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Abstract As intelligent systems gain autonomy and capability, it becomes vital to
ensure that their objectives match those of their human users; this is known as the
value-alignment problem. In robotics, value alignment is key to the design of collab-
orative robots that can integrate into human workflows, successfully inferring and
adapting to their users’ objectives as they go. We argue that a meaningful solution to
value alignment must combine multi-agent decision theory with rich mathematical
models of human cognition, enabling robots to tap into people’s natural collabo-
rative capabilities. We present a solution to the cooperative inverse reinforcement
learning (CIRL) dynamic game based on well-established cognitive models of deci-
sion making and theory of mind. The solution captures a key reciprocity relation: the
human will not plan her actions in isolation, but rather reason pedagogically about
how the robot might learn from them; the robot, in turn, can anticipate this and inter-
pret the human’s actions pragmatically. To our knowledge, this work constitutes the
first formal analysis of value alignment grounded in empirically validated cognitive
models.
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1 Introduction

The accelerating progress in artificial intelligence (AI) and robotics is bound to have
a substantial impact in society, simultaneously unlocking new potential in augment-
ing and transcending human capabilities while also posing significant challenges to
safe and effective human-robot interaction. In the short term, integrating robotic sys-
tems into human-dominated environments will require them to assess the intentions
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and preferences of their users in order to assist them effectively, while avoiding fail-
ures due to poor coordination. In the long term, ensuring that advanced and highly
autonomous AI systems will be beneficial to individuals and society will hinge on
their ability to correctly assimilate human values and objectives [1]. We envision
the short- and long-term challenges as being inherently coupled, and predict that
improving the ability of robots to understand and coordinate with their human users
will inform solutions to the general AI value-alignment problem.

Successful value alignment requires moving from typical single-agent AI for-
mulations to robots that account for a second agent—the human—who determines
what the objective is. In other words, value alignment is fundamentally a multi-agent
problem. Cooperative Inverse Reinforcement Learning (CIRL) formulates value
alignment as a two-player game in which a human and a robot share a common
reward function, but only the human has knowledge of this reward [2]. In practice,
solving a CIRL game requires more than multi-agent decision theory: we are not
dealing with any multi-agent system, but with a human-robot system. This poses
a unique challenge in that humans do not behave like idealized rational agents [3].
However, humans do excel at social interaction and are extremely perceptive of the
mental states of others [4, 5]. They will naturally project mental states such as be-
liefs and intentions onto their robotic collaborators, becoming invaluable allies in
our robots’ quest for value alignment.

In the coming decades, tackling the value-alignment problem will be crucial to
building collaborative robots that know what their human users want. In this paper,
we show that value alignment is possible not just in theory, but also in practice. We
introduce a solution for CIRL based on a model of the human agent that is grounded
in cognitive science findings regarding human decision making [6] and pedagogical
reasoning [7]. Our solution leverages two closely related insights to facilitate value
alignment. First, to the extent that improving their collaborator’s understanding of
their goals may be conducive to success, people will tend to behave pedagogically,
deliberately choosing their actions to be informative about these goals. Second, the
robot should anticipate this pedagogical reasoning in interpreting the actions of its
human users, akin to how a pragmatic listener interprets a speaker’s utterance in
natural language. Jointly, pedagogical actions and pragmatic interpretations enable
stronger and faster inferences among people [7]. Our result suggests that it is possi-
ble for robots to partake in this naturally-emerging equilibrium, ultimately becoming
more perceptive and competent collaborators.

2 Solving Value Alignment using Cognitive Models

2.1 Cooperative Inverse Reinforcement Learning (CIRL)

Cooperative Inverse Reinforcement Learning (CIRL) [2] formalizes value alignment
as a two-player game, which we briefly present here. Consider two agents, a human
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H and a robot R, engaged in a dynamic collaborative task involving a (possibly
infinite) sequence of steps. The goal of both agents is to achieve the best possible
outcome according to some objective θ ∈Θ . However, this objective is only known
to H. In order to contribute to the objective, R will need to make inferences about
θ from the actions of H (an Inverse Reinforcement Learning (IRL) problem), and
H will have an incentive to behave informatively so that R becomes more helpful,
hence the term cooperative IRL.

