on dynamic movement primitives (DMPs) (Schaal, 2006).
DMPs are a mathematical formalization of the composi-
tion of primitives. Each DMP is a nonlinear dynamical
system with well-specified, stable behavior and a forcing
term that makes it follow a trajectory of interest. There are
also a number of interesting challenges in applying such

approaches when the trajectories are periodic or have a
rotational topology (Ude et al., 2010), and when the primi-
tives are probabilistic (Paraschos et al., 2013). Likewise, the
surgical robotics literature has also often leveraged a pre-
defined dictionary called surgemes (Lin et al., 2005, 2006).
These surgemes were constructed through domain exper-
tise and careful examination of expert surgeons. TSC can be
seen as automatically bootstrapping the library of primitives
through clustering. It first takes a coarse model that detects
transitions and clusters this into corresponded segments.

2.4. Two-step segmentation

While library-based approaches have been very popular,
building a library of primitives can be challenging. One
way to address this problem is to have a two-step pro-
cedure. The first step applies a less-complex model that
over-segments each trajectory, i.e. a set candidate segment
endpoints that are a superset of the true segment endpoints.
For example, Meier et al. (2012) found minima in the veloc-
ity and/or acceleration profile of the trajectories. These can-
didates describe potential segment endpoints, but they do
not assign the segment labels to any partial trajectories.
These approaches then apply a subsequent probabilistic
inference step that refines the candidates (Lioutikov et al.,
2015; Meier et al., 2012). Both of these works are very
similar in spirit to TSC. In both, the first step generates can-
didates (that we call transition states), which are refined by a
probabilistic model (clustering). We additionally present an
option for automatically generating these initial candidates
using GMMs. We find that this approach experimentally
works across a number of domains. The particulars of the
refinement step are different in all of the works. For exam-
ple, we use a hierarchical DP mixture model, Meier et al.
(2012) fitted a parametrized DMP model and filters for the
most likely segment candidates, and Lioutikov et al. (2015)
used a probabilistic movement primitives model with a mes-
sage passing inference algorithm. In this work, we did not
consider the relationship between TSC and DMPs, and we
hope to compare to these two approaches in future work.

2.5. TSC contributions

Segmentation is a very well-studied field and TSC cer-
tainly builds on several seminal works, such as Calinon
et al. (2010) and Kriiger et al. (2012). The goal of this
paper is to explore to what extent an unsupervised approach
(no dictionary and no labels) can segment realistic surgi-
cal data reliably. To the best of the authors’ knowledge,
prior work in surgical robotics has only considered super-
vised segmentation using either segmented examples or
dictionaries.

We present a framework that uses GMMs to coarsely
segment a trajectory and hierarchical clustering to cor-
respond segments across trajectories. TSC makes a key



Garg et al.

1599

assumption about sequential segment-to-segment transi-
tions, and the problem reduces to identifying a common set
of segment-to-segment transition events, not corresponding
to the entirety of the trajectory segments across the whole
dataset. We present a through experimental comparison of
deterministic models, probabilistic models, and replacing
various components of TSC.

3. Problem statement and definitions

This section describes the problem setting, assumptions,
and notation. Let D = {d;} be a set of demonstrations of
a robotic task. Each demonstration of a task d is a discrete-
time sequence of T state vectors in a feature-space X'. The
feature space is a concatenation of kinematic features X
(e.g. robot position) and sensory features V (e.g. visual
features from the environment).

Definition 1 (Segmentation). A segmentation of a task is
defined as a function S that assigns each state in every
demonstration trajectory to an integer 1,2, ... k:

S:d(a,. ja, an€l,... .k

and S is a non-decreasing function in time (no repetitions).

3.1. Candidate transitions

Suppose we are given a function that just identifies candi-
date segment endpoints based on the kinematic features.
Such a function is weaker than a segmentation function
since it does not globally label the detected segments. This
leads to the following definition.

Definition 2 (Transition indicator function). A transition
indicator function T is a function that maps each kinematic
state in a demonstration d to {0, 1}:

T:dw—(an, 14, a€0,1

The above definition naturally leads to a notion of transi-
tion states, the states and times at which transitions occur.

Definition 3 (Transition states). For a demonstration d;, let
0;, denote the kinematic state, visual state, and time (x, v, t)
at time t. Transition states are the set of state—time tuples
where the indicator is 1:

N
I = Jloi, €di: T(dy) =1}

The goal of TSC is to take the transition states I" and
recover a segmentation function S. This segmentation func-
tion is stronger than the provided T since it not only indi-
cates that a transition has occurred but labels the segment
transition consistently across demonstrations.

3.2. Assumptions

We assume that all possible true segments are represented
in each demonstration by at least one transition (some might
be false positives). Given the segmentation function S(d;),
one can define a set of #rue transition states:

F* = {Oi,t S di . S(dl'),_l ;ﬁ S(di)t, > O}
These satisfy the following property:
r“cr

In other words, we assume that a subset of transition states
discovered by the indicator function correspond with the
true segment transitions. There can be false positives but
no false negatives (a demonstration where a segment tran-
sition is missed by the transition indicator function). Since
the segmentation function is sequential and in a fixed order,
this leads to a model where we are trying to find the £ — 1
true segment—segment transition points in I".

3.3. Problem statement and method overview

These definitions allow us to formalize the transition state
clustering problem.

Problem 1 (Transition state clustering). Given a set of reg-
ular demonstrations D and transition identification function
T, find a segmentation S.

Candidate transitions: To implement T, TSC fits a Gaus-
sian mixture model (GMM) to sliding windows over each
of the demonstration trajectories and identifies consecutive
times with different most-likely mixture components.

Transition state clusters: The states at which those transi-
tions occur are called transition states. TSC uses a GMM to
cluster the transition states in terms of spatial and temporal
similarity to find S.

Optimizations: To avoid setting the number of clusters
at each level of the hierarchy in advance, the number of
regions are determined by a DP prior. A series of merg-
ing and pruning steps remove sparse clusters and repetitive
loops.

4. Transition state clustering

In this section, we describe how to take a set of given
transition states I', and cluster them across demonstrations.
The next section describes one approach to automatically
generate I".

4.1. Non-parametric mixture models

Hyper-parameter selection is a known problem in mixture
models. Recent results in Bayesian statistics can mitigate
some of these problems by defining a soft prior of the num-
ber of mixtures. Consider the process of drawing samples
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Algorithm 1: Transition State Clustering

1: Input: T transition states, p pruning parameter

BANE AN S

confidence intervals.

Fit a mixture model to the set of transition states I" in the kinematic states.

Fit a mixture model to the sensory features for transitions within every kinematic cluster i.

Fit a mixture model to the times from every kinematic and sensory cluster pair (7, ).

