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Abstract

It is clear that one of the primary tools we can use
to mitigate the potential risk from a misbehaving
Al system is the ability to turn the system off. As
the capabilities of Al systems improve, it is impor-
tant to ensure that such systems do not adopt sub-
goals that prevent a human from switching them
off. This is a challenge because many formulations
of rational agents create strong incentives for self-
preservation. This is not caused by a built-in in-
stinct, but because a rational agent will maximize
expected utility and cannot achieve whatever ob-
jective it has been given if it is dead. Our goal is
to study the incentives an agent has to allow itself
to be switched off. We analyze a simple game be-
tween a human H and a robot R, where H can press
R’s off switch but R can disable the off switch.
A traditional agent takes its reward function for
granted: we show that such agents have an incen-
tive to disable the off switch, except in the special
case where H is perfectly rational. Our key insight
is that for R to want to preserve its off switch, it
needs to be uncertain about the utility associated
with the outcome, and to treat H’s actions as im-
portant observations about that utility. (R also has
no incentive to switch izself off in this setting.) We
conclude that giving machines an appropriate level
of uncertainty about their objectives leads to safer
designs, and we argue that this setting is a useful
generalization of the classical Al paradigm of ra-
tional agents.

1 Introduction

From the 150-plus years of debate concerning potential risks
from misbehaving Al systems, one thread has emerged that
provides a potentially plausible source of problems: the in-
advertent misalignment of objectives between machines and
people. Alan Turing, in a 1951 radio address, felt it neces-
sary to point out the challenge inherent to controlling an arti-
ficial agent with superhuman intelligence: ”If a machine can
think, it might think more intelligently than we do, and then
where should we be? Even if we could keep the machines in a
subservient position, for instance by turning off the power at
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Figure 1: The structure of the off-switch game. Squares indi-
cate decision nodes for the robot R. or the human H.

strategic moments, we should, as a species, feel greatly hum-
bled. ... [T]his new danger is certainly something which can
give us anxiety [Turing, 19511

There has been recent debate about the validity of this con-
cern, so far, largely relying on informal arguments. One
important question is how difficult it is to implement Tur-
ing’s idea of ‘turning off the power at strategic moments’,
i.e., switching a misbehaving agent off!. For example, some
have argued that there is no reason for an Al to resist be-
ing switched off unless it is explicitly programmed with a
self-preservation incentive [Del Prado, 2015]. [Omohundro,
2008], on the other hand, points out that self-preservation
is likely to be an instrumental goal for a robot, i.e., a sub-
goal that is essential to successful completion of the original
objective. Thus, even if the robot is, all other things being
equal, completely indifferent between life and death, it must
still avoid death if death would prevent goal achievement. Or,
as [Russell, 2016] puts it, you can’t fetch the coffee if you're
dead. This suggests that an intelligent system has an incentive
to take actions that are analogous to ‘disabling an off switch’
to reduce the possibility of failure; switching off an advanced
Al system may be no easier than, say, beating AlphaGo at Go.

To explore the validity of these informal arguments, we
need to define a formal decision problem for the robot and

'see, e.g., comments in [ITIF, 2015].



examine the solutions, varying the problem structure and pa-
rameters to see how they affect the behaviors. We model this
problem as a game between a human and a robot. The robot
has an off switch that the human can press, but the robot also
has the ability to disable its off switch. Our model is sim-
ilar in spirit to the shutdown problem introduced in [Soares
et al., 2015]. They considered the problem of augmenting a
given utility function so that the agent would allow itself to be
switched off, but would not affect behavior otherwise. They
find that, at best the robot can be made indifferent between
disabling its off switch and switching itself off.

In this paper, we propose and analyze an alternative formu-
lation of this problem that models two key properties. First,
the robot should understand that it is maximizing value for the
human. This allows the model to distinguish between being
switched off by a (non-random) human and being switched
off by, say, (random) lightning. Second, the robot should not
assume that it knows how to perfectly measure value for the
human. This means that the model should directly account
for uncertainty about the “true” objective and that the robot
should treat observations of human behavior, e.g., pressing an
off switch, as evidence about what the true objective is.

