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Low-dimensional organization of 
angular momentum during walking 
on a narrow beam
Enrico Chiovetto1, Meghan E. Huber2, Dagmar Sternad   3 & Martin A. Giese1

Walking on a beam is a challenging motor skill that requires the regulation of upright balance and 
stability. The difficulty in beam walking results from the reduced base of support compared to that 
afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is 
to rotate the limb segments to control the body’s angular momentum. The aim of this study was to 
examine the coordination of the angular momentum variations during beam walking. We recorded 
movement kinematics of participants walking on a narrow beam and computed the angular momentum 
contributions of the body segments with respect to three different axes. Results showed that, despite 
considerable variability in the movement kinematics, the angular momentum was characterized by a 
low-dimensional organization based on a small number of segmental coordination patterns. When the 
angular momentum was computed with respect to the beam axis, the largest fraction of its variation 
was accounted for by the trunk segment. This simple organization was robust and invariant across 
all participants. These findings support the hypothesis that control strategies for complex balancing 
tasks might be easier to understand by investigating angular momentum instead of the segmental 
kinematics.

Walking on a narrow beam is a demanding motor skill that requires the control of dynamic stability, defined as 
the ability to reduce self-initiated or external perturbations via inherent restoring moments to avoid loss of bal-
ance. Due to the reduced base of support of the beam and the intrinsic variability of the human, walking tends 
to become unstable in the medio-lateral (ML) direction1. Walking on a beam has been investigated in multiple 
studies over the last two decades. For instance, several studies examined the effects of age on balance control2, 
the effects of physical guidance on motor learning3 and the neural activation associated with loss of balance con-
trol4. More recently, Sawers and colleagues used beam walking as an experimental paradigm to investigate how 
long-term training affects muscle synergies5 and how individual differences in proficiency may inform therapists 
about clinical problems6. It is important to note that in all these studies, participants were asked to fold their arms 
in front of the body to isolate “locomotor balance” from the complex arm movements typically employed to assist 
balance control.

Hof suggested that for a standing human only 3 mechanisms are available for the control of dynamic balance7,8: 
(1) the shift of the center-of-pressure under the feet with respect to the vertical projection of the center-of-mass 
(COM), (2) the rotation of the body segments to counterbalance the variations of the angular momentum (AM), 
and (3) the application of external forces. The first strategy has been usually referred to also as “ankle strategy”9, 
while the second one comprises the “hip strategy”9, i.e. rotation of the upper body segments around the ankle or 
hip joint, respectively. These mechanisms can also be exploited to maintain balance in the ML direction when 
walking on a narrow beam, although shifting the center-of-pressure under the feet becomes a relatively ineffective 
balancing strategy, as the beam has a limited width. If holding onto an external object to apply an external force 
is not possible, rotating the body segments to create compensatory angular momenta remains the only effective 
strategy. A systematic investigation of the angular momentum during beam walking thus might provide deeper 
insights into the control strategies in such challenging balancing tasks.
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The angular momentum is a physical quantity that characterizes the rotational inertia of an object or a system 
of objects about an axis. In any inertial reference frame, the AM of a system is a conserved quantity as long as no 
external forces or torques act on the object. This is the consequence of Euler’s dynamic laws of motion, according 
to which the derivative of AM is equal to the external torques applied to the body10. During walking, however, 
ground reaction forces are constantly acting on the feet, inducing considerable variations of the AM that need to 
be controlled11. Multiple studies in biomechanics and motor control have examined the AM to characterize the 
mechanisms underlying locomotion and balance control11–15. These studies have inspired the design of robust 
motion generation policies for robots and computer graphics applications16–19. Importantly, the AM is computed 
with respect to an axis about which the object rotates in space, rendering it a relative measure. In biomechanical 
studies, it has been common practice to compute the AM with respect to the axis passing through the whole-body 
center-of-mass. However, given the complex dynamics of articulated limbs when walking on a beam, it is not a 
priori guaranteed that this axis is the only or most appropriate choice.

