Hermes: A Heterogeneous-Aware Multi-Tiered Distributed 1/0
Buffering System

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun
Mlinois Institute of Technology, Department of Computer Science, Chicago, IL
akougkas@hawk.iit.edu,hdevarahan@hawk.iit.edu,sun@iit.edu

ABSTRACT

Modern High-Performance Computing (HPC) systems are adding
extra layers to the memory and storage hierarchy, named deep
memory and storage hierarchy (DMSH), to increase I/O perfor-
mance. New hardware technologies, such as NVMe and SSD, have
been introduced in burst buffer installations to reduce the pressure
for external storage and boost the burstiness of modern I/O systems.
The DMSH has demonstrated its strength and potential in practice.
However, each layer of DMSH is an independent heterogeneous
system and data movement among more layers is significantly
more complex even without considering heterogeneity. How to
efficiently utilize the DMSH is a subject of research facing the HPC
community. In this paper, we present the design and implementa-
tion of Hermes: a new, heterogeneous-aware, multi-tiered, dynamic,
and distributed I/O buffering system. Hermes enables, manages, su-
pervises, and, in some sense, extends I/O buffering to fully integrate
into the DMSH. We introduce three novel data placement policies
to efficiently utilize all layers and we present three novel techniques
to perform memory, metadata, and communication management
in hierarchical buffering systems. Our evaluation shows that, in ad-
dition to automatic data movement through the hierarchy, Hermes
can significantly accelerate I/O and outperforms by more than 2x
state-of-the-art buffering platforms.

CCS CONCEPTS

«Information systems — Distributed storage; Record and buffer
management; Main memory engines; Storage class memory; Cloud
based storage; Hierarchical storage management; +Hardware —
External storage; Emerging architectures; Memory and dense storage;

KEYWORDS

I/O buffering, Heterogeneous buffering, Layered buffering, Deep
memory hierarchy, Burst buffers

ACM Reference format:

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun. 2018. Hermes:
A Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System.
In Proceedings of HPDC ’18: International Symposium on High-Performance
Parallel and Distributed Computing, Tempe, AZ, USA, June 11-15, 2018 (HPDC
’18), 12 pages.

DOI: 10.1145/3208040.3208059

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC ’18, Tempe, AZ, USA

© 2018 ACM. 978-1-4503-5785-2/18/06...$15.00

DOI: 10.1145/3208040.3208059

1 INTRODUCTION
Data-driven science is a reality and in fact, is now driving scien-
tific discovery [28]. An International Data Corp. (IDC) report [44]
predicts that by 2025, the global data volume will grow to 163
zettabytes, ten times the 16.1ZB of data generated in 2016. The evo-
lution of modern storage technologies is driven by the increasing
ability of powerful High-Performance Computing (HPC) systems
to run data-intensive problems at larger scale and resolution. In
addition, larger scientific instruments and sensor networks collect
extreme amounts of data and push for more capable storage sys-
tems [23]. Modern I/O systems have been developed and highly
optimized through the years. Popular interfaces and standards such
as POSIX I/0O, MPI-IO [51], and HDF5 [22] expose data to the appli-
cations and allow users to interact with the underlying file system
through extensive APIs. In a large scale environment, the underly-
ing file system is usually a parallel file system (PFS) with Lustre [41],
GPFS [47], PVFS2 [45] being some popular examples. However, as
we move towards the exascale era, most of these storage systems
face significant challenges in performance, scalability, complexity,
and limited metadata services [7, 19], creating the so called I/O
bottleneck which will lead to less scientific productivity [43, 48].
To reduce the I/O performance gap, modern storage subsystems
are going through extensive changes, by adding additional lev-
els of memory and storage in a hierarchy [5]. Newly emerging
hardware technologies such as High-Bandwidth Memory (HBM),
Non-Volatile RAM (NVRAM), Solid-State Drives (SSD), and ded-
icated buffering nodes (e.g., burst buffers) have been introduced
to alleviate the performance gap between main memory and the
remote disk-based PFS. Modern supercomputer designs employ
such hardware technologies in a heterogeneous layered memory
and storage hierarchy, we call Deep Memory and Storage Hierarchy
(DMSH) [12, 26]. For example, Cori system at the National Energy
Research Scientific Computing Center (NERSC) [38], uses CRAY’s
Datawarp technology [16]. Los Alamos National Laboratory Trin-
ity supercomputer [34] uses burst buffers with a 3.7 PB capacity
and 3.3 TB/s bandwidth. Summit in Oak Ridge National Lab is also
projected to employ fast local NVMe storage for buffering [54].
As multiple layers of storage are added into HPC systems, the
complexity of data movement among the layers increases signifi-
cantly, making it harder to take advantage of the high-speed and
low-latency storage systems [10]. Additionally, each layer of DMSH
is an independent system that requires expertise to manage, and
the lack of automated data movement between tiers is a significant
burden currently left to the users [32]. Furthermore, popular I/O
middleware, such as HDF5, PnetCDF [31], and ADIOS [33], are
configured to operating with the traditional memory-to-disk I/O
endpoints. This middleware provides great value by isolating users

HPDC 18, June 11-15, 2018, Tempe, AZ, USA

from the complex effort to extract peak performance from the un-
derlying storage system, but it will need to be updated to handle
the transition to a multi-tiered I/O configuration [32]. There is a
need to seamlessly and transparently support access to DMSH.

In this paper, we present the design and implementation of Her-
mes: a new, heterogeneous-aware, multi-tiered, dynamic, and dis-
tributed I/O buffering system. Hermes enables, manages, and super-
vises I/O buffering into DMSH and offers: a) vertical and horizontal
distributed buffering in DMSH (i.e., access data to/from different
levels locally and across remote nodes), b) selective layered data
placement (i.e., buffer data partially or entirely in various levels of
the hierarchy), c) dynamic buffering via system profiling (i.e., change
the buffering schema dynamically by monitoring the system sta-
tus such as capacity of buffers, messaging traffic, etc.). Hermes
accelerates applications’ I/O access by transparently buffering data
in DMSH. Data can be moved through the hierarchy effortlessly
and therefore, applications have a capable, scalable, and reliable
middleware software to navigate the I/O challenges towards the
exascale era. Lastly, by supporting both POSIX and HDF5 interfaces,
Hermes offers ease-of-use to a wide-range of scientific applications.

The contributions of this work include:

o presenting the design and implementation of Hermes: a
new, heterogeneous-aware, multi-tiered, dynamic, and dis-
tributed I/O buffering system (Section 3.1).

e introducing three novel data placement policies to effi-
ciently utilize all layers of the new memory and storage
hierarchy (Section 3.2.2).

o presenting the design and implementation of three novel
techniques to perform memory, metadata, and commu-
nication management in hierarchical buffering systems
(Section 3.3.2).

o evaluating Hermes’ design and technical innovations show-
ing that our solution can grant better performance com-
pared to the state-of-the-art buffering platforms (Section 4).

2 BACKGROUND

2.1 Modern Application I/O Characteristics
Modern HPC applications are required to process large volume,
velocity and variety of data, leading to an explosion of data require-
ments and complexity [15]. Many applications spend significant
time of the overall execution in performing I/O making storage a
vital component in performance [56]. Furthermore, scientific appli-
cations often demonstrate bursty I/O behavior [27, 37]. Typically,
in HPC workloads, short, intensive, phases of I/O activities, such
as checkpointing and restart, periodically occur between longer
computation phases [1, 8]. The intense and periodic nature of I/O
operations stresses the underlying parallel file system and thus,
stalls the application. To appreciate how important and challenging
the I/O performance of a system is, one needs to deeply under-
stand the I/O behavior of modern scientific applications. More and
more scientific applications generate very large datasets, and the
development of several disciplines greatly relies on the analysis
of massive data. We highlight some scientific domains that are
increasingly relying on High-Performance Data Analytics (HPDA),
the new generation of data-intensive applications, which involve
sufficient data volumes and algorithmic complexity to require HPC

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

resources: Computational Biology: The National Center for Biotech-
nology Innovation maintains the GenBank database of nucleotide
sequences, which doubles in size every 10 months. The database
contains over 250 billion nucleotide bases from more than 150,000
distinct organisms. Astronomy: Square Kilometre Array project
run by an international consortium operates the largest radio tele-
scope in the world which produces staggering data as presented
in the keynote speech during the 2017 SC conference. As high-
lighted, the incoming images are of 10 PBs and the produced 3D
image is 1 PB each. High-Energy Physics: The Atlas experiment
for the Large Hadron Collider at the Center for European Nuclear
Research generates raw data at a rate of 2 PBs per second and stores
approximately 100 PBs per year of processed data.