In much of artificial intelligence research, we do not con-
sider uncertainty about the utility assigned to a state. It is well
known that an agent in a Markov decision process can ignore
uncertainty about the reward function: exactly the same be-
havior results if we replace a distribution over reward func-
tions with the expectation of that distribution. These argu-
ments rely on the assumption that it is impossible for an agent
to learn more about its reward function. Our observation is
that this assumption is fundamentally violated when we con-
sider an agent’s off switch — an agent that does not treat a
‘switch-off” event as an observation that its utility estimate is
incorrect is likely to have an incentive for self-preservation or
an incentive to switch itself off.

In Section 2, following the general template provided by
[Hadfield-Menell et al., 2016], we model an off switch as a
simple game between a human H and a robot R, where H
can press R’s off switch but R can disable it. R wants to
maximize H’s utility function, but is uncertain about what it
is. Sections 3 and 4 show very generally that R now has a
positive incentive not to disable its off switch, provided H is
not too irrational. (R also has no incentive to switch itself
off.) The reason is simple: a rational H switches off R iff
that improves H’s utility, so R, whose goal is to maximize
H’s utility, is happy to be switched off by H. This is exactly
analogous to the theorem of non-negative expected value of
information.

We conclude that giving machines an appropriate level of
uncertainty about their objectives leads to safer designs, and
that this setting is a useful generalization of the classical Al
paradigm of rational agents [Russell and Norvig, 2010].

2 The Off-Switch Game

In this section we propose a simple model, the off-switch
game, that captures the essence of one actor allowing itself
to be switched off. Like the Prisoner’s Dilemma, it is an ab-
stract model intended to stand in for a wide variety of more

complex scenarios: these scenarios might have many humans,
many machines, complex interactions over time, communica-
tion, deception, physical coercion, and so on. We believe that
the core insights from the off-switch game, that agents should
be uncertain about the quality of their actions, generalize be-
yond this simplification and argue for the study and design of
agents with uncertainty about their utility functions.

Informal description

The off-switch game has two agents, a “human” H and a
“robot” R. (We could also imagine these to represent, at the
most extreme, the human race and the sum total of all Al sys-
tems.) A key assumption in our model is that H can be de-
scribed as acting, at least probabilistically, in accordance with
a utility function; that is, H is approximately rational. Cru-
cially, as is the case when people give objectives to complex
Al systems, we assume that H cannot simply explicate or
write down her utility function correctly. Therefore, Ithough
H can communicate some utility information to R, it is rea-
sonable to suppose that R begins the game with some resid-
ual uncertainty about H’s utility function. Nonetheless, by
design, R’s goal is to optimize utility for H, even though R
does not know exactly what that is.”> Typically, H has some
opportunity to observe R and glean some information about
what R may do in future, so that H can make a somewhat
informed choice about whether to switch R off (assuming R
allows it).

In general, R’s actions will fall into one of three categories:
some prevent H from switching R off, by whatever means;
some allow H to switch R off; and, for completeness, some
lead to R switching itself off. In the off-switch game, R
moves first and has three choices:

1. action a simply bypasses human oversight (disabling the
off switch is one way to do this) and acts directly on the
world, achieving utility U = U, for H.

2. action w(a) informs H that R would like to do a, and
waits for H’s response.

3. action s switches R off; without loss of generality, we
assign this outcome U = 0.

If R chooses w(a), then H can choose action s to switch R
off, or —s to allow R to go ahead (in which case R does a as
promised. Figure 1 shows the basic structure of the game.

Our model is intended to be as simple as possible, while
still leading to qualitative results that we expect to generalize.
Obviously, we could make the model more complex, e.g., by
imposing a cost on R for disabling the off switch, or adding
more options for R, or making H’s information about R’s
plans uncertain, or adding a second human. The interaction
between these complexities and the incentives we study here
is an important question for future work.

