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Abstract— Our goal is for people to be physically com-
fortable when taking objects from robots. This puts a
burden on the robot to hand over the object in such a
way that a person can easily reach it, without needing
to strain or twist their arm – a way that is conducive to
ergonomic human grasping configurations. To achieve this,
the robot needs to understand what makes a configuration
more or less ergonomic to the person, i.e. their ergonomic
cost function. In this work, we formulate learning a person’s
ergonomic cost as an online estimation problem. The robot
can implicitly make queries to the person by handing them
objects in different configurations, and gets observations
in response about the way they choose to take the object.
We compare the performance of both passive and active
approaches for solving this problem in simulation, as well
as in an in-person user study.

I. Introduction

When a robot hands over an object to a person,
it has a choice to make – it chooses which specific
grasping configuration to use. When the person then
takes that object, they too have same choice to make.
But depending on what the robot chose, their options
might be limited, and they might be forced to twist
their arm in an uncomfortable way just to be able to
reach the object.

Our goal is to enable robots to choose handover
configurations that result in comfortable options for the
person who is taking the object. But to do that, the robot
needs to know what “comfortable” actually means.

In this work, we capture comfort level via an er-
gonomic cost, which maps each human grasping con-
figuration to a scalar value represents how comfortable
or uncomfortable it is. If the robot had access to this
cost function, it could use it to plan its handovers
to explicitly make low cost human configurations for
taking the object feasible. More interestingly, it could
use it as a predictive model for how the person will
take the object (assuming lower cost configurations are
more likely). Having such a model empowers the robot
to anticipate human action, and even influence people
towards grasps that better suit their ultimate goal for
the object [1].

In our previous work, we have simply written down
what seemed like a reasonable ergonomic cost function
and handed it to the robot [1], [2]. Other works have
done the same [3]–[5]. But there was always something
worrisome about this: how do we know this cost is
any good? Even for the average person, we might
have gotten it wrong. And further, not everyone is the
average person. We expect to see individual variation in
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Fig. 1: The robot learns the human ergonomic preferences by select-
ing a handover configuration for an object (query), and using the
way the person chooses to take the object (label) as an observation
about their hidden ergonomic parameters.

ergonomic preferences, e.g. based on which muscles in
a person’s arm happen to be stronger. These differences
could be even more pronounced for people whose
motion is restricted by age, injury, or disability.

In this work, we turn to learning a cost function,
rather than assuming one. The parameters of the cost
are a hidden part of the state. Every choice the person
makes for a grasp configuration is an observation that
depends on these parameters, so we can update the
robot’s belief via Bayesian inference.

A key aspect of this learning problem is that ob-
servations do not happen in isolation from the robot.
The robot gets to influence them by selecting its own
grasping configuration at which it offers the object –
an implicit query that the robot makes to the person
(Fig. 1). This query induces a feasible set of human grasp
configurations for taking the object, which results in a
label, i.e. the person’s choice.

Therefore, which queries the robot makes affect its
performance. Some queries elicit more information and
help the robot learn faster, but sacrifice some human
comfort during learning in order to do so.

We thus explore and contrast two natural approaches
for selecting queries. In the passive approach, we use the
principle of separating estimation and control, and the
robot always selects the query that leads to the most
comfortable configuration for the person according to
its current belief about their ergonomic cost. In the
active approach, the robot selects queries that lead to
the highest expected information gain.1

What we contribute is a formulation of the ergonomic
cost learning problem as online estimation via implicit,
physical robot queries, and an in-depth analysis of the
advantages of disadvantages of the two methods, in-

1Note that solving the problem as a POMDP is computationally
prohibitive still, but would lead to optimally trading off between
exploration and exploitation, i.e. a hybrid between the active and
passive approaches.



cluding how the menu of objects and queries available
to the robot impacts their performance.

We do experiments in both simulation (with an easy
to visualize 2DOF arm and a more difficult, but realistic
7DOF arm), as well as a user study. We find that
online learning of ergonomic cost is feasible, that active
learning can be faster, but that this depends on the
kinds of objects it has available, and that it comes at
small, but non-trivial comfort cost during learning.