2.2 A New Memory and Storage Hierarchy
Accessing, storing, and processing data is of the utmost importance
for the above applications which expect a certain set of features
from the underlying storage systems: a) high I/O bandwidth, b) low
latency, c) reliability, d) consistency, e) portability, and f) ease of
use. New system designs that incorporate non-volatile buffers be-
tween the main memory and the disks are of particular relevance in
mitigating the periodic burstiness of I/O. The new DMSH promises
to offer a solution that can efficiently support scientific discov-
ery in many ways: improved application reliability through faster
checkpoint-restart, accelerated I/O performance for small transfers
and analysis, fast temporary space for out-of-core computations
and in-transit visualization and analysis. Building hierarchical stor-
age systems is a cost-effective strategy to reduce the I/O latency of
HPC applications. However, while DMSH systems offer higher I/O
performance, data movement between the layers of the hierarchy is
complex and significantly challenging to manage. Moreover, there
is no software yet that addresses the challenges of DMSH.
Middleware layers, like MPI-IO and parallel HDF5, try to hide
the complexity by performing coordinated I/O to shared files while
encapsulating general purpose optimizations. However, the actual
optimization strategy of these middleware layers is dependent on
the underlying file system software and hardware implementation.
More importantly, these middleware libraries are designed with
memory-to-disk endpoints and are not ready to handle I/O access
through a DMSH system, which is ultimately left to the user. Ideally,
the presence of multiple layers of storage should be transparent to
applications without having to sacrifice performance or increase
programming difficulty. System software and a new middleware so-
lution to manage these intermediate layers can help obtain superior
1/O performance. Ultimately, the goal is to ensure that developers
have a high-performance I/O solution that minimizes changes to
their existing software stack, regardless of the underlying storage.
Deep memory and storage hierarchies require a scalable, reliable,
and high-performance software to efficiently and transparently
manage data movement. New data placement and flushing policies,
memory and metadata management, and an efficient I/O communi-
cation fabric is required to address DMSH complexity and realize
its potential. We believe that a radical departure from the existing
software stack for the scientific communities is not realistic. There-
fore, we propose to raise the level of abstraction by introducing
a new middleware solution, Hermes, and make it easier for the
user to perform I/O on top of a DMSH system. In fact, Hermes

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed 1/O Buffering System

lications

High Level I/O Libraries (pNetCDF,HDFS5, etc.)
POSIX MPI-10

Hermes Library
[API

Data Placement Engine Prefetcher

Metadata Manager
Messaging service

Data Organizer Cache Manager
|r RAM—l HVME—I Burst File

Buffers System
E

i DMSH Hardware
NVMe

SSD (i.e.,Burst Buffers)
HDD (i.e., Parallel File System)]

1/0 Clients

Figure 1: Software stack and Hermes internal design.

supports existing widely popular I/O libraries such as MPI-IO and
HDF5 which makes our solution highly flexible and production-
ready. We envision a buffering platform that can be application- and
system-aware, and thus, hide lower level details allowing the user
to focus on his/her algorithms. We strive for maximizing produc-
tivity, increasing resource utilization, abstracting data movement,
maximizing performance, and supporting a wide range of scientific
applications and domains.

3 DESIGN AND IMPLEMENTATION
3.1 Hermes Architecture

3.1.1 Design overview. Hermes is designed as a middleware
layer - sitting between applications and DMSH as shown in Fig-
ure 1. As a middleware library, Hermes captures I/O calls, both
POSIX and HDF5 (i.e., fopen, fread, fwrite, and H5Fcreate, H5Dread
etc.) and redirects them to different layers of DMSH. Legacy ap-
plications can easily connect to Hermes by simple linking (i.e.,
LD_PRELOAD) or recompiling the code with our library. There
are no changes to user code and there is no need to upgrade to a
different workflow. We design Hermes to easily work with existing
software. Our goal is to maximize user productivity by making
I/O buffering transparent. Furthermore, Hermes also provides a
new buffering API for users who want to explicitly take control
of the data movement between layers of DMSH. This mode also
allows Hermes to perform active buffering where data is shipped
to the buffer nodes along with specific instructions or operations
to be performed on them. For example, a user can pass a set of
integers to Hermes instructing it to first store them to the buffer
nodes, then sort them, compress the sorted list and lastly persist the
final result to the remote PFS. This flow can be easily executed by a
series of hinting mechanisms (i.e., flags) that Hermes provides to
the user. Our hinting mechanism is a simple bit encryption which
indicates predetermined operations like sorting, compression/de-
compression, deduplication and others. For user defined operations,
Hermes provides a bootstrapping mechanism in which the user can
submit his/her functions. The library will then compile and place
the executables to a registry of operations to be handled by the
buffering nodes. Reserved bits are used for user-defined operations.
The high-level architecture of Hermes can be seen in Figure 2. In
DMSH systems, besides the main memory, every compute node
might be equipped with an NVMe device or even an SSD. Addition-
ally, shared buffering nodes, such as burst buffers, will most likely

HPDC ’18, June 11-15, 2018, Tempe, AZ, USA

Compute nodes .
Node 1 P Node n External Services
p— _— t—j| 1. Application Orchestrator
Application ves Application 2.System Profiler
Hermes Hermes 3. User-defined Schema Parser

s S -4,
Al el B2y M~ | 1| DeepMemory and
| 1 Storage Hierarchy
: L] 1 | 1. Local RAM
' NvMe 4 A NvMe | |]| 2 Remote RAM
1 1| 3.Local NVMe
: D : 4, Remote NVMe
| 1| 5. Burst Buffers
M Burst OOQOO 1| 6. Parallel File System
! Buffer !
s | REO0000 |
1 1 | Data Movement:
! H g 1| 1. Vertical local
| | | 2 Vertical remote
1 I | 3. Horizontal -
: Parallel File System(PFS) :

Figure 2: Hermes internal design.

be present and positioned close to the compute nodes. Finally, a
remote PFS supports all compute nodes with persistence and fault
tolerance as important features. Hermes is a platform that aims to
enable efficient access to the layers of DMSH and as such we distin-
guish two data paths: a vertical and a horizontal hierarchy. Vertical
hierarchy refers to data movement within a compute node and all
the way down to the burst buffers and PFS. Horizontal hierarchy
refers to sending data to another compute node’s RAM or NVMe
device. The horizontal data movement is greatly optimized if there
is an RDMA-capable network but Hermes can also support systems
with no RDMA. Therefore, a DMSH system could consist of several
layers, performance-wise, such as local RAM, remote RAM, local
NVMe, remote NVMe, burst buffers, and PFS (numbered in fig. 2).

3.1.2 Internal components. Figure 1 demonstrates the design of
Hermes library and all the internal components that work together
to achieve an efficient, transparent, and easy-to-use data access in
all layers of a DMSH (i.e., both vertically and horizontally). The
main Hermes library is complemented by a set of tools and services
that help achieve broader goals such as multi-tenancy, adaptability,
etc. Brief description of each component’s responsibilities:

API: The API is responsible to intercept all I/O calls from the ap-
plications. It also calculates the operations to be carried out by the
buffering nodes in case of an active buffering scenario.

Data Placement Engine: This engine is responsible to map data
onto DMSH. In other words, the data placement engine calculates
the data destination, where in the hierarchy should the data be redi-
rected. It maps data according to various data placement policies.

Data Organizer: The main responsibility of this component is to
move data between the layers of DMSH. It is triggered by other com-
ponents according to certain criteria which makes it an event-based
component. For instance, if there is no space left in NVMe, data
organizer is triggered to move data down to the burst buffers and
thus freeing space in NVMe. This component is responsible to carry
out all data movement either for prefetching reasons, evictions, lack
of space, or hotness of data etc.

Metadata Manager: The MDM maintains two types of metadata
information: user’s and Hermes library’s internal metadata. Since
Hermes can transparently buffer data by intercepting I/O calls,
MDM keeps track of user’s metadata operations (i.e., files, directo-
ries, permissions etc.) while consulting the underlying PFS. Addi-
tionally, since data can be buffered anywhere in the hierarchy, MDM

HPDC 18, June 11-15, 2018, Tempe, AZ, USA

tracks the locations of all buffered data and internal temporary files
that contain user files.

Cache manager: This component is responsible to handle all
buffers inside Hermes. It is equipped with several cache replace-
ment policies such as least recently used (LRU) and least frequently
used (LFU). It works in conjunction with the prefetcher. It can
be configured to hold “hot” data for better I/O latency. It is also
responsible to implement application-aware caching schemas.
Prefetcher: This component is performance-driven. It implements
several typical prefetching algorithms such as sequential data ac-
cess, strided access, and random access. Hermes also supports user
defined prefetching. In a way, the prefetcher becomes Hermes’
client for reading operations much like application cores are when
writing data in DMSH.

Messaging Service: This component is used to pass small mes-
sages across the cluster of compute nodes. This component does
not involve any data movement which is actually done by either
the application cores or other Hermes components such as the
data organizer and prefetcher. Instead, this component provides
an infrastructure to pass instructions to other nodes to perform
operations on data or facilitate its movement. For example, a typical
type of message in Hermes is to flush buffered data of a certain file
to the next layer or to PFS.

I/0 Clients: These clients refer to simple calls using the appropriate
API based on the layer of the hierarchy. For instance, if Hermes
data placement engine maps some data to the burst buffers, then
the respective I/O client will be called and perform the fwrite() call.
Internally, Hermes can use POSIX, MPI-IO, or HDF5 to perform the
I/0. An important feature of Hermes is that user’s data structures
are mapped to Hermes’ internal structures at each layer of DMSH.
For example, an original dataset of an HDFS5 file could be mapped
into a temporary POSIX file in NVMe. The I/O clients give Hermes
the flexibility to "talk” to several data destinations and manage the
independent systems (e.g., memcpy for RAM, fwrite() for NVMe,
MPI File_write() for burst buffers).

System Profiler: This component is a service outside the main
library. It is designed to run once during the initialization. It
performs a profiling of the underlying system in terms of hardware
resources. It tries to detect the availability of DMSH and measure
each layer’s respective performance. It is crucial to identify the
parameters that Hermes needs to be configured with. Using this
information, the data placement engine can do a better job when
mapping data to different layers. Each system will have different
hierarchy. Additionally, each hierarchy will demonstrate different
performance characteristics. In our prototype implementation this
component is external and results are manually injected to the
configuration of the library. We plan to automate this process.
Schema Parser: This component accepts a user-defined buffering
schema and embeds it into the library. This schema is passed in a
XML format and Hermes is configured accordingly. For instance, if
user chooses to aggressively buffer a certain dataset or file, then
Hermes will prioritize this data higher up in the hierarchy and
also the cache manager will get informed not to evict this specific
buffered dataset. All this is possible because Hermes will use the
user’s instructions to offer the best buffering performance. In our
prototype implementation schema parser is external and is planned
to be automated in future versions of Hermes.