Remove clusters that contain fewer than transition states from fewer than p - N distinct demonstrations.
Output: A set of transitions, which are regions of the state-space and temporal intervals defined by Gaussian

from a GMM. We first sample some ¢ from a categorical
distribution, one that takes on values from (1...m), with
probabilities ¢, where ¢ is a m dimensional simplex:

c ~ cat(m, )

Then, conditioned on the event {¢ = i}, we sample from a
multivariate Gaussian distribution:

X; ~ N(m;, X))

We can see that sampling a GMM is a two-stage process
of first sampling from the categorical distribution and then
conditioning on that sample.

The key insight of Bayesian non-parametrics is to add
another level (or multiple levels) to this model. The DP
defines a distribution over discrete distributions; in other
words, a categorical distribution with certain probabilities
and setting of m itself is a sample from a DP (Kulis and
Jordan, 2012). To sample from the DP-GMM, one must
first sample from the DP, then sample from the categorical
distribution, and finally sample from the Gaussian:

(m,¢)~ DP(H,a), ¢~ cat(m,p), x~N(u;%;)
The parameters of this model can be inferred with vari-
ational expectation maximization (see Appendix A). We
use this model in TSC at each layer of the hierarchi-
cal clustering. For each layer, the inference procedure is
independent.

4.2. Clustering algorithm

We now present the clustering algorithm, which is summa-
rized in Algorithm 1. In a first pass, the transition states
are clustered with respect to the kinematic states, then sub-
clustered with respect to the sensory states, and then, we
temporally sub-cluster. The sub-clusters can be used to
formulate the segmentation criteria.

Kinematic step: We want our model to capture that transi-
tions that occur in similar positions in the state-space across
all demonstrations are actual transitions, and we would like
to aggregate these transitions into logical events. Hypothet-
ically, if we had infinite demonstrations, I" would define a
density of transition events throughout the state space. The
modes of the density that intuitively represent a propensity

of a state x to trigger a segment change are of key interest
to us.

We can think of the set of identified transition states I"
as a sample of this density. We fit a DP-GMM to kinematic
features of the transition states. Each transition state will
have an assignment probability to one of the mixture com-
ponents. We convert this to a hard assignment by assigning
the transition state to the most likely component.

Sensory step: Then, we apply the second level of DP-GMM
fitting over the sensory features (if available). Within each
kinematic cluster, we fit a DP-GMM to find sub-clusters
in the sensory features. Note that the transitions were only
identified with kinematic features. This step grounds the
detected transitions in sensory clusters.

Temporal step: Finally, we apply the last level of DP-GMM
fitting over the time axis. Without temporal localization, the
transitions may be ambiguous. For example, in a figure-of-
eight motion, the robot may pass over a point twice in the
same task. Conditioned on the particular state-space cluster
assignment, we can fit a DP-GMM each to each subset of
times. The final result contains sub-clusters that are indexed
both in the state space and in time.

Enforcing consistency: The learned clusters will vary in
size as some may consist of transitions that appear only in
a few demonstrations. The goal of TSC is to identify those
clusters that correspond to state and time transition condi-
tions common to all demonstrations of a task. We frame
this as a pruning problem, where we want to enforce that all
learned clusters contain transitions from a fraction of p dis-
tinct demonstrations. Clusters whose constituent transition
states come from fewer than a fraction of p demonstrations
are pruned. Here p should be set based on the expected rar-
ity of outliers. For example, if p is 100%, then the only
mixture components that are found are those with at least
one transition state from every demonstration (i.e. the reg-
ularity assumption). If p is less than 100%, then it means
that every mixture component must cover some subset of
the demonstrations. In our experiments, we set the param-
eter p to 80% and show the results with and without this
step.

Segmentation criteria: Finally, if there are & remaining
clusters {Cy,...,C}, we can use these clusters to form a
criteria for segmentation. Each cluster is formed using a
GMM triplet in the kinematic state, visual state, and time.
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The quantiles of the three GMMs will define an ordered
sequence of regions [py, ..., o] over the state space and
each of these regions has an associated time interval defined
by the Gaussian confidence interval for some confidence
level z,.

5. Algorithm analysis

TSC is a hierarchical clustering algorithm that groups
together transition events with similar time, kinematic, and
sensory features. Next, we analyze some of the algorithm
design choices and interpretations of the different steps.

5.1. Hierarchical clustering interpretation

TSC is a form of top-down divisive hierarchical clustering.
Given a set of transitions, it groups those transitions based
on kinematics, sensory input, and temporal conditions. The
hierarchical clustering allows this clustering to be jagged,
where parent clusters can have varying sizes of sub-clusters.
One design choice was to treat the time and state axes in two
different clustering steps, while other authors have proposed
augmenting the state space with time (Lee et al., 2015). We
empirically found that the scaling differences between the
temporal features and the state features made augmenting
the state space with time difficult to tune in practice. A hier-
archical approach ensures that logically grouped features
are clustered together.

5.2. Probabilistic model

Kinematics only: It can also be viewed probabilistically.
Let us first consider a single layer of the hierarchy, where
transitions are only clustered in the kinematic state. Over
all of the demonstrations D, there is a corresponding set I'
of all transition states. We model the set I as samples from
an underlying parametrized distribution over the state space
x € R”:

[~ fo(x)

Then, we can model the distribution as a GMM:

Jo(x)= GMM (7 {1, ..., ik {20, - -, Zie})

The interpretation of this distribution is 7w describes the
fraction of transitions assigned to each mixture component,
w; describes the centroid of the mixture component, and ¥;
describes the covariance. One can think of these as defining
ellipsoids in the state-space that characterize regions where
transitions occur.

Multiple layers: With multiple layers of clustering hierar-
chy the probabilistic interpretation is a bit more compli-
cated. However, it can be seen defining a GMM conditioned
on the parent layer’s assignment to a mixture component.
Suppose, we have both kinematic and visual states:

'~ fo(x,v)

Using the chain rule, we can decompose fy(x,v) into two
independently parametrized densities p, g:

Jo(x,0) = pg,(x) - qe,(v | X)

We can model both p and ¢ as mixture models, and with the
simplifying assumption that the state-space mixture compo-
nent is a sufficient statistic for 6, the hierarchical cluster-
ing process is a hard-assignment version of this inference
problem.

6. Gaussian mixture transition identification

Although we can use any transition identification function
to obtain I' (as long as it satisfies the assumptions), we
present one implementation based of Gaussian mixtures
that we used in a number of our experiments. We found
that this GMM approach was scalable (in terms of data
and dimensionality) and had fewer hyper-parameters to tune
than more complex models. Combined with the subsequent
hierarchical clustering, this approach proved to be robust in
all of our experiments.

