
Efficient Reinforcement Learning with Hierarchies of Machines
by Leveraging Internal Transitions

Aijun Bai
UC Berkeley

aijunbai@berkeley.edu

Stuart Russell
UC Berkeley

russell@cs.berkeley.edu

Abstract
In the context of hierarchical reinforcement learn-
ing, the idea of hierarchies of abstract machines
(HAMs) is to write a partial policy as a set of hierar-
chical finite state machines with unspecified choice
states, and use reinforcement learning to learn an
optimal completion of this partial policy. Given a
HAM with deep hierarchical structure, there of-
ten exist many internal transitions where a machine
calls another machine with the environment state
unchanged. In this paper, we propose a new hier-
archical reinforcement learning algorithm that au-
tomatically discovers such internal transitions, and
shortcircuits them recursively in the computation
of Q values. The resulting HAMQ-INT algorithm
outperforms the state of the art significantly on the
benchmark Taxi domain and a much more complex
RoboCup Keepaway domain.

1 Introduction
Reinforcement learning (RL) tackles the problem of learn-
ing a rewarding behavior in an unknown environment via
trial-and-error [Sutton and Barto, 1998]. Recent advances in
RL have led to great success on problems that pose signifi-
cant challenges [Kober and Peters, 2012; Mnih et al., 2015;
Silver et al., 2016]. However, standard “flat” RL algorithms
often learn slowly in environments requiring complex behav-
iors, due to the curses of dimensionality and history. Hierar-
chical reinforcement learning (HRL) aims to scale RL by in-
corporating prior knowledge about the structure of good poli-
cies into the algorithms [Barto and Mahadevan, 2003]. Pop-
ular HRL solutions include the options theory [Sutton et al.,
1999], the hierarchies of abstract machines (HAMs) frame-
work [Parr and Russell, 1998; Andre and Russell, 2001], and
the MAXQ approach [Dietterich, 1999]. One of the major ad-
vantages of HRL approaches is the possibility of exploiting
temporal abstraction and hierarchical control, where macro-
actions following their own polices until termination.

This paper describes a new HRL algorithm taking advan-
tage of internal transitions introduced by the input hierarchi-
cal structure, following the framework of HAMs. The idea of
HAMs is to write a partial policy for an agent, and use RL
to learn its optimal completion. A partial policy (or a HAM

Figure 1: An example of a HAM for a mobile robot.

hereinafter) can be represented as a set of hierarchical finite
state machines (FSMs), with unspecified choice states. To run
a HAM, a run-time stack is needed to maintain the complete
machine state. An agent equipped with a HAM interacting
with its environment reduces to a semi Markov decision pro-
cess (SMDP) defined over the joint space of environment and
machine states. A choice point is defined as a joint state with
the top of the stack being a choice state. Learning happening
at choice points suffices to find an optimal policy for the re-
sulting SMDP, which corresponds to the optimal completion
of the HAM. Comparing with options and MAXQ, the main
advantages of HAMs are that it encodes complex behaviors
with arbitrary hierarchical structure, it supports passing pa-
rameters and storing local variables within the run-time stack,
and it enables learning of an optimal hierarchical policy con-
sistent with the input hierarchical structure.

It is our observation that a HAM with deep hierarchical
structure, where there are many calls from a parent machine
to one of its child machines over the hierarchy, induces many
internal transitions. An internal transition is a transition over
the joint state space, where only the run-time stack changes
but the environment state does not. Internal transitions always
come with zero rewards and deterministic outcomes in the re-
sulting SMDP. For an example, see Figure 1, which shows a
HAM for a mobile robot navigating in a grid map. The Nav-
igate machine has a choice state, at which it has to choose
between Move(Fast) and Move(Slow). The Move(speed) ma-
chine has to select repeatedly between East, West, South and
North with specified speed parameter until the robot is at
its destination. In this simple example, if the choice made



at stack [Navigate, Choose] is Move(Fast), then the stack of
the next choice point must be [Navigate, Choose, Move(Fast),
Choose]. It is not uncommon that there could be many such
internal transitions in a HAM with arbitrary structure for a
complex domain. It is actually easier for a human designer
to come up with a deep HAM, rather than a shallow HAM.
In the setting of concurrent learning when multiple HAMs
are running concurrently, as shown in [Marthi et al., 2005],
there are even more opportunities to have internal transitions
defined over the resulting joint SMDP.