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

Applications Coordinator: This component is designed to offer
support in a multiple-application environment. It manages the
access to the shared layers of the hierarchy such as the burst buffers.
Its goal is to minimize interference between different applications
sharing this layer. Additionally, it coordinates the flushing of the
buffers to achieve maximum I/O performance. More information
on this component can be found in [29].

All the above components allow Hermes to offer a high perfor-
mance I/O buffering platform which is highly configurable, easily
pluggable to several applications, adaptable to certain system ar-
chitectures, and feature-rich yet lightweight.

3.2 Hermes Buffering Modes and Policies

3.2.1 Buffering modes. Similar to other buffering systems, Her-
mes offers several buffering modes (i.e., configurable by the user)
to cover a wide range of different application needs such as I/O
latency, fault tolerance, and data sharing:
A. Persistent: in this mode, data buffered in Hermes is also written
to the PFS for permanent storage. We have designed two configura-
tions for this mode. 1) Synchronous: directs write I/O onto DMSH
and also to the underlying permanent storage before confirming
I/O completion to the client. This configuration is designed for uses
cases such as write-though cache or stage-in for read operations.
Since all data also exist in the PFS, synchronous-persistent mode is
highly fault-tolerant, offers strong data consistency, is ideal for data
sharing between processes, and supports read-after-write work-
loads. However, it demonstrates the highest latency and lowest
bandwidth for write operations since data directed to the buffers
also need to be written in the PFS. 2) Asynchronous: directs write
1/0 onto DMSH and completion is immediately confirmed to the
client. The contents of buffers are eventually written down to the
permanent storage system. The trigger to flush buffered data is
configurable and can be: i) per-operation, flushing is triggered at
the end of current fwrite(), it also flushes all outstanding previous
operations, ii) per-file, flushing is triggered upon calling fclose()
of a given file (this is similar to Data Elevator approach), iii) on-
exit, flushing is triggered upon application exit (this is similar to
Datawarp approach), and iv) periodic, flushing is periodically trig-
gered in the background (this is the default Hermes setting). This
configuration is designed for use cases such as write-back cache
and stage-out for read operations. It provides low-latency and high
bandwidth to the application since processes return immediately
after writing to the buffers. It also offers eventual consistency
since data are flushed down eventually. It is ideal for write-heavy
workloads and out-of-core computations.
B. Non-persistent: in this mode, I/O is directed to DMSH and is
never written down to the permanent storage. It is designed to
offer a scratch space for fast temporary I/O. Upon application exit,
Hermes deletes all buffered data. This mode can be used for sce-
narios such as quickly storing intermediate results, communication
between processes, in-situ analysis and visualization. In case of
buffering node failures, application must restart. This mode offers
high bandwidth and low latency. Lastly, applications can reserve a
specific allocation (i.e., capacity on buffers) for which data preser-
vation is guaranteed by Hermes (similar to Datawarp reservations).
These allocations expire with the application lifetime. In case of
buffer overflow, Hermes will transparently swap buffer contents

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed 1/0 Buffering System

to the PFS much like memory pages are swapped to the disk by
the OS. The mechanism was designed to offer some extra degree of
flexibility to Hermes. For example, let us assume that an application
writes simulation results every 5 minutes. These results are directly
read from the buffers by an analysis kernel which writes the final
result to the PFS for permanent storage. Simulation data can be
deleted or overwritten after the analysis is done. Hermes can utilize
this periodic and bursty I/O behavior and write the next iteration
on top of the previous one instead of wasting extra buffer space.
To achieve this conditional overwriting of data, Hermes utilizes a
flagging system to define the lifetime of buffered data.

C. Bypass: in this mode, as the name suggests, I/O is performed
directly against the PFS effectively bypassing Hermes. This mode
resembles write-around cache designs.

3.2.2 Data placement policies. In DMSH systems, I/O can be
buffered to one or more layers of the hierarchy. There are two main
challenges: i) how and where in the hierarchy data are placed, ii)
how and when do buffers get flushed either in the next layer or all
the way down to PFS. In Hermes, the first challenge is addressed by
the data placement engine (DPE) component and the second by the
data organizer. We designed four different data placement policies
to cover a wide variety of applications’ I/O access patterns. Each
policy is described by a dynamic programming optimization! and
follows the flow of Algorithm 1. The general idea of the algorithm
is as follows. First, if the incoming data can fit in the current layer’s
remaining capacity, it places the data there (i.e., PlaceData()). In
case it does not fit, based on the constraint of each policy, it tries
one of the following: a) solve again for next layer (i.e., skip()), b)
place as much data as possible in the current layer and the rest
in next (i.e., split()), and c) flush current layer and then place new
incoming I/O (i.e., flush()). We implemented the DP algorithm using
memoization techniques to minimize the overhead of the solution.
We further provide a configuration knob to tune the granularity of
triggering the optimization code for data placement.

A. Maximum Application Bandwidth (MaxBW): this policy
aims to maximize the bandwidth applications experience when
accessing Hermes. The DPE places data in the highest possible
layer of DMSH in a top-down approach, starting from RAM, while
balancing bandwidth, latency, and the capacity of each layer. The
approach applies to all layers making the solution recursively op-
timal in nature. The above data placement policy is expressed as
an optimization problem where DPE minimizes the time taken to
write the I/O in the current layer and the access latency to serve the
request, effectively maximizing the bandwidth. The data organizer
moves data down periodically (or when triggered) to increase the
available space in upper layers for future incoming I/O. Data move-
ment between layers is performed asynchronously. This policy is
the default Hermes configuration.

B. Maximum Data Locality: this policy aims to maximize buffer
utilization by simultaneously directing I/O to the entire DMSH. The
DPE divides and places data to all layers of the hierarchy based
on a data dispersion unit (e.g., chunks in HDF5, files in POSIX and
independent MPI-IO, and portions of a file in collective MPI-IO).
Furthermore, Hermes maintains a threshold based on the capacity
ratio between the layers of the hierarchy. This ratio reflects on the

Full mathematical formulation of each policy can be found in the Appendix.

HPDC ’18, June 11-15, 2018, Tempe, AZ, USA

Algorithm 1: Hermes algorithm to calculate data placement
in DMSH (pseudo code)
1 Hermes-DPE(data request, DMSH layer);

2 if data can fit in current layer then
3 ‘ PlaceData() ; // buffer data in this layer

4 else

5 MaxConstraint(// based on selected policy

6 - skip() ; // buffer in next layer
7 - split() ; // buffer in both current and next layers
8 - flush() ; // buffer in current layer after flushing
9)

10 end

relationship between each layer (e.g., system equipped with 32GB
RAM, 512GB NVMe, and 2TB burst buffers creates a capacity ratio
of 1-16-64). The data placement in this policy accounts for both
layer’s capacity and data’s spatial locality. The above process is
recursive and can be expressed as an optimization problem. DPE
minimizes the time taken to write the I/O in the current layer and
the degree of data dispersion (i.e., how many layers data are placed
to) effectively maximizing the buffer utilization. Data movement
between layers is performed asynchronously. This policy is ideal
for workflows that encapsulate partitioned I/O. For instance, one
could prioritize a certain group of MPI ranks over another (e.g.,
aggregator ranks) or one type of file over another (e.g., metadata
files over data files).

C. Hot-data: this policy aims to offer applications a fast cache
for frequently accessed data (i.e., hot-data). The DPE places data
in the hierarchy based on a hotness score that Hermes maintains
for each file. This score encapsulates the access frequency of a
file. Highest scored files will be placed higher up in DMSH since
they are expected to be accessed more often. This ensures that
layers with lower latency and higher bandwidth will serve critical
data such as metadata, index files, etc. The DPE also considers the
overall file size to efficiently map data to each layer (i.e., smaller
files buffered in RAM whereas larger files in burst buffers). The
data placement policy can be expressed as an optimization problem
where DPE minimizes the time taken to write the I/O in the current
layer considering both hotness and capacity of layers. The data
organizer demotes or promotes data based on the hotness score and
the data movement is performed asynchronously. This policy is
ideal for workflows that demonstrate a spectrum of hot-cold data.
D. User-defined: this policy aims to support user-defined buffer-
ing schemas. Users are expected to submit an XML file with their
preferred buffering requirements. This file is parsed during ini-
tialization by the schema parser component and used by the DPE
to make data placement decisions. For instance, user can define
certain files to always be in RAM (i.e., never get evicted), or which
HDF5 chunks to get buffered in NVMe etc.

3.3 Implementation Details

3.3.1 Node design. The new DMSH system architecture sug-
gests that compute nodes may be equipped with one or more non-
volatile storage device and share access to a burst buffer deployment.
Hermes is designed to support all the new trends in system design.
Figure 3 demonstrates Hermes node design. Each application core
uses an I/O API (i.e., POSIX, MPI-IO, HDF5 etc.) which in turn

HPDC 18, June 11-15, 2018, Tempe, AZ, USA

Message
Queue

to other i
nodes -

Remote thread: Burst Buffer Nodes
Messaging service

U85 7554 1511 PUE SIAN

Local thread:
Data-organizer,
Data aggregations,
Prefetcher

‘ Remote Parallel File System ‘

Figure 3: Compute node design in Hermes.

is captured by Hermes. A dedicated core per node, called Node
Manager, is exclusively used by Hermes services. Specifically, this
multi-threaded core is responsible for metadata management, data
organization and movement between layers, messaging services
between compute nodes (horizontal hierarchy), local memory man-
agement such as placement of data in buckets, eviction policies,
and finally prefetching. The ratio between application cores and the
Hermes node manager is configurable and is suggested to be around
64-to-1 (i.e., similar to I/O forwarding layer present in several su-
percomputing sites). If an I/O forwarding layer exists, Hermes can
utilize the I/O cores there. However, our design is not limited only
to such systems and can be widely deployed.

