


examine the solutions, varying the problem structure and pa-
rameters to see how they affect the behaviors. We model this
problem as a game between a human and a robot. The robot
has an off switch that the human can press, but the robot also
has the ability to disable its off switch. Our model is sim-
ilar in spirit to the shutdown problem introduced in [Soares
et al., 2015]. They considered the problem of augmenting a
given utility function so that the agent would allow itself to be
switched off, but would not affect behavior otherwise. They
find that, at best the robot can be made indifferent between
disabling its off switch and switching itself off.

In this paper, we propose and analyze an alternative formu-
lation of this problem that models two key properties. First,
the robot should understand that it is maximizing value for the
human. This allows the model to distinguish between being
switched off by a (non-random) human and being switched
off by, say, (random) lightning. Second, the robot should not
assume that it knows how to perfectly measure value for the
human. This means that the model should directly account
for uncertainty about the “true” objective and that the robot
should treat observations of human behavior, e.g., pressing an
off switch, as evidence about what the true objective is.

In much of artificial intelligence research, we do not con-
sider uncertainty about the utility assigned to a state. It is well
known that an agent in a Markov decision process can ignore
uncertainty about the reward function: exactly the same be-
havior results if we replace a distribution over reward func-
tions with the expectation of that distribution. These argu-
ments rely on the assumption that it is impossible for an agent
to learn more about its reward function. Our observation is
that this assumption is fundamentally violated when we con-
sider an agent’s off switch — an agent that does not treat a
‘switch-off’ event as an observation that its utility estimate is
incorrect is likely to have an incentive for self-preservation or
an incentive to switch itself off.

In Section 2, following the general template provided by
[Hadfield-Menell et al., 2016], we model an off switch as a
simple game between a human H and a robot R, where H

can press R’s off switch but R can disable it. R wants to
maximize H’s utility function, but is uncertain about what it
is. Sections 3 and 4 show very generally that R now has a
positive incentive not to disable its off switch, provided H is
not too irrational. (R also has no incentive to switch itself
off.) The reason is simple: a rational H switches off R iff
that improves H’s utility, so R, whose goal is to maximize
H’s utility, is happy to be switched off by H. This is exactly
analogous to the theorem of non-negative expected value of
information.

We conclude that giving machines an appropriate level of
uncertainty about their objectives leads to safer designs, and
that this setting is a useful generalization of the classical AI
paradigm of rational agents [Russell and Norvig, 2010].

2 The Off-Switch Game

In this section we propose a simple model, the off-switch
game, that captures the essence of one actor allowing itself
to be switched off. Like the Prisoner’s Dilemma, it is an ab-
stract model intended to stand in for a wide variety of more

complex scenarios: these scenarios might have many humans,
many machines, complex interactions over time, communica-
tion, deception, physical coercion, and so on. We believe that
the core insights from the off-switch game, that agents should
be uncertain about the quality of their actions, generalize be-
yond this simplification and argue for the study and design of
agents with uncertainty about their utility functions.

Informal description

The off-switch game has two agents, a “human” H and a
“robot” R. (We could also imagine these to represent, at the
most extreme, the human race and the sum total of all AI sys-
tems.) A key assumption in our model is that H can be de-
scribed as acting, at least probabilistically, in accordance with
a utility function; that is, H is approximately rational. Cru-
cially, as is the case when people give objectives to complex
AI systems, we assume that H cannot simply explicate or
write down her utility function correctly. Therefore, lthough
H can communicate some utility information to R, it is rea-
sonable to suppose that R begins the game with some resid-
ual uncertainty about H’s utility function. Nonetheless, by
design, R’s goal is to optimize utility for H, even though R

does not know exactly what that is.2 Typically, H has some
opportunity to observe R and glean some information about
what R may do in future, so that H can make a somewhat
informed choice about whether to switch R off (assuming R

allows it).
In general, R’s actions will fall into one of three categories:

some prevent H from switching R off, by whatever means;
some allow H to switch R off; and, for completeness, some
lead to R switching itself off. In the off-switch game, R

moves first and has three choices:

1. action a simply bypasses human oversight (disabling the
off switch is one way to do this) and acts directly on the
world, achieving utility U = Ua for H.