The aim of this study was to investigate the coordination of a complex whole-body movement such as walking 
on a narrow beam. We collected movement kinematics of 16 healthy participants that were asked to complete 
20 successful walks on a very narrow beam placed on the floor. Analyzing the rotations of the body segments 
projected into the medio-lateral plane, the segmental AM contributions were computed with respect to 3 differ-
ent axes: (1) the axis perpendicular to the ML plane through the average center position of the head, (2) the axis 
perpendicular to the ML plane and passing through the COM of the whole body, and (3) the axis perpendicular to 
the ML plane through the center of the beam on the floor. The choice of the axis through the head was motivated 
by previous studies that showed that stabilization of the head might be an important control principle for many 
locomotion tasks20. The long axis of the beam was chosen because the human body can be seen as an inverted 
pendulum that rotates about this axis. The analyses of the AM components were confined to rotations in the ML 
plane with respect to those axes parallel to the walking direction.

Analyses of kinematic variations revealed a very complex structure with large inter-individual differences 
and no apparent invariances. In contrast, analyses of the AM with respect to the axis along the beam rendered 
a very parsimonious description of the observed coordination patterns showing a low-dimensional structure of 
the AM. These findings suggest that the underlying control strategy might aim at minimizing the variation of the 
AM about this axis.

Results
While walking on the 3.4 cm-wide beam, participants displayed highly variable motor behavior, using a wide 
range of strategies in order to maintain or regain balance. As an illustration, Figure 1a displays 4 series of body 
postures that participants adopted during 4 typical trials; 3 were successful and one was unsuccessful and the 
participant had to step off the beam. Participants displayed not only large trunk movements, but also large and 
variable movements of both arms. When at the brink of falling off the beam, they also abducted their legs. Movies 
from a set of experimental trials are provided as supplementary material to this article. As one index to quantify 
the degree of balance, Figure 1b depicts the time series of the medio-lateral velocity of each of the participants’ 
whole-body center-of-mass (VCOM). The root mean square (RMS) of this variable was computed over 15% to 
85% of the duration of each successful trial or over the last 3 seconds prior to loosing balance. The interval for this 
computation is highlighted in grey in Figure 1b. Comparison of the VCOMRMS for all successful and unsuccessful 
trials confirmed that the variations in successful trials were significantly smaller, VCOMRMS = 0.03 ± 0.01 m/s, 
than in those trials when participants lost their balance, VCOMRMS = 0.15 ± 0.08 m/s, t139 = −170.6, p < 0.001.

The highly variable behavior was also evident in a principal component analysis (PCA) applied to the rela-
tive orientations of the segments. Figure 2a shows the variance accounted for (VAF) for the successful trials as 
function of the number of principal components, averaged across 16 participants. The whole-body movements 
required on average 8 components to account for at least 95% of the variance. After applying a VARIMAX rota-
tion, we obtained components with average sparsity indexes ranging between 0.65 and 0.91 (Fig. 2b). By defini-
tion, the sparsity index is 1 if only one single element of the vector is different from 0, when more components 
are non-zero then sparsity is lower than 1 (see Methods for more detail). All components accounted for similar 
amounts of variance (Fig. 2c).

In order to test whether participants have improved over the 20 trials and changed their strategy, we split 
the 20 trials in 2 blocks: block 1 comprised the first 10 successful trials, block 2 the second 10 successful trials. 
The same PCA was applied to the covariance matrices associated with the 2 blocks. We found that for both 
blocks 8 components were needed to account for 95% of the variation associated with the data. Comparing the 
components of the 2 blocks revealed that they were similar, S = 0.90 ± 0.14. This average similarity index S was 
quantified as the dot product between 2 components, normalized with respect to their norms. By definition, the 
index S is equal to 1 when the components are proportional (see Methods for details). These results suggested 
that subjects’ strategy did not change significantly across the duration of the experiment, i.e., there was no sign 
of learning effects.

In order to assess the inter-individual variations of the kinematic coordination structure, we applied a 
cross-validation procedure. For this purpose, the principal components of a single participant were used to pre-
dict the data from each of the other participants. The amount of variance explained for all pairwise comparisons 
was low, the average VAF was 44.05 ± 26.45%, indicating little consistency between the kinematic strategies of the 
individual participants.

Given this high dimensionality and large inter-individual differences in the kinematics, we proceeded to cal-
culate the angular momenta of the body segments. While the typical axis used for this calculation is the axis 
through the whole-body COM, we also calculated AM with respect to 2 additional axes, one parallel to and 
through the beam and one through the central position of the head. Figure 3 shows the temporal evolution of 
the angular momentum through the 3 axes from the trial in the top panel of Figure 1. While the 3 time series 
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are visibly correlated, they also display considerable differences in amplitude and variability. These qualitative 
observations were confirmed by the average correlation coefficients (R) and RMS values (LRMS) associated with 
the angular momenta, which are summarized in Table 1.