In this paper, we present HAMQ-INT, a HAMQ-based
HRL algorithm that identifies and exploits internal transitions
within a HAM for efficient learning. HAMQ-INT recursively
shortcircuits the computation of Q values whenever applica-
ble. We empirically confirm that HAMQ-INT outperforms
the state of the art significantly on the benchmark Taxi do-
main and a much more complex RoboCup Keepaway domain.
The two contributions of this paper is that 1) we develop the
novel HAMQ-INT algorithm, and 2) we apply it successfully
to the RoboCup Keepaway domain, which, to the best of our
knowledge, is the first application of the HAM framework to
a very complex domain.

The paper is organized as follows. Section 2 briefly intro-
duces some background on Markov decision processes and
reinforcement learning. Section 3 introduces the fundamental
HAM framework. Section 4.1 presents the main results, and
Section 4.2 details the HAMQ-INT algorithms — efficient
HAM learning by leveraging internal transitions. Section 5
describes the empirical results on Taxi and RoboCup Keep-
away domains. In Section 6, we conclude with discussion of
future work.

2 Background
Markov decision processes (MDPs) provide a rich frame-
work for planning and learning under uncertainty. Formally,
an MDP is a tuple 〈S,A, T,R, γ〉, where S and A are the
state and action spaces, T (s′|s, a) and R(s, a) are the tran-
sition and reward functions, and γ is a discount factor [Bell-
man, 1957]. The goal for an MDP is to find an optimal policy
π∗ : S → A that maximizes the expected cumulative reward.
In the setting of reinforcement learning, an agent learns an op-
timal policy by interacting with its environment. A Q learning
agent achieves this by performing Q update, once it reaches
state s′ with reward r after executing action a in state s:

Q(s, a)← (1−α)Q(s, a) +α
(
r + γmax

a′
Q(s′, a′)

)
, (1)

where α is a learning rate.
Semi Markov decision processes (SMDPs) allow for ac-

tions that take multiple time steps to terminate. The transition
function for an SMDP has the form T (s′, N |s, a), where N
is the number of time steps that action a takes. Similarly, the
Q update rule for a SMDP is:

Q(s, a)← (1−α)Q(s, a)+α
(
r + γτ max

a′
Q(s′, a′)

)
, (2)

where τ is number of time steps elapsed after executing ac-
tion a in state s and before reaching state s′, and r is the
cumulative reward in-between.

Run(N : machine, z : stack, s : environment state):
z.Push(N)
m← N .start
while m 6= N .stop do

if Type(m) = action then
s← Execute(µ(m))

else if Type(m) = call then
s← Run(µ(m), z, s, π)

if Type(m) = choose then
z.Push(m)
m← Choose(z, s, µ(m))
z.Pop()

else
m← δ(m, s)

z.Pop()
return s

Algorithm 1: Running a HAM.