Formally, a CIRL game is a dynamic (Markov) game of two players (H and R),
described by a tuple 〈S,{AH ,AR},T,{Θ ,r},P0,γ〉, where S is the set of possible
states of the world; AH ,AR are the sets of actions available to H and R respectively;
T : S×S×AH ×AR→ [0,1] a discrete transition measure1 over the next state, con-
ditioned on the previous state and the actions of H and R: T (s′|s,aH ,aR); Θ is the
set of possible objectives; r : S×AH ×AR×Θ → R is a cumulative reward func-
tion assigning a real value to every tuple of state and actions for a given objective:
r(s,aH ,aR;θ); P0 : S×Θ → [0,1] is a probability measure on the initial state and
the objective; γ ∈ [0,1] is a geometric time discount factor making future rewards
gradually less valuable.

2.2 Pragmatic Robots for Pedagogic Humans

Asymmetric information structures in games (even static ones) generally induce an
infinite hierarchy of beliefs: our robot will need to maintain a Bayesian belief over
the human’s objectives to decide on its actions. To reason about the robot’s deci-
sions, the human would in principle need to maintain a belief on the robot’s belief,
which will in turn inform her decisions, thereby requiring the robot to maintain a
belief on the human’s belief about its own belief, and so on [8]. In [2], it was shown
that an optimal pair of strategies can be found for any CIRL game by solving a
partially observed Markov decision process (POMDP). This avoids this bottomless
recursion as long as both agents are rational and can coordinate perfectly before the
start of the game.

Unfortunately, when dealing with human agents, rationality and prior coordina-
tion are nontrivial assumptions. Finding an equivalent tractability result for more
realistic human models is therefore crucial in using the CIRL formulation to solve
real-world value-alignment problems. We discover the key insight in cognitive stud-
ies of human pedagogical reasoning [7], in which a teacher chooses actions or ut-
terances to influence the beliefs of a learner who is aware of the teacher’s intention.
The teacher can then exploit the fact that the learner can interpret utterances prag-
matically. Infinite recursion is averted by finding a fixed-point relation between the
teacher’s best utterance and the learner’s best interpretation, exploiting a common
modeling assumption in Bayesian theory of mind: the learner models the teacher
as a noisily rational decision maker [9], who will be likelier to choose utterances

1 Note that the theoretical formulation is easily extended to arbitrary measurable sets; we limit our
analysis to finite state and objective sets for computational tractability and clarity of exposition.
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causing the learner to place a high posterior belief on the correct hypothesis, given
the learner’s current belief. While in reality, the teacher cannot exactly compute the
learner’s belief, the model supposes that she estimates it (from the learner’s previ-
ous responses to her utterances), then introduces noise in her decisions to capture
estimation inaccuracies. This framework can predict complex behaviors observed
in human teaching-learning interactions, in which pedagogical utterances and prag-
matic interpretations permit efficient communication [7].

We adopt an analogous modeling framework to that in [7] for value alignment,
with a critical difference: the ultimate objective of the human is not to explicitly
improve the robot’s understanding of the true objective, but to optimize the team’s
expected performance towards this objective. Pedagogic behavior thus emerges im-
plicitly to the extent that a well-informed robot becomes a better collaborator.

2.3 Pragmatic-Pedagogic Equilibrium Solution to CIRL

The robot does not have access to the true objective θ , but rather estimates a belief
bR over θ . We assume that this belief on θ can be expressed parametrically (this
is always true if Θ is a finite set), and define 4Θ to be the corresponding (finite-
dimensional) parameter space, denoting R’s belief by bR ∈4Θ . While in reality the
human cannot directly observe bR, we assume, as in [7], that she can compute it or
infer it from the robot’s behavior (and model estimation inaccuracies as noise in her
policy). We can then let Q : S×4Θ ×AH ×AR×Θ → R represent the state-action
value function of the CIRL game for a given objective θ , which we are seeking to
compute: if θ ∈Θ is the true objective known to H, then Q(s,bR,aH ,aR;θ) repre-
sents the best performance the team can expect to achieve if H chooses aH and R
chooses aR from state s, with R’s current belief being bR.

In order to solve for Q, we seek to establish an appropriate dynamic program-
ming relation for the game, given a well-defined information structure and a model
of the human’s decision making. Since it is typically possible for people to predict
a robot’s next action if they see its beginning [10], we assume that H can observe
aR at each turn before committing to aH . A well-established model of human deci-
sion making in psychology and econometrics is the Luce choice rule, which models
people’s decisions probabilistically, making high-utility choices more likely than
those with lower utility [9]. In particular, we employ a common case of the Luce
choice rule, the Boltzmann (or soft-max) noisy rationality model [6], in which the
probability of a choice decays exponentially as its utility decreases in comparison
to competing options. The relevant utility metric in our case is the sought Q (which
captures H’s best expected outcome for each of her available actions aH ). Therefore
the probability that H will choose action aH has the form