6.1. Transition identification algorithm

Each demonstration trajectory d; is a trajectory of 7; state
vectors [x1,...,x7;]. For a given time ¢, we can define a
window of length £ as

4
Wg : = [xtfla e 7xI]T

Then, for each demonstration trajectory we can also gener-
ate a trajectory of 7; — £ windowed states:
df =w, ... W]

Over the entire set of windowed demonstrations, we collect
a dataset W of all of the W;Z) vectors. We fit a DP-GMM to
these vectors. This model defines m multivariate Gaussian
distributions and a probability that each observation wgz) is
sampled from each of the m distributions. We annotate each
observation with the most likely mixture component. Times
such that wﬁ“ and wi?l have different most likely compo-
nents are marked as transitions. This algorithm is summa-
rized in Algorithm 2. For each demonstration it returns a
candidate set of transitions. Which can be used to construct
the set of transition states I".

6.2. Capturing dynamics through windowing

The role of windowing is to capture some information about
the dynamics of the trajectory. Consider the case when
£ = 1, this means that ¥ is just a dataset of all of the states
observed over all trajectories. Fitting a GMM to this data,
identifies clusters in the distribution of states visited by the
demonstrations.
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Algorithm 2: Transition Identification

1: Input: D demonstrations, £ a window size, and « a DP prior.

2: For each demonstration, generate a set of sliding windows of wﬁa = [X¢—¢, . ..

windows across all demonstrations.

,X/]T. Let W be the set of all sliding

3: Fit a mixture model to W assigning each state to its most likely component.

4: Identify times ¢ in each demonstration when w, has a different most likely mixture component than w1, start and
finish times (¢ = 0, t = T;) are automatically transitions.

5: Return: A set of transition states I', the (x, v, f) tuples at which transitions occur.

Windowing (¢ > 1) finds clusters in the distribution of
sequences of states. To interpret what this means, we high-
light a well-known result from Bayesian statistics. Ghahra-
mani and Jordan (1993) explained how GMMs are equiva-
lent to Bayesian local linear regression, where each mixture
component defines a regression surface. With this interpre-
tation, a windowed GMM can be interpreted as finding the
windows that not only lie near the same states but also
lie on the same regression surface, i.e. similar local linear
transition laws.

For intuition, consider the following discrete-time
dynamical system:

Xep1 = &(x;)

Suppose, we want to model the behavior of this system
around a state u. Let x, be drawn from a Gaussian dis-
tribution x; ~ N(u,X), and measure how this Gaussian
distribution propagates through the system. This models
the distribution of states that will be observed around the
neighborhood of x;, = .

If & is linear, then each pair of states x;,x,,1 are related
by

X1 = Ax,

It follows that the vector (X;:I) is a multivariate Gaus-

sian centered at (). Then, the problem of learning & in
this neighborhood (i.e. recovering the local dynamics A)
reduces to finding the parameters of this Gaussian distri-
bution. For multivariate Gaussians, the conditional expec-
tation over any projection is a linear estimate, and we can
see that it is equivalent to regression:

-1
argmin ) _ [l 4x — 1]l = Elxi | ]

t=1

A natural extension is a £ that is piecewise-linear and
can be modeled as switched linear dynamical system. That
is, there exists m d x d matrices {41, ..., 4™)}:

Xet1 = AXe + W, A € (4D, 4™ (1)
Assuming that each of these m linear regimes is active in a

small neighborhood centered at {111, ..., u,}, respectively,
the Gaussian model extends to a GMM with m components.

7. Loop compaction

Next, we describe our approach to make the model resilient
to noise in the form of loops.

7.1. “Loops” in surgical demonstrations

Loops are common in surgical demonstrations. For exam-
ple, a surgeon may attempt to insert a needle two or three
times before success. These looping actions will occur a
varying number of times in each demonstration leading
to temporal variability. This challenge is not merely the-
oretical, and practical datasets often contain a significant
number of these looping motions. For example, the 30 Knot
Tying demonstrations from the JIGSAWS dataset contain
25 looping motions (Gao et al., 2014). To be able to extract
a consistent segmentation criteria, we must “compact” these
loops into a single logical motion. We apply this step after
Algorithm 1 (transition identification).

7.2. Compaction algorithm

The key question is how to differentiate between repetitions
that are part of the demonstration and those that correspond
to looping actions. The sequence might contain repetitions
not due to looping. As a heuristic, we threshold the L2 dis-
tance between consecutive segments with repeated transi-
tions. If the L2 distance is low, we know that the consecutive
segments are happening in a similar location as well. In our
datasets, this is a good indication of looping behavior.

For each demonstration, we define a segment s(/)[¢] of
states between each transition state. The challenge is that
s()[¢] and s"*D[f] may have a different number of obser-
vations and may be at different time scales. To address this
challenge, we apply dynamic time warping (DTW). Since
segments are locally similar up to small time variations,
DTW can find a most-likely time alignment of the two
segments.

Let sU+tD[#*] be a time aligned (with respect to s()) ver-
sion of s/*1_ Then, after alignment, we define the L, metric
between the two segments:

T
A+ D= 3 (s — SOV
t=0
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When d < §, we compact two consecutive segments. Here
3 is chosen empirically and a larger § leads to a sparser dis-
tribution of transition states, and a smaller § leads to more
transition states. For our needle passing and suturing exper-
iments, we set § to correspond to the distance between two
suture/needle insertion points; thus, differentiating between
repetitions at the same point versus at others. However,
since we are removing points from a time series, from every
following observation, we shift the time stamp back by the
length of the compacted segments.

8. Results

We evaluate TSC’s robustness in the following way.

1. Precision. Results suggest that TSC significantly
reduces the number of false-positive segments in sim-
ulated examples with noise.

2. Recall. Among algorithms that use piecewise linear seg-
ment models, results suggest TSC recovers segments
of a generated piecewise linear trajectory more con-
sistently in the presence of process and observation
noise.

3. Applicability to real-world data. Result suggest that
TSC recovers qualitatively relevant segments in real
surgical trajectory data.

8.1. Precision in synthetic examples

Our first experiment evaluates the following hypothesis:
TSC significantly reduces the number of false-positive seg-
ments in a simple simulated example with noise. These
experiments evaluate TSC against algorithms with a single
level of clustering.

We now provide a comparison of seven alternative seg-
mentation criteria.

1. Zero-Velocity Crossing (VEL): This algorithm detects a
change in the sign of the velocity.

2. Smoothed Zero-Velocity Crossing (VELS): This algo-
rithm applies a low-pass filter (exponentially weighted
moving average) to the trajectory, and then detects a
change in the sign of the velocity.

3. Acceleration (ACC): This algorithm detects any change
in the velocity by looking for non-zero acceleration.

4. Gaussian Mixture Model (GMM): This algorithm
applies a GMM model to the observed states and detects
changes in most likely assignment. The number of
clusters was set to two.