3 The HAM Framework
The idea of HAM is to encode a partial policy for an agent
as a set of hierarchical finite state machines with unspeci-
fied choice states, and use RL to learn its optimal comple-
tion. We adopt a different definition of HAM, allowing ar-
bitrary call graph, despite the original definition of Parr and
Russell [1998] which requires that the call graph is a tree.
Formally, a HAM H = {N0,N1, . . . } consists of a set of
Moore machines Ni [Moore, 1956], where N0 is the root
machine which serves as the starting point of the agent. A
machine N is a tuple 〈M,Σ,Λ, δ, µ〉, where M is the set of
machine states, Σ is the input alphabet which corresponds
to the environment state space S, Λ is the output alphabet,
δ is the machine transition function with δ(m, s) being the
next machine state given machine state m ∈ M and environ-
ment state s ∈ S, and µ is the machine output function with
µ(m) ∈ Λ being the output of machine state m ∈ M . There
are 5 types of machine states: start states are the entries of
running machines; action states execute an action in the en-
vironment; choose states nondeterministically select the next
machine states; call states invoke the execution of other ma-
chines; and, stop states end current machines and return con-
trol to calling machines. A machineN has uniquely one start
state and one stop state, referred as N .start and N .stop re-
spectively. For start and stop states, the outputs are not de-
fined; for action states, the outputs are the associated primi-
tive actions; for call states, the outputs are the next machines
to run; and, for choose states, the outputs are the sets of possi-
ble choices, where each choice corresponds to a next machine
state.

To run a HAM H, a run-time stack (or stack for short) is
needed. Each frame of this stack stores run-time information
such as the active machine, its machine state, the parame-
ters passing to this machine and the values of local variables
used by this machine. Algorithm 1 gives the pseudo-code for
running a HAM, where the Execute function executes an
action in the environment and returns the next environment
state, and the Choose function picks the next machine state
given the updated stack z, the current environment state s



Navigate(s : environment state):
speed← Choose1(Slow, Fast)
s← Move(s, speed)
return s

Move(s : environment state, speed : parameter):
while not s.atDest() do

a← Choose2(West, South, North, East)
s← Execute(a, speed)

return s
Algorithm 2: A HAM in pseudo-code for a mobile robot.

and the set of available choices µ(m). Let Z be the space
of all possible stacks given HAM H. It has been shown that
an agent running a HAM H over an MDP M yields a joint
SMDP H ◦M defined over the joint space of S and Z . The
only actions of H ◦ M are the choices allowed at choice
points. A choice point is a joint state (s, z) with z.Top()
being a choose state. This is an SMDP because once a choice
is made at a choice point, the system — the composition of
H and M — runs automatically until the next choice point
is reached. The policy of this SMDP implements exactly the
Choose function in Algorithm 1. An optimal policy of this
SMDP corresponds to an optimal completion of the input
HAM, which can be found by applying a HAMQ algorithm
[Parr and Russell, 1998]. HAMQ keeps track of the previous
choice point (s, z), the choice made c and the cumulative re-
ward r thereafter. Whenever it enters into a new choice point
(s′, z′), it performs the SMDP Q update as follows:

Q(s, z, c)← (1−α)Q(s, z, c)+α
(
r + γτ max

c′
Q(s′, z′, c′)

)
,

where τ is the number of steps between the two choice points.
As suggested by the language of ALisp [Andre and Rus-

sell, 2002], a HAM can be equivalently converted into a piece
of code in modern programming languages, with call-and-
return semantics and built-in routines for explicitly updating
stacks, executing actions and getting new environment states.
The execution of a HAM can then be simulated by running
the code itself. This conversion is important, as it provides a
much more efficient way of designing and running a HAM.
For example, the HAM shown in Figure 1 is equivalent to
the pseudo-code in Algorithm 2, where a machine becomes
a function. Here, Execute is the macro executing an action
with specified parameters and returning the next environment
state; the Choose macro extends the Choose function from
Algorithm 1 to choose among not only a set of machine states,
but also a set of parameters for the next machine. Bookkeep-
ing codes for maintaining the stack are omitted for simplicity.

4 The Main Approach
This section presents the main approach. We first introduce
internal transitions within HAMs, and then develop an algo-
rithm that automatically discovers and take advantage of in-
ternal transitions for fast learning.

