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Abstract

Visual language grounding is widely stud-

ied in modern neural image caption-

ing systems, which typically adopts an

encoder-decoder framework consisting of

two principal components: a convolu-

tional neural network (CNN) for image

feature extraction and a recurrent neural

network (RNN) for language caption gen-

eration. To study the robustness of lan-

guage grounding to adversarial perturba-

tions in machine vision and perception,

we propose Show-and-Fool, a novel al-

gorithm for crafting adversarial examples

in neural image captioning. The pro-

posed algorithm provides two evaluation

approaches, which check whether neural

image captioning systems can be mislead

to output some randomly chosen captions

or keywords. Our extensive experiments

show that our algorithm can successfully

craft visually-similar adversarial examples

with randomly targeted captions or key-

words, and the adversarial examples can

be made highly transferable to other image

captioning systems. Consequently, our ap-

proach leads to new robustness implica-

tions of neural image captioning and novel

insights in visual language grounding.

1 Introduction

In recent years, language understanding grounded

in machine vision and perception has made re-

markable progress in natural language processing

(NLP) and artificial intelligence (AI), such as im-

age captioning and visual question answering. Im-

age captioning is a multimodal learning task and

has been used to study the interaction between lan-

guage and vision models (Shekhar et al., 2017). It

takes an image as an input and generates a lan-

guage caption that best describes its visual con-

tents, and has many important applications such

as developing image search engines with complex

natural language queries, building AI agents that

can see and talk, and promoting equal web ac-

cess for people who are blind or visually impaired.

Modern image captioning systems typically adopt

an encoder-decoder framework composed of two

principal modules: a convolutional neural network

(CNN) as an encoder for image feature extraction

and a recurrent neural network (RNN) as a decoder

for caption generation. This CNN+RNN archi-

tecture includes popular image captioning mod-

els such as Show-and-Tell (Vinyals et al., 2015),

Show-Attend-and-Tell (Xu et al., 2015) and Neu-

ralTalk (Karpathy and Li, 2015).

Recent studies have highlighted the vulnerabil-

ity of CNN-based image classifiers to adversarial

examples: adversarial perturbations to benign im-

ages can be easily crafted to mislead a well-trained

classifier, leading to visually indistinguishable ad-

versarial examples to human (Szegedy et al., 2014;

Goodfellow et al., 2015). In this study, we in-

vestigate a more challenging problem in visual

language grounding domain that evaluates the ro-

bustness of multimodal RNN in the form of a

CNN+RNN architecture, and use neural image

captioning as a case study. Note that crafting ad-

versarial examples in image captioning tasks is

strictly harder than in well-studied image classifi-

cation tasks, due to the following reasons: (i) class

attack v.s. caption attack: unlike classification

tasks where the class labels are well defined, the

output of image captioning is a set of top-ranked

captions. Simply treating different captions as dis-

tinct classes will result in an enormous number

of classes that can even precede the number of

training images. In addition, semantically similar
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Figure 1: Adversarial examples crafted by Show-

and-Fool using the targeted caption method. The

target captioning model is Show-and-Tell (Vinyals

et al., 2015), the original images are selected from

the MSCOCO validation set, and the targeted cap-

tions are randomly selected from the top-1 inferred

caption of other validation images.

captions can be expressed in different ways and

hence should not be viewed as different classes;

and (ii) CNN v.s. CNN+RNN: attacking RNN

models is significantly less well-studied than at-

tacking CNN models. The CNN+RNN architec-

ture is unique and beyond the scope of adversarial

examples in CNN-based image classifiers.

In this paper, we tackle the aforementioned

challenges by proposing a novel algorithm called

Show-and-Fool. We formulate the process of

crafting adversarial examples in neural image cap-

tioning systems as optimization problems with

novel objective functions designed to adopt the

CNN+RNN architecture. Specifically, our objec-

tive function is a linear combination of the dis-

tortion between benign and adversarial examples

as well as some carefully designed loss functions.

The proposed Show-and-Fool algorithm provides

two approaches to craft adversarial examples in

neural image captioning under different scenarios:

1. Targeted caption method: Given a targeted

caption, craft adversarial perturbations to any

image such that its generated caption matches

the targeted caption.

2. Targeted keyword method: Given a set of

keywords, craft adversarial perturbations to

any image such that its generated caption

contains the specified keywords. The cap-

tioning model has the freedom to make sen-

tences with target keywords in any order.

As an illustration, Figure 1 shows an adversarial

example crafted by Show-and-Fool using the tar-

geted caption method. The adversarial perturba-

tions are visually imperceptible while can success-

fully mislead Show-and-Tell to generate the tar-

geted captions. Interestingly and perhaps surpris-

ingly, our results pinpoint the Achilles heel of the

language and vision models used in the tested im-

age captioning systems. Moreover, the adversar-

ial examples in neural image captioning highlight

the inconsistency in visual language grounding be-

tween humans and machines, suggesting a possi-

ble weakness of current machine vision and per-

ception machinery. Below we highlight our major

contributions:

• We propose Show-and-Fool, a novel optimiza-

tion based approach to crafting adversarial ex-

amples in image captioning. We provide two

types of adversarial examples, targeted caption

and targeted keyword, to analyze the robustness

of neural image captioners. To the best of our

knowledge, this is the very first work on craft-

ing adversarial examples for image captioning.