5. Windowed Gaussian Mixture Model (GMMW): This
algorithm is the first phase of TSC. It applies a GMM
to windows of size two, and detects changes in most
likely assignment. The number of clusters was set to
two, unlike in TSC where we use the DP to set the
number of clusters.

6. Auto-Regressive Mixture (AR): This model fits a piece-
wise linear transition law to the observed data.

7. Coresets (CORE): We evaluate against a standard core-
set model (Sung et al., 2012; Volkov et al., 2015), and
the particular variant is implemented with weighted
k-means. We applied this to the same augmented state
vector as in the previously mentioned GMM.

8. Transition state clustering (TSC): Our proposed
approach with a pruning threshold of 0.8 and no loop
compaction.

8.1.1. Bouncing ball. We first revisit the example in the
introduction of the bouncing ball, which can be modeled as
the following 1D double-integrator system:

¥=—9.8m

This system is observed with additive Gaussian white noise
with std 10 (moderate noise):

y=x+N(0,10)
and std 20 (high noise):
y=x+N(0,20)

The system is initialized at xo = 122.5 and bounces when
x = 20, at which point the velocity is negated. Figure 3
illustrates the ideal trajectory and noisy realizations of these
trajectories.

We apply the segmentation algorithms to the trajectories
and plot the results in Figure 4. When there is no noise, all
of the algorithms are equally precise, and there is no trouble
with corresponding segments across demonstrations. All of
the “rate-of-change” methods (VEL, VELS, ACC) reliably
identify the point where the ball bounces. The GMM and
the CORE methods do not segment the trajectory at the
bounce point. On the other hand, the windowed GMM takes
two consecutive positions and velocities into account dur-
ing the clustering. Similarly, the autoregressive model can
accurately identify the bounce point. With no noise, TSC
has little difference with the windowed GMM.

Differences arise when we observe the trajectory with
additive Gaussian noise. The “rate-of-change” methods
have some spurious segmentation points due to noise. The
GMM-based methods are more robust to this noise, and
they retain similar precision. This motivates our choice of
the first phase of the TSC algorithm using a windowed
GMM approach. However, the GMM approaches still have
some spurious transitions. With these spurious points, it
becomes challenging to reliably correspond trajectories
across segments. Thus, TSC applies a second phase of clus-
tering to correspond the transitions and prune the sparse
clusters. This results in accurate segmentation even in the
presence of noise.

As the noise increases, TSC is still able to find accu-
rate segments. In the high-noise case, the bounce point is
still identified in four out of five trajectories. It is impor-
tant to note that we do not claim that one segmentation
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algorithm is more accurate than another, or that TSC more
accurately reflects “real” segments. These results only sug-
gest that TSC is more precise than alternatives; that is, given
the assumptions in TSC it consistently recovers segments
according to those assumptions. The next experiments will
study the recall characteristics.

8.1.2. Bouncing ball with air resistance. In the first set
of experiments, we illustrate TSC’s robustness to variance
in the state space. Next, we illustrate how TSC can still
correspond segments with temporal variation. Consider the
dynamics of the bouncing ball with an term to account for
air resistance:

¥=-9.8m/2 + K,x

We draw the air-resistance constant K, uniformly from
K, ~ U[1,5]. The consequence is that the ball will bounce
at different times in different trajectories.

Figure 5 illustrates the results. In the five trajectories, the
ball bounces between time steps 5 and 7. With no noise
VEL, VELS, ACC, GMMVW, and TSC can identify the
bounce point. Then, the system is observed with additive
Gaussian white noise with std 10:

y=x+N(0,10)

We find that TSC recovers a consistent set of segments even
with the temporal variation.

8.1.3. Hybrid approaches. In the previous experiments,
we presented TSC using a windowed GMM approach to
identify transitions. Next, we consider TSC with alternative
transition identification functions. Consider a “figure-of-
eight” trajectory defined parametrically as

x = cos(?)

y = 0.5sin(2¢)

The trajectory is visualized in Figure 6. The trajectory starts
at the far right and progresses until it returns to the same
spot. Velocity-based segmentation finds one transition point
where there is a change in direction (far left of the trajec-
tory; Figure 7). A windowed GMM where the number of
clusters is set by a DP finds three transition points. These
three points correspond to the far left point as well as
the crossing point in the figure-of-eight (happens twice).
These are two different segmentation criteria, and both are
reasonable with respect to their respective assumptions.

Next, this parametric trajectory is observed with additive
Gaussian noise of std 0.1 (Figure 6). We see that both the
GMM approach and the velocity approach have several spu-
rious transitions (Figure 7). TSC can improve the precision
of both techniques by adding a layer of clustering.

8.2. Rotations

Handling orientations is a challenging problem due to the
topology of SO(3) (Ude et al., 2014). As an example of what

can go wrong consider a 2D square rotating in the plane.
We construct a 1 x 1 m? 2D square and track a point on
the corner of the 2D square. The 2D square rotates clock-
wise in {T—O rad/s for 10 time steps, then switches, and rotates
the other direction at the same angular speed. The state
of the system is the (x,y) position of the corner. We add
0.1 m standard deviation Gaussian observation noise to the
observed trajectories.

We apply the segmentation algorithms to five trajectories
and plot the results in Figure 8. As before, with no noise, all
of the techniques are equally precise. In this example, there
is a difference between how the different techniques seg-
ment the trajectories. The rate-of-change methods segment
the trajectory at the point when the block changes rotation
direction. The GMM and the windowed GMM approaches
cuts the trajectory into three even segments, missing the
direction change. TSC cuts the trajectory into four seg-
ments including the direction change. TSC differs from the
windowed GMM because it sets the number of clusters
using the DP prior. With noise, the rate-of-change tech-
niques have a number of spurious segments. The GMM-
based approaches are more robust and TSC improves the
windowed GMM even further by clustering the detected
transitions. However, if the initial transitions were found in
angular space, then TSC would have found one segment. In
this sense, the definition of the state-space changes the seg-
ments found. We hope to explore these issues in more detail
in future work.

8.3. Recall in synthetic examples

Comparing different segmentation models can be challeng-
ing due to differing segmentation criteria. However, we
identified some algorithms that identify locally linear or
near-linear segments. We developed a synthetic dataset gen-
erator to generate piecewise linear segments and compared
the algorithms on the generated dataset. Note, we do not
intend this to be a comprehensive evaluation of the accu-
racy of the different techniques, but more a characterization
of the approaches on a locally linear example to study the
key tradeoffs.

8.3.1. Overview. We model the trajectory of a point robot
with two-dimensional position state (x,y) between k goal
points {g1,...,gx}. We apply position control to guide the
robot to the targets and without disturbance, this motion is
linear (Figure 9(a)). We add various types of disturbances
(and in varying amounts) including Gaussian observation
noise, low-frequency process noise, and repetitive loops
(Figure 9(b)—(d)). We report noise values in terms of stan-
dard deviations. Figure 10 illustrates the relative magni-
tudes. A demonstration d; is a sample from the following
system.