3.3.2 Critical components. During 1/O buffering into DMSH,
there are three critical operations: memory, metadata, and com-
munication management. To achieve high-performance in each of
these critical operations, Hermes incorporates several novel tech-
nical innovations. As it can be seen in Figure 3, RAM is split into
application memory and Hermes memory, which is further divided
in bucket pool, MDM, and message queue.

A. RAM management. We have designed a new memory man-
agement system to offer fast and efficient use of main memory,
a very crucial resource in any buffering platform. Hermes stores
data in buckets, an abstract notion of a data holder. Buckets have a
configurable fixed size and consist of a collection of memory pages.
All buckets are allocated during the bootstrapping of the system,
creating a bucket pool. This allows Hermes to avoid the cost of
per-request memory allocation (i.e., only pay the cost in the begin-
ning before application starts), to better control memory usage by
avoiding expensive garbage collection, and to define the lifetime of
memory allocations per application (i.e., re-use the same buckets
after data have been flushed down). Bucket pools are organized
in four regions: available buckets, RAM cache, NVMe cache, burst
buffers cache. The bucket pool is managed by the bucket manager
who is responsible to keep track of the status of each bucket (e.g.,
full - available). The bucket, as a unit of buffering, is extremely
critical to achieve high performance, low latency, and increases
design flexibility (e.g., better eviction policies, hot data cache etc.).

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

Malloc zzzza TC-Malloc Hermes oo

X

3
5

R
%

%z
255555
otatites]
RXETTS

s

SRS

33
R

%

»
&
X
(=]
>
K

%
R

w.‘
R
o
X

s
42658

3%

55
B8

22X
K
X

X%
24t
o

X

%z
o
R
2

IR

%
2

5%
otate¥
o

K

R

e

o

oY

=)
>

K

22

2
X

SRR
BRRIBEER

o5
%
K%

R

SIS
KR

%
58

SHER

=

%

Operations/second

%658
2%
e

&
S

%

5

s
R

500000
0

o33

3
8

95535
%%

X
<5
558
R

58

k
%2

s
B

53
I
is

64 128 512 1024 2048
Allocation size (KB)

Figure 4: RAM operations throughput.

We implemented Hermes’ memory management using MPI one-
sided operations. Specifically, buckets are placed in a shared dy-
namic Remote Memory Access (RMA) window. This allows easier
access to the buckets from any compute node and a better global
memory management. MPI-RMA implementations support RDMA-
capable networks which further diminishes the CPU overhead.
Access to buckets occurs using MPI_Put() and MPI_Get(). Update
operations are atomic with exclusive locking only on the bucket
being updated. To support fast querying (e.g., location of a bucket,
list of available buckets, etc.) the bucket manager indexes the RMA
window and bucket relationships much like how inode tables work.
The structure of a bucket includes an identifier (uint32), a data
pointer (void*), and a pointer (uint32) to the next bucket. Hermes’
buckets are perfectly aligned with RAM’s memory pages which
optimizes performance especially for applications with unaligned
accesses. Finally, to ensure data consistency and fault tolerance,
Hermes maps (via mmap()) the entire MPI-RMA window and the
index structure to a file stored in a non-volatile layer of the hierar-
chy (configured by user). We suggest placing this special file to the
burst buffers since if a compute node fails, the local NVMe device
will become unavailable till the node is fixed.

Figure 4 motivates our design for Hermes’ memory management.
In this test, we issued a million fwrites of various sizes (from 64KB
to 2MB) and measured the achieved memory operations per second.
The test was conducted on our development machine that runs
CentOS 7.1. In the test’s baseline, we intercept each fwrite(), allocate
a memory buffer (i.e., malloc()), copy data from user’s buffer to the
newly allocated space (i.e., memcpy()), and finally flush the buffer
(i.e., free()) once the data are written to the disk. As a slightly
optimized baseline case we used Google’s TC Malloc. In contrast,
Hermes intercepts each fwrite(), calculates how many buckets are
required to store the data and asks the bucket manager for them, and
copies data from user’s buffer to the acquired buckets. Once data
are written to the disk, buckets are marked by the data organizer
as available and no freeing is performed. As it can be seen in
figure 4, Hermes outperforms Linux’s Malloc by 3x and TCMalloc
by 2x. Hermes managed to sustain more than 3 million memory
ops/sec, whereas the baselines, 1 and 2 million ops/sec respectively.
Interestingly, as the allocation size grows, Linux’s Malloc struggles
in performance compared to TCMalloc. The pre-allocation and
efficient management of the buckets and the lack of freeing of
buffers helped Hermes to maintain stable high performance.

B. Metadata management. Any metadata service in distributed
systems is subject to scalability and performance issues. Metadata
in a buffering platform like Hermes consist of data distribution
information (e.g., which node, which layer in DMSH, which bucket,

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed 1/0 Buffering System

Custom(MPI) zzzza Redis
Memcached Hermes o
350000
2300000]
8250000 s
2 B
200000 "%
S &]
£ 150000 ?:?z B
s s s
2 100000 Kl g
B
50000 K g;:}\::
0 1% k] 777 B
Creations Updates
Operation type

Figure 5: Metadata Manager throughput.

etc.) and maintenance of both user’s and internal file namespaces.
Hermes’ metadata manager is distributed and aims to offer highly
concurrent and asynchronous operations. To achieve this, Hermes
employs a novel distributed hashmap design, implemented using
RMA windows and MPI one-sided operations. A hashmap consists
of keys that correspond to specific values. Our design uses two
RMA windows: i) key window, which is indexed to support efficient
querying and ii) value window, for data values. This practically
allows any process to simply MPLGet() a specific key and then
fetch its respective value. We use a 2-way hashing: first, the key
is hashed to a specific node and then into a value that resides on
that node. The MPI one-sided operations allow Hermes to perform
metadata operations without interrupting the destination node.
RDMA-capable machines will be able to perform even faster by
using the RDMA controller for any data movement. Additionally,
the RMA windows are dynamic effectively allowing the metadata
to grow in size as required, similarly with rehashing in traditional
hashmap containers. Lastly, our hashmap design liberates us to use
complex structures, such as objects and nested custom datatypes,
to describe a certain file and its metadata information. In contrast,
popular in-memory key-value such as Redis or MemCached use
simple datatypes for keys and values (e.g., strings or integers) which
can be a limiting factor to metadata services. Additionally, these
key-value stores offer features that are not useful in our use case
such as replication, timestamps, and other features that only add
overhead if one does not need or intend to use them.

Hermes’ MDM uses several maps: i) file handler to file: maintains
file handlers of opened files, {fh,filename}, ii) file to metadata prop-
erties: maintains all typical file properties (e.g., permissions, own-
ership, timestamps etc.,), {filename,{filestat}}, iii) files to location in
DMSH: maintains data distribution information, {filename,{(offset,
size),(node,layer,type,identifier,freq)}}, and iv) node to current status:
maintains information for each node’s current status such as remain-
ing capacity, hot data access frequencies, etc., {node,(layersize,...)}.
These maps allow fast queries and O(1) read/write MDM opera-
tions without the need to execute separate services (e.g., a mem-
cached server). Creation and update of metadata information is
performed by using MPI_EXCLUSIVE locks which ensures FIFO con-
sistency. Read operations use a shared lock which offers higher per-
formance and concurrency. Finally, Hermes’ MDM exposes a simple
and clean API to access its structures (e.g., mdm_update_on_open(),
mdm_get_file_stat(), mdm_sync_meta(), etc.,).

In Figure 5 we compare Hermes’” MDM performance with a
custom MPI-based solution, Memcached, and Redis. In this test,
we issue a million metadata operations and we measure the MDM
throughput in operations per second. First, we implemented a

HPDC ’18, June 11-15, 2018, Tempe, AZ, USA

custom MPI-based solution where one process per node is the MDM
and answers queries from other processes. Upon receiving one, it
queues the operation, it spawns a thread to serve the operation, and
it goes back to listening. The spawned thread removes the operation
from the queue and performs the operation. While this approach
is feasible, it uses a dedicated core per node. Another approach is
to use an in-memory key-value store. We implemented the MDM
using Memcached and Redis, two of the most popular solutions. In
this approach, one memcached or Redis server per node is always
running and awaits for any metadata operations. There is no explicit
queuing but its implementation uses multi-threaded servers with
locks and internal queues to support concurrent operations. Again,
a dedicated core is required to run the server. Lastly, Hermes is
using our own hashmap to perform metadata operations. Each
processes accesses the shared RMA window to get or put metadata.
There is no dedicated core used. As it can be seen in Figure 5,
our solution outperforms by more than 7x the MPI-based custom
solution and by more than 2x the Memcached and Redis versions.
Update operations are more expensive since clients first need to
retrieve the metadata, update them, and then push them back.