• We propose powerful and generic loss functions

that can craft adversarial examples and evaluate

the robustness of the encoder-decoder pipelines

in the form of a CNN+RNN architecture. In par-

ticular, our loss designed for targeted keyword

attack only requires the adversarial caption to

contain a few specified keywords; and we al-

low the neural network to make meaningful sen-

tences with these keywords on its own.

• We conduct extensive experiments on the

MSCOCO dataset. Experimental results show

that our targeted caption method attains a 95.8%

attack success rate when crafting adversarial ex-

amples with randomly assigned captions. In ad-

dition, our targeted keyword attack yields an

even higher success rate. We also show that

attacking CNN+RNN models is inherently dif-

ferent and more challenging than only attacking



CNN models.

• We also show that Show-and-Fool can produce

highly transferable adversarial examples: an

adversarial image generated for fooling Show-

and-Tell can also fool other image captioning

models, leading to new robustness implications

of neural image captioning systems.

2 Related Work

In this section, we review the existing work on vi-

sual language grounding, with a focus on neural

image captioning. We also review related work

on adversarial attacks on CNN-based image clas-

sifiers. Due to space limitations, we defer the sec-

ond part to the supplementary material.

Visual language grounding represents a fam-

ily of multimodal tasks that bridge visual and

natural language understanding. Typical exam-

ples include image and video captioning (Karpa-

thy and Li, 2015; Vinyals et al., 2015; Donahue

et al., 2015b; Pasunuru and Bansal, 2017; Venu-

gopalan et al., 2015), visual dialog (Das et al.,

2017; De Vries et al., 2017), visual question an-

swering (Antol et al., 2015; Fukui et al., 2016;

Lu et al., 2016; Zhu et al., 2017), visual story-

telling (Huang et al., 2016), natural question gen-

eration (Mostafazadeh et al., 2017, 2016), and im-

age generation from captions (Mansimov et al.,

2016; Reed et al., 2016). In this paper, we focus on

studying the robustness of neural image captioning

models, and believe that the proposed method also

sheds lights on robustness evaluation for other vi-

sual language grounding tasks using a similar mul-

timodal RNN architecture.

Many image captioning methods based on deep

neural networks (DNNs) adopt a multimodal RNN

framework that first uses a CNN model as the

encoder to extract a visual feature vector, fol-

lowed by a RNN model as the decoder for cap-

tion generation. Representative works under this

framework include (Chen and Zitnick, 2015; De-

vlin et al., 2015; Donahue et al., 2015a; Karpa-

thy and Li, 2015; Mao et al., 2015; Vinyals et al.,

2015; Xu et al., 2015; Yang et al., 2016; Liu et al.,

2017a,b), which are mainly differed by the under-

lying CNN and RNN architectures, and whether

or not the attention mechanisms are considered.

Other lines of research generate image captions

using semantic information or via a compositional

approach (Fang et al., 2015; Gan et al., 2017; Tran

et al., 2016; Jia et al., 2015; Wu et al., 2016; You

et al., 2016).

The recent work in (Shekhar et al., 2017)

touched upon the robustness of neural image cap-

tioning for language grounding by showing its in-

sensitivity to one-word (foil word) changes in the

language caption, which corresponds to the untar-

geted attack category in adversarial examples. In

this paper, we focus on the more challenging tar-

geted attack setting that requires to fool the cap-

tioning models and enforce them to generate pre-

specified captions or keywords.

3 Methodology of Show-and-Fool

3.1 Overview of the Objective Functions

We now formally introduce our approaches to

crafting adversarial examples for neural image

captioning. The problem of finding an adversar-

ial example for a given image I can be cast as the

following optimization problem:

min
δ

c · loss(I + δ) + ‖δ‖22

s.t. I + δ ∈ [−1, 1]n. (1)

Here δ denotes the adversarial perturbation to I .

‖δ‖22 = ‖(I + δ) − I‖22 is an `2 distance metric

between the original image and the adversarial im-

age. loss(·) is an attack loss function which takes

different forms in different attacking settings. We

will provide the explicit expressions in Sections

3.2 and 3.3. The term c > 0 is a pre-specified reg-

ularization constant. Intuitively, with larger c, the

attack is more likely to succeed but at the price of

higher distortion on δ. In our algorithm, we use

a binary search strategy to select c. The box con-

straint on the image I ∈ [−1, 1]n ensures that the

adversarial example I + δ ∈ [−1, 1]n lies within a

valid image space.

For the purpose of efficient optimization, we

convert the constrained minimization problem in

(1) into an unconstrained minimization problem

by introducing two new variables y ∈ R
n and

w ∈ R
n such that

y = arctanh(I) and w = arctanh(I + δ)− y,

where arctanh denotes the inverse hyperbolic tan-

gent function and is applied element-wisely. Since

tanh(yi + wi) ∈ [−1, 1], the transformation will

automatically satisfy the box constraint. Conse-

quently, the constrained optimization problem in



(1) is equivalent to

minw∈Rn c · loss(tanh(w + y)) (2)

+‖ tanh(w + y)− tanh(y)‖22.

In the following sections, we present our designed

loss functions for different attack settings.

3.2 Targeted Caption Method

Note that a targeted caption is denoted by

S = (S1, S2, ..., St, ..., SN ),

where St indicates the index of the t-th word in

the vocabulary list V , S1 is a start symbol and SN

indicates the end symbol. N is the length of cap-

tion S, which is not fixed but does not exceed a

predefined maximum caption length. To encour-

age the neural image captioning system to output

the targeted caption S, one needs to ensure the log

probability of the caption S conditioned on the im-

age I + δ attains the maximum value among all

possible captions, that is,

logP (S|I + δ) = max
S′∈Ω

logP (S′|I + δ), (3)

where Ω is the set of all possible captions. It is

also common to apply the chain rule to the joint

probability and we have

logP (S′|I+δ) =

N
∑

t=2

logP (S′
t|I+δ, S′

1, ..., S
′
t−1).