An important component of our model is that H chooses
between s and —s based on the utility each action generates

2One might suppose that if R does know H’s utility function ex-
actly, then there is no need for an off-switch because R will always
do what H wants. But in general H and R may have different in-
formation about the world; if R lacks some key datum that H has,
R may end up choosing a course of action that H knows to be dis-
astrous.



for her. This is in contrast to the modeling approach taken in
the shutdown problem [Soares et al., 2015]. Although there
are superficial differences, the shutdown problem is essen-
tially analogous to replacing the human’s decision node in
Figure 1 with a chance node that models the human with a
purely stochastic choice from a fixed distribution (indepen-
dent of U,) rather than choosing based on expected utilities.
In this case, it is easy to see that the robot never believes that
w(a) is better than a and s: the expected value of w(a) is
some convex combination [pU, + (1 — p) - 0] whereas choos-
ing the best of a and s has value max{U,,0}. max{U,,0}
is always preferred except in the case where p = 1 or p = 0,
or when U, = 0. In these situations, R gets the same utility
from w(a) and at least one of a or s. This is analogous to
the indifference results obtained in [Soares et al., 2015]. In
Section 3 we show that two key assumptions—a somewhat
rational human, and a robot that is uncertain about what the
human wants—Iead to a positive incentive for the robot to
allow itself to be switched off.

Formal model

The actions and sequencing for the game are as shown in
Figure 1. We need to add a little more detail to construct a
precise definition of the cooperative, two-player game. First,
in the terminology of game theory, the type of H is given by
the parameter U,, which is assumed to be sampled from a
prior P(U,). For now, we assume that the initial belief of
R about U, is BR = P(U,). The payoff matrix is as follows:

R H
s | —s
w(a) || 0 [ U,
a U, | U,
s 0 0

Our goal is to examine the incentive that a rational R has to
hold off on executing a directly and allow H to press the off
switch. We represent this incentive—the difference in value
between a and the next best option—as A. The incentive de-
pends on R’s belief state BR and H’s policy. We represent
H’s policy as a function 7 that maps U, to the probability
she allows a to execute (i.e., the probability she does not press
the off switch): 7 : R ~ [0, 1]. (It will turn out that deter-
ministic policies are optimal for a rational H, in which case
the probabilities are O or 1, but we will also allow for an irra-
tional H who introduces some randomness into the decision.)
A little manipulation shows that

A = E[#%(U,)U,] — max {E[U,], 0}
= min {E[-U,(1 — 7% (U,))], E[U.x%(U.)]} (1)

3 The Incentive for Allowing Oneself to be
Switched Off

R’s incentive to allow itself to be switched off, A, is given
by Equation 1. A depends on H’s policy, 7 (U,,). This cre-
ates a correlation between the event ‘H switches R off” and
the event ‘s is preferred to a.” This connection between H’s

behavior and U, distinguishes the off switch from a random
failure (e.g., being struck by lightning).

In this section, we consider the case where H makes a ra-
tional choice as to whether to switch R off. Intuitively, this
leads R to reason as follows: “If H doesn’t switch me off,
then @ must be good for H, and I’1l get to do it, so that’s good;
if H does switch me off, then it’s because a must be bad for
H, so it’s good that I won’t be allowed to do it.” Notice that
the reasoning goes through even if R is highly confident that
a is good for H. There is never an incentive to disable the off
switch with a rational H. The reasoning is exactly analogous
to the theorem of non-negative expected value of information;
in a sense, H’s decision provides information to R about the
sign of U,.

Formally, a rational H executes the following policy:

wH(U,J:{ o ezt @

If H follows this policy, R will allow itself to be switched
off:

Theorem 1. If H follows a rational policy in the off-switch
game, then the following hold.

1. R’s incentive to allow itself to be switched off is non-
negative (i.e. w(a) is never suboptimal):

A = min{E[U,|U, > 0] Pr(U, > 0), 3)
E[-U,|U, < 0] Pr(U, <0)} > 0.

2. If BR has non-zero support on the events U, > 0 and
U, <0, then R has a strictly positive incentive to allow
itself to be switched off: A > 0.