π
�
H (aH |s,bR,aR;θ) ∝ exp

(
βQ(s,bR,aH ,aR;θ)

)
, (1)



Pragmatic-Pedagogic Value Alignment 5

where β > 0 is termed the rationality coefficient of H and quantifies the concentra-
tion of H’s choices around the optimum; as β → ∞, H becomes a perfect rational
agent, while, as β → 0, H becomes indifferent to Q. The above expression can be
interpreted by R as the likelihood of action aH given a particular θ . The evolution
of R’s belief bR is then given (deterministically) by the Bayesian update

b′R(θ |s,bR,aR,aH) ∝ π
�
H (aH |s,bR,aR;θ)bR(θ) , (2)

Jointly, (1) and (2) define a fixed-point equation analogous to the one in [7],
which states how R should pragmatically update bR based on a noisily rational
pedagogic aH . This amounts to a deterministic transition function for R’s belief,
b′R = fb(s,bR,aH ,aR). Crucially, however, the fixed-point relation derived here in-
volves Q itself, which we have yet to compute.

Unlike H, R is modeled as a rational agent; however, not knowing the true θ , the
best R can do is to maximize2 the expectation of Q based on its current belief3 bR:

π
∗
R(s,bR) := argmax

aR
∑

aH ,θ

Q(s,bR,aH ,aR;θ) ·π�H (aH |s,bR,aR;θ)bR(θ) . (3)

Combining (2) with the state transition measure T (s′|s,aH ,aR), we can define the
Bellman equation for H under the noisily rational policy π

�
H for any given θ ∈Θ :

Q(s,bR,aH ,aR;θ) = r(s,aH ,aR;θ)+Es′,a′H

[
γ ·Q′

(
s′,b′R,a

′
H ,π

∗
R(s
′,b′R);θ

)]
, (4)

where s′ ∼ T (s′|s,aH ,aR); b′R = fb(s,bR,aH ,aR); a′H ∼ π
�
H (aH |s′,b′R,π∗R(s′,b′R);θ).

Note that H’s next action a′H implicitly depends on R’s action at the next turn.
Substituting (1-3) into (4), we obtain the sought dynamic programming relation

for the CIRL problem under a noisily rational-pedagogic human and a pragmatic
robot. The human is pedagogic because she takes actions according to (1), which
takes into account how her actions will influence the robot’s belief about the objec-
tive. The robot is pragmatic because it assumes the human is actively aware of how
her actions convey the objective, and interprets them accordingly.

The resulting problem is similar to a POMDP (in this case formulated in belief-
state MDP form), with the important difference that the belief transition depends on
the value function itself. In spite of this complication, the problem can be solved in
backward time through dynamic programming: each Bellman update will be based
on a pragmatic-pedagogic fixed point that encodes an equilibrium between the Q
function (and therefore H’s policy for choosing her action) and the belief transition
(that is, R’s rule for interpreting H’s actions). Evidence in [7] suggests that people
are proficient at finding such equilibria, even though uniqueness is not guaranteed
in general; study of disambiguation is an open research direction.

2 We assume for simplicity that the optimum is unique or a well-defined disambiguation rule exists.
3 Note that this does not imply certainty equivalence, nor do we assume separation of estimation
and control: R is fully reasoning about how its actions and those of H may affect its future beliefs.
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3 A Proof-of-Concept

We introduce the benchmark domain ChefWorld, a household collaboration setting
in which a human H seeks to prepare a meal with the help of an intelligent robotic
manipulator R. There are multiple possible meals that H may want to prepare using
the available ingredients, and R does not know beforehand which one she has chosen
(we assume H cannot or will not tell R explicitly). The team obtains a reward only
if H’s intended recipe is successfully cooked. If H is aware of R’s uncertainty, she
should take actions that give R actionable information, particularly the information
that she expects will allow R to be as helpful as possible as the task progresses.

Our problem has 3 ingredients, each with 2 or 3 states: spinach (absent, chopped),
tomatoes (absent, chopped, puréed), and bread (absent, sliced, toasted). Recipes cor-
respond to (joint) target states for the food. Soup requires the tomatoes to be chopped
then puréed, the bread to be sliced then toasted, and no spinach. Salad requires the
spinach and tomatoes to be chopped, and the bread to be sliced then toasted. H and
R can slice or chop any of the foods, while only R can purée tomatoes or toast bread.

A simple scenario with the above two recipes is solved using discretized belief-
state value iteration and presented as an illustrative example in Fig 1. R has a wrong
initial belief about H’s intended recipe. Under standard IRL, H fails to communicate
her recipe. But if R is pragmatic and H is pedagogic, H is able to change R’s belief
and they successfully collaborate to make the meal.