In neural image captioning networks,

p(S′
t|I + δ, S′

1, ..., S
′
t−1) is usually computed

by a RNN/LSTM cell f , with its hidden state ht−1

and input S′
t−1:

zt = f(ht−1, S
′
t−1) and pt = softmax(zt), (4)

where zt := [z
(1)
t , z

(2)
t , ..., z

(|V|)
t ] ∈ R

|V| is a vec-

tor of the logits (unnormalized probabilities) for

each possible word in the vocabulary. The vector

pt represents a probability distribution on V with

each coordinate p
(i)
t defined as:

p
(i)
t := P (S′

t = i|I + δ, S′
1, ..., S

′
t−1).

Following the definition of softmax function:

P (S′
t|I+δ, S′

1, ..., S
′
t−1) = exp(z

(S′

t)
t )/

∑

i∈V

exp(z
(i)
t ).

Intuitively, to maximize the targeted caption’s

probability, we can directly use its negative log

probability (5) as a loss function. The inputs of

the RNN are the first N − 1 words of the targeted

caption (S1, S2, ..., SN−1).

lossS,log-prob(I + δ) = − logP (S|I + δ)

= −

N
∑

t=2

logP (St|I + δ, S1, ..., St−1).
(5)

Applying (5) to (2), the formulation of targeted

caption method given a targeted caption S is:

min
w∈Rn

c · lossS,log prob(tanh(w + y))

+ ‖ tanh(w + y)− tanh(y)‖22.

Alternatively, using the definition of the soft-

max function,

logP (S′|I + δ) =
N
∑

t=2

[z
(S′

t)
t − log(

∑

i∈V

exp(z
(i)
t ))]

=

N
∑

t=2

z
(S′

t)
t − constant, (6)

(3) can be simplified as

logP (S|I + δ) ∝
N
∑

t=2

z
(St)
t = max

S′∈Ω

N
∑

t=2

z
(S′

t)
t .

Instead of making each z
(St)
t as large as possi-

ble, it is sufficient to require the target word St

to attain the largest (top-1) logit (or probability)

among all the words in the vocabulary at position

t. In other words, we aim to minimize the differ-

ence between the maximum logit except St, de-

noted by maxk∈V,k 6=St
{z

(k)
t }, and the logit of St,

denoted by z
(St)
t . We also propose a ramp function

on top of this difference as the final loss function:

lossS,logits(I+δ) =

N−1
∑

t=2

max{−ε,max
k 6=St

{z
(k)
t }−z

(St)
t },

(7)

where ε > 0 is a confidence level accounting for

the gap between maxk 6=St
{z

(k)
t } and z

(St)
t . When

z
(St)
t > maxk 6=St

{z
(k)
t } + ε, the corresponding

term in the summation will be kept at −ε and does

not contribute to the gradient of the loss function,

encouraging the optimizer to focus on minimizing

other terms where z
(St)
t is not large enough.

Applying the loss (7) to (1), the final formula-

tion of targeted caption method given a targeted



caption S is

min
w∈Rn

c ·

N−1
∑

t=2

max{−ε,max
k 6=St

{z
(k)
t } − z

(St)
t }

+ ‖ tanh(w + y)− tanh(y)‖22.

We note that (Carlini and Wagner, 2017) has re-

ported that in CNN-based image classification, us-

ing logits in the attack loss function can produce

better adversarial examples than using probabili-

ties, especially when the target network deploys

some gradient masking schemes such as defensive

distillation (Papernot et al., 2016b). Therefore, we

provide both logit-based and probability-based at-

tack loss functions for neural image captioning.

3.3 Targeted Keyword Method

In addition to generating an exact targeted cap-

tion by perturbing the input image, we offer an

intermediate option that aims at generating cap-

tions with specific keywords, denoted by K :=
{K1, · · · ,KM} ⊂ V . Intuitively, finding an ad-

versarial image generating a caption with specific

keywords might be easier than generating an exact

caption, as we allow more degree of freedom in

caption generation. However, as we need to ensure

a valid and meaningful inferred caption, finding an

adversarial example with specific keywords in its

caption is difficult in an optimization perspective.

Our target keyword method can be used to investi-

gate the generalization capability of a neural cap-

tioning system given only a few keywords.

In our method, we do not require a target key-

word Kj , j ∈ [M ] to appear at a particular po-

sition. Instead, we want a loss function that al-

lows Kj to become the top-1 prediction (plus a

confidence margin ε) at any position. Therefore,

we propose to use the minimum of the hinge-like

loss terms over all t ∈ [N ] as an indication of Kj

appearing at any position as the top-1 prediction,

leading to the following loss function:

lossK,logits =

M
∑

j=1

min
t∈[N ]

{max{−ε,max
k 6=Kj

{z
(k)
t }−z

(Kj)
t }}.

(8)

We note that the loss functions in (4) and (5)

require an input S′
t−1 to predict zt for each t ∈

{2, . . . , N}. For the targeted caption method, we

use the targeted caption S as the input of RNN.