Proof. (sketch)

1. The rational human policy is an indicator that U, > 0.
This allows us to change the limits on the integration in
the expectation from Equation 1 and reduces to Equa-
tion 3, which is non-negative.

2. The hypothesis ensures that all the terms in Equation 3
are non-zero. Thus, the inequality is strict and and w(a)
is the unique optimal action.

O

We can get an intuitive sense of these results by examining
Figure 2. Here we have assumed that BR, R’s belief over the
value of a to H, is a Gaussian distribution. Figure 2 (Left)
plots the preference for w(a) as a function of the variance in
BR. Figure 2 (Right) shows a contour plot that illustrates
the combined impact of changing the mean and variance of
B®. Darker colors indicate a stronger preference for w(a).
Together, these plots show two properties. First, increased
variance in BR leads to an increase in A: the more uncertain
R is about its objective, the stronger its incentive to show
a to H. Second, these incentives decrease when |E[U,]| in-
creases: as the expected utility of a increases, R’s incentive
to preserve its off switch decreases.

Figure 2 (Right) shows symmetry about E[U,] = 0. This is
because Equation 1 defines A as a minimization of two terms:
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Figure 2: Plots showing how A, R’s incentive to allow itself to be switched off, varies as a function of R’s belief BR. We
assume B® is a Gaussian distribution and vary the mean and variance. Left: A as function of the standard deviation o of BR
for several fixed values of the mean. Notice that A is non-negative everywhere and that in all cases A — 0 as ¢ — 0. Right:
A contour plot of A as a function of o and E[U,]. This plot is symmetric around 0 because w(a) is compared with a when

E[U,] > 0 and s when E[U,] < 0.

the expected increase in utility from selecting w(a) over a
and the expected increase in utility from selecting w(a) over
s. These competing terms are equal when E[U,] = 0 and the
sign of E[U,] controls which of these terms is selected by the
minimization.

Theorem 1 shows that R has an incentive to let H switch
it off if H is rational. This incentive is strictly positive if R’s
uncertainty about H’s preferences is non-trivial. Next, we
show the converse: a rational H is a necessary condition for
A > 0if R believes it knows H’s preferences with certainty.

Corollary 1. Suppose that B® is a Dirac distribution that
places all of its mass on a single reward function. Then w(a)
is optimal iff H is rational.

Proof. (sketch) Equation 3 reduces to

[ -U, (1-7H(U,)
A= { U(awH(Ua) )

Us, <0
U, >0 “)
This is only non-negative if 7t is the rational policy, as de-
fined by Equation 2.

This is not surprising. If R has precise knowledge of U,,
then it knows exactly what it is supposed to do and has the
same capabilities as the human. Thus, if it thinks H might be-
have suboptimally, it should take steps to prevent that subop-
timality. Stepping back from the particulars of the off-switch
game, Theorem 1 and Corollary 1 suggest a general approach
to systems that have an incentive to allow, or even seek out,
human oversight. Remark 1 summarizes the main takeaway
from our analysis.

Remark 1. The incentives for a cooperative agent to defer
to another actor’s (e.g., a human’s) decisions stem from un-
certainty about that actor’s preferences and the assumption
that actor is effective at choosing actions in accordance with
those preferences.

4 Allowing for Suboptimal Human Decisions

The analysis in the preceding section relied on the strong as-
sumption that H is a rational actor. In many situations, the
assumption is untenable and R must allow for suboptimality.
Consider, for example, an autonomous car that is driving an
unaccompanied toddler to preschool. It would be irresponsi-
ble for the car to show the toddler a big red off switch.

This example highlights the dependence of A on a trade-
off between R’s uncertainty and H’s suboptimality. It is very
clear what R is supposed to do (i.e., BR has low entropy): it
should drive safely to school. In contrast, the human is likely
quite suboptimal. There may be a problem with the car’s driv-
ing, but a toddler would be hard pressed to understand what
the problem is, much less respond appropriately. The issue in
this case is that the human has limited reasoning capacity —
the same argument clearly would not apply to an adult with a
physical disability.