C. Messaging service. Many operations in Hermes involve com-
munication between different compute nodes, buffering nodes, and
several other components. The messaging service does not involve
in data movement but instead provides the infrastructure to pass
instructions between nodes. For instance, horizontal access to the
deep memory hierarchy involves sending data across the network to
a remote RAM or NVMe. Another example is when the prefetcher
gets triggered by one process it will fetch data to a layer of the
hierarchy for subsequent read operations. Finally, when the buffers
are flushed to the remote parallel file system for persistence, a
system-wide coordination is required. All the above cases, require
a high-performance and low latency messaging service to be in
place. Hermes implements such messaging service by utilizing our
own distributed queue via MPI one-sided operations. We designed
a scalable messaging service by leveraging the asynchronicity of
MPI RMA operations. When a process needs to communicate with
another process across the compute nodes, it simply puts a message
into the distributed queue that is hosted by all compute nodes. An
shared dynamic RMA window is used to hold the queue messages.
Each message has a type (i.e., an instruction to be carried out),
its associated attributes, and a priority. As with the distributed
hashmap above, if there is an RDMA controller it will be used to
avoid interrupting the destination core. There is no need to employ
listeners or other always-on services such as Apache ActiveMQ [49]
or Kafka [30] leading to better resource utilization. Additionally, we
define our own bit encoding to keep the messages small and avoid
costly serializations/transformations and therefore lead to lower
latencies and higher throughput. Hermes messaging service aims
to offer higher overall performance avoiding network bottlenecks
and communication storms.

In Figure 6 we compare Hermes’ performance with a custom
MPI-based solution, Memcached, and NATS. In this test, we is-
sue a million queue operations (e.g., publish - subscribe) and we
measure the messaging rate in messages per second. As described
above, we implemented a custom MPI-based solution where one
process per node accepts messages from other processes. We also
implemented a distributed queue using Memcached where each

HPDC 18, June 11-15, 2018, Tempe, AZ, USA

Custom(MPI) zzzza NATS
Memcached Hermes o

900000
5 800000
& 700000
600000
2500000
£400000
300000
= 200000

100000

0 V772 %
Publish Subscribe
Operation type

R
R
R

-

5

e
2R
RIS

%
3%

o
R
KK

X
%
5

b
5
5

Figure 6: Messaging Service throughput.

message becomes a key-value pair (i.e., ID-message). Furthermore,
we explored NATS, a popular, in-memory, high-performance, and
open source messaging system. In both latter options, a dedicated
core needs to run server code. Lastly, Hermes is using our own
distributed priority queue to execute the messaging service. Each
processes puts or gets messages from the shared RMA window
while no dedicated core is used. As it can be seen in figure 6, Her-
mes outperforms the custom MPI-based messaging implementation
by more than 12x. This is expected since the server process gets
saturated from the overwhelming rate of incoming messages. As
a result, client processes needs to wait blocked for the server to
accept their message. The handler thread cannot match the rate
of new messages. A similar picture is evident in the memcached
solution where Hermes performs more than 8x faster. However, in
memcached, up to 4 handler threads are spawned which possibly
leads to better performance compared to the custom MPI-based
one. Finally, NATS performance is really good with more than
300000 published messages per second. However, Hermes outper-
forms NATS by more than 2x for publishing and more than 3x for
subscribe operations.

3.4 Design Considerations

In this subsection, we briefly discuss concerns regarding the design
and features of any buffering platform, especially one that supports
a DMSH system such as Hermes. The goal is to present some of
our ideas and to generate discussion for future directions.

A. High-performance:

Concern 1: How to support and manage heterogeneous hardware?
Hermes is aware of the heterogeneity of the underlying resources
via the system profiler component which identifies and bench-
marks all layers present in the system. Hermes aims to utilize each
hardware resource to its best of its capabilities by avoiding hurtful
workloads. Instead, Hermes’ I/O clients generate access patterns
favorable to the each medium.

Concern 2: How to avoid excessive network traffic?

Hermes’ messaging service is carefully designed to operate with
small-sized messages with bit encoding. Furthermore, by using
asynchronicity and RDMA capable hardware our solution ensures
the low network overhead.

Concern 3: How to support low-latency applications?

The several data placement policies of Hermes’ DPE provide tun-
able performance guarantees for a variety of workloads. For low
latency applications, Hermes can leverage the performance charac-
teristics of each layer by placing data to the fastest possible layer.
Additionally, our novel memory management ensures that data can
be efficiently cached in RAM before ending up to their buffer.
Concern 4: How to avoid possible buffer overflow?

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

Hermes’ Data Organizer component manages the capacities of the
layers and moves data up and down the hierarchy (i.e., between
the layers). In corner cases of overflow, Hermes provides explicit
triggers to the data organizer to re-balance the layers and move
data based on the buffer capacity on each layer.

Concern 5: How to scale the buffer capacity?

Hermes’ DPE can place data in remote RAM and NVMe devices,
and thus, scaling is horizontal by adding more compute nodes.
Additionally, Hermes can support RAM Area Network (RAN) de-
ployments [57] to further extend the buffer capacity.

B. Fault tolerance:

Fault tolerance guarantees are based on the buffering mode selected
(i.e., sync, async). In case of asynchronous buffering mode, buffered
data are written to a fault tolerant layer such as a PFS eventually
which means for a small window of time buffer contents are sus-
ceptible to failures. In our prototype implementation, buffers are
flushed based on an event-driven architecture and also periodically
to decrease the possibilities of losing critical data. As a future step,
we want to investigate the following options: i) Checkpointing with
configurable frequency. ii) Random replication per write operation.
iii) DPE skips the failing component for incoming I/O.

C. Data consistency:

Concern 1: Data consistency model?

Hermes supports strong consistency for the application since our
design avoids having the same buffered data in multiple locations
and copies. Once a write is complete, any other process can read
the data via either a local or a remote call. Excessive locking is
avoided by using MPI RMA operations and memory windows. The
model supported is single-writer, multiple-readers.

Concern 2: Support of highly concurrent metadata operations?
Upon opening a file, metadata are loaded from the PFS to the local
RAM of the process that opened it. Then, Hermes randomly selects
two other nodes and replicates metadata there. We do this to in-
crease the availability of the metadata info and avoid saturation of
one node’s RAM. When another process wants to access the meta-
data, it randomly selects one of the replica copies and performs
the get. If it needs to update the metadata, Hermes propagates the
update to all replicas. This is synchronous to ensure consistency.
D. Hermes limitations: Hermes’ DPE component implements
our data placement policies based on the assumption that the user
knows exactly what his/her workload involve, and thus, selecting
the appropriate policy is not trivial. As a suggestion, the user
can first profile his/her application using typical monitoring and
profiling tools, such as Darshan [9], extract knowledge regarding
the I/O behavior, and make the right policy choice.

4 EVALUATION

4.1 Methodology

Overview: To evaluate Hermes, we have conducted two set of ex-
periments. We first explored how Hermes’ data placement policies
handle different workloads and application characteristics using
synthetic benchmarks. We then compare Hermes with state-of-the-
art buffering platforms, namely Data Elevator and Cray’s DataWarp,
using real applications. As performance metric, we use the overall
execution time in seconds which we further divide to: i) time to
write/read to/from buffers, and ii) time to flush buffers to PFS. Com-
putation time is excluded since it is the same among all systems.

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed 1/O Buffering System

Device RAM NVMe SSD HDD
Model M386A4G40DMO| Intel DC P3700 | Intel DC S3610 | ST9250610NS
Connection DDR4 2133Mhz | PCle Gen3 x8 SATA 6Gb/s SATA 7200rpm
Capacity 128 GB(8GBx16) 1.27TB 1.6 TB 247TB
Latency 13.5ns 20 ps 55-66 ps 4.16 ms
Max Read BW 13000 MB/s 2800 MB/s 550 MB/s 115 MB/s
Max Write BW 10000 MB/s 1900 MB/s 500 MB/s 95 MB/s
Test Config 32x client nodes |[RamFS emulated| 8x burst buffers | 16x PFS servers
ReadBW tested 92647 MB/s 38674 MB/s 3326 MB/s 883 MB/s
WriteBW tested 86496 MB/s 33103 MB/s 2762 MB/s 735 MB/s

Figure 7: Testbed specifications.

As reference, we include a baseline of no buffering in which data
are written/read directly to/from the PFS. We run all tests ten times
and we report the average time.