In contrast, for the targeted keyword method we

no longer know the exact targeted sentence, but

only require the presence of specified keywords in

the final caption. To bridge the gap, we use the

originally inferred caption S0 = (S0
1 , · · · , S

0
N )

from the benign image as the initial input to RNN.

Specifically, after minimizing (8) for T iterations,

we run inference on I + δ and set the RNN’s input

S1 as its current top-1 prediction, and continue this

process. With this iterative optimization process,

the desired keywords are expected to gradually ap-

pear in top-1 prediction.

Another challenge arises in targeted keyword

method is the problem of “keyword collision”.

When the number of keywords M ≥ 2, more

than one keywords may have large values of

maxk 6=Kj
{z

(k)
t } − z

(Kj)
t at a same position t. For

example, if dog and cat are top-2 predictions for

the second word in a caption, the caption can ei-

ther start with “A dog ...” or “A cat ...”. In this

case, despite the loss (8) being very small, a cap-

tion with both dog and cat can hardly be gener-

ated, since only one word is allowed to appear at

the same position. To alleviate this problem, we

define a gate function gt,j(x) which masks off all

the other keywords when a keyword becomes top-

1 at position t:

gt,j(x) =

{

A, if argmaxi∈V z
(i)
t ∈ K \ {Kj}

x, otherwise,

where A is a predefined value that is significantly

larger than common logits values. Then (8) be-

comes:

M
∑

j=1

min
t∈[N ]

{gt,j(max{−ε, max
k 6=Kj

{z
(k)
t } − z

(Kj)
t })}.

(9)

The log-prob loss for targeted keyword method is

discussed in the Supplementary Material.

4 Experiments

4.1 Experimental Setup and Algorithms

We performed extensive experiments to test the ef-

fectiveness of our Show-and-Fool algorithm and

study the robustness of image captioning systems

under different problem settings. In our experi-

ments1, we use the pre-trained TensorFlow imple-

mentation2 of Show-and-Tell (Vinyals et al., 2015)

1Our source code is available at: https://github.com/
huanzhang12/ImageCaptioningAttack

2https://github.com/tensorflow/models/tree/master/
research/im2txt



with Inception-v3 as the CNN for visual feature

extraction. Our testbed is Microsoft COCO (Lin

et al., 2014) (MSCOCO) data set. Although some

more recent neural image captioning systems can

achieve better performance than Show-and-Tell,

they share a similar framework that uses CNN

for feature extraction and RNN for caption gen-

eration, and Show-and-Tell is the vanilla version

of this CNN+RNN architecture. Indeed, we find

that the adversarial examples on Show-and-Tell

are transferable to other image captioning mod-

els such as Show-Attend-and-Tell (Xu et al., 2015)

and NeuralTalk23, suggesting that the attention

mechanism and the choice of CNN and RNN ar-

chitectures do not significantly affect the robust-

ness. We also note that since Show-and-Fool is

the first work on crafting adversarial examples for

neural image captioning, to the best of our knowl-

edge, there is no other method for comparison.

We use ADAM to minimize our loss functions

and set the learning rate to 0.005. The number of

iterations is set to 1, 000. All the experiments are

performed on a single Nvidia GTX 1080 Ti GPU.

For targeted caption and targeted keyword meth-

ods, we perform a binary search for 5 times to find

the best c: initially c = 1, and c will be increased

by 10 times until a successful adversarial example

is found. Then, we choose a new c to be the aver-

age of the largest c where an adversarial example

can be found and the smallest c where an adversar-

ial example cannot be found. We fix ε = 1 except

for transferability experiments. For each experi-

ment, we randomly select 1,000 images from the

MSCOCO validation set. We use BLEU-1 (Pa-

pineni et al., 2002), BLEU-2, BLEU-3, BLEU-

4, ROUGE (Lin, 2004) and METEOR (Lavie and

Agarwal, 2005) scores to evaluate the correlations

between the inferred captions and the targeted cap-

tions. These scores are widely used in NLP com-

munity and are adopted by image captioning sys-

tems for quality assessment. Throughout this sec-

tion, we use the logits loss (7)(9). The results of

using the log-prob loss (5) are similar and are re-

ported in the supplementary material.

4.2 Targeted Caption Results

Unlike the image classification task where all pos-

sible labels are predefined, the space of possible

captions in a captioning system is almost infinite.

However, the captioning system is only able to

3https://github.com/karpathy/neuraltalk2

Table 1: Summary of targeted caption method

(Section 3.2) and targeted keyword method (Sec-

tion 3.3) using logits loss. The `2 distortion of

adversarial noise ‖δ‖2 is averaged over success-

ful adversarial examples. For comparison, we also

include CNN based attack methods (Section 4.5).

Experiments Success Rate Avg. ‖δ‖2
targeted caption 95.8% 2.213

1-keyword 97.1% 1.589

2-keyword 97.5% 2.363

3-keyword 96.0% 2.626

C&W on CNN 22.4% 2.870

I-FGSM on CNN 34.5% 15.596

Table 2: Statistics of the 4.2% failed adversarial

examples using the targeted caption method and

logits loss (7). All correlation scores are computed

using the top-5 inferred captions of an adversar-

ial image and the targeted caption (higher score

means better targeted attack performance).

c 1 10 10
2

10
3

10
4

`2 Distortion 1.726 3.400 7.690 16.03 23.31

BLEU-1 .567 .725 .679 .701 .723

BLEU-2 .420 .614 .559 .585 .616

BLEU-3 .320 .509 .445 .484 .514

BLEU-4 .252 .415 .361 .402 .417

ROUGE .502 .664 .629 .638 .672

METEOR .258 .407 .375 .403 .399

output relevant captions learned from the train-

ing set. For instance, the captioning model can-

not generate a passive-voice sentence if the model

was never trained on such sentences. Therefore,

we need to ensure that the targeted caption lies in

the space where the captioning system can pos-

sibly generate. To address this issue, we use the

generated caption of a randomly selected image

(other than the image under investigation) from

MSCOCO validation set as the targeted caption S.