4.1 Internal Transitions within HAMs
In general, the transition function of the resulting SMDP in-
duced by running a HAM has the form T (s′, z′, τ |s, z, c) ∈

[0, 1], where (s, z) is the current choice point, c is the choice
made, (s′, z′) is the next choice point, and τ is the num-
ber of time steps. Given a HAM with a deep hierarchy of
machines, it is usually the case that there is no real ac-
tions executed between two consecutive choice points, there-
fore the number of time steps and the cumulative reward
in-between are essentially zero. We call this kind of transi-
tion an internal transition, because the machine state changes
but the environment state does not. Formally, a transition
is a tuple 〈s, z, c, r, s′, z′〉 with r being the cumulative re-
ward. For an internal transition, we must have s′ = s and
r = 0. In addition, because the dynamics of the HAM af-
ter a choice has been made and before an action is executed
is deterministic by design, the next choice point (s, z′) of
an internal transition is deterministically conditioned only on
〈s, z, c〉. Let ρ(s, z, c) be the Z component of the next choice
point. If 〈s, z, c〉 leads to an internal transition, we must have
T (s, ρ(s, z, c), 0|s, z, c) = 1. Therefore, we have

Q(s, z, c) = V (s, ρ(s, z, c)) (3)

= max
c′

Q(s, ρ(s, z, c), c′).

So, we can store the rules of internal transition as
〈s, z, c, z′〉 tuples, where z′ = ρ(s, z, c). They can be used to
recursively compute Q values according to Equation 3 when
applicable. The size of the set of stored rules can be fur-
ther reduced, because the machine transition function δ of
a HAM is usually determined by a set of predicates defined
over environment state s, rather than the exact values of all
state variables. For example, the machine transition function
of machine Move(speed) in Figure 1 depends only on the
value of atDest(s) for any state s. Suppose 〈s1, z, c〉 leads
to an internal transition with (s1, z

′) being the next choice
point. Let the set of predicates used to determine the tra-
jectory in terms of active machines and machine states from
z.Top() to z′.Top() be P = {P1, P2, . . . }. Let the value
of P given state s be P(s) = {P1(s), P2(s), . . . }. It can
be concluded that the transition trajectory induced by P de-
pends only on P(s1), after choice c is made at choice point
(s1, z). On the other hand, if the set of predicates P over
state s2 (s2 6= s1) has the same value as of state s1, namely
P(s2) = P(s1), and the same choice c is made at choice
point (s2, z), then the followed transition trajectory before
reaching the next choice point must also be the same as of
〈s1, z, c〉. In other words, 〈s2, z, c〉 leads to an internal transi-
tion such that ρ(s1, z, c) = ρ(s2, z, c).

Thus, the rule of internal transition 〈s1, z, c, z′〉 can
be equivalently stored and retrieved as 〈P ,P(s1), z, c, z′〉,
which automatically applies to 〈s2, z, c, z′〉, if P(s2) =
P(s1). Here, z′ is the stack of the next choice point such that
z′ = ρ(s1, z, c) = ρ(s2, z, c). The size of the joint space of
encountered predicates and their values is determined by the
HAM itself, which is typically much smaller than the size of
the state space. For example, for a problem with continuous
state space (such as the RoboCup Keepaway domain we con-
sidered), this joint space is still limited. In summary, we can
have an efficient way of storing and retrieving the rules of in-
ternal transition by keeping track of the predicates evaluated
between two choice points.



4.2 The HAMQ-INT Algorithm
The idea of HAMQ-INT is to identify and take advantage of
internal transitions within a HAM. For this purpose, HAMQ-
INT automatically keeps track of the predicates that are evalu-
ated between two choice points, stores the discovered rules of
internal transition based on predicates and the corresponding
values, and uses the learned rules to shortcircuit the compu-
tation of Q values whenever it is possible. To detect internal
transitions, a global environment time t is maintained. It is
incremented by one only when there is an action executed in
the environment. When the agent enters a choice point (s′, z′)
after having made a choice c at choice point (s, z), and finds
that t is not incremented since the previous choice point, it
must be the case that s′ = s and 〈s, z, c〉 leads to an internal
transition. Let P be the set of predicates that have been eval-
uated between these two choice points. Then a new rule of
internal transition 〈P ,P(s), z, c, z′〉 is found. The agent can
conclude that for any state x, if P(x) = P(s), then 〈x, z, c〉
leads to an internal transition as well. In the implementation,
the agent uses a hash table ρ to store the learned rules, such
that ρ[P,P(s), z, c] = z′, if 〈P ,P(s), z, c, z′〉 is a rule of
internal transition. One thing to note is that, because z′ is de-
terministically conditioned on 〈P ,P(s), z, c〉 for an internal
transition, the value of ρ[P,P(s), z, c] will not be changed
after it has been updated for the first time.