Hardware: All experiments were conducted on Chameleon [13].
More specifically, we used the bare metal configuration with 32
client nodes (i.e., up to 1024 MPI ranks), 8 burst buffer nodes, and
16 PFS storage nodes. Each node has a dual Intel(R) Xeon(R) CPU
E5-2670 v3 running at 2.30GHz with a total of 48 cores, and 128 GB
RAM. Each burst buffer node is equipped with an SSD drive and
each PFS node with an HDD. We emulated one NVMe device per
client node by deploying a DRAM-based file system (i.e., RAMDISK)
and imposing latency and bandwidth penalties to match the actual
NVMe performance [20, 52, 55]. In order to correctly calculate
the added latency and lowered bandwidth, we captured the perfor-
mance characteristics of real NVMe devices present in the hierarchy
appliances of Chameleon. Figure 7 lists all the hardware specifi-
cations and performance measurements. Lastly, to better capture
the architecture of a modern supercomputer, we setup our cluster
topology as follows: all 32 client nodes and 8 burst buffers are in-
terconnected with 56Gbps Infiniband network and the 16 storage
nodes are connected to the rest via a 10Gbps Ethernet network.
Software: The operating system of the cluster is CentOS 7.1, the
MPI version is Mpich 3.2, the PFS we used is OrangeFS 2.9.6, the
in-memory key-value stores are Memcached 1.4.36 and Redis 4.0.6,
and lastly the distributed queue we used is NATS Server 1.0.4.
Applications: We evaluate Hermes using our own synthetic bench-
mark that emulates common scientific application workloads such
as alternation between computation - I/O phases, read -after-write,
read-once, read-many etc. It uses POSIX-IO to issue requests to
the file system and operates in a typical file-per-process pattern.
We also use two real science applications: Vector Particle-In-Cell
(VPIC), a general purpose simulation code for modeling kinetic
plasmas in spatial multi-dimensions, and Hardware Accelerated
Cosmology Code (HACC), a cosmological simulation that studies
the formation of structure in collisionless fluids under the influence
of gravity in an expanding universe. Both of these simulations per-
form computations and produce output files periodically that need
to be persisted in PFS. Also, both demonstrate a periodic behavior
with time steps (i.e., iterations) that include the checkpoint and
restart as well as the analysis outputs produced by the simulations.
At the end of each step, VPIC writes a single HDF5 file containing
properties of 8 million particles. VPIC tends to be extremely I/O
intensive (i.e., write-only, write-heavy), since the portion of com-
putation is small. In contrast, HACC has read-after-write workload
where, at every step, simulation writes out a single shared file (i.e.,

HPDC ’18, June 11-15, 2018, Tempe, AZ, USA

fggg Write s Flush
51600
81400
21200
£1000
S 800
g 600
S 400

200

FESF P CE SRS S

0—9¢ & .Q v

NPT S S

£ & & & & &
FIFE T T IF S

Data-Intensive

& & & &
F PP

Balanced Compute-Intensive
Wcrﬁlggd type ompuite-Tensiv

Figure 8: Benchmark: Alternating Compute-1/O phases.

MPI Collective I/0) that various analysis modules read back. We
used 16 time steps for both simulations resulting to total I/O of 1TB.

4.2 Experimental Results

4.2.1 Synthetic Benchmarks. Our synthetic benchmark is highly
tunable to generate workloads that can stress the buffering system
under various use-cases. We designed two test-cases to evaluate
Hermes’ data placement policies.
Alternating Compute-1/0O phases: In this test, each process first
performs some computations (emulated by sleep() calls) and then
writes 64MB in a file-per-process fashion. We repeat this pattern
16 times with 1024 processes resulting in 1TB total I/O size. We
vary the ratio of computation over I/O time to emulate three dis-
tinct types of applications: data-intensive, compute-intensive, and
balanced. We assume that all data written to the buffers need to
be also written to the disk-based remote PFS. Therefore, Hermes
is configured in persistent asynchronous mode. We measure the
overall time spent in I/O, in seconds, which consists of write-time
and flush-time. Figure 8 shows the results. As it can be seen, the
baseline writes directly to PES (i.e., no flush-time) and maintains
stable write performance regardless of the computation-I/O ratio.
In Data Elevator and DataWarp, data are written to the burst buffers
resulting to similar write-time between them. The difference in per-
formance comes from data flushing. Data Elevator overlaps flushing
with computation phases, and thus, as the computation-I/O ratio
increases, flush-time decreases (i.e., flushing is hidden behind com-
putation). On the other hand, DataWarp flushes data only once the
application finishes and demonstrates stable flush-time regardless
of the computation-I/O ratio. In Hermes, data are written in all lay-
ers of the DMSH (i.e., RAM, NVMe, and burst buffers in our system).
We evaluate both MaxBW and MaxLocality data placement policies
since they buffer data differently. MaxBW places data in a top-down
fashion. It starts with RAM for the first iterations of the test, and
once this layer is full, it first moves data down to NVMe to create
space in RAM and then places the incoming iteration in RAM. On
the other hand, MaxLocality uses layers concurrently. It writes the
first iterations in RAM and once this layer is full it goes on to the
next without any data movement between layers. It is clear that for
data-intensive applications where the rate of incoming I/O is high,
MaxBW’s data movement between layers imposes some perfor-
mance losses, and thus, MaxLocality’s write performance is slightly
higher. As the computation-I/O ratio increases however, MaxBW
can overlap data movement between layers with computations.
Therefore, for compute-intensive workloads, MaxBW outperforms
MaxLocality by 4x in write-time since it ensures that incoming I/O
can be written in RAM. For flushing, both policies leverage any

HPDC 18, June 11-15, 2018, Tempe, AZ, USA

1600 - Write e Read

$OE S L
@ &
F P 0'”\';?}& <

@ 3 KL QO RIS Q
FFEL LS S EFLS
F e O O <

Wrstioenyse

Read-Once Read-Many x16

Figure 9: Benchmark: Repetitive Read operations.

computation time available to asynchronously flush buffer contents
to PFS, similarly with Data Elevator. However, Hermes flushes
all layers of the DMSH concurrently which decreases flush-time
significantly. In summary, in this test Hermes offers 8x and 2x
higher write performance when compared to No Buffering baseline
and state-of-the-art buffering platforms respectively.

Repetitive Read operations: In this test, the benchmark is con-
figured to create a write-once, read-many workload. Each process
first writes 32MB in a file-per-process approach and then reads
back 32MB of data (not necessarily the same data). We have 16
phases of this pattern with 1024 processes aggregating the I/O
to 1TB. We vary the repetition of read operations as follows: i)
Read-once, where 32MB of data is read only once, ii) Read-many
x4, where 8MB of data is read 4 times (i.e., still 32MB in total), and
iii) Read-many x16, where 2MB of data is read 16 times. This pat-
tern resembles workloads where portions of data such as metadata
information, indices of files, etc., are frequently accessed creating
a data hotness spectrum. In this test, we assume that buffers are
used as scratch space (i.e., temporary I/O), and thus, Hermes is
configured in non-persistent mode. The total time, in seconds, is
divided into write-time and read-time. As it can be seen in Figure 9,
the baseline writes and reads directly from the PFS and maintains
a stable performance irrespective of the workload type. In Data
Elevator and DataWarp, data are written/read to/from the burst
buffers respectively. This results to a considerable performance
improvement over the baseline. Since repetitive read operations are
treated as new, it shows stable performance across different work-
loads. In contrast, Hermes implements a HotData data placement
policy to offer higher performance for this type of workloads. Since
HotData will promote frequently accessed data in upper layers,
repetitive read operations access data always from RAM resulting
in significant performance boost for Read-many x4 and x16. On
the other hand, MaxBW, while offering a competitive performance
across the tested workloads, does not cache frequent accessed data
in RAM and demonstrates a stable performance across the tested
workloads. In summary, in this test Hermes offers 38x and 11x
higher read performance when compared to No Buffering baseline
and state-of-the-art buffering platforms respectively.

4.2.2 Real Applications. To test our system under real applica-
tions workload, we configured Hermes in persistent asynchronous
mode since data need to be stored in the PFS for future access and
selected the default data placement policy, MaxBW.

VPIC: This application demonstrates a write-only I/O access pat-
tern where at the end of each time step, each process writes data to
an HDFS5 file. During this evaluation we executed the application

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

1800

1600
T1400
21200
21000
= 800
600
400
200

0

Write mmmmm Flush ===

se

Overall ti

& & KL @ & K)
& & & NI NAPCHIS
q{"?}\ (1}'9 NG 0@“‘& 'zf"e\\ ~7)"§> \'fs\ ¢ @Q‘& 'z§°'z>\ rr}"&\ \"’$ ° &Q&
¥ T P Q\Q} T Q?} T @ Q@
256 1024

512
Number of processes

Figure 10: I/O Buffering performance with VPIC-IO.

1400
1200

Write smmmm Read = Flush ———

® 9
S o
ISERSY

Overall time (sec]
B D

S 3

3 3

n
=1
o o

512
Number of processes

Figure 11: I/O Buffering performance with HACC-IO.

for 16 time steps. We strong scaled the application from 256 to
1024 total ranks and we measured the total time. In Figure 10 we
report only the I/O time which consists of write-time (i.e., what
the application experiences) and flush-time (i.e., persisting the data
asynchronously). As it can be seen, all tested solutions scale linearly
with the number of MPI ranks. In the largest tested scale of 1024
ranks, the baseline completed the test in 1192 seconds. Both Data
Elevator and DataWarp wrote the entire dataset in 438 seconds.
This is approximately a 2.5x improvement over the baseline. How-
ever, due to the higher bandwidth of the DMSH, Hermes’ write
performance is 5x and 2x higher than the baseline and the two
buffering platforms we tested, respectively. When considering data
flushing, Data Elevator overlaps small computations between each
time step and flushes the contents of burst buffers in 1115 seconds
whereas DataWarp flushes everything at the end in 1274 seconds.
In contrast, Hermes leverages the computations but also the concur-
rency of the DMSH to flush all buffered data to PFS in 637 seconds.
In summary, in this test, Hermes outperformed the baseline and
state-of-the-art buffering platforms by 40% and 85% respectively.

HACC: This application demonstrates a read-after-write I/O access
pattern where during each time step, each process reads back data
previously written using MPI-Collective IO. During this evaluation
we executed the application for 16 time steps. We strong scaled
the application from 256 to 1024 total ranks and we measured the
total time. In Figure 11 we report only the I/O time which con-
sists of write-time, read-time, and flush-time. As it can be seen, all
tested solutions scale linearly with the number of MPI ranks. In the
largest tested scale of 1024 ranks, the baseline completed the test
in 1313 seconds. Both Data Elevator and DataWarp performed I/O
in 348 seconds. This is approximately a 3.7x improvement over the
baseline. However, when considering data flushing, Data Elevator
completed the test in 773 and DataWarp in 985 seconds effectively
reducing the total improvement to 1.6x and 1.3x respectively. In
contrast, Hermes completed the entire test in 494 seconds showcas-
ing the potential of a DMSH system. The performance improvement

Hermes: A Heterogeneous-Aware Multi-Tiered Distributed 1/0 Buffering System

is substantial when compared to No Buffering baseline with 7.5x
faster I/O operations. Hermes outperformed Data Elevator and
DataWarp by 2x due to higher bandwidth of the DMSH.