The use of a generated caption as the targeted cap-

tion excludes the effect of out-of-domain caption-

ing, and ensures that the target caption is within

the output space of the captioning network.

Here we use the logits loss (7) plus a `2 distor-

tion term (as in (2)) as our objective function. A

successful adversarial example is found if the in-

ferred caption after adding the adversarial pertur-

bation δ is exactly the same as the targeted caption.

In our setting, 1,000 ADAM iterations take about

38 seconds for one image. The overall success

rate and average distortion of adversarial perturba-

tion δ are shown in Table 1. Among all the tested

images, our method attains 95.8% attack success



rate. Moreover, our adversarial examples have

small `2 distortions and are visually identical to

the original images, as displayed in Figure 1. We

also examine the failed adversarial examples and

summarize their statistics in Table 2. We find that

their generated captions, albeit not entirely identi-

cal to the targeted caption, are in fact highly corre-

lated to the desired one. Overall, the high success

rate and low `2 distortion of adversarial examples

clearly show that Show-and-Tell is not robust to

targeted adversarial perturbations.

4.3 Targeted Keyword Results

In this task, we use (9) as our loss function, and

choose the number of keywords M = {1, 2, 3}.

We run an inference step on I + δ every T = 5
iterations, and use the top-1 caption as the input

of RNN/LSTMs. Similar to Section 4.2, for each

image the targeted keywords are selected from the

caption generated by a randomly selected valida-

tion set image. To exclude common words like

“a”, “the”, “and”, we look up each word in the

targeted sentence and only select nouns, verbs, ad-

jectives or adverbs. We say an adversarial image is

successful when its caption contains all specified

keywords. The overall success rate and average

distortion are shown in Table 1. When compared

to the targeted caption method, targeted keyword

method achieves an even higher success rate (at

least 96% for 3-keyword case and at least 97%

for 1-keyword and 2-keyword cases). Figure 2

shows an adversarial example crafted from our

targeted keyword method with three keywords -

“dog”, “cat” and “frisbee”. Using Show-and-Fool,

the top-1 caption of a cake image becomes “A dog

and a cat are playing with a frisbee” while the ad-

versarial image remains visually indistinguishable

to the original one. When M = 2 and 3, even if we

cannot find an adversarial image yielding all spec-

ified keywords, we might end up with a caption

that contains some of the keywords (partial suc-

cess). For example, when M = 3, Table 3 shows

the number of keywords appeared in the captions

(M ′) for those failed examples (not all 3 targeted

keywords are found). These results clearly show

that the 4% failed examples are still partially suc-

cessful: the generated captions contain about 1.5

targeted keywords on average.

4.4 Transferability of Adversarial Examples

It has been shown that in image classification

tasks, adversarial examples found for one machine

Figure 2: An adversarial example (‖δ‖2 = 1.284)

of an cake image crafted by the Show-and-Fool

targeted keyword method with three keywords -

“dog”, “cat” and “frisbee”.

Table 3: Percentage of partial success with differ-

ent c in the 4.0% failed images that do not contain

all the 3 targeted keywords.

c Avg. ‖δ‖2 M
′ ≥ 1 M

′
= 2 Avg. M ′

1 2.49 72.4% 34.5% 1.07

10 5.40 82.7% 37.9% 1.21

10
2 12.95 93.1% 58.6% 1.52

10
3 24.77 96.5% 51.7% 1.48

10
4 29.37 100.0% 58.6% 1.59

learning model may also be effective against an-

other model, even if the two models have dif-

ferent architectures (Papernot et al., 2016a; Liu

et al., 2017c). However, unlike image classifica-

tion where correct labels are made explicit, two

different image captioning systems may generate

quite different, yet semantically similar, captions

for the same benign image. In image caption-

ing, we say an adversarial example is transfer-

able when the adversarial image found on model

A with a target sentence SA can generate a similar

(rather than exact) sentence SB on model B.

In our setting, model A is Show-and-Tell, and

we choose Show-Attend-and-Tell (Xu et al., 2015)

as model B. The major differences between

Show-and-Tell and Show-Attend-and-Tell are the

addition of attention units in LSTM network for

caption generation, and the use of last convolu-

tional layer (rather than the last fully-connected

layer) feature maps for feature extraction. We

use Inception-v3 as the CNN architecture for both

models and train them on the MSCOCO 2014 data

set. However, their CNN parameters are different

due to the fine-tuning process.



Table 4: Transferability of adversarial examples from Show-and-Tell to Show-Attend-and-Tell, using

different ε and c. ori indicates the scores between the generated captions of the original images and the

transferred adversarial images on Show-Attend-and-Tell. tgt indicates the scores between the targeted

captions on Show-and-Tell and the generated captions of transferred adversarial images on Show-Attend-

and-Tell. A smaller ori or a larger tgt value indicates better transferability. mis measures the differences

between captions generated by the two models given the same benign image (model mismatch). When

C = 1000, ε = 10, tgt is close to mis, indicating the discrepancy between adversarial captions on the two

models is mostly bounded by model mismatch, and the adversarial perturbation is highly transferable.