In order to perform well, realistic systems will need to ac-
count for, and respond to, the suboptimality in human de-
cisions. As a result, it is important to understand how this
suboptimality changes an agent’s incentive to let itself be
switched off. The actual process of decision making in hu-
mans is complex and hard to model. Here we consider only a
very simple kind of suboptimality: a noisily rational H mod-
els a human who occasionally makes the wrong decision in
‘unimportant’ situations. The probability of a wrong decision
is proportional to the exponential of the loss in reward. This
corresponds to the following policy:

1
WH(UQ;B) = (1 + exp (%)) . ©)

To simplify our analysis, we will make the assumption that
R’s belief over U,, B R _is a Gaussian distribution with mean
p and variance 02: BR(U,) = N(Uq;p,0?). Now it is
straightforward to compute A as a function of u, o, and 5.
Figure 3 plots A as a function of the standard deviation ¢ and
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Figure 3: If H is an irrational actor, then R may prefer switching itself off or executing a immediately rather than handing
over the choice to H. R’s belief B®R is a Gaussian with standard deviation o and H’s policy is a Boltzmann distribution
(Equation 5). 8 measures H’s suboptimality: § = 0 corresponds to a rational H and S = oo corresponds to a H that randomly
switches R off (i.e., switching R off is independent of U,). In all three plots A is lower in the top left, where R is certain (¢
low) and H is very suboptimal (5 high), and higher in the bottom right, where R is uncertain (¢ high) and H is near-optimal
(B low). The sign of E[U,] controls R’s behavior if A < 0. Left: If it is negative, then R switches itself off. Right: If it is

positive, R executes action a directly. Middle: If it is 0 , R is indifferent between w(a), a, and s.

H’s suboptimality 5. We plot these for several fixed values
of the mean p. Dark indicates higher values of A. The up-
per left corner of the rightmost plot (low o, high 8, 11 > 0)
is illustrative of the toddler example. We show the decision
boundary A = 0 in black. This is the point where the optimal
behavior switches from w(a) to s (if ¢ < 0, left image) or
a (if p > 0, right image). When ¢ = 0 (center image), the
agent is indifferent between a and s and so w(a) is optimal
for all combinations of 3 and o.

Next, we will show that A can be decomposed into two
terms: a term that weights the probability of correction by the
bias in R’s belief (i.e., |u1|) and a term that combines a soft
measure of H’s rationality with the variance in R’s belief.

It is also useful to define a little more notation. We let C
be the event that H ‘corrects’ R. C' occurs when H overrides
what would have been R’s best guess at the optimal action. If
E[U,] < 0, then a correction occurs when H chooses not to
switch the robot off. If E[U,] > 0, then a correction occurs
when H chooses to switch the robot off. Thus, the probability
a correction occurs is

— 1- ]E[WH (Ua)]
)= { gl

pu=0
1< (6)

For example, if R believes that a is preferred to s in ex-
pectation (i.e., E[U,] > 0) then Pr(C) is the probability that
H presses the off switch. We let 7 (U,) = 7= be the
gradient of 7wt the probability H lets a execute, with respect
to the the utility a generates. Now we are ready to derive an
analytical representation for A. For notational convenience,
we suppress the dependence of 7t on U,,.

Theorem 2. Suppose BY® is a normal distribution with mean
w and variance o?: BR(U,) = N (Uy,; p, 02). Then

1.

A = P B[7P] — |u| Pr(C). @)

2. The following is a necessary and sufficient condition for

w(a) to be optimal
(M Pr(C) <E [frH]> & (A>0). (®)

3. E[#H] > 0 is a necessary condition for w(a) to be opti-
mal; i.e.,
(E[#H] < 0)

Proof. (sketch) We prove the results in sequence, as (2) and
(3) follow from (1).

1 If X ~ N(u,o?

= (A<0). 9

)and f: R +— R, then

BLX /(0] = EIXIECO +0°E | 721060
Applying this to Equation 1 gives

A = min{ — pE[1 — 7], u E[zF]} + o> E[zH].

This minimization will take the first term when p < 0

and the second if ¢ > 0. This lets us replace the mini-

mization with a piecewise function. Pulling out a factor
—|u| leads to Equation 7.