In addition, we computed the solution to games with 4 recipes through a modifi-
cation of POMDP value iteration (Table 1). In the pragmatic-pedagogic CIRL equi-
librium with β = 5, H and R successfully cook the correct recipe 97% of the time,
whereas under the standard IRL framework (with H acting as an expert disregarding
R’s inferences) they only succeed 46% of the time—less than half as often.

Fig. 1 Simple collaborative scenario with 2 possible objectives. The human H wants soup but the
robot R initially believes her goal is salad. Even under a full POMDP formulation, if R reasons “lit-
erally” about H’s actions using standard IRL (assuming H behaves as if R knew the true objective),
it fails to infer the correct objective. Conversely, under the pragmatic-pedagogic CIRL equilibrium,
R views H as incentivized to choose pedagogic actions that will fix R’s belief when needed. Under
the pragmatic interpretation, H’s wait action in turn 2 (instead of adding spinach, which would be
preferred by a pedagogic H wanting salad) indicates H wants soup. While H’s actions are the same
under both solutions, only the pragmatic R achieves value alignment and completes the recipe.
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Boltzmann (β = 1) Boltzmann (β = 2.5) Boltzmann (β = 5) Rational
IRL 0.2351 0.3783 0.4555 0.7083

CIRL 0.2916 0.7026 0.9727 1.0000

Table 1 A comparison of the expected value (or equivalently here, the probability of success)
achieved by CIRL and IRL on the ChefWorld domain with four recipes when the robot begins
with a uniform belief over the set of recipes. We ran each algorithm across different models of the
human’s behavior, namely a rational model and a Boltzmann-rational model with various values of
β (a higher β corresponds to a more rational human). When the human is highly irrational (β = 1),
both CIRL and IRL unsurprisingly perform rather poorly. However, as the human becomes less
noisy (β = 2.5, β = 5), CIRL outperforms IRL by a significant margin; in fact, the pragmatic-
pedagogic CIRL strategy with a Boltzmann-rational human performs comparably (β = 2.5) or
even substantially outperforms (β = 5) the IRL result when the human is perfectly rational.

4 Discussion

We have presented here an analysis of the AI value alignment problem that incor-
porates a well-established model of human decision making and theory of mind
into the game-theoretic framework of cooperative inverse reinforcement learning
(CIRL). Using this analysis, we derive a Bellman backup that allows solving the
dynamic game through dynamic programming. At every instant, the backup rule is
based on a pragmatic-pedagogic equilibrium between the robot and the human: the
robot is uncertain about the objective and therefore incentivized to learn it from the
human, whereas the human has an incentive to help the robot infer the objective so
that it can become more helpful.

We note that this type of pragmatic-pedagogic equilibrium, recently studied in
the cognitive science literature for human teaching and learning [7], may not be
unique in general: there may exist two actions for H and two corresponding inter-
pretations for R leading to different fixed points. For example, H could press a blue
or a red button which R could then interpret as asking it to pick up a blue or a red
object. Although we might feel that blue-blue/red-red is a more intuitive pairing,
blue-red/red-blue is valid as well: that is, if H thinks that R will interpret pressing
the blue button as asking for the red object then she will certainly be incentivized to
press blue when she wants red; and in this case R’s policy should consistently be to
pick up the red object upon H’s press of the blue button. When multiple conventions
are possible, human beings tend to naturally disambiguate between them, converg-
ing on salient equilibria or “focal points” [11]. Accounting for this phenomenon is
likely to be instrumental for developing competent human-centered robots.

On the other hand, it is important to point out that, although they are compu-
tationally simpler than more general multi-agent planning problems, POMDPs are
still PSPACE-complete [12], so reducing pragmatic-pedagogic equilibrium compu-
tation to solving a modified POMDP falls short of rendering the problem tractable in
general. However, finding a POMDP-like Bellman backup does open the door to ef-
ficient CIRL solution methods that leverage and benefit from the extensive research
on practical algorithms for approximate planning in large POMDPs [13].
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We find the results in this work promising for two reasons. First, they provide
insight into how CIRL games can be not only theoretically formulated but also prac-
tically solved. Second, they demonstrate, for the first time, formal solutions to value
alignment that depart from the ideal assumption of a rational human agent and in-
stead benefit from modern studies of human cognition. We predict that developing
efficient solution approaches and incorporating more realistic human models will
constitute important and fruitful research directions for value alignment.
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