Applying principal component analysis to the AM computed with respect to the different axes revealed 
substantial differences between the segmental coordination patterns. Figure 4a shows the cumulative variance 
accounted for each of the 3 axes. Before averaging, the principal components associated with different partici-
pants were paired and grouped according to their similarity. While 4 or 5 components were required to account 
for about 95% VAF for the whole-body COM and the head, the center of the beam as reference axis needed only 
one single component for a comparable VAF.

Figure 4b depicts the first 5 components for the 3 axes after a VARIMAX rotation. There were considerable 
differences between the 3 axes with respect to the structure of the extracted components. However, the axis 
through the beam center showed a particularly simple structure: the first PC was associated mainly with the 
trunk segment, the second and the third PCs with the left and right arm, and the fourth and the fifth PCs with the 
left and right leg. The similarity index S between the components identified with respect to the axis through the 
head and through the COM was S = 0.80 ± 0.10. Similarly, for the components computed with respect to the head 
axis and the beam axis, S = 0.60 ± 0.03. For the sets of components associated with the whole-body COM axis 
and the beam axis, S = 0.63 ± 0.07. These moderate values of similarity give evidence that the segmental patterns 
of covariation were highly dependent on the reference axis chosen for the computation of the AM. Further, the 
analysis of the sparseness of the components revealed that the PCs computed with the beam axis were on average 
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Figure 1.  (a) Stick figures with segmental orientations reconstructed from 3D kinematic data of 4 
representative participants walking across the beam. The first 3 panels illustrate typical successful trials and 
the variety of body postures adopted by different participants. The bottom panel shows the body postures 
seen during one unsuccessful trial. (b) Time series of the medio-lateral velocity of the participants’ whole-
body center-of-mass associated with the trials in Figure 1a. The grey-shaded areas indicate the intervals over 
which the VCOMRMS were computed.
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sparser than the corresponding PCs for the other 2 reference axes. This implies that using the beam center as axis 
rendered the lowest-dimensional description of the underlying signal space.

Figure 4c illustrates how the variance was distributed across the different components. When AM was com-
puted with respect to the head axis, all components accounted for a comparable amount of data variation, with 
PC1 accounting for the smallest amount. In contrast, using the COM or the beam as axis, the biggest contribution 
to data variation came from the first component alone, leaving only a small amount of variance to be explained 
by the other components. For the beam axis, PC1 accounted for approximately 90% of the variance. Moreover, for 
the latter case, the average similarity of PC1 across different participants was high, S = 0.99 ± 0.01. This indicates 
that the component accounting for the majority of the variance was also relatively invariant across participants.

To test whether these results changed across practice, the data were again split into 2 blocks (first 10 and 
second 10 of the successful trials) and PCA was applied separately to each block. There were no noteworthy dif-
ferences between the identified components, suggesting that there were no performance improvements during 
the experiment. When the AM was computed with respect to the head axis S was 0.93 ± 0.11 between block 1 and 
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Figure 2.  (a) Boxplots of the average percentage of VAF as function of the number of principal components 
identified from covariance matrix associated with the joint angles. (b) Average values of the first 8 kinematic 
principal components after VARIMAX rotation. Each element of the components corresponds to a specific 
body segment among the following ones: head (He), trunk (Tr), left and right upper arms (respectively LUA 
and RUA), forearms (LFA, RFA), hands (LA, RA), thighs (LT, RT), shanks (LS, RS) and feet (LF, RF). (c) 
Average percentages of variance accounted for of the 8 principal components. In all panels, average values were 
computed across 16 participants and the error bars represent one standard deviation.
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block 2. When the AM was computed with respect to the COM, S was 0.94 ± 0.13, and when the center of the 
beam was taken as reference axis S was 0.99 ± 0.02. The amount of variance accounted for by the first 5 PCs was 
always higher than 95%.

As with the kinematic results, we also quantified the reproducibility of the coordination structure between 
participants with a cross-validation procedure (see Methods). Using the components of a single participant, we 
predicted the data from other participants. With all pairwise comparisons conducted for each of the 3 axes, the 
reproducibility measure was substantially lower for the whole-body COM reference axis, VAF = 86.67 ± 9.77%, 
and for the head axis, VAF = 75.44 ± 23.80%, than for the beam axis, VAF = 98.93 ± 0.92%. These results show 
that the differences between individuals were much attenuated and again confirmed the robustness of the AM 
patterns with respect to the beam axis.