ε = 1 ε = 5 ε = 10
C=10 C=100 C=1000 C=10 C=100 C=1000 C=10 C=100 C=1000

ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt ori tgt mis

BLEU-1 .474 .395 .384 .462 .347 .484 .441 .429 .368 .488 .337 .527 .431 .421 .360 .485 .339 .534 .649

BLEU-2 .337 .236 .230 .331 .186 .342 .300 .271 .212 .343 .175 .389 .287 .266 .204 .342 .174 .398 .521

BLEU-3 .256 .154 .151 .224 .114 .254 .220 .184 .135 .254 .103 .299 .210 .185 .131 .254 .102 .307 .424

BLEU-4 .203 .109 .107 .172 .077 .198 .170 .134 .093 .197 .068 .240 .162 .138 .094 .197 .066 .245 .352

ROUGE .463 .371 .374 .438 .336 .465 .429 .402 .359 .464 .329 .502 .421 .398 .351 .463 .328 .507 .604

METEOR .201 .138 .139 .180 .118 .201 .177 .157 .131 .199 .110 .228 .172 .157 .127 .202 .110 .232 .300

‖δ‖2 3.268 4.299 4.474 7.756 10.487 10.952 15.757 21.696 21.778

Figure 3: A highly transferable adversarial exam-

ple (‖δ‖2 = 15.226) crafted by Show-and-Tell tar-

geted caption method, transfers to Show-Attend-

and-Tell, yielding similar adversarial captions.

To investigate the transferability of adversarial

examples in image captioning, we first use the tar-

geted caption method to find adversarial examples

for 1,000 images in model A with different c and ε,
and then transfer successful adversarial examples

(which generate the exact target captions on model

A) to model B. The generated captions by model

B are recorded for transferability analysis. The

transferability of adversarial examples depends on

two factors: the intrinsic difference between two

models even when the same benign image is used

as the input, i.e., model mismatch, and the trans-

ferability of adversarial perturbations.

To measure the mismatch between Show-and-

Tell and Show-Attend-and-Tell, we generate cap-

tions of the same set of 1,000 original images

from both models, and report their mutual BLEU,

ROUGE and METEOR scores in Table 4 under

the mis column. To evaluate the effectiveness of

transferred adversarial examples, we measure the

scores for two set of captions: (i) the captions of

original images and the captions of transferred ad-

versarial images, both generated by Show-Attend-

and-Tell (shown under column ori in Table 4); and

(ii) the targeted captions for generating adversarial

examples on Show-and-Tell, and the captions of

the transferred adversarial image on Show-Attend-

and-Tell (shown under column tgt in Table 4).

Small values of ori suggest that the adversarial

images on Show-Attend-and-Tell generate signif-

icantly different captions from original images’

captions. Large values of tgt suggest that the ad-

versarial images on Show-Attend-and-Tell gener-

ate similar adversarial captions as on the Show-

and-Tell model. We find that increasing c or ε
helps to enhance transferability at the cost of larger

(but still acceptable) distortion. When C = 1, 000
and ε = 10, Show-and-Fool achieves the best

transferability results: tgt is close to mis, indicat-

ing that the discrepancy between adversarial cap-

tions on the two models is mostly bounded by the

intrinsic model mismatch rather than the transfer-

ability of adversarial perturbations, and implying

that the adversarial perturbations are easily trans-

ferable. In addition, the adversarial examples gen-

erated by our method can also fool NeuralTalk2.

When c = 104, ε = 10, the average `2 distortion,

BLEU-4 and METEOR scores between the origi-

nal and transferred adversarial captions are 38.01,

0.440 and 0.473, respectively. The high transfer-

ability of adversarial examples crafted by Show-



and-Fool also indicates the problem of common

robustness leakage between different neural image

captioning models.

4.5 Attacking Image Captioning v.s.

Attacking Image Classification

In this section we show that attacking image cap-

tioning models is inherently more challenging

than attacking image classification models. In the

classification task, a targeted attack usually be-

comes harder when the number of labels increases,

since an attack method needs to change the classi-

fication prediction to a specific label over all the

possible labels. In the targeted attack on image

captioning, if we treat each caption as a label,

we need to change the original label to a specific

one over an almost infinite number of possible la-

bels, corresponding to a nearly zero volume in the

search space. This constraint forces us to develop

non-trivial methods that are significantly different

from the ones designed for attacking image classi-

fication models.

To verify that the two tasks are inherently dif-

ferent, we conducted additional experiments on

attacking only the CNN module using two state-

of-the-art image classification attacks on Ima-

geNet dataset. Our experiment setup is as fol-

lows. Each selected ImageNet image has a la-

bel corresponding to a WordNet synset ID. We

randomly selected 800 images from ImageNet

dataset such that their synsets have at least one

word in common with Show-and-Tell’s vocabu-

lary, while ensuring the Inception-v3 CNN (Show-

and-Tell’s CNN) classify them correctly. Then,

we perform Iterative Fast Gradient Sign Method

(I-FGSM) (Kurakin et al., 2017) and Carlini and

Wagner’s (C&W) attack (Carlini and Wagner,

2017) on these images. The attack target la-

bels are randomly chosen and their synsets also

have at least one word in common with Show-

and-Tell’s vocabulary. Both I-FGSM and C&W

achieve 100% targeted attack success rate on the

Inception-v3 CNN. These adversarial examples

were further employed to attack Show-and-Tell

model. An attack is considered successful if any

word in the targeted label’s synset or its hyper-

nyms up to 5 levels is presented in the resulting

caption. For example, for the chain of hypernyms

‘broccoli’⇒‘cruciferous vegetable’⇒‘vegetable,

veggie, veg’⇒‘produce, green goods, green gro-

ceries, garden truck’⇒‘food, solid food’, we in-

clude ‘broccoli’,‘cruciferous’,‘vegetable’,‘veggie’