When the agent needs to evaluate a Q function, say
Q(s, z, c), and finds that 〈s, z, c〉 leads to an internal tran-
sition according to the current learned rules, Equation 3 is
used to decompose Q(s, z, c) into the Q values of the next
choice points, which are evaluated recursively in the same
way, essentially leading to a tree of exact Bellman backups.
In fact, only the terminal Q values of this tree needs to be
learned, enabling efficient learning for the agent. Algorithm
3 gives the pseudo-code of the HAMQ-INT algorithm. Here,
the QTable function returns the stored Q value as request. It
can be implemented in either tabular or function approxima-
tion ways. The Q function evaluates the Q value of (s, z, c)
tuple. It first checks whether (s, z, c) subjects to any learned
internal transition rule. This is done by checking whether
there exists an encountered set of predicates P , such that
〈P ,P(s), z, c〉 ∈ ρ.Keys(). The uniqueness of transition
trajectory for an internal transition ensures that there will be
at most one such P . If there is such P , Q uses the retrieved
rule to recursively decompose the requested Q value accord-
ing to Equation 3; otherwise, it simply returns the stored Q
value by querying QTable.

The QUpdate function performs the SMDP Q update. It
is called once the agent enters a new choice point. The caller
has to keep track of the current state s′, the current stack z′,
the evaluated predicates P on state since the previous choice
point and the cumulative reward r in-between. If the current
time t′ equals to the time t of the previous choice point, it
must be the case that 〈s, z, c, 0, s, z′〉 is an internal transition.
Thus, a new rule 〈P ,P(s), z, c〉 is learned, and the ρ table
is updated accordingly. If t′ 6= t, meaning there are some
actions executed in the environment, it simply performs the Q
update. Finally, it uses the current (t′, s′, z′) tuple to update
the (global) previous (t, s, z) tuple, so the function will be
prepared for the next call.

QUpdate(s′ : state, z′ : stack, r : reward,
t′ : current time, P : evaluated predicates):

if t′ = t then
ρ[P,P(s), z, c]← z′

else
QTable(s, z, c)← (1− α) QTable(s, z, c)
+α(r + γt

′−t maxc′ Q(s′, z′, c′) )

(t, s, z)← (t′, s′, z′)

Q(s : state, z : stack, c : choice):
if ∃P s.t. 〈P ,P(s), z, c〉 ∈ ρ.Keys() then

q ← −∞
z′ ← ρ[P,P(s), z, c]
for c′ ∈ µ(z.Top()) do

q ← max(q, Q(s, z′, c′) )

return q
else

return QTable(s, z, c)

Algorithm 3: The HAMQ-INT algorithm.

(a) (b)

Figure 2: The Taxi domain (a) and its MAXQ task graph (b).

5 Experiments
We conduct experiments on the benchmark Taxi domain [Di-
etterich, 1999] and a much more complex RoboCup Keep-
away domain [Stone et al., 2005]. For all learning algorithms,
the learning rate is set to be 0.125; an ε-Greedy policy which
selects a random action with probability 0.01 is used to bal-
ance between exploration and exploitation.