II. Related Work

Learning from Implicit Queries in Robotics. Many
robotic learning systems solicit explicit feedback from
humans to optimize their own actions. This feedback
can include binary preferences for one trajectory over
another [6], [7], rankings of grasp quality on a continu-
ous scale [8], or class labels applied to images the robot
encounters [9].

Intuitively, some queries are more informative than
others. The idea of actively selecting the most informa-
tive queries to present to the human expert has been
widely studied and applied [10], [11]. These explicit,
actively selected queries include binary classification
[12]–[17], ranking [18], [19], and labeling [20]. Queries
in robot learning can be particularly expensive in both
time and effort, often requiring physical motion of the
robot. This makes active learning approaches, which
minimize the required number of queries to learn a
model of a given accuracy, attractive here as well [7]–
[9], [21], [22].

Sometimes an explicit human response to a query
isn’t required at all. In these implicit learning tasks,
the robot simply takes an action, observes the human’s
response, and uses this response to infer their label,
under the assumption that the response represents
an optimal execution of a policy based on their true
preferences. Recent work has used this framework to
learn the characteristics of human drivers in order to
predict their future trajectories [23]. Implicit learning
can be more intuitive in situations where the human
doesn’t have a conscious, explicit ordering over possible
actions, but nonetheless exhibits a preference for some
over others, from which this ordering can be recon-
structed [10]. We use implicit human feedback. Our ap-
proach is conceptually similar to Inverse Reinforcement
Learning (IRL) [24], and is essentially Bayesian IRL
[25], with the adjustment that, since our belief space is
simply the configuration space, maintaining a particle
representation of the full belief is tractable.
Ergonomic Handovers. Ideally, a robot would allow
you the most comfortable configuration options possi-
ble. Existing work focuses on selecting object handover
positions [2]–[4], [26] or poses [1], [27]–[32] which
accomplish this.

Previous work uses a wide variety of metrics to
compare the feasible human grasp configurations al-
lowed by a robot’s chosen handover. Examples include
predefined ergonomic costs [1], [2], [4], proximity of
the object to the human’s body [3], [4], visibility of
the object [3], [4], manipulability at a given grasp
configuration [30], [31] or simply the total number of

grasp configurations available to the human given a
particular handover pose [9], [32].

III. Learning Ergonomic Cost

We pose the ergonomic cost learning problem as one
of learning from implicit queries, which yield human
demonstrations. Suppose a robot hands an object to
a person using a grasp gR and at a pose Thand. We’ll
call the tuple (gR, Thand) the robot’s action, i.e the
query. This action, in combination with the kinematic
structure of the human’s arm and the object’s feasible
grasp regions, induces a set of feasible human grasp
configurations Q f eas, which we’ll sometimes write as a
function of the robot’s action Q f eas(gR, Thand). When the
human is presented with this robot action, they choose
a single grasp configuration qH ∈ Q f eas, which is our
observation or label. Given multiple action-observation
pairs, we train a model of P(qH |Q f eas), which gives
the probability that the human will choose a particular
qH ∈ Q f eas when the robot takes an action (gR, Thand)
that results in the feasible set Q f eas.

A. Feasible Set Computation
We represent the set of all feasible human grasps

GH on the object being handed off as a Task Space
Region (TSR) [33], where GH ⊂ SE(3). This TSR is
discretized to produce a finite set of all feasible grasps
GH , {gH1, . . . , gHN}.

For each grasp gHi ∈ GH , we can compute a set of
inverse kinematics (IK) solutions Q f eas,i which allow
the human to reach the specified grasp. We collect
all the IK solutions for all object grasps into a set
Q f eas =

⋃N
i=0 Q f eas,i. As mentioned above, we’ll abstract

away this process by simply writing the feasible set as
a function of the robot’s action Q f eas(gR, Thand).

B. Probabilistic Model
Given a set Q f eas of feasible human arm configura-

tions, we seek a model P(qH |Q f eas), which gives the
probability that a given person will select any of the
individual grasps qH ∈ Q f eas.