Task: Every segmentation algorithm will be evaluated in
its ability to identify the £ — 1 segments (i.e. the paths
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Fig. 6. A “figure-of-eight” trajectory in the plane and five noisy demonstrations. The trajectory starts at the far right and progresses

until it returns to the same spot.

between the goal points). Furthermore, we evaluate algo-
rithms on random instances of this task. In the begin-
ning, we select three random goal points. From a fixed
initial position, we control the simulated point robot to
the goal points with position control. Without any dis-
turbance, this follows a linear motion. For a given noise
setting, we sample demonstrations from this system and
apply/evaluate each algorithm. We present results aggre-
gated over 20 such random instances. This is important
since many of the segmentation algorithms proposed in lit-
erature have some crucial hyper-parameters, and we present
results with a single choice of parameters averaged over
multiple tasks. In this way, the hyper-parameter tuning can-
not overfit to any given instance of the problem and has
to be valid for the entire class of tasks. We believe that

this is important since tuning these hyper-parameters in
practice (i.e. not in simulation) is challenging since there
is no ground truth. The experimental code is available at:
http://berkeleyautomation.github.io/tsc/.

Five algorithms: We compare TSC against alternatives
where the authors explicitly find (or approximately find)
locally linear segments. It is important to reiterate that
different segmentation techniques optimize different objec-
tives, and this benchmark is meant to characterize the per-
formance on a common task. All of the techniques are based
on Gaussian distributions or linear autoregressive models.

1. (GMM) (same as previous experiment). In this experi-
ment, we set the parameter to the optimal choice of three

without automatic tuning.
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Fig. 8. Plots of the identified transitions with each segmentation algorithm with and without noise. Although all techniques are precise
when there is no noise, TSC is the most robust in the presence of noise but finds additional segments.

2. (GMM+HMM). A natural extension to this model is 4. HSMM. We evaluated a Gaussian hidden semi-Markov

to enforce a transition structure on the regimes with
a latent Markov chain (Asfour et al.,, 2008; Cali-
non and Billard, 2004; Kruger et al., 2010; Vakanski
et al., 2012). We use the same state vector as above,
without time augmentation as this is handled by the
HMM. We fit the model using the forward—backward
algorithm.

3. Coresets (same as previous experiment).

model as used by Tanwani and Calinon (2016). We
applied this model directly to the demonstrations with
no augmentation or normalization of features. This was
implemented with the package pyhsmm. We applied
this model directly to the demonstrations with no aug-
mentation as in the GMM approaches. We ran our
MCMC sampler for 10,000 iterations, discarding the
first 2,500 as burn-in and thinning the chain by 15.
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5. AR-HMM. We evaluated a Bayesian autoregressive
HMM model as used in Niekum et al. (2012). This
was implemented with the packages pybasicbayes and
pyhsmm-ar. The autoregressive order was 10 and we
ran our MCMC sampler for 10,000 iterations, discard-
ing the first 2,500 as burn-in and thinning the chain
by 15.

Evaluation metric: There is considerable debate on
metrics to evaluate the accuracy of unsupervised segmen-
tation and activity recognition techniques, e.g. frame accu-
racy (Wu et al., 2015) and hamming distance (Fox et al.,
2009). Typically, these metrics have two steps: (1) seg-
ments to ground-truth correspondence; and (2) then mea-
suring the similarity between corresponding segments. We
have made this feature extensible and evaluated some dif-
ferent accuracy metrics (Jaccard similarity, frame accuracy,
segment accuracy, intersection over union). We found that

the following procedure led to the most insightful results,
differentiating the different techniques.

In the first phase, we match segments in our predicted
sequence to those in the ground truth. We do this with a
procedure identical to that proposed by Wu et al. (2015). We
define a bi-partite graph of predicted segments to ground-
truth segments, and add weighted edges where weights
represent the overlap between a predicted segment and
a ground-truth segment (i.e. the recall over time-steps).
Each predicted segment is matched to its highest weighted
ground-truth segment. Each predicted segment is assigned
to exactly one ground-truth segment, while a ground-truth
segment may have none, one, or more corresponding pre-
dictions.

After establishing the correspondence between predic-
tions and ground truth, we consider a true positive (a
ground-truth segment is correctly identified) if the overlap
(intersection-over-union) between the ground-truth seg-
ment and its corresponding predicted segments is more



Garg et al.

1609

1.0 1.0
0.8 0.8

> >

g g

3 0.6} 3 0.6}

LY LY

< ? < ¥

S 0.4] g § 0.4} -

E s E s

4 i 4
0.2 0.2 s 4
08605 10 1.5 70 25 980 05 10 1.5 2.0 25

Noise (std.)
(a) HF Observation Noise

1.0

Noise (std.)
(b) LF Process Noise

o
©

o
o

o
»

Segment Accuracy

o
[N)

o
o

20 40

60 80 100

# Demonstrations

(c¢) Amount of Data

p=g TSCoe—e GMM2r—a

GMM+HMM v+ Coreset =—~ HSMM e—e ARHMM

Fig. 11. Each data point represents 20 random instances of a three-segment problem with varying levels of high-frequency noise,
low-frequency noise, and demonstrations. We measure the segmentation accuracy for the compared approaches. (a) TSC finds a more
accurate segmentation than all of the alternatives even under significant high-frequency observation noise, (b) TSC is more robust
to low-frequency process noise than the alternatives, (c) the Bayesian techniques solved with MCMC (ARHMM, HSMM) are more

sensitive to the number of demonstrations provided than the others.

than a default threshold 60%. Then, we compute segment
accuracy as the ratio of the ground-truth segments that
are detected correctly. Wu et al. (2015) used a 40% thresh-
old but apply the metric to real data. Since this is a syn-
thetic example, we increase this threshold to 60%, which
we empirically found accounted for boundary effects, espe-
cially in the Bayesian approaches (i.e. repeated transitions
around segment endpoints).