5.1 The Taxi Domain
On the Taxi domain, a taxi navigates in a grid map to pick
up and deliver a passenger. In the beginning of each episode,
the passenger’s initial location and her destination are ran-
domly selected from the 4 terminals: R, G, Y and B. There
are 6 primitive actions for the taxi: a) 4 navigation actions:
North, West, South and East; b) the Pickup action; and c)
the Putdown action. Each navigation action has probability
0.2 of moving into perpendicular directions. At each time
step, unsuccessful Pickup and Putdown have a reward of -
10, successful Putdown has a reward of 20, and all other ac-
tions have a reward of -1. Algorithm 4 shows the HAM writ-
ten in pseudo-code for this experiment, where the Root ma-
chine repeatedly selects between Get and Put machines un-
til termination; the Get and Put machines are encoded to
navigate to the passenger or destination locations first, and



Root(s : environment state):
while not s.Terminate() do

m← Choose1(Get, Put)
s← Run(m, s)

return s

Get(s : environment state):
s← Navigate(s, s.Passenger())
s←Execute(Pickup, s)
return s

Put(s : environment state):
s← Navigate(s, s.Destination())
s←Execute(Putdown, s)
return s

Navigate(s : environment state, w : target):
while s.Taxi() 6= w do

m← Choose2(North, East, South, West)
n← Choose3(1, 2)
for i ∈ [1, n] do

s← Execute(m, s)

return s
Algorithm 4: The HAM in pseudo-code for Taxi.

Figure 3: Experimental result on Taxi.

then execute Pickup or Putdown actions accordingly; the
Navigate machine repeatedly selects among the four nav-
igation actions until the taxi reaches its target. It is worth
noting that Choose3 is used for encouraging the discovery
of temporally-extended action and creating more opportuni-
ties for internal transitions. The internal transition happens
after a choice is made within the Root machine. For ex-
ample, when a Get machine is selected at the choice point
Choose1 within the Root machine, the next choice point
must be Choose2 within the Navigation machine.

We compare HAMQ-INT with HAMQ, MAXQ-0 and
MAXQ-Q algorithms. The MAXQ task graph used for
MAXQ-0 and MAXQ-Q is shown in Figure 2b. MAXQ-Q
is additionally encoded with a pseudo-reward function for the
Navigation sub-task, which gives a reward of 1 when termi-
nated. Comparing with MAXQ algorithms, one advantage of
HAM is that the Get and Put machines are encoded with

Figure 4: A 3 vs. 2 instance of RoboCup Keepaway.

the right order of calling other machines, while MAXQ algo-
rithms have to learn this order by themselves. Figure 3 shows
the experimental result averaged over 400 runs. It can be seen
from the result that MAXQ-Q outperforms MAXQ-0 as ex-
pected, HAMQ outperforms MAXQ-Q at the early stage of
learning, and HAMQ-INT outperforms HAMQ significantly.

5.2 The RoboCup Keepaway Domain
The RoboCup Keepaway problem is a sub-task of RoboCup
soccer simulation 2D challenge [Stone et al., 2005]. In Keep-
away, a team of keepers tries to maintain the ball possession
within a limited field, while a team of takers tries to take the
ball. Figure 4 shows an instance of Keepaway with 3 keep-
ers and 2 takers. The system has continuous state and ac-
tion spaces. A state encodes positions and velocities for the
ball and all players. At each time step (within 100 ms), a
player can execute a parametrized primitive action, such as
turn(angle), dash(power) or kick(power, angle), where the
turn action changes the body angle of the player, the dash
action gives an acceleration to the player, and the kick ac-
tion gives an acceleration to the ball if the ball is within the
maximal kickable area of the player. All primitive actions are
exposed to noises. Each episode begins with the ball and all
players at fixed positions, and ends if any taker kicks the ball,
or the ball is out of the field. The cumulative reward for the
keepers is the total number of time steps for an episode. In-
stead of learning to select between primitive actions, the play-
ers are provided with a set of programmed options includ-
ing: 1) Stay() remaining stationary at the current position; 2)
Move(d, v) dashing towards direction d with speed v; 3) In-
tercept() intercepting the ball; 4) Pass(k, v) passing the ball
to teammate k with speed v; and 5) Hold() remaining station-
ary while keeping the ball kickable.