We structure this model with an assumption: we
assume that the human is approximately rational, and
that the likelihood of them selecting a configuration
decreases exponentially as the ergonomic cost of that
configuration increases:

P(qH) ∝ e−αCergo(qH). (1)

In general, Cergo can be any function which maps
configurations to scalar costs. The methods we present
could estimate any parametrization of such a function.
Nonetheless, to experiment with the methods, we must
commit to a parametrization. We choose an intuitive
one: we parametrize cost as squared distance from
some neutral arm configuration q∗H that captures the
most comfortable configuration for the person, but
measure distance with respect to an inner product W
which is not necessarily Euclidean:

Cergo(qH , λ) , (qH − q∗H)
ᵀW(qH − q∗H). (2)



In our experiments, we assume for simplicity (in order
to lower the number of parameters we need to estimate)
a diagonal weight matrix W = diag(w). This captures
preferences in moving certain joints away from the
neutral configurations more than others. We collect
these parameters into a single parameter vector λ ,
[q∗H , w] which the robot needs to estimate by interacting
with the human.

Given a known λ and a set of feasible arm config-
urations Q f eas, the resulting probability of the human
choosing a given configuration qH takes the form of a
Boltzmann distribution:

P(qH |Q f eas, λ) =
e−Cergo(qH ;λ)

∑q̂H∈Q f eas
e−Cergo(q̂H ;λ)

(3)

Importantly, this distribution is normalized over all
other configurations that the person could have chosen.

C. Bayesian Belief Updates

We start with a generic, uncertain belief P(λ)0 over
the human’s cost function parameters. Our goal is to
iteratively refine this belief as we collect more training
data. Our technique could be used across a population
to learn an average ergonomic cost, or for an individual
to personalize the ergonomic cost to their preferences.

Because the beliefs over possible cost function param-
eters produced by our training examples are potentially
quite complex, we use a particle filter to perform
belief updates. This enables us to represent arbitrarily
complex beliefs without being constrained by the form
of a parameterized distribution.

To perform a single belief update, the robot chooses
an action (gR, Thand), which induces a set of feasible hu-
man configurations Q f eas(gR, Thand). We then observe
the human’s choice qH . Our complete training example
is then the tuple (qH , Q f eas). We update our prior belief
P(λ) with the training example to give a posterior
P(λ|qH , Q f eas) by applying Bayes’ Rule:

P(λ|qH , Q f eas) ∝ P(qH |Q f eas, λ)P(λ) (4)

Note that the likelihood function P(qH |Q f eas, λ) is
equal to the Boltzmann likelihood in (3).

We represent the prior belief at each step as a set of N
particles Λ = {λ̃1, . . . , λ̃N} and corresponding weights
Ωλ = {ωλ

1 , . . . , ωλ
I }. Given a new training sample

(qh, Q f eas), we compute the new particle weights Ωλ ′

as:

ωλ
i
′
= ωλ

i

 e−Cergo(qH ;λ̃i)

∑q̂H∈Q f eas
e−Cergo(q̂H ;λ̃i)

 (5)

Particles are then resampled to produce final Λ′ and
Ωλ ′ sets in which all the particle weights are identical.
Note that the normalization constant in (5) is different
for each value of i, in contrast to a more typical particle
filter implementation where the normalization constant
is the same for every particle.

D. Active Query Selection

Suppose we have a menu of N possible robot actions,
which induce feasible sets {Q f eas,1, . . . , Q f eas,N}, and
our current belief about the cost function parameters
is P(λ). When we present our human with any of
the feasible sets, we’ll observe a training datapoint
(qH , Q f eas). Intuitively though, some queries elicit hu-
man responses which are more informative than others.
The active method actively seeks out these queries to
present to the human.