8.3.2. Accuracy versus noise. In our first experiment, we
measured the segment accuracy for each of the algorithms
for 50 demonstrations. We also varied the amount of pro-
cess and observation noise in the system. As Figure 10
illustrates, this is a very significant amount of noise in
the data, and successful techniques must exploit the struc-
ture in multiple demonstrations. Figure 11(a) illustrates the
performance of each of the techniques as a function of
high-frequency observation noise. Results suggest that TSC
is more robust to noise than the alternatives (nearly 20%
more accurate for 2.5 std of noise). The Bayesian ARHMM
approach is nearly identical to TSC when the noise is low
but quickly loses accuracy as more noise is added. We
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Fig. 12. TSC is about six time slower than using Coresets or the
direct GMM approach, but it is over 100x faster than the MCMC
for the ARHMM model.

attribute this robustness to the TSC’s pruning step which
ensures that only transition state clusters with sufficient
coverage across all demonstrations are kept. These results
are even more pronounced for low-frequency process noise
(Figure 11(b)). TSC is 49% more accurate than all competi-
tors for 2.5 std of noise added. We find that the Bayesian
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approaches are particularly susceptible to such noise. Fur-
thermore, Figure 11(c) shows TSC requires no more data
than the alternatives to achieve such robustness. Another
point to note is that TSC is solved much more efficiently
than ARHMM or HSMM that require expensive MCMC
samples. Although parameter inference on these models can
be solved more efficiently (but approximately) with mean-
field stochastic variational inference, we found that the
results were not as accurate. TSC is about six times slower
than using Coresets or the direct GMM approach, but it is
over 100x faster than the MCMC for the ARHMM model.
Figure 12 compares the runtime of each of the algorithms
as a function of the number of demonstrations.

8.3.3. TSC hyper-parameters. Next, we explored the
dependence of the performance on the hyper-parameters for
TSC. We focus on the window size and the pruning parame-
ter. Figure 13(a) shows how varying the window size affects
the performance curves. Larger window sizes can reject
more low-frequency process noise. However, larger win-
dows are also less efficient when the noise is low. Similarly,
Figure 13(b) shows how increasing the pruning param-
eter affects the robustness to high-frequency observation
noise. However, a larger pruning parameter is less efficient
at low noise levels. Based on these curves, we selected
(w =3, p = 0.3) in our synthetic experiments.

8.3.4. Loops. Finally, we evaluated four algorithms on
how well they can detect and adjust for loops. TSC com-
pacts adjacent motions that are overly similar, while HMM-
based approaches correspond similar looking motions. A
HMM grammar over segments is clearly more expressive
than TSC’s, and we explore whether it is necessary to learn
a full transition structure to compensate for loops. We com-
pare the accuracy of the different segmentation techniques
in detecting that a loop is present (Figure 14). Figure 14(a)
shows that TSC is competitive with the HMM approaches
as we vary the observation noise; however, the results sug-
gest that ARHMM provides the most accurate loop detec-
tion. On the other hand, Figure 14(b) suggests that process
noise has a very different effect. TSC is actually more accu-
rate than the HMM approaches when the process noise is
high, even without learning a transition structure.

8.3.5. Scaling with dimensionality. We investigate how the
accuracy of TSC scales with the dimensionality of the
state space. As in the previous experiments, we measured
the segment accuracy for each of the algorithms for 50
demonstrations. This time we generated the line segments
in increasingly higher-dimensional spaces (from 2 to 35
dimensions). The noise added to the trajectories has a
std of 0.1. Figure 15(a) plots the segment accuracy as a
function of the dimensionality of the state space. While
the accuracy of TSC does decreases as the dimensionality
increases it is more robust than some of the alternatives:
ARHMM and HSMM. One possible explanation is that

both of those techniques rely on Gibbs sampling for infer-
ence, which is a little more sensitive to dimensionality than
the expectation-maximization inference procedure used in
GMM and GMM+HMM. Figure 15(b) shows one aspect of
TSC that is more sensitive to the dimensionality. The loop
compaction step requires a dynamic time-warping and then
a comparison to fuse repeated segments together. This step
is not as robust in higher-dimensional state spaces. This is
possibly due to the use of the L, distance metric to compare
partial trajectories to compact. TSC runs in 4 seconds on the
two-dimensional case, 16 seconds on the 10-dimensional
case, and in 59 seconds on the 35-dimensional case.

8.4. Surgical data experiments

We describe the three tasks used in our evaluation and the
corresponding manual segmentation (Figure 16). This will
serve as ground truth when qualitatively evaluating our seg-
mentation on real data. This set of experiments primarily
evaluates the utility of segments learned by TSC. Data was
collected beforehand as a part of prior work. Our hypoth-
esis is that even though TSC is unsupervised, it identifies
segments that often align with manual annotations. In all of
our experiments, the pruning parameter p is set to 80% and
the compaction heuristic § is to 1 cm.

The state-space is the 6D end-effector position. In some
experiments, we augment this state space with the following
visual features.

—_—

Grasp: 0 if empty; 1 otherwise.

2. Needle penetration. We use an estimate of the penetra-
tion depth based on the robot kinematics to encode this
feature. If there is no penetration (as detected by video),
the value is 0; otherwise the value of penetration is the
robot’s z position.

Our goal with these features was to illustrate that TSC
applies to general state-spaces as well as spatial ones, and
not to address the perception problem. These features were
constructed via manual annotation, where the grasp and
needle penetration were identified by reviewing the videos
and marking the frames at which they occurred.

Circle cutting: A 5 cm diameter circle drawn on a piece of
gauze. The first step is to cut a notch into the circle. The
second step is to cut clockwise half-way around the circle.
Next, the robot transitions to the other side cutting counter
clockwise. Finally, the robot finishes the cut at the meet-
ing point of the two cuts. As the left arm’s only action is to
maintain the gauze in tension, we exclude it from the analy-
sis. In Figure 16(a), we mark six manually identified transi-
tions points for this task from Murali et al. (2015): (1) start,
(2) notch, (3) finish first cut, (4) cross-over, (5) finish sec-
ond cut, and (6) connect the two cuts. For the circle cutting
task, we collected 10 demonstrations by researchers who
were not surgeons but familiar with operating the da Vinci
Research Kit (dVRK).
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Fig. 13. (a) Performance curves of different choices of windows as a function of the process noise. Larger windows can reject higher
amounts of process noise, but are less efficient at low noise levels. (b) Performance curves of different choices of the pruning threshold.

Larger pruning thresholds are more robust to high amounts of observation noise but less accurate in the low-noise setting. We selected

(w =3, p =0.3) in our synthetic experiments.
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Fig. 14. (a) Accuracy of TSC’s compaction step as a function of observation noise. TSC is competitive with the HMM-based approaches
without having to model the full transition matrix. (b) TSC is actually more robust to low-frequency process noise in the loops than the

HMM-based approaches.

We also perform experiments using the JIGSAWS dataset
(Gao et al., 2014) consisting of surgical activity for human
motion modeling. The dataset was captured using the da
Vinci Surgical System from eight surgeons with different
levels of skill performing five repetitions each of needle
passing and suturing.

Needle passing: We applied TSC to 28 demonstrations of
the needle passing task. The robot passes a needle through a
hoop using its right arm, then its left arm to pull the needle
through the hoop. Then, the robot hands the needle off from
the left arm to the right arm. This procedure is repeated
four times as illustrated with a manual segmentation in
Figure 16(b).