One might argue that the single dominant contribution to the AM from the trunk is a trivial consequence of 
the fact that the trunk is the body segment with the largest mass. This might obscure the structure of the more 
complex coordination patterns of the arms and the legs. To evaluate this objection, we applied PCA to a reduced 
data set that included all AM contributions, except the one of the trunk segment. The results of this analysis 
are summarized in Figure 5. Figure 5a shows that even in this case 5 components explained about 95% of the 
variance, separately for each axis. The amount of variance that could be accounted for using one single compo-
nent was however notably smaller in Figure 5a than in Figure 4a. For instance, 3 components, instead of one, 
were needed to account for 90% of VAF when the AM was computed the beam axis. Figure 4b depicts the first 
5 principal components for the 3 axes. As above, the sets of principal components of different participants were 
paired and grouped according to their similarity before their averages were computed. There were still consider-
able differences between the 3 axes with respect to the structure of the identified components. Remarkably, the 
components relative to the beam axis retained their particularly intuitive structure, similar to what was seen in 
Figure 4b. Now, however, PC1 was associated mainly with the head segment, whereas the other 4 components 
were associated with the 2 arms and the 2 legs (Fig. 5b). Figure 5c illustrates how the variance was distributed 
across the different components. Similar to the full set of components in Figure 4c, when the AM was computed 
with respect to the head axis, all components accounted for a comparable amount of data variation. For the COM 
and the beam axis, however, the amount of VAF associated with PC1 was much lower than in Figure 4c and is 

Temporal AM evolution
during one trial

Time [s]

A
M

 [K
g *

m
2 /s

]  

Head

Beam
COM

0 1 2 3 4 5 6
5

-10

-5

0

5

10

15

20

Figure 3.  Temporal evolutions of the whole-body angular momentum during the first trial illustrated in 
Figure 2. The 3 lines refer to the axis through the head, the center-of-mass of the whole body, and the beam.

Measure mean ± sd

RHead-COM 0.95 ± 0.03

RCOM-Beam 0.91 ± 0.05

RHead-Beam 0.76 ± 0.11

LRMS(Head) [Kg m2/s] 1.44 ± 0.61

LRMS(COM) [Kg m2/s] 1.54 ± 0.62

LRMS(Beam) [Kg m2/s] 1.97 ± 0.76

Table 1.  Average correlation coefficients (R) and RMS values (LRMS) associated with the angular momenta 
computed with respect to the 3 axes. The RMS values were computed considering only the AM components 
parallel to the walking direction and causing rotation along the ML plane. Like the correlation coefficients, were 
averaged across trials and participants.
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comparable to the VAF associated with the other components. These results therefore support the conclusion 
that, even when the trunk was excluded from the analysis, the AM organization associated with the beam axis 
was still revealed simpler coordination patterns. This suggests that the simple AM organization was not the trivial 
consequence of the large mass of the trunk.
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Figure 4.  (a) Box-plots of the average percentage of VAF as function of the principal components identified 
from the segmental AM contributions computed about head, whole-body COM and the beam. (b) Average 
values of the first 5 principal components after VARIMAX rotation. (c) Average percentages of variance 
accounted for by these 5 principal components. In all panels, average values were computed across all 
participants and error bars represent standard deviations across participants.
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In order to assess the contributions of specific body segments to the coordination of the AM we quantified 
the percentage of VAF by head, trunk, arms and legs separately. The results are summarized in Table 2. Clearly, 
the legs alone accounted for the largest amount of variance when the AM was computed with respect to the head 
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Figure 5.  Principal component analysis of the AM contributions excluding the trunk segment. (a) Boxplots 
of the average percentage of VAF as function of the number of principal components identified from the 
segmental AM contributions computed about head, whole-body COM, and the beam. (b) Average shape of the 
first 5 principal components after VARIMAX rotation. (c) Average percentages of variance accounted for of 
the 5 principal components. In all panels, average values were computed across all participants and error bars 
represent standard deviations across participants.
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axis. This percentage was substantially lower for the whole-body COM and the beam axis. In contrast, the trunk 
segment accounted for the largest percentage of the VAF when the AM was computed with respect to the beam 
axis. Its contribution was smaller for the other 2 reference axes. The arms provided similar contributions when the 
AM was computed with respect to the head or the COM axes, but their contribution was smaller when computed 
with respect to the beam axis.