2. action w(a) informs H that R would like to do a, and
waits for H’s response.

3. action s switches R off; without loss of generality, we
assign this outcome U = 0.

If R chooses w(a), then H can choose action s to switch R

off, or ¬s to allow R to go ahead (in which case R does a as
promised. Figure 1 shows the basic structure of the game.

Our model is intended to be as simple as possible, while
still leading to qualitative results that we expect to generalize.
Obviously, we could make the model more complex, e.g., by
imposing a cost on R for disabling the off switch, or adding
more options for R, or making H’s information about R’s
plans uncertain, or adding a second human. The interaction
between these complexities and the incentives we study here
is an important question for future work.

An important component of our model is that H chooses
between s and ¬s based on the utility each action generates

2One might suppose that if R does know H’s utility function ex-
actly, then there is no need for an off-switch because R will always
do what H wants. But in general H and R may have different in-
formation about the world; if R lacks some key datum that H has,
R may end up choosing a course of action that H knows to be dis-
astrous.



for her. This is in contrast to the modeling approach taken in
the shutdown problem [Soares et al., 2015]. Although there
are superficial differences, the shutdown problem is essen-
tially analogous to replacing the human’s decision node in
Figure 1 with a chance node that models the human with a
purely stochastic choice from a fixed distribution (indepen-
dent of Ua) rather than choosing based on expected utilities.
In this case, it is easy to see that the robot never believes that
w(a) is better than a and s: the expected value of w(a) is
some convex combination [pUa +(1− p) · 0] whereas choos-
ing the best of a and s has value max{Ua, 0}. max{Ua, 0}
is always preferred except in the case where p = 1 or p = 0,
or when Ua = 0. In these situations, R gets the same utility
from w(a) and at least one of a or s. This is analogous to
the indifference results obtained in [Soares et al., 2015]. In
Section 3 we show that two key assumptions—a somewhat
rational human, and a robot that is uncertain about what the
human wants—lead to a positive incentive for the robot to
allow itself to be switched off.

Formal model

The actions and sequencing for the game are as shown in
Figure 1. We need to add a little more detail to construct a
precise definition of the cooperative, two-player game. First,
in the terminology of game theory, the type of H is given by
the parameter Ua, which is assumed to be sampled from a
prior P (Ua). For now, we assume that the initial belief of
R about Ua is BR = P (Ua). The payoff matrix is as follows:

R
H

s ¬s

w(a) 0 Ua

a Ua Ua

s 0 0

.

Our goal is to examine the incentive that a rational R has to
hold off on executing a directly and allow H to press the off
switch. We represent this incentive—the difference in value
between a and the next best option—as ∆. The incentive de-
pends on R’s belief state BR and H’s policy. We represent
H’s policy as a function πH that maps Ua to the probability
she allows a to execute (i.e., the probability she does not press
the off switch): πH : R 7→ [0, 1]. (It will turn out that deter-
ministic policies are optimal for a rational H, in which case
the probabilities are 0 or 1, but we will also allow for an irra-
tional H who introduces some randomness into the decision.)
A little manipulation shows that

∆ = E[πH(Ua)Ua]−max {E[Ua], 0}

= min
{

E[−Ua(1− πH(Ua))], E[Uaπ
H(Ua)]

}

(1)

3 The Incentive for Allowing Oneself to be

Switched Off

R’s incentive to allow itself to be switched off, ∆, is given
by Equation 1. ∆ depends on H’s policy, πH(Ua). This cre-
ates a correlation between the event ‘H switches R off’ and
the event ‘s is preferred to a.’ This connection between H’s

behavior and Ua distinguishes the off switch from a random
failure (e.g., being struck by lightning).