and all other following words. Note that this cri-

terion of success is much weaker than the crite-

rion we use in the targeted caption method, since a

caption with the targeted image’s hypernyms does

not necessarily leads to similar meaning of the tar-

geted image’s captions. To achieve higher attack

success rates, we allow relatively larger distortions

and set ε∞ = 0.3 (maximum `∞ distortion) in I-

FGSM and κ = 10, C = 100 in C&W. How-

ever, as shown in Table 1, the attack success rates

are only 34.5% for I-FGSM and 22.4% for C&W,

respectively, which are much lower than the suc-

cess rates of our methods despite larger distor-

tions. This result further confirms that perform-

ing targeted attacks on neural image captioning re-

quires a careful design (as proposed in this paper),

and attacking image captioning systems is not a

trivial extension to attacking image classifiers.

5 Conclusion

In this paper, we proposed a novel algorithm,

Show-and-Fool, for crafting adversarial examples

and providing robustness evaluation of neural im-

age captioning. Our extensive experiments show

that the proposed targeted caption and keyword

methods yield high attack success rates while the

adversarial perturbations are still imperceptible to

human eyes. We further demonstrate that Show-

and-Fool can generate highly transferable adver-

sarial examples. The high-quality and transferable

adversarial examples in neural image captioning

crafted by Show-and-Fool highlight the inconsis-

tency in visual language grounding between hu-

mans and machines, suggesting a possible weak-

ness of current machine vision and perception ma-

chinery. We also show that attacking neural image

captioning systems are inherently different from

attacking CNN-based image classifiers.

Our method stands out from the well-studied

adversarial learning on image classifiers and CNN

models. To the best of our knowledge, this is the

very first work on crafting adversarial examples

for neural image captioning systems. Indeed, our

Show-and-Fool algorithm1 can be easily extended

to other applications with RNN or CNN+RNN ar-

chitectures. We believe this paper provides poten-

tial means to evaluate and possibly improve the ro-

bustness (for example, by adversarial training or

data augmentation) of a wide range of visual lan-

guage grounding and other NLP models.
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Supplementary Material

6 Related Work on Adversarial Attacks

to CNN-based Image Classifiers

Despite the remarkable progress, CNNs have been

shown to be vulnerable to adversarial examples

(Szegedy et al., 2014; Goodfellow et al., 2015;

Carlini and Wagner, 2017). In image classifica-

tion, an adversarial example is an image that is vi-

sually indistinguishable to the original image but

can cause a CNN model to misclassify. With dif-

ferent objectives, adversarial attacks can be di-

vided into two categories, i.e., untargeted attack

and targeted attack. In the literature, a success-

ful untargeted attack refers to finding an adver-

sarial example that is close to the original exam-

ple but yields different class prediction. For tar-

geted attack, a target class is specified and the ad-

versarial example is considered successful when

the predicted class matches the target class. Sur-

prisingly, adversarial examples can also be crafted

even when the parameters of target CNN model

are unknown to an attacker (Liu et al., 2017c; Chen

et al., 2017). In addition, adversarial examples

crafted from one image classification model can

be made transferable to other models (Liu et al.,

2017c; Papernot et al., 2016a), and there exists a

universal adversarial perturbation that can lead to

misclassification of natural images with high prob-

ability (Moosavi-Dezfooli et al., 2017).

Without loss of generality, there are two fac-

tors contributing to crafting adversarial examples

in image classification: (i) a distortion metric be-

tween the original and adversarial examples that

regularizes visual similarity. Popular choices are

the L∞, L2 and L1 distortions (Kurakin et al.,

2017; Carlini and Wagner, 2017; Chen et al.,

2018); and (ii) an attack loss function account-

ing for the success of adversarial examples. For

finding adversarial examples in neural image cap-

tioning, while the distortion metric can be iden-

tical, the attack loss function used in image clas-

sification is invalid, since the number of possible

captions easily outnumbers the number of image

classes, and captions with similar meaning should

not be considered as different classes. One of our

major contributions is to design novel attacking

loss functions to handle the CNN+RNN architec-

tures in neural image captioning tasks.

7 More Adversarial Examples with

Logits Loss

Figure 4 shows another successful example with

targeted caption method. Figures 5, 6 and 7 show

three adversarial examples generated by the pro-

posed 3-keyword method. The adversarial exam-

ples generated by our methods have small L2 dis-

tortions and are visually indistinguishable from

the original images. One advantage of using logits

losses is that it helps to bypass defensive distilla-

tion by overcoming the gradient vanishing prob-

lem. To see this, the partial derivative of the soft-

max function

p(j) = exp(z(j))/
∑

i∈V

exp(z(i)),

is given by

∂p(j)

∂z(j)
= p(j)(1− p(j)), (10)

which vanishes as p(j) → 0 or p(j) → 1. The de-

fensive distillation method [30] uses a large distil-

lation temperature in the training process and re-

moves it in the inference process. This makes the

inference probability p(j) close to 0 or 1, thus leads

to a vanished gradient problem. However, by us-

ing the proposed logits loss (7), before the word at

position t in target sentence S reaches top-1 prob-

ability, we have

∂

∂z
(St)
t

lossS,logits(I + δ) = −1. (11)

It is evident that the gradient (with regard to z
(St)
t )

becomes a constant now, since it equals to −1

when z
(St)
t < maxk 6=St

{z
(k)
t } + ε, and 0 other-

wise.