If we assume the belief state P(λ) is represented
using a set of particles pi with corresponding weights
ki, we can compute the Shannon entropy of the belief
state H(P(λ)) by discretizing the belief space into M
discrete beliefs using a grid, then applying the standard
definition of entropy:

H(P(λ)) ,
M

∑
i=1

P(λi) log P(λi) (6)

We can then compute the expected change in entropy
E[∆H(Q f eas)] of our belief (i.e. the information gain)
given that we chose a particular query Q f eas:

E[∆H(Q f eas)] = H(P(λ))−

E
λ̂∼P(λ)

[
Eq̂H∼P(qH |λ̂)

[
H
(

P(λ | q̂H , Q f eas)
)]]

(7)

To make the calculation more efficient, we approximate
by substituting the maximum likelihood value of qH for
the inner expectation:

E[∆H(Q f eas)] = H(P(λ))−

E
λ̂∼P(λ)

[
H

(
P
(

λ | arg max
qH

P(qH | λ̂), Q f eas

))]
(8)

After computing the expected information gain for
each feasible set in the menu of possibilities, we select
the one which produces the greatest expected informa-
tion gain:

Qactive
f eas = arg max

Q f eas

E[∆H(Q f eas)] (9)

E. Passive Query Selection

The active query selection algorithm in Sec. III-D
selects robot actions to maximize information gain from
each query. In contrast, a passive approach selects the
action that that minimizes expected ergonomic cost to
the person at each step, i.e. the expected cost of the
grasp configuration the human is most likely to pick,
given the robot’s current belief about their ergonomic
cost parameters. The passive approach still gains infor-
mation at ever step, but merely as a side effect. This
corresponds to separating estimation from control or
hindsight optimization [34], [35], i.e. always planning
with the current belief as if the ground truth will be
revealed at the next step, and updating the belief at
every step based on the new observation.



For a given feasible set Q f eas, the expected human
ergonomic is:

E[Cergo(Q f eas)] =

E
λ̂∼P(λ)

[
min

q̂H∈Q f eas
Cergo(q̂H ; λ̂)

]
(10)

We then select the feasible set which minimizes the
expected ergonomic cost incurred by the human:

Qpassive
f eas = arg min

Q f eas

E[Cergo(Q f eas)] (11)

IV. Experimental Design

We evaluate our active learning algorithm in three
separate scenarios: 1) a simulated 2 DoF planar arm
with planar objects, 2) a simulated 7 DoF human arm
with real, 3D objects, and 3) a human user study on a
real life object handover task. In the first two simulated
scenarios, we test the algorithm’s ability to recover
the known ground truth parameters of our simulated
human’s ergonomic cost function. In the user study, we
evaluate the accuracy with which our learned model
can predict the human’s grasp in future handoffs.

We test the learning of both the neutral configuration
q∗H and the joint weights w.
Manipulated Variables: In each scenario, we manip-
ulated the query selection algorithm. In the simula-
tion scenarios, we compare active, passive, and random
algorithms (i.e. choose an object and a configuration
at random). In the human user study, we compare
active with passive. We also manipulated the number of
queries allowed, from 1 to 5 for the 2 DoF simulations
and the user study, and from 1 to 10 for the 7 DoF
simulations.
Objective Measures: We measure accuracy and training
cost – accuracy is most important if we think of this
as a training period with the robot, to be the followed
by a lifelong interaction; cost is very important if we
think of this as a continuous interaction, in which
the robot needs to learn without making the person
uncomfortable.

We measure the accuracy of the each algorithm’s
belief P(λ) over the model parameters, at every time
step (i.e. # of iterations) using three objective measures:
• P(λ∗): Probability density of the belief at the

known ground truth parameter value
• || arg max P(λ)− λ∗||: Euclidean distance between

the ground truth parameter vector and the mode
of our belief

• logL(arg max P(λ) | qtest
H , Qtest

f eas): The log likeli-
hood of the mode of our belief, with respect to
a separate test dataset (i.e. test set log likelihood)

The first two measures require us to know the
ground truth ergonomic cost function parameters λ∗,
so we evaluate them only for our two simulated exper-
iments.

We also measure training cost:
• E[Cergo(qH)]: The expected ergonomic cost of a

query with respect to the ground truth cost

Subjective Measures: In the user study, we also care
about what experience the users prefer, especially in
light of the fact that the difference between passive and
active is in optimizing information gain vs. (greedily)
optimizing user comfort. We ask 4 Likert scale ques-
tions and a forced choice (Table I).
Hypothesis: Because the active algorithm is designed to
quickly reduce the entropy of the belief, we hypothesize
that it will learn the parameters faster (i.e. have higher
accuracy for the same number of queries, especially
when this number is low). However, we also expect
that the amount of improvement will depend on the
set of available queries, and that the passive algorithm
will incur lower true ergonomic cost during training.