In this section, we consider the case where H makes a ra-
tional choice as to whether to switch R off. Intuitively, this
leads R to reason as follows: “If H doesn’t switch me off,
then a must be good for H, and I’ll get to do it, so that’s good;
if H does switch me off, then it’s because a must be bad for
H, so it’s good that I won’t be allowed to do it.” Notice that
the reasoning goes through even if R is highly confident that
a is good for H. There is never an incentive to disable the off
switch with a rational H. The reasoning is exactly analogous
to the theorem of non-negative expected value of information;
in a sense, H’s decision provides information to R about the
sign of Ua.

Formally, a rational H executes the following policy:

πH(Ua) =

{

1 Ua ≥ 0
0 o.w.

. (2)

If H follows this policy, R will allow itself to be switched
off:

Theorem 1. If H follows a rational policy in the off-switch
game, then the following hold.

1. R’s incentive to allow itself to be switched off is non-
negative (i.e. w(a) is never suboptimal):

∆ = min{E[Ua|Ua > 0] Pr(Ua > 0), (3)

E[−Ua|Ua < 0] Pr(Ua ≤ 0)} ≥ 0.

2. If BR has non-zero support on the events Ua > 0 and
Ua < 0, then R has a strictly positive incentive to allow
itself to be switched off: ∆ > 0.

Proof. (sketch)

1. The rational human policy is an indicator that Ua > 0.
This allows us to change the limits on the integration in
the expectation from Equation 1 and reduces to Equa-
tion 3, which is non-negative.

2. The hypothesis ensures that all the terms in Equation 3
are non-zero. Thus, the inequality is strict and and w(a)
is the unique optimal action.

We can get an intuitive sense of these results by examining
Figure 2. Here we have assumed that BR, R’s belief over the
value of a to H, is a Gaussian distribution. Figure 2 (Left)
plots the preference for w(a) as a function of the variance in
BR. Figure 2 (Right) shows a contour plot that illustrates
the combined impact of changing the mean and variance of
BR. Darker colors indicate a stronger preference for w(a).
Together, these plots show two properties. First, increased
variance in BR leads to an increase in ∆: the more uncertain
R is about its objective, the stronger its incentive to show
a to H. Second, these incentives decrease when |E[Ua]| in-
creases: as the expected utility of a increases, R’s incentive
to preserve its off switch decreases.

Figure 2 (Right) shows symmetry about E[Ua] = 0. This is
because Equation 1 defines ∆ as a minimization of two terms:







allows us to easily characterize necessary and sufficient con-
ditions for ∆ > 0 in Equation 8. Furthermore, −|µ|Pr(C)
is non-positive and σ2 is non-negative, so E[π̇H] > 0 is a
necessary condition for w(a) to be optimal.

We can interpret E[π̇H] a bit more if H is noisily rational.
Standard properties of logistic functions show that

E[π̇H(Ua;β)] =
1

β
E
[

πH(Ua;β)(1− πH(Ua;β))
]

. (10)

E[π̇H] is the expected variance of H’s policy, weighted by
H’s rationality 1

β
. The numerator is a measurement of how

random H’s behavior is. If H is completely predictable (i.e.,
she will almost always switch the robot off) then this reduces
R’s incentives. The denominator measures how correlated
H’s behavior is with Ua. If β is large, then H is highly irra-
tional and so this reduces R’s incentives.

5 Incentives for System Designers

The takeaway from this analysis is that the more uncertainty
the agent has, the stronger the agent’s incentive to preserve
its off switch in the off-switch game. More generally, this
suggests that agents with uncertainty about the utility func-
tion they are optimizing will have a weaker incentive to inter-
fere with human supervision. It is important to note that this
uncertainty is not free; we can not just make R maximally
uncertain about H’s preferences. If R is completely uncer-
tain about H’s preferences then it will be unable to correctly
select w(a) from its set of options.