In our experiments, the taker is executing a fixed policy,
namely it holds the ball if the ball is kickable, otherwise
it tries to intercept the ball. This policy is commonly used
in the literature. The goal in RoboCup Keepaway is then to
learn a best-response policy for the keepers given fixed tak-
ers. We develop a HAM policy from the perspective of a sin-
gle keeper, and run multiple instances of this HAM concur-
rently for each keeper to form a joint policy for all keepers.
To run multiple HAMs concurrently, they have to be syn-
chronized, such that if any machine is at its choose state,
the other machines have to wait; if multiple machines are at



Keeper(s : environment state):
while not s.Terminate() do

if s.BallKickable() then
m← Choose1(Pass, Hold)
s← Run(m, s)

else if s.FastestToBall() then
s← Intercept(s)

else
m← Choose2(Stay, Move)
s← Run(m, s)

return s

Pass(s : environment state):
k ← Choose3(1, 2, . . .)
v ← Choose4(Normal, Fast)
while s.BallKickable() do

s← Run(Pass, k, v)
return s

Hold(s : environment state):
s← Run(Hold)
return s

Intercept(s : environment state):
s← Run(Intercept)
return s

Stay(s : environment state):
i← s.TmControlBall()
while i = s.TmControlBall() do

s←Run(Stay)
return s

Move(s : environment state):
d← Choose5(0◦, 90◦, 180◦, 270◦)
v ← Choose6(Normal, Fast)
i← s.TmControlBall()
while i = s.TmControlBall() do

v ←Run(Move, d, v)
return s
Algorithm 5: The HAM for RoboCup Keepaway.

their choose states, a joint choice is made instead of inde-
pendent choice for each machine. For this purpose, players
have to share their learned value functions and the selected
joint choice. A joint Q update is developed to learn the joint
choice selection policy as an optimal completion of the re-
sulting joint HAM. Algorithm 5 shows the HAM written in
pseudo-code for a single keeper. Here, Keeper is the root
machine. The Run macro runs a machine or an option with
specified parameters. BallKickable, FastestToBall,
TmControlBall are predicates used to determine the tran-
sition inside a machine. It is worth noting that the Move ma-
chine only considers 4 directions, with direction 0◦ being the
direction towards the ball, and so on. There are many internal
transitions within this single HAM. For example, when the
Passmachine is selected at the choice point Choose1 of the
Keeper machine, the next 2 consecutive choice points must
be Choose3 and Choose4 within the the Pass machine.

Figure 5: Experimental result on a 3 vs. 2 instance of
RoboCup Keepaway. A short video showing the converged
policy of HAMQ-INT can be found at this link anonymously.

When multiple HAMs are executing concurrently, there are
even more internal transitions in the resulting joint HAM. For
example, in a scenario of the 3 vs. 2 Keepaway game, where
only keeper 1 can kick the ball, suppose the joint machine
state is [Choose1, Choose2, Choose2] with each element
being the machine state of a HAM. If the joint choice made is
[Pass, Move, Stay], then the next 2 consecutive machine
states must be [Choose3, Choose5, Stay] and [Choose4,
Choose6, Stay] following the joint HAM.