V. Analysis for a Planar Two DoF Arm

Overall Analysis. We used a simulated planar 2 DoF
arm. To create our training set, we randomly selected
eight task space object shapes (as shown in Figures
5 and 6 and enumerated all the IK solutions for a
discretized version of the object to yield a menu of eight
feasible sets {Q f eas,1, . . . , Q f eas,8}. The three algorithms
– active, passive, and random – selected queries from
this menu.

We repeated the training process a total of 50 times.
For each trial, we selected a random menu of eight
queries to make available to the robot. We selected a
random ground truth value q∗H or w to attempt to learn
for each trial.

Each of the objective measures was evaluated after
every iteration. The test set likelihood was evaluated on
a set of 300 randomly generated objects. Fig. 2 shows
the results.

The active learning algorithm produced faster learn-
ing on all three objective measures, for both the neutral
configuration q∗ and the weights w. This difference was
particularly large between the passive and active algo-
rithms when learning the weights, where the passive
algorithm failed to converge toward the correct belief
even after many iterations.

On the other hand, active does suffer a loss in true
cost, especially after several queries when passive has
converged to a decent estimate. How important this
is depends on the use case: it is perhaps alright to
suffer an initial loss in order to converge to a better cost
that the robot will use for many additional interactions;
however, users might not tolerate this well in certain
tasks.
Artificial Feasible Sets. These initial results suggest
that both methods are better than random query se-
lection, with the active method learning faster and the
passive method incurring less regret.

Next, we investigate what exactly causes the active
learning algorithm to consistently outperform in accu-
racy. To explore this question, let’s examine the active
algorithm’s decisions on the two simple feasible sets
from Fig. 3. As the figure makes obvious, the feasible
set Q f eas of configurations available to the human has
a huge impact on the resulting likelihood function
P(q∗H | qH , Q f eas), even if the human’s chosen configu-
ration qH is similar or identical. When the active query
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Fig. 2: The values of each objective measure vs. the number of training handovers, shown for both neutral configuration (q∗) and joint weights
(w) learning. The active query selection algorithm yields faster learning than the passive and random algorithms for all three of the objective
measures. This difference is particularly marked for learning of the joint weights w (bottom), where the passive algorithm fails to converge
towards an accurate belief even after many iterations.

Ground Truth 𝑞𝐻∗ Observation 𝑞𝐻 Feasible Set 𝑄𝑓𝑒𝑎𝑠
Likelihood

High Low

Fig. 3: Synthetic feasible sets shown with the ground truth optimal
configuration (green), the simulated human’s choice (yellow), and
the resulting likelihood function (grey). Note how the shape of
the feasible set of configurations completely changes the resulting
likelihood function, even as the human’s chosen configuration is
relatively similar in both examples.

selection algorithm is applied to a menu of queries
containing just these two feasible sets, it makes the
decisions shown in Fig. 4. The probability density of
the resulting belief after each iteration is shown in
grey. Notice how the active algorithm’s desire to reduce
the belief’s entropy causes it to alternate between the
two queries, selecting whichever one will remove the
greatest amount of probability mass from the current
belief at each iteration.
Object-Derived Feasible Sets. With this insight about
the impact of feasible set shape and size on the result-
ing likelihood used to update our belief, let’s return
to our original two DoF planar arm scenario. Figures
5 and 6 show examples of the randomly generated
task space objects included in the training sets used to
generate the experimental data shown in Fig. 2 (bottom
row), and the resulting configuration space feasible
sets, ground truth q∗H’s, simulated human’s chosen
qH’s, and the likelihood functions resulting from each
query and observation.