Besides the 20 successful trials that each participant accomplished during the experiments, we also analyzed 
the sets of unsuccessful trials during which participants lost their balance before arriving at the end of the beam. 
More specifically, for each participant we applied the same PCA with VARIMAX rotation to the segmental 
orientations and computed the AM contributions with respect to the beam axis. The analysis was restricted to 
the last 3 seconds prior to termination, defined as the moment when one foot touched the ground. The princi-
pal components of the unsuccessful trials were then compared to those of the successful ones. Using the same 
cross-validation procedure as above, we quantified to which extent the principal components in the successful 
trials could account for data variation in the unsuccessful trials. For the segmental kinematics, 8 principal com-
ponents were needed to account for 95% of the variance in the unsuccessful trials, VAF = 93.93 ± 2.46%. The sim-
ilarity between the components in successful and unsuccessful trials was relatively high, but was highly variable, 
S = 0.88 ± 0.21. Moreover, the principal components of the successful trials could not account for much of the 
variance in the unsuccessful trials, VAF = 63.22 ± 15.32%. These results suggested that when participants started 
to lose balance they recruited different kinematic strategies than the ones in the successful trials.

When testing the segmental AM contributions, we found that in the unsuccessful trials 5 principal com-
ponents could always account for at least 99% of the variance and that these components were very similar to 
those associated with the successful trials, S = 0.95 ± 0.11. Moreover, the cross-validation procedure revealed that 
the principal components in the successful trials reconstructed the AM variation in the unsuccessful trials with 
high approximation, VAF = 98.75 ± 0.71%. These results therefore suggest that while the kinematic coordination 
deviated from the steady-state pattern, the loss of balance was not preceded by a recruitment of altered AM 
components.

The low-dimensional AM organization that characterized both successful and unsuccessful trials suggests 
that the AM pattern arose from a linear combination of invariant AM patterns (the PCs). To further examine this 
conjecture, the linear weights associated with the PCs were analyzed. The specific hypothesis was that loss of bal-
ance was brought about by a different combination of the principal components in comparison to the successful 
trials. To investigate this hypothesis, the coefficient of the first AM principal component (PC1), explaining at least 
90% of the variance, was related to a task variable that characterized the degree of balance. The task variable that 
quantified ML balance, the ML velocity of the center-of-mass (VCOM) was chosen (Fig. 1b). Differences in the 
coefficients of successful and unsuccessful trials should reflect different recruitment processes of the component.

More specifically, we hypothesized that the RMS value of the time series of the linear weight of PC1, com-
puted within each single trial, should be predicted by the RMS of the time series of the VCOM, VCOMRMS, split 
by the type of trial (successful/unsuccessful) and their interaction. A multiple regression revealed that such a 
linear model predicted a significant amount of the variance associated with the weight, F3,454 = 118.03, p < 0.002, 
R2 = 0.44, R2

adju = 0.43. Further, the type of trials did not significantly predict the coefficient, β = −0.112, 
t457 = −0.589, p > 0.05. In contrast, both VCOMRMS (β = 56.66, t457 = 8.06, p < 0.001) and the interaction between 
trial type and VCOMRMS (β = −22.51, t457 = −6.30, p < 0.001) were significant predictors. The β values indicate 
the slopes associated with the corresponding predictor in the regression equation. Taken together, the regression 
results showed that the weight of PC1 was approximately 2 times larger in the successful trials than in the unsuc-
cessful ones (see Fig. 6). This implies a weaker recruitment of this component in the instants prior to balance loss 
compared to the recruitment of the same component during the successful trials.

Discussion
The overall goal of this study was to investigate possible control strategies underlying the observed coordination 
during a challenging balancing task, walking on a narrow beam. We found highly variable and complex kinematic 
patterns with large-amplitude movements of the trunk, arms and legs. This high variability in the kinematic pat-
terns was reflected in the high dimensionality of the relative orientations of the segments as quantified by a PCA. 
In addition, there appeared to be little or no consistency of patterns across the different individuals, indicating a 
lack of invariance underlying the organization of the movements. Contrasting with this result, the analysis of the 
AM revealed a much simpler pattern. Applying PCA to the AM structure of the different body segments, we were 
able to find a low-dimensional and coherent structure. This was especially the case when the AM was computed 
with respect to an axis aligned with the beam. In contrast, when the AM was computed using the axes through 
the whole-body COM or the head, the revealed structures required more components to approximate the data.