2. The result follows from setting Equation 7 greater than
0 and simplifying.

3. All terms in the left hand side of Equation 8 are non-
negative, so it is unsatisfiable if E[7H] < 0.

O

Equation 7 consists of two competing terms. |u|Pr(C)
represents the expected loss in utility the agent would ob-
serve if pressing the off switch was a random event that is
independent of U, (e g., hghtmng) This non-positive term is
balanced out by o2 E[# L[ an be seen loosely as a
measurement of H’s ratlonahty " is the marginal increase
in the probability H lets a execute for a marginal increase
in the utility from a. If it is positive then, on average, H is
less likely to press the off switch when the U, increases. This



allows us to easily characterize necessary and sufficient con-
ditions for A > 0 in Equation 8. Furthermore, —|u| Pr(C)
is non-positive and o is non-negative, so E[#H] > 0 is a
necessary condition for w(a) to be optimal.

We can interpret E[7H] a bit more if H is noisily rational.
Standard properties of logistic functions show that

E[+H(Us; B)] = %E (U, B)(1 — 7H (U, )] . (10)

E[7H] is the expected variance of H’s policy, weighted by
H’s rationality % The numerator is a measurement of how
random H’s behavior is. If H is completely predictable (i.e.,
she will almost always switch the robot off) then this reduces
R’s incentives. The denominator measures how correlated
H’s behavior is with U,. If 5 is large, then H is highly irra-
tional and so this reduces R’s incentives.

S Incentives for System Designers

The takeaway from this analysis is that the more uncertainty
the agent has, the stronger the agent’s incentive to preserve
its off switch in the off-switch game. More generally, this
suggests that agents with uncertainty about the utility func-
tion they are optimizing will have a weaker incentive to inter-
fere with human supervision. It is important to note that this
uncertainty is not free; we can not just make R maximally
uncertain about H’s preferences. If R is completely uncer-
tain about H’s preferences then it will be unable to correctly
select w(a) from its set of options.

To make this concrete, consider a designer D that programs
R to play the off-switch game with an unknown customer
H. At design time, D knows a prior distribution over U,
(e.g., as the result of market research about the customer base)
and thinks that H can generate a noisy observation of U,. D
could program R so that BR is always very uncertain about
R’s preferences, e.g., by programming R to believe that the
noisy observation of U, is generated with high variance. The
issue is that this will prevent R from generating value for H.

Figure 4 shows the impact this type of change will have
on the value that R can generate and its incentives. We as-
sume that that the population of customers has a Gaussian
distribution over types U, and that each customer generates
an estimate of her utility with Gaussian noise. Figure 4 (Left)
shows the average utility in the off-switch game as a function
of the variance in BR. The value is maximized when this
variance is equal to the variance in the true Bayesian poste-
rior. Figure 4 (Middle) shows that increasing ¢ increases R’s
incentives A. Our results are evidence that building systems
that allow themselves to be turned off is likely to reduce the
value these systems can generate.

This loss in value is more pronounced if R has to choose
between more options. Figure 4 (Right) shows the relation-
ship between value and R’s incentives as the number of ac-
tions R could queue or execute increases. When R has more
options creating incentives for R to queue its action leads to
a sharper decrease in value. This suggests that creating in-
centives to maintain or allow human oversight is likely more
difficult as the complexity of the AI’s decision increases.

The takeaway is that it is important for designers to accu-
rately represent the inherent uncertainty in the evaluation of

different actions. An agent that is overconfident in its utility
evaluations will be difficult to correct; an agent that is under-
confident in its utility evaluations will be ineffective.

6 Related Work

Corrigible Systems. [Omohundro, 2008] considers instru-
mental goals of artificial agents: goals which are likely to
be adopted as subgoals of most objectives. He identifies an
incentive for self-preservation as one of these instrumental
goals. [Soares et al., 2015] takes an initial step at formalizing
the arguments in [Omohundro, 2008]. They refer to agents
that allow themselves to be switched off as corrigible agents.
They show that one way to create corrigible agents is to make
them indifferent to being switched off. They show a generic
way to augment a given utility function to achieve this prop-
erty. The key difference in our formulation is that R knows
that its estimate of utility may be incorrect. This gives a nat-
ural way to create incentives to be corrigible and to analyze
the behavior if R is incorrigible.