8 Targeted Caption Results with Log

Probability Loss

In this experiment, we use the log probability loss

(5) plus a L2 distortion term (as in (2)) as our ob-

jective function. Similar to the previous experi-

ments, a successful adversarial example is found

if the inferred caption after adding the adversar-

ial perturbation δ exactly matches the targeted cap-

tion. The overall success rate and average distor-

tion of adversarial perturbation δ are shown in Ta-

ble 5. Among all the tested images, our log-prob

loss attains 95.4% success rate, which is about the



Figure 4: Adversarial example (‖δ‖2 = 2.977) of

an elephant image crafted by the Show-and-Fool

targeted caption method with the target caption “A

black and white photo of a group of people”.

Figure 5: Adversarial example (‖δ‖2 = 2.979)

of an clock image crafted by the Show-and-Fool

targeted keyword method with three keywords:

“meat”, “white” and “topped”.

same as using logits loss. Besides, similar to us-

ing logits loss, the adversarial examples generated

by using log-prob loss also yield small L2 distor-

tions. In Table 6, we summarize the statistics of

the failed adversarial examples. It shows that their

generated captions, though not entirely identical to

the targeted caption, are also highly relevant to the

target captions.

In our experiments, log probability loss exhibits

a similar performance as the logits loss, as our tar-

get model is undefended and the gradient vanish-

ing problem of softmax is not significant. How-

ever, when evaluating the robustness of a general

image captioning model, it is recommended to use

the logits loss as it does not suffer from potentially

vanished gradients and can reveal the intrinsic ro-

bustness of the model.

Figure 6: Adversarial example (‖δ‖2 = 1.188) of

a giraffe image crafted by the Show-and-Fool tar-

geted keyword method with three keywords: “soc-

cer”, “group” and “playing”.

Figure 7: Adversarial example (‖δ‖2 = 1.178)

of a bus image crafted by the Show-and-Fool

targeted keyword method with three keywords:

“tub”, “bathroom” and “sink”.

9 Targeted Keyword Results with Log

Probability Loss

Similar to the logits loss, the log-prob loss does

not require a particular position for the target key-

words Kj , j ∈ [M ]. Instead, it encourages Kj to

become the top-1 prediction at its most probable

position:

lossK,log-prob = −

M
∑

j=1

log(max
t∈[N ]

{p
(i)
t }). (12)

To tackle the “keyword collision” problem, we

also employ a gate function g′t,j to avoid the key-

words appearing at the positions where the most



Figure 8: A highly transferable adversarial exam-

ple of a biking image (‖δ‖2 = 12.391) crafted

from Show-and-Tell using the targeted caption

method and then transfers to Show-Attend-and-

Tell, yielding similar adversarial captions.

Figure 9: A highly transferable adversarial exam-

ple of a snowboarding image (‖δ‖2 = 14.320)

crafted from Show-and-Tell using the targeted

caption method and then transfers to Show-

Attend-and-Tell, yielding similar adversarial cap-

tions.

probable word is already a keyword:

g′t,j(x) =

{

0, if argmaxi∈V p
(i)
t ∈ K \ {Kj}

x, otherwise

The loss function (12) then becomes:

lossK′,log-prob = −

M
∑

j=1

log(max
t∈[N ]

{g′t,j(p
(i)
t )}).

(13)

In our methods, the initial input is the originally

inferred caption S0 from the benign image, and

after minimizing (13) for T iterations, we run in-

ference on I + δ and set the RNN’s input S1 as

its current top-1 prediction, and repeat this proce-

dure until all the targeted keywords are found or

Figure 10: A highly transferable adversarial exam-

ple of a desk image (‖δ‖2 = 12.810) crafted from

Show-and-Tell using the targeted caption method

and then transfers to Show-Attend-and-Tell, yield-

ing similar adversarial captions.

Table 5: Summary of targeted caption method and

targeted keyword method using log-prob loss. The

L2 distortion ‖δ‖2 is averaged over successful ad-

versarial examples.

Experiments Success Rate Avg. ‖δ‖2
targeted caption 95.4% 1.858

1-keyword 99.2% 1.311

2-keyword 96.9% 2.023

3-keyword 95.7% 2.120

the maximum number of iterations is met. With

this iterative optimization process, the probabil-

ities of the desired keywords gradually increase,

and finally become the top-1 predictions.

The overall success rate and average distortion

are shown in Table 5. Table 7 summarizes the

number of keywords (M ′) appeared in the cap-

tions for those failed examples when M = 3,

i.e., the examples that not all the 3 targeted key-

words are found. They account only 4.3% of all

the tested images. Table 7 clearly shows that when

c is properly chosen, more than 90% of the failed

examples contain at least 1 targeted keyword, and

more than 60% of the failed examples contain 2

targeted keywords. This result verifies that even

the failed examples are reasonably good attacks.

10 Transferability of Adversarial

Examples with Log Probability Loss

Similar to the experiments in Section 4.4, to as-

sess the transferability of adversarial examples, we

first use the targeted caption method with log-prob

loss to find adversarial examples for 1,000 images