Beam walking has been investigated in multiple previous studies2–4,6. However, in all these experiments, par-
ticipants walked on the beam with their arms folded in front of the body. The implicit or explicit reason was to 
isolate the locomotor task from disturbances arising from the complex and irregular arm movements. Simplifying 

Axes % VAF Head % VAF Trunk % VAF Arms % VAF Legs

Head 0.82 ± 1.38 2.41 ± 4.05 8.07 ± 9.74 79.65 ± 13.89

COM 3.60 ± 2.57 49.37 ± 13.30 11.53 ± 10.59 27.10 ± 11.36

Beam 4.52 ± 3.52 85.34 ± 6.61 0.57 ± 4.60 1.97 ± 3.82

Table 2.  Percentages of variance accounted for (VAF, mean ± sd) relative to 4 separate body segments, 
respectively head, trunk, arms and legs.
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the analysis of the balancing components by excluding the influence of the arms can be advantageous when pur-
suing clinical goals6. However, it remains an open question how humans might control their entire body including 
their arms to regulate balance. To answer this question, we opted to not impose constraints on the arm move-
ments and allowed maximal freedom on the choice of motor strategies to maintain balance. Indeed, participants 
moved their arms extensively (as visible by the loadings in PC1 to PC7 in Fig. 2), suggesting that the arms likely 
played a role in the control of balance. This conclusion was also corroborated by the finding that 2 out of the 5 
AM components were related to the arms. This underscores that to understand the control of locomotor balance 
under relatively unstable conditions, it is necessary to examine arm movements.

How can these results shed light on the control of balance? Our results might be interpreted with a two-layered 
control framework21,22: an “execution” level and a “task” level. Rotating the body segments to control the 
whole-body AM about the beam axis to minimize the risk of falling may reflect a control strategy that is con-
cerned with lower-level variables, such as segmental AM contributions. This view is supported by the simple AM 
structure: the trunk, as a segment with comparably high mass (about 43% of the total body weight23) and located 
relatively far away from the axis dominates the decomposition of the AM. The 2 legs and the 2 arms, which have 
much smaller mass, are components that can be used for finer control or as measures of “last resort” to avoid loss 
of balance. This interpretation is supported by the fact that the the RMS values of PC weights associated with the 
upper- and lower-limb components increased during the unsuccessful trials before participants lost balance and 
stepped off the beam (see supplementary Fig. S1). Note that the analysis that eliminated the trunk component 
ruled out that all structure was generated by the trunk component.

At the task level the human body might be approximated by an inverted pendulum that rotates about the axis 
that is defined by the contact of the feet with the beam24,25. Therefore, the corrections at the execution level might 
aim to ensure the dynamic stability of the inverted pendulum. This raises the question how the body is controlled 
to assemble and regulate this inverted pendulum? Note that an inverted pendulum is by definition unstable. 
Therefore, there has to be at least one additional degree of freedom to afford stability: either a joint at the hip to 
form a double-pendulum, or a joint at the tip of the pendulum connected like a T-bar. Interestingly, these 2-DOF 
linkages map into well-known strategies when balancing: a two-DOF system may be achieved by moving around 
the hip joint, the so-called hip strategy, well known in postural control9. The “T-bar model” is realized when the 
2 arms are extended horizontally or even enhanced by rope walkers who hold a long horizontal bar, evidently to 
help them maintain stability. The observation that the left and right arms are indeed the second and third PC is 
consistent with this T-bar model.

The hypothesis that at the task level the whole-body system may be approximated as an inverted pendu-
lum does not contradict the fact that, at the execution level, a complex motor strategy may be applied. The 
approach to approximate and simplify the whole body at the task level has revealed to also be useful in the con-
trol of robotic systems26,27. While balance of an inverted pendulum can be achieved by applying, for example, 
zero-moment-point control, more refined control requires more accurate models28–30.