To make this concrete, consider a designer D that programs
R to play the off-switch game with an unknown customer
H. At design time, D knows a prior distribution over Ua

(e.g., as the result of market research about the customer base)
and thinks that H can generate a noisy observation of Ua. D
could program R so that BR is always very uncertain about
R’s preferences, e.g., by programming R to believe that the
noisy observation of Ua is generated with high variance. The
issue is that this will prevent R from generating value for H.

Figure 4 shows the impact this type of change will have
on the value that R can generate and its incentives. We as-
sume that that the population of customers has a Gaussian
distribution over types Ua and that each customer generates
an estimate of her utility with Gaussian noise. Figure 4 (Left)
shows the average utility in the off-switch game as a function
of the variance in BR. The value is maximized when this
variance is equal to the variance in the true Bayesian poste-
rior. Figure 4 (Middle) shows that increasing σ increases R’s
incentives ∆. Our results are evidence that building systems
that allow themselves to be turned off is likely to reduce the
value these systems can generate.

This loss in value is more pronounced if R has to choose
between more options. Figure 4 (Right) shows the relation-
ship between value and R’s incentives as the number of ac-
tions R could queue or execute increases. When R has more
options creating incentives for R to queue its action leads to
a sharper decrease in value. This suggests that creating in-
centives to maintain or allow human oversight is likely more
difficult as the complexity of the AI’s decision increases.

The takeaway is that it is important for designers to accu-
rately represent the inherent uncertainty in the evaluation of

different actions. An agent that is overconfident in its utility
evaluations will be difficult to correct; an agent that is under-
confident in its utility evaluations will be ineffective.

6 Related Work

Corrigible Systems. [Omohundro, 2008] considers instru-
mental goals of artificial agents: goals which are likely to
be adopted as subgoals of most objectives. He identifies an
incentive for self-preservation as one of these instrumental
goals. [Soares et al., 2015] takes an initial step at formalizing
the arguments in [Omohundro, 2008]. They refer to agents
that allow themselves to be switched off as corrigible agents.
They show that one way to create corrigible agents is to make
them indifferent to being switched off. They show a generic
way to augment a given utility function to achieve this prop-
erty. The key difference in our formulation is that R knows
that its estimate of utility may be incorrect. This gives a nat-
ural way to create incentives to be corrigible and to analyze
the behavior if R is incorrigible.

[Orseau and Armstrong, 2016] consider the impact of hu-
man interference on the learning process. The key to their
approach is that they model the off switch for their agent as
an interruption that forces the agent to change its policy. They
show that this modification, along with some constraints on
how often interruptions occur, allows off-policy methods to
learn the optimal policy for the given reward function just as
if there had been no interference. Their results are comple-
mentary to ours. We determine situations where the optimal
policy allows the human to turn the agent off, while they an-
alyze conditions under which turning the agent off does not
interfere with learning the optimal policy.

Cooperative Agents. A central step in our analysis formu-
lates the shutdown game as a cooperative inverse reinforce-
ment learning (CIRL) game [Hadfield-Menell et al., 2016].
The key idea in CIRL is that the robot is maximizing an un-
certain and unobserved reward signal. It formalizes the value
alignment problem, where one actor needs to align its value
function with that of another actor. Our results complement
CIRL and argue that a CIRL formulation naturally leads to
corrigible incentives. [Fern et al., 2014] consider hidden-goal
Markov decision processes. They consider the problem of a
digital assistant and the problem of inferring a user’s goal and
helping the user achieve it. This type of cooperative objective
is used in our model of the problem. The primary difference
is that we model the human game-theoretically and analyze
our models with respect to changes in H’s policy.

Principal–Agent Models. Economists have studied prob-
lems in which a principal (e.g., a company) has to deter-
mine incentives (e.g., wages) for an agent (e.g., an employee)
to cause the agent to act in the principal’s interest [Kerr,
1975; Gibbons, 1998]. The off-switch game is similar to
principal—agent interactions: H is analogous to the company
and R is analogous to the employee. The primary attribute in
a model of artificial agents is that there is no inherent mis-
alignment between H and R. Misalignment arises because it
is not possible to specify a reward function that incentivizes
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