The highly nonlinear nature of the inverse kinematics
map means that seemingly similar task space objects
can create completely different configuration space fea-
sible sets. In addition, both the shape of the task space

Ground Truth 𝑞𝐻∗ Observation 𝑞𝐻 Feasible Set 𝑄𝑓𝑒𝑎𝑠
Belief Density

High Low

Fig. 4: Sequence of belief updates when training sets are selected
using the active learning algorithm from the set of two possibilities
above. Note how the active learning algorithm alternates between
the two queries so as to remove the maximum amount of probability
mass from the belief at each iteration. Because our model assumes
humans are noisy, repeated iterations with the same query will
continue to refine our belief past it’s initial value after the first
iteration.

objects (Fig. 5), and their pose Thand (Fig. 6) affect the re-
sulting likelihood function. We can see that, in general,
configuration space feasible sets composed of multiple,
widely separated disjoint regions produce likelihood
functions with sharp gradients which quickly eliminate
large pieces of the belief.

What actually happens when we present the active
and passive query selection algorithms with a menu
of feasible sets like the one shown in Fig. 5? Fig. 7
compares active and passive. Notice how the active
learning algorithm consistently selects training exam-
ples with widely separated, disjoint feasible regions
in the configuration space. In contrast, the passive
algorithm prefers feasible sets where at least one of
the feasible configurations is near the mode of the
current belief P(q∗H). This is reasonable, as the passive
algorithm attempts to greedily reduce the human’s
ergonomic cost, at the expense of slower learning. After
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Fig. 5: A collection of example 2D task space objects and their
corresponding configuration space representations. The objects are
all centered at the same position, and only their shape varies. Even
with this constraint, the resulting configuration space feasible sets
and likelihoods vary widely.
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𝑞2

Fig. 6: A set of example 2D task space objects and their corresponding
configuration space representations. Every object has the same shape,
but they are each positioned at a different random pose. Just this
change in pose creates significant variation between the configuration
space feasible sets and likelihoods generated by each object.

the third iteration, the active learning algorithm’s belief
has converged to the correct ground truth value. In
contrast, the passive algorithm’s belief is still somewhat
uncertain, and the algorithm continues to select a query
whose resulting likelihood function will not remove the
uncertainty.

VI. Analysis for a Seven DoF Human Arm

Our second test scenario used a simulated 7 DoF
human arm and real objects. Inspired by the advantage
of objects that induce separate feasible regions, we use
a set of bicycle handlebars, but also a bicycle U-lock
which does not have this property.

As in Sec. V, we conducted a total of 50 simulation
trials each for the weight and neutral configuration
learning portions of the test. For each trial, we supplied
the robot with a randomly selected menu of eight
object handoff poses and grasps. The ground truth
parameters were set to a randomly chosen value, which
we attempted to recover. The results are in Fig. 8.

𝑃 𝜆 0

Active

Passive

Ground Truth 𝑞𝐻
∗ Observation 𝑞𝐻 Feasible Set 𝑄𝑓𝑒𝑎𝑠

Belief Density

Fig. 7: Active and passive learning algorithms applied to the same
scenario. The active algorithm consistently selects queries with
widely separated, disjoint feasible regions in the configuration space,
while the passive algorithm tends to select queries with at least one
feasible configuration close to the ground truth optimal value. The
active algorithm’s belief converges quickly to the ground truth value,
while the passive algorithm allows significant uncertainty to remain
after the first three iterations.

As in Sec. V, the active learning algorithm produced
consistently faster learning. Particularly notable was
the learning of the joint weights, where the passive
algorithm produced a test set likelihood which was
worse than that of the initial belief, but the active
algorithm performed acceptably.

To help explain this, examine Fig. 9. It shows both
the task space feasible sets and corresponding config-
uration space feasible sets for two selected poses of
the bike handlebars and lock. As our earlier trials sug-
gested, the bicycle handlebars, with their two widely
separated grip zones produced a much larger, more
dispersed configuration space feasible set than the bike
lock. Active learning exploits this.

VII. User Study

Simulation enabled us to tease out interesting aspects
of the passive and active approaches, but we still need
to study how well these methods perform with real
people. We thus conducted a user study with a real
handover task. Our study had five participants, two
female and one male, ranging in age from 20 to 28.

The handover task used the same bike handlebar and
lock objects from the previous section. We selected a
menu of robot queries containing four poses of the
handlebars and four poses of the lock. We attached
rubber grips to both objects to limit the feasible grasps
on each to two distinct regions (as shown on the left
side of Figure 9).