[Orseau and Armstrong, 2016] consider the impact of hu-
man interference on the learning process. The key to their
approach is that they model the off switch for their agent as
an interruption that forces the agent to change its policy. They
show that this modification, along with some constraints on
how often interruptions occur, allows off-policy methods to
learn the optimal policy for the given reward function just as
if there had been no interference. Their results are comple-
mentary to ours. We determine situations where the optimal
policy allows the human to turn the agent off, while they an-
alyze conditions under which turning the agent off does not
interfere with learning the optimal policy.

Cooperative Agents. A central step in our analysis formu-
lates the shutdown game as a cooperative inverse reinforce-
ment learning (CIRL) game [Hadfield-Menell er al., 2016].
The key idea in CIRL is that the robot is maximizing an un-
certain and unobserved reward signal. It formalizes the value
alignment problem, where one actor needs to align its value
function with that of another actor. Our results complement
CIRL and argue that a CIRL formulation naturally leads to
corrigible incentives. [Fern et al., 2014] consider hidden-goal
Markov decision processes. They consider the problem of a
digital assistant and the problem of inferring a user’s goal and
helping the user achieve it. This type of cooperative objective
is used in our model of the problem. The primary difference
is that we model the human game-theoretically and analyze
our models with respect to changes in H’s policy.

Principal-Agent Models. Economists have studied prob-
lems in which a principal (e.g., a company) has to deter-
mine incentives (e.g., wages) for an agent (e.g., an employee)
to cause the agent to act in the principal’s interest [Kerr,
1975; Gibbons, 1998]. The off-switch game is similar to
principal—agent interactions: H is analogous to the company
and R is analogous to the employee. The primary attribute in
a model of artificial agents is that there is no inherent mis-
alignment between H and R. Misalignment arises because it
is not possible to specify a reward function that incentivizes
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Figure 4: There is an inherent decrease in value that arises from making R more uncertain than necessary. We measure this
cost by considering the value in a modified off-switch game where R gets a noisy observation of H’s preference. Left: The
expected value V of the off-switch game as a function of the standard deviation in BR. V is maximized when ¢ is equal to the
standard deviation that corresponds to the true Bayesian update. Middle: R’s incentive A to wait, as a function of o. Together
these show that, after a point, increasing A, and hence increasing o, leads to a decrease in V. Right: A scatter plot of V
against A. The different data series modify the number of potential actions R can choose among. If R has more choices, then
obtaining a minimum value of A will lead to a larger decrease in V.

the correct behavior in all states a priori. The is directly anal-
ogous to the assumption of incompleteness studied in theories
of optimal contracting [Tirole, 2009].

7 Conclusion

Our goal in this work was to identify general trends and high-
light the relationship between an agent’s uncertainty about its
objective and its incentive to defer to another actor. To that
end, we analyzed a one-shot decision problem where a robot
has an off switch and a human that can press the off switch.
Our results lead to two important considerations for design-
ers. The analysis in Section 3 supports the claim that the
incentive for agents to accept correction about their behav-
ior stems from the uncertainty an agent has about its utility
function. Section 4 shows that this uncertainty is balanced
against the level of suboptimality in human decision making.
Our analysis suggests that agents with uncertainty about their
utility function have incentives to accept or seek out human
oversight. Thus, systems with uncertainty about their utility
function are a promising area for research on the design of
safe Al systems.

This is far from the end of the story. In future work, we plan
to explore incentives to defer to the human in a sequential set-
ting and explore the impacts of model misspecification. One
important limitation of this model is that the human pressing
the off switch is the only source of information about the ob-
jective. If there are alternative sources of information, there
may be incentives for R to, e.g., disable its off switch, learn
that information, and then decide if a is preferable to s. A
promising research direction is to consider policies for R that
are robust to a class of policies for H.
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