Suturing: Next, we explored 39 examples of a 4 throw
suturing task (Figure 16(c)). Using the right arm, the first

step is to penetrate one of the points on the right-hand side.
The next step is to force the needle through the phantom to
the other side. Using the left arm, the robot pulls the needle
out of the phantom and then the robot hands it off to the
right arm for the next point.

8.4.1. Pruning and compaction. InFigure 19, we highlight
the benefit of pruning and compaction using the suturing
task as an example. First, we show the transition states
without applying the compaction step to remove looping
transition states (Figure 19(a)). We find that there are many
more transition states at the “insert” step of the task. Com-
paction removes the segments that correspond to a loop of
the insertions. Next, we show all of the clusters found by
the first step of segmentation. The centroids of these clus-
ters are marked in Figure 19(b). Many of these clusters are



1612 The International Journal of Robotics Research 36(13—14)

1.0} ; 1 1.0}
0.8 0.8}
ol
5 g
gos 5o
P &
2 | = g
EQA o—o GMM A o— i B = 0.4l
a4 GMM+HMM ] TSC
0.l | ¥ Coreset ; | o2l GMM+HMM
I — HsMMm ' HSMM
e—e ARHMM ARHMM
6o ; ; ‘ ; ; : bid ; ; ; ; ; ‘
0 5 10 15 20 25 30 35 0 B 10 15 20 25 30 35

State Dim. State Dim.

(a) (b)

Fig. 15. We investigate how the accuracy of TSC scales with the dimensionality of the state-space. In (a) we consider the problem with
no loops or compaction and in (b) we measure the accuracy of the compaction step as a function of dimensionality.

11. Pull

7. Handoff 3. Handoff \
’\ .\ SHemdoT 10. Insert
6.Pass 3 2Pass 1 8. Pull
6.Handoff 7. Insert
4. Pass 2 adkal
'] ° 3.Handoff ( ® 4. Insert

1.Start

8.Pass 4 2. Pull
5. Handoff 1. Insert

() (b) (c)

Fig. 16. Hand annotations of the three tasks: (a) circle cutting, (b) needle passing, and (c) suturing. Right arm actions are listed in dark
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Fig. 17. (a) The transition states for the task are marked in orange (left arm) and blue (right arm). (b), (c) The TSC clusters, which are
clusters of the transition states, are illustrated with their 75% confidence ellipsoid for both arms.

small containing only a few transition states. This is why 8.5. Results with surgical data

we created the heuristic to prune clusters that do not have Circle cutting: Figure 20(a) shows the transition states
transition states from at least 80% of the demonstrations. In  obtained from our algorithm and Figure 20(b) shows the
all, 11 clusters are pruned by this rule. TSC clusters learned (numbered by time interval midpoint).
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Fig. 20. (a) The transition states for the circle cutting task are marked in black. (b) The TSC clusters, which are clusters of the transition

states, are illustrated with their 75% confidence ellipsoid.

The algorithm found eight clusters, one of which was
pruned using our p = 80% threshold rule.

The remaining seven clusters correspond well to the man-
ually identified transition points. It is worth noting that there
is one extra cluster (marked 2'), that does not correspond to
a transition in the manual segmentation. At 2/, the opera-
tor finishes a notch and begins to cut. While at a logical

level notching and cutting are both penetration actions, they
correspond to two different linear transition regimes due
to the positioning of the end-effector. Thus, TSC separates
them into different clusters even though the human annota-
tors did not. This illustrates why supervised segmentation
is challenging. Human annotators segment trajectories on
boundaries that are hard to characterize mathematically, e.g.
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Table 1. Comparison of transitions learned by TSC and transitions identified by manual annotators in the JIGSAWS dataset. We found
that the transitions mostly aligned. Here 83% and 73% of transition clusters for needle passing and suturing respectively contained
exactly one surgeme transition when both kinematics and vision were used. Results suggest that the hierarchical clustering is more

suited to mixed video and kinematic feature spaces.

Number of surgeme segments

Number of clusters seg—surgeme surgeme—seg

Needle passing TSC(Kin+Video) 144 £2.57 11 83% 74%
Needle passing TSC(Video) 14.4 +2.57 7 62% 69%
Needle passing TSC(Kin) 144 +£2.57 16 87% 62%
Needle passing TSC(VELS) 144 £2.57 13 71% 70%
Needle passing TSC(No-H) 14.4 +2.57 5 28% 34%
Suturing TSC(Kin+Video) 159+3.11 13 73% 66%
Suturing TSC(Video) 159+ 3.11 4 21% 39%
Suturing TSC(Kin) 159+ 3.11 13 68% 61%
Suturing TSC(VELS) 159+£3.11 17 48% 57%
Suturing TSC(No-H) 159+ 3.11 9 51% 52%

is frame 34 or frame 37 the segment boundary? Supervisors
may miss crucial motions that are useful for automation or
learning.

Needle passing: In Figure 17(a), we plot the transition
states in (x, y, z) end-effector space for both arms. We find
that these transition states correspond well to the logical
segments of the task (Figure 16(b)). These demonstrations
are noisier than the circle cutting demonstrations, and there
are more outliers. The subsequent clustering finds nine
clusters (two pruned). Next, Figure 17(b) and (c) illustrate
the TSC clusters. We find that again TSC learns a small
parametrization for the task structure with the clusters cor-
responding well to the manual segments. However, in this
case, the noise does lead to a spurious cluster (four marked
in green). One possible explanation is that the demonstra-
tions contain many adjustments to avoid colliding with
the needle hoop and the other arm while passing the nee-
dle through leading to numerous transition states in that
location.

Suturing: In Figure 18, we show the transition states and
clusters for the suturing task. As before, we mark the left
arm in orange and the right arm in blue. This task was far
more challenging than the previous tasks as the demonstra-
tions were inconsistent. These inconsistencies were in the
way the suture is pulled after insertion (some pull to the left,
some to the right, etc.), leading to transition states all over
the state space. Furthermore, there were numerous demon-
strations with looping behaviors for the left arm. In fact, the
DP-GMM method gives us 23 clusters, 11 of which rep-
resent less than 80% of the demonstrations and thus are
pruned (we illustrate the effect of the pruning in the next
section). In the early stages of the task, the clusters clearly
correspond to the manually segmented transitions. As the
task progresses, we see that some of the later clusters do
not.