Our study consisted of three phases: two training
and one test. In the first phase, the robot conducted
five iterations of training using the active learning
algorithm. In the second phase, five iterations of the
passive algorithm were performed. In the third phase,
each of the two objects was presented to the partici-
pant at eight different poses, for a total of 16 testing
examples. The manipulated variables were unchanged
from our earlier simulation studies, but because we no
longer had access to the humans’ ground truth cost
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Fig. 8: The values of each objective measure vs. the number of training handovers, shown for neutral configuration (q∗) learning on a simulated
handoff task with a 7 DoF human arm model.

Feasible Set 𝑄𝑓𝑒𝑎𝑠

IK

Task Space Configuration Space

Fig. 9: Task space sets of human grasp configurations pictured
alongside the corresponding configuration space feasible sets Q f eas.
Notice how the bicycle handlebars produce a large configuration
space feasible set with multiple disjoint portions (informative), while
the lock produces a much more compact feasible set (uninformative)

functions, we used only the third objective measure:
test set log likelihood. Intuitively, this number measures
the accuracy with which the robot’s learned models
were able to predict the humans’ actions in a new
situation. 2

The performance of the two algorithms is shown
in Fig. 10. The active learning algorithm consistently
yielded a higher likelihood on the test dataset than
the passive algorithm for the first two training iter-
ations. After this, the two algorithms were close to
identical in performance. This suggests that the active
algorithm successfully selected initial training queries
which helped it to quickly identify the human’s er-
gonomic model.

Although both training algorithms had access to
both the bike handlebars and the bike lock, the active
algorithm selected the handlebars exclusively, while the
passive algorithm selected only the lock. This is intu-
itively reasonable: The handlebars induce a large, frag-

2Since we weren’t able to measure the human participants’ arm
configurations accurately in real time, we instead just provided the
active and passive algorithms with the human’s chosen grasp region
(i.e. which handle they grabbed). The training example qH was then
taken to be the most likely configuration given that grasp, according
to a previously specified model.
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Fig. 10: The user study asked subjects to select one grasp configura-
tion qH from a set of two available grasps Q f eas in each training
query. The passive learning algorithm induced many participants
to choose identical labels qH , and learned only two distinct neutral
configurations q∗H from the set of five subjects. The active algorithm’s
informative queries elicited a wider variety of behavior, yielding
four distinct q∗H ’s. Measured by the test set log likelihood, active
learning consistently produced a better model fit after the first one
to two iterations, after which the passive algorithm’s model had a
comparable likelihood. This result is similar to the 7 DoF simulation
results in Fig. 8. The simulation results suggest that the active vs.
passive performance difference may be larger for weight (w) learning.

mented configuration space feasible set, which yields
informative human responses. The lock produces a
small, compact set, which is much less informative, but
makes it easy for the robot to guarantee that whichever
grasp the human chooses will be reachable comfortably.

As shown in Table I, participants had a slight prefer-
ence for the passive learning algorithm, but found both
just as physically easy.

VIII. Discussion

We formulated ergonomic cost learning as an online
estimation problem based on implicit physical queries



from the robot. We compared a passive and an active
learning approach. In simulation, we found that the
active method leads to faster learning and higher ac-
curacy, but sacrifices user comfort during learning. We
also discovered that active learning works best when
the object that the robot is handing, combined with
the grasping configuration it chooses, leads to feasible
choices for the human that have different connected
components. With real people, the differences were
more subtle: active learning is significantly more ac-
curate at first, but passive quickly catches up. Users
preferred the comfort of passive, but did not rate it as
physically easier to work with.

Above all, what is exciting is that the user study
suggests that this online estimation works with real
people, in that it improves how well the robot can
predict what a real user would do in new situations. An
active technique will make it more likely that the robot
converges to a better model, but the extent to which
that matters in practice remains an open question, with
passive techniques also performing well overall.

TABLE I: Post-Study Survey Results

Statement Active Passive

“I prefer Program __” 3.4 4.4
“The robot was helpful when

running Program __” 4.6 4.6
“It was physically easy to do the task when

the robot was running Program __” 4.8 4.8
“The robot running Program __

handed me objects in a way
that made the task easier” 4.8 4.6

“If you had to choose a program you prefer,
which would it be?” 20% 80%
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