5 RELATED WORK

New hardware technologies have been developed and can be used to
build new memory and storage hierarchies using non-volatile mem-
ory (NVRAM) such as phase-change memory (PCM) [42], mem-
ristors [50], and Flash memory [12]. Flash-based SSD technology
has been widely studied [24], characterized [21], and evaluated for
different application types [3, 14]. Researchers also advocate the
use of shared buffer technologies, such as burst buffers [6], to accel-
erate I/0. Existing work has considered NVMe devices as a viable
solution for I/O staging [25, 26]. Caulfield proposed Moneta [11],
an architecture with NVRAM as an I/O device for HPC applica-
tions. Ekel extended Moneta with a real PCM device to understand
the performance implications of using NVRAM [2]. Dong studied
NVRAM for HPC application checkpointing [18]. Kannan studied
NVRAM for I/O intensive benchmarks in Cloud environments [26].
Wang proposed BurstMem [53], a technology for optimizing I/O
using burst buffers. Sato et al.,, show how the burst buffers can
boost performance of checkpointing tasks by 20x [46].

Active Buffers [35, 36] exploits one-sided communication for
I/0 processors to fetch data from compute processors’ buffers and
performs actual writing in the background while computation con-
tinues. IOLite [40], proposes a single shared memory per-node
for leveraging inter-process communication and buffering of I/O.
Such an approach led to 40% boost in performance. Nitzberg [39]
proposes collective buffering algorithms for improving I/O per-
formance by 100x on IBM SP2 at NASA Ames Research Center.
PLFS [4] remaps an applicationfis preferred data layout into one
which is optimized for the underlying file system.

While all the above work emphasizes the benefits of using each
technology individually, none introduced a complete I/O buffering
platform that leverages the DMSH. The closest work to Hermes is
Data Elevator [17], a new system that transparently moves data in
a hierarchical system. The authors focused on systems equipped
with burst buffers and demonstrated a 4x improvement over other
state-of-the-art burst buffer management systems such as Cray’s
Datawarp [16]. However, they did not address local memory and
local non-volatile devices such as NVMe. Hermes considers both
local resources and shared resources like burst buffers. Furthermore,
Hermes extends buffering into remote resources and tackles data
movement to a more complicated landscape of I/O-capable devices.

6 CONCLUSIONS

To increase I/O performance, modern storage systems are presented
in a new memory and storage hierarchy, called Deep Memory and
Storage Hierarchy. However, data movement among the layers is
significantly complex, making it harder to take advantage of the
high-speed and low-latency storage systems. Additionally, each
layer of the DMSH is an independent system that requires expertise
to manage, and the lack of automated data movement between tiers
is a significant burden currently left to the users.

In this paper, we present the design and implementation of
Hermes: a new, heterogeneous-aware, multi-tiered, dynamic, and
distributed I/O buffering system. Hermes enables, manages, and

HPDC ’18, June 11-15, 2018, Tempe, AZ, USA

supervises I/O buffering into the DMSH and offers a buffering plat-
form that can be application- and system-aware, and thus, hide
lower level details allowing the user to focus on his/her algorithms.
Hermes aims to maximizing productivity, increasing resource uti-
lization, abstracting data movement, maximizing performance, and
supporting a wide range of scientific applications and domains. We
have presented three novel data placement policies to efficiently
utilize all layers of the new memory and storage hierarchy as well
as three novel techniques to perform memory, metadata, and com-
munication management in hierarchical buffering systems. Our
evaluation results prove Hermes’ sound design and show a 8x im-
provement compared to systems without I/O buffering support.
Additionally, Hermes outperforms by more than 2x state-of-the-art
buffering platforms such as Data Elevator and Cray’s Datawarp.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science
Foundation under Grants no. CCF-1744317, CNS-1526887, and CNS-
0751200.

REFERENCES

[1] Sean Ahern, Sadaf R Alam, Mark R Fahey, Rebecca] Hartman-Baker, Richard F Barrett,
Ricky A Kendall, Douglas B Kothe, Richard T Mills, Ramanan Sankaran, Arnold N Thar-
rington, et al. 2007. Scientific application requirements for leadership computing at the ex-
ascale. Technical Report. Oak Ridge National Laboratory (ORNL); Center for Computational
Sciences.

Ameen Akel, Adrian M Caulfield, Todor I Mollov, Rajesh K Gupta, and Steven Swanson. 2011.

Onyx: A Prototype Phase Change Memory Storage Array. HotStorage 1 (2011), 1.

David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan,

and Vijay Vasudevan. 2009. FAWN: A fast array of wimpy nodes. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles. ACM, 1-14.

John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James Nunez,

Milo Polte, and Meghan Wingate. 2009. PLFS: a checkpoint filesystem for parallel applications.

In Proceedings of the Conference on High Performance Computing Networking, Storage and

Analysis. ACM, 21.

John Bent, Gary Grider, Brett Kettering, Adam Manzanares, Meghan McClelland, Aaron Tor-

res, and Alfred Torrez. 2012. Storage challenges at Los Alamos National Lab. In Mass Storage

Systems and Technologies (MSST), 2012 IEEE 28th Symposium on. IEEE, 1-5.

‘Wahid Bhimji, Debbie Bard, Melissa Romanus, David Paul, Andrey Ovsyannikov, Brian

Friesen, Matt Bryson, Joaquin Correa, Glenn K Lockwood, Vakho Tsulaia, et al. 2016. Ac-

celerating science with the NERSC burst buffer early user program. CUG2016 Proceedings

(2016).

D Brown, Paul Messina, D Keyes,] Morrison, R Lucas, J Shalf, P Beckman, R Brightwell, A

Geist,] Vetter, et al. 2010. Scientific grand challenges: Crosscutting technologies for comput-

ing at the exascale. Office of Science, US Department of Energy, February (2010), 2—4.

Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham,

and Robert Ross. 2011. Understanding and improving computational science storage access

through continuous characterization. ACM Transactions on Storage (TOS) 7, 3 (2011), 8.

Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine Riley.

2009. 24/7 characterization of petascale I/O workloads. In Cluster Computing and Workshops,

2009. CLUSTER 09. IEEE International Conference on. IEEE, 1-10.

[10] Adrian M Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua He, Arun
Jagatheesan, Rajesh K Gupta, Allan Snavely, and Steven Swanson. 2010. Understanding the
impact of emerging non-volatile memories on high-performance, I/O-intensive computing. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, 1-11.

[11] Adrian M Caulfield, Arup De, Joel Coburn, Todor I Mollow, Rajesh K Gupta, and Steven
Swanson. 2010. Moneta: A high-performance storage array architecture for next-generation,
non-volatile memories. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture. IEEE Computer Society, 385-395.

[12] Adrian M Caulfield, Laura M Grupp, and Steven Swanson. 2009. Gordon: using flash memory
to build fast, power-efficient clusters for data-intensive applications. ACM Sigplan Notices 44,
3 (2009), 217-228.

[13] Chameleon.org. 2017. Chameleon system. (2017). https://www.chameleoncloud.org/about/
chameleon/

[14] Shimin Chen. 2009. FlashLogging: exploiting flash devices for synchronous logging perfor-
mance. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of
data. ACM, 73-86.

[15] S Conway and C Dekate. [n. d.]. High-Performance Data Analysis: HPC Meets Big Data. ([n.
d.]). http://www.hpcuserforum.com/presentations/tuscon2013/IDCHPDABigDataHPC.pdf

[16] CRAY Inc. 2017. Datawarp technology. (2017). http://www.cray.com/sites/default/files/
resources/CrayXC40-DataWarp.pdf

[17] Bin Dong, Suren Byna, Kesheng Wu, Hans Johansen, Jeffrey N Johnson, Noel Keen, et al.
2016. Data Elevator: Low-Contention Data Movement in Hierarchical Storage System. In
High Performance Computing (HiPC), 2016 IEEE 23rd International Conference on. IEEE, 152—
161.

[2

[3

[4

[5

[6

[7

[8

[9

HPDC 18, June 11-15, 2018, Tempe, AZ, USA

(18]

[19]

[20]

[21]

[22]
[23]
24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

(40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi, Richard Kaufmann, and Yuan Xie.
2009. Leveraging 3D PCRAM technologies to reduce checkpoint overhead for future exas-
cale systems. In High Performance Computing Networking, Storage and Analysis, Proceedings
of the Conference on. IEEE, 1-12.

Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude
Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, et al. 2011.
The international exascale software project roadmap. The international journal of high perfor-
mance computing applications 25, 1 (2011), 3-60.

Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Ra-
jesh Sankaran, and Jeff Jackson. 2014. System software for persistent memory. In Proceedings
of the Ninth European Conference on Computer Systems. ACM, 15.

Kaoutar El Maghraoui, Gokul Kandiraju, Joefon Jann, and Pratap Pattnaik. 2010. Modeling
and simulating flash based solid-state disks for operating systems. In Proceedings of the first
Jjoint WOSP/SIPEW international conference on Performance engineering. ACM, 15-26.

Mike Folk, Albert Cheng, and Kim Yates. 1999. HDF5: A file format and I/O library for high
performance computing applications. In Proceedings of Supercomputing, Vol. 99. 5-33.