We compare concurrent-HAMQ-INT, concurrent-HAMQ,
concurrent-Option, Option and Random algorithms. The Op-
tion algorithm is adopted from [Stone et al., 2005], where
the agent learns an option-selection policy over Hold() and
Pass(k, v) options if it can kick the ball, otherwise it fol-
lows a fixed policy: if it is the fastest one to intercept the ball,
it intercepts; otherwise, it follows a GetOpen() option. The
GetOpen() option, which enables the agent to move to an
open area in the field, is manually programmed beforehand.
In the original Option learning algorithm, each agent learns
independently. We argue that this setting is problematic, since
it actually incorrectly assumes that other keepers are station-
ary. We extend Option to concurrent-Option, by sharing the
learned value functions and the option selected. The HAM
algorithms are not provided with the GetOpen() option. In-
stead, they have to learn their own versions of GetOpen()
by selecting from Stay and Move machines. The SARSA-
learning rule with a linear function approximator (namely tile
coding) is used to implement the SMDP Q update for all
learning algorithms. The Random algorithm is a non-learning
version of Option, which selects available options randomly
as a baseline. Figure 5 shows the experiment result on a 3
vs. 2 instance of RoboCup Keepaway averaged using a mov-
ing window with size of 1000 episodes. It can be seen from
the result that concurrent-Option outperforms Option signif-
icantly, concurrent-HAMQ outperforms concurrent-Option
after about 15 hours of training, and concurrent-HAMQ-INT
has the best performance.

https://www.dropbox.com/s/ixgrhvo6pn2n6jo/keepaway_converged.mp4?dl=0


6 Conclusion
In this paper, we present a novel HAMQ-INT algorithm
which automatically discovers and exploits internal transi-
tions within a HAM for efficient learning. We empirically
confirm that HAMQ-INT outperforms the state of the art sig-
nificantly on the benchmark Taxi domain and a much more
complex RoboCup Keepaway domain. The way we taking
advantage of internal transitions within a HAM can be seen
as leveraging some prior knowledge on the transition model
of a reinforcement learning problem, which happens to have
some deterministic transitions. In future work, we would like
to extend this idea to more general reinforcement learning
problems, where models are partially known in advance.

Acknowledgments
Funding for this research was provided by ONR under con-
tract N00014-12-1-0609, and by DARPA under contract
N66001-15-2-4048. Opinions, findings, and conclusion or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the view of the fund-
ing agencies. The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions.

References
[Andre and Russell, 2001] David Andre and Stuart J Russell.

Programmable reinforcement learning agents. Advances in
neural information processing systems, pages 1019–1025,
2001.

[Andre and Russell, 2002] David Andre and Stuart J. Rus-
sell. State abstraction for programmable reinforcement
learning agents. In Proceedings of the 8th National Con-
ference on Artificial Intelligence and 14th Conference on
Innovative Applications of Artificial Intelligence, pages
119–125, 2002.

[Barto and Mahadevan, 2003] A.G. Barto and S. Mahade-
van. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13:341–379, 2003.

[Bellman, 1957] Richard Bellman. Dynamic Programming.
Princeton University Press, Princeton, NJ, USA, 1957.

[Dietterich, 1999] Thomas G Dietterich. Hierarchical rein-
forcement learning with the MAXQ value function de-
composition. Journal of Machine Learning Research,
13(1):63, May 1999.

[Kober and Peters, 2012] Jens Kober and Jan Peters. Rein-
forcement learning in robotics: A survey. In Reinforcement
Learning, pages 579–610. Springer, 2012.

[Marthi et al., 2005] Bhaskara Marthi, Stuart J Russell,
David Latham, and Carlos Guestrin. Concurrent hierar-
chical reinforcement learning. In IJCAI, pages 779–785,
2005.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[Moore, 1956] Edward F Moore. Gedanken-experiments
on sequential machines. Automata studies, 34:129–153,
1956.

[Parr and Russell, 1998] Ronald Parr and Stuart Russell. Re-
inforcement learning with hierarchies of machines. In
Advances in Neural Information Processing Systems, vol-
ume 10, 1998.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[Stone et al., 2005] P. Stone, R.S. Sutton, and G. Kuhlmann.
Reinforcement learning for robocup soccer keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[Sutton et al., 1999] R.S. Sutton, D. Precup, and S. Singh.
Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial In-
telligence, 112(1):181–211, 1999.


	Introduction
	Background
	The HAM Framework
	The Main Approach
	Internal Transitions within HAMs
	The HAMQ-INT Algorithm

	Experiments
	The Taxi Domain
	The RoboCup Keepaway Domain

	Conclusion