8.6. Comparison with surgemes

Surgical demonstrations have an established set of primi-
tives called surgemes, and we evaluate whether segments
discovered by our approach correspond to surgemes. In
Table 1, we compare the number of TSC segments for
needle passing and suturing to the number of annotated
surgeme segments. We apply different variants of the TSC
algorithm and evaluate its ability to recover segments sim-
ilar to surgemes. We consider: (Kin+Video), which is the
full TSC algorithm; (Kin), which only uses kinematics;
(Video), which only uses the visual annotations; (VELS),
which uses the zero-crossing velocity heuristic to obtain
the initial transitions; and (NO-H), which treats all of the
variables as one big feature space and does not hierarchi-
cally cluster. A key difference between our segmentation
and number of annotated surgemes is our compaction and
pruning steps. To account for this, we first select a set of
surgemes that are expressed in most demonstrations (i.e.
simulating pruning), and we also apply a compaction step
to the surgeme segments. When surgemes appear consec-
utively, we only keep the one instance of each. We explore
two metrics: seg-surgeme, the fraction of TSC clusters with
only one surgeme switch (averaged over all demonstra-
tions); and surgeme-seg, the fraction of surgeme switches
that fall inside exactly one TSC cluster.

We found that the transitions learned by TSC with both
the kinematic and video features were the most aligned with
the surgemes. Here 83% and 73% of transition clusters for
needle passing and suturing respectively contained exactly
one surgeme transition when both were used. For the needle
passing task, we found that the video features alone could
give a reasonably accurate segmentation. However, this did
not hold for the suturing dataset. The manual video features
are low dimensional and tend to under-segment. For the
suturing dataset, a combination of the visual and kinematic
features was most aligned with the surgemes. Similarly, this
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scaling problem affects the variant that does not hierarchi-
cally cluster, leading to a small number of clusters, and
inaccuracy.

9. Future work

These results suggest several avenues for future work. First,
we will explore using convolutional neural networks to
automatically extract visual features for segmentation. This
will alleviate a key challenge in applying TSC to new
datasets. We will also explore how other results in deep
learning such as autoencoders and recurrent networks can
be used to segment data without linearity assumptions.
Segmentation is the first step in a broader robot learning
pipeline, and we are actively exploring using segmentation
to construct rewards for reinforcement learning.

10. Conclusion

We have presented TSC, which leverages the consistent
structure of repeated demonstrations to robustly learn seg-
mentation criteria. To learn these clusters, TSC uses a hier-
archical DP-GMM with a series of merging and prun-
ing steps. Our results on a synthetic example suggest that
this approach is more robust than five other segmenta-
tion algorithms. We further applied our algorithm to three
surgical datasets and found that the transition state clus-
ters correspond well to manual annotations and transitions
with respect to motions from a pre-defined surgical motion
dictionary (surgemes).
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Appendix A: An introduction to variational
inference

Let X be a set of random variables {X7,X>,...,Xy}. There
is a probability density p( -) defined over the domain of A’:

p(X)=p(x1,x2,...,xXN)

Suppose that only a subset of the random variables are
observed O C X.

In Bayesian parameter inference, we are interested in the
posterior distribution of the remaining unobserved random
variables H = & — O:

pX) _ p)
S p(X)0H  p(H)

This expression is usually intractable due to difficulty of
integrating over the entire parameter space in the denomina-
tor p(H). One approach is to use MCMC to approximately
compute the integral in the denominator by sampling from
the distribution p(H). This approach, while widely used, can
be very slow and inefficient.

In variational inference, instead of sampling to calcu-
late p(H), a parametrized version of the distribution is
optimized. Let us instead pretend that we had choice over
q( )=~ p( ), a density over the hidden variables H:

p(H10)=

p(H) = fH pX) oM

_ 9(H)
p00= [ e 5om

X
p(H)=E, (M)

q(H)
_ pX)
logp(H)=logE, (q(H))

This gives a lower bound via Jensen’s inequality:

log p(H) = E,(log p(X)) — E,(log g(H))

This function is called the evidence lower bound (ELBO)
function:

L(q) = E (log p(X)) —E,(logq(H))

The key idea in variational inference is to choose a g(H)
that approximates p(H) but is tractable to compute the
expectations E,. This function has two terms: (1) the likeli-
hood term evaluating whether the distribution is supported
by p; (2) the entropy term maximizing the entropy of hidden
variables.

A.1. Mean-field approximation

One way to select g( ) is to use a density where all the
random variables are conditionally independent:

q(H) = M xenqi( Xi)

Then, it follows that the “entropy” term of the ELBO
function is

> Eilogqi(X)

ieH
For the “likelihood” term, we can apply the chain rule to
p(X), to obtain

p(X)=p(H | O)p(O)
p(X)=p(O)p(H; | Hjzi, O)
It follows that the mean-field ELBO function is
L(g) = log(p(0))+ Y _E;logp(H; | Hjir O)

ieH
+E; log g:( X))

which becomes

L(q)= const + Y _ E;logp(H; | Hji, O) +E; log gi( X))
ieH

A.2. Variational inference

The goal of variational inference is to optimize the ELBO
function:
max L( q)
q

In principle, we could apply standard techniques such
as gradient descent, suppose we had g parametrized by
some A:

2B =50 v, L(gy)
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However, since we are really optimizing over the space of
distributions, this has some complicated issues. In other
words, ¢ is not a Euclidean point, it is a distribution, and
accordingly this changes the metric space. The gradient is
weighted accordingly with a matrix G(A)~ 1. This is analo-
gous to gradient descent on a manifold where distances are
measured by different metric. It turns out that if you use
the Kullback—Leibler (KL) divergence as this metric, G( A)
is a matrix called the Fisher information matrix. Then, the
updates have a really straightforward form.

Appendix B: Mean-field variational inference
For DP-GMM

To derive a mean-field variational procedure for the DP-
GMM, we first define a generative model:

Hyper-parameters: « initial concentration parameter, Gy
base distribution of Gaussian parameters, K max number of
clusters.

1. Draw V; ~ Beta(l oz) i=12,...,K
2. 0= V]_[ 1(1

3. Draw n; ~ Go,z_l 2,...,K

4.

For each data point #:

(a) Z, ~ Multinomial(9)
(b) X, ~ Normal(7.,)

Optimization algorithm: Based on this generative model,
we can derive the ELBO function:

log p(X|a, Go) = E[log p(Vla)]

+ Eflog p(n]Go)]
N

+ ) Ellogp(Z,|V)]
i=0

+ E[log p(x4| Zy)]
—E[lOg CI(Z» V! ’7)]

Then, we approximate ¢ with a mean-field approximation:

q(Z.V.n)= 1‘[q1<v,)1"[qz(n,>1"[q3(zn)

i=1 i=1

To infer the parameters of this generative model, we apply
the following coordinate ascent algorithm:

q(ZI’l = l) = d)n,i

K
q(zn > )= u;

i=1
Ellog V1]
Ellog(1—V;)] = DiGamma( y,») —DiGamma( y;; + ¥;2)

N
Yil = Z Pn.i
n=0

= DiGamma( y; ;) —DiGamma( y;; + yi2)

N K
Vi,2:a+zz¢n,j

n=0 j=i+1