Tony Hey, Stewart Tansley, Kristin M Tolle, et al. 2009. The fourth paradigm: data-intensive
scientific discovery. Vol. 1. Microsoft research Redmond, WA.

Yongsoo Joo, Junhee Ryu, Sangsoo Park, and Kang G Shin. 2011. FAST: Quick Application
Launch on Solid-State Drives.. In FAST. 259-272.

Sooyong Kang, Sungmin Park, Hoyoung Jung, Hyoki Shim, and Jaehyuk Cha. 2009. Perfor-
mance trade-offs in using nvram write buffer for flash memory-based storage devices. IEEE
Trans. Comput. 58, 6 (2009), 744-758.

Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan, Dejan Milojicic, and Vanish Talwar.
2011. Using active NVRAM for 1/O staging. In Proceedings of the 2nd international workshop
on Petascal data analytics: challenges and opportunities. ACM, 15-22.

Youngjae Kim, Raghul Gunasekaran, Galen M Shipman, David A Dillow, Zhe Zhang, and
Bradley W Settlemyer. 2010. Workload characterization of a leadership class storage cluster.
In Petascale Data Storage Workshop (PDSW), 2010 5th. IEEE, 1-5.

Rob Kitchin. 2014. Big Data, new epistemologies and paradigm shifts. Big Data & Society 1,
1(2014), 2053951714528481.

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2017. Harmonia: An Interference-
Aware Dynamic I/O Scheduler for Shared Non-Volatile Burst Buffers. Technical Report. Illinois
Insitute of Technology.

Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging system for
log processing. In Proceedings of the NetDB. 1-7.

Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William Gropp,
Robert Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale. 2003. Parallel netCDF:
A high-performance scientific I/O interface. In Supercomputing, 2003 ACM/IEEE Conference.
IEEE, 39-39.

Glenn K Lockwood, Damian Hazen, Quincey Koziol, RS Canon, Katie Antypas, Jan Balewski,
Nicholas Balthaser, Wahid Bhimji, James Botts, Jeff Broughton, et al. 2017. Storage 2020: A
Vision for the Future of HPC Storage. Technical Report. NERSC.

Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin. 2008. Flex-
ible io and integration for scientific codes through the adaptable io system (ADIOS). In Pro-
ceedings of the 6th international workshop on Challenges of large applications in distributed
environments. ACM, 15-24.

Los Alamos National Lab. [n. d.]. Trinity specs. ([n. d.]). http://www.lanl.gov/projects/
trinity/specifications.php

Xiaosong Ma, Marianne Winslett, Jonghyun Lee, and Shengke Yu. 2001. Faster collective out-
put through active buffering. In Parallel and Distributed Processing Symposium., Proceedings
International, IPDPS 2002, Abstracts and CD-ROM. IEEE, 8-pp.

Xiaosong Ma, Marianne Winslett, Jonghyun Lee, and Shengke Yu. 2003. Improving MPI-IO
output performance with active buffering plus threads. In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International. IEEE, 10—pp.

Ningfang Mi, Alma Riska, Qi Zhang, Evgenia Smirni, and Erik Riedel. 2009. Efficient man-
agement of idleness in storage systems. ACM Transactions on Storage (TOS) 5, 2 (2009), 4.
NERSC. [n. d.]. Cori system burst buffer design. ([n. d.]). https://www.nersc.gov/users/
computational-systems/cori/burst-buffer/

Bill Nitzberg and Virginia Lo. 1997. Collective buffering: Improving parallel I/O performance.
In High Performance Distributed Computing, 1997. Proceedings. The Sixth IEEE International
Symposium on. IEEE, 148-157.

Vivek S Pai, Peter Druschel, and Willy Zwaenepoel. 2000. IO-Lite: a unified I/O buffering
and caching system. ACM Transactions on Computer Systems (TOCS) 18, 1 (2000), 37-66.

JB Peter. 2004. The Lustre storage architecture. Cluster File Systems, Inc (2004).

Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. 2009. Scalable high
performance main memory system using phase-change memory technology. ACM SIGARCH
Computer Architecture News 37, 3 (2009), 24-33.

Daniel A Reed and Jack Dongarra. 2015. Exascale computing and big data. Commun. ACM
58,7 (2015), 56-68.

David Reinsel, John Gantz, and John Rydning. 2017. Data Age 2025: The Evolution of Data
to Life-Critical. Donfit Focus on Big Data (2017).

Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th annual Linux showcase and conference. 391-430.

Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R De Supinski, Naoya
Maruyama, and Satoshi Matsuoka. 2014. A user-level infiniband-based file system and check-
point strategy for burst buffers. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on. IEEE, 21-30.

Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System for Large
Computing Clusters.. In FAST, Vol. 2.

John Shalf, Sudip Dosanjh, and John Morrison. 2010. Exascale computing technology chal-
lenges. In International Conference on High Performance Computing for Computational Science.
Springer, 1-25.

Bruce Snyder, Dejan Bosanac, and Rob Davies. 2017. Introduction to apache ActiveMQ. Active
MQ in Action (2017), 6-16.

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. 2008. The
missing memristor found. nature 453, 7191 (2008), 80-83.

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

[51] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. Data sieving and collective 1/O in
ROMIO. In Frontiers of Massively Parallel Computation, 1999. Frontiers’ 99. The Seventh Sym-
posium on the. IEEE, 182-189.

[52] Haris Volos, Guilherme Magalhaes, Ludmila Cherkasova, and Jun Li. 2015. Quartz: A light-
weight performance emulator for persistent memory software. In Proceedings of the 16th An-
nual Middleware Conference. ACM, 37-49.

[53] Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer, Scott Atchley, and Weikuan Yu. 2014.
Burstmem: A high-performance burst buffer system for scientific applications. In Big Data
(Big Data), 2014 IEEE International Conference on. IEEE, 71-79.

[54] Whitt, Justin L. 2017. Oak Ridge Leadership Computing Facility: Summit and Beyond.
(2017). https://indico.cern.ch/event/618513/contributions/2527318/attachments/1437236/
2210560/SummitProjectOverview { - }jlw.pdf

[55] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime Data Management on Non-
Volatile Memory-based Heterogeneous Main Memory. arXiv preprint arXiv:1705.00249 (2017).

[56] Bing Xie, Yezhou Huang, Jeffrey S Chase, Jong Youl Choi, Scott Klasky, Jay Lofstead, and
Sarp Oral. 2017. Predicting output performance of a petascale supercomputer. In Proceedings
of the 26th International Symposium on High-Performance Parallel and Distributed Computing.
ACM, 181-192.

[57] Dawid Zawislak, Brian Toonen, William Allcock, Silvio Rizzi, Joseph Insley, Venkatram Vish-
wanath, and Michael E Papka. 2016. Early investigations into using a remote ram pool with
the VI3 visualization framework. In In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV), Workshop on. IEEE, 23-28.

APPENDIX

A. Maximum Application Bandwidth (MaxBW):

(s/BW;) = A;
DPE(s, Ci+1)
min| DPE(C;, C;) + DPE(s — Cji, Ciy1) |, s > C;
Move(s — C;, i + 1) + DPE(s, C;))

,s <C;

DPEmaxsw (s, Ci) =

ey
where s is the request size, C is a layer’s remaining capacity in MBs,
i is the current layer, BW is the bandwidth in MB/s, A is the access
latency in ms, and Move(min_size, dest) triggers data organizer to
recursively move at least min_size data to dest layer.
B. Maximum Data Locality:
DPEMaxLocality(sy d,Li,R;) =

(s/BW;) xd ,L;i &s <R;
[(s/BW;)*(d+1) . ;
min (DPE(S, d, Lit1, Ris1) ks <K
DPE(s, d, Li+1, Riv1)
min| DPE(R;, d, L;, R;) + DPE(s — Ry, d, Lis1, Riv1) |, s > R;
ReOrganize(s — R;) + DPE(s, d, L;, R;))
2

where s is the request size, d is the degree of data dispersion into
DMSH, L is the locality of a dispersion unit in layer (i.e., if it exists
in this layer or not), R is a layer’s capacity threshold, i is the current
layer, BW is the bandwidth in MB/s, and ReOrganize(min_size) is
a function that triggers data organizer to recursively move at least
min_size data to maintain the locality of a dispersion unit.
C. Hot-data:
DPEHorData(s’ h, Hi, Cl) =
(s/Ci)/BW
DPE(s, h =1, Hi41, Ciy1)
min| DPE(C;, h, H;, C;) + DPE(s — Ci, h =1, Hi41, Civ1) |, h > Hi & s > C;
Evict(s = Cj, h, i + 1) + DPE(s, h, H;, C;))
DPE(s, h+ 1, H;, C;)
DPE(s, h, His1, Cit1)
min (DPE(c,-, h+1, Hy, Ci) + DPE(s = Cy, b, His, Civa)

,h>H; &s <C;

min ,h<H &s <C;

DPE(s, h, Hi1, Cira)) ho< Hides>C
®)
where s is the request size, h is the file’s hotness score, H is the
minimum hotness score present in a layer, C is a layer’s remaining
capacity in MBs, i is the current layer, BW is the bandwidth in
MB/s, and Evict(min_size, score, dest) is a function that triggers
data organizer to recursively move at least min_size data to the dest

layer with score hotness.

	Abstract
	1 Introduction
	2 Background
	2.1 Modern Application I/O Characteristics
	2.2 A New Memory and Storage Hierarchy

	3 Design and Implementation
	3.1 Hermes Architecture
	3.2 Hermes Buffering Modes and Policies
	3.3 Implementation Details
	3.4 Design Considerations

	4 Evaluation
	4.1 Methodology
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