Analysis of the unsuccessful trials provided interesting insights into the strategies that participants recruited 
in the last 3 seconds before losing balance. Regardless of the chosen axis used for the AM computation, the AM 
components recruited in this interval were similar to the ones recruited in the successful trials. On the one hand, 
this suggests that losing balance cannot be attributed to the recruitment of a “wrong” set of components. Instead, 
the analysis suggests that the “right” components may be not be recruited properly, i.e. with the wrong linear 
weights, to assure balance recovery. The linear regression analysis seemed to support this hypothesis. In the 
unsuccessful trials, the activation of the most important component (PC1) was much lower than its activation 
during the successful trials, given a specific amount of dynamic instability VCOMRMS. This can be interpreted as 
a decrease of control effort and one possible cause of the loss of balance. However, the experimental procedures 
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Figure 6.  Linear regression of the RMS values of the coefficients associated with the first AM principal 
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were designed for the successful trials and more work is needed to develop more suitable procedures to reveal 
how the AM components are recruited and whether a deficient recruitment process can lead to loss of balance.

Angular momentum during walking has been investigated as a possible diagnostic measure for individuals 
with movement deficits caused, for instance, by a stroke31–37. Analysis of gait stability in terms of the structure 
of angular momentum around different axes may inform clinicians about individual deficits and may point to 
novel rehabilitation protocols for patients with balance problems. Our results showed that the RMS value of 
the medio-lateral velocity of the COM and the scalar coefficient of the first principal component can discrim-
inate between successful and unsuccessful trials. Hence, the coefficients of the AM principal components may 
be informative for the assessment of balance problems and motor recovery during rehabilitation. Similarly, the 
number and amount of variance of principal components might help discriminate between different pathological 
changes and help in the design and assessment of individual rehabilitation protocols.

While the more standard clinical measures of functional impairment, such as the velocity of the COM, are 
easier to obtain, the typical clinical measures tend to be global descriptors. We conjecture that the parameters of 
the low-dimensional organization might be more sensitive to specific pathological factors and ultimately more 
precise and specific as diagnostic tools.

Our study showed that computing the AM with respect to axes different from the typically used axis of the 
whole-body COM provide novel and interpretable results. An interesting question therefore arises whether these 
methods and results generalize to other walking conditions. On the one hand, normal walking on flat ground is 
comparatively stable in the ML plane and analysis of the AM with different axes may not provide new information 
as the limb rotations in the ML plane are comparatively small. For example, the computation of the AM along the 
sagittal plane might provide useful insights as walking implies a rotational motion about the ankle of the stand-
ing leg in the sagittal plane. Similar considerations apply to walking on stairs or slopes15,16. On the other hand, 
analysis with respect to the reference axis of the head may prove insightful for many other balance-challenging 
walking conditions as head stabilization is an important reference for control during several locomotion tasks20. 
In conclusion, our results may serve as stimulus to consider alternative axes when analyzing whole-body control 
in locomotory tasks.

Methods
Participants.  Sixteen healthy participants completed the experiment (11 males, 5 females, ages 27 ± 4 years, 
mass 70 ± 11 kg, height 1.76 ± 0.09 m). All participants were in good health and had no previous history of neu-
romuscular disease. The experiment conformed to the Declaration of Helsinki and written informed consent 
was obtained from all participants according to the protocol approved by the ethical committee at the Medical 
Department of the Eberhard-Karls-Universität of Tübingen, Germany. Participants appearing in the figures or 
in the supplementary videos provided informed consent for publication of identifying information/images in an 
online open-access publication.

Kinematic Measurements.  Kinematic data were collected with a Vicon motion capture system with 10 
infrared cameras (Oxford, UK), which recorded the 3D positions of spherical reflective markers (2.5 cm diam-
eter). The markers were attached with double-sided adhesive tape to tight clothing worn by the participants 
(Fig. 7a). Marker placement followed the Vicon’s PlugInGait marker set. The sampling rate was set at 100 Hz; spa-
tial error was below 1.5 mm. To create a challenging condition for balance control participants walked on a very 
narrow beam (3.4 cm wide, 3.4 cm high, 4.75 m long). The beam was fixed to the ground with strong double-sided 
adhesive. In the Vicon frame of reference the axis parallel to the beam was defined as the x-axis (Fig. 7b); the axis 

xy

zAverage 
head position

COM

Beam

a b

Figure 7.  (a) Participant walking on the narrow beam and wearing the markers sets for 3D kinematic data 
acquisition. (b) Illustration of the projection of the joints onto the ML plane of a participant walking on the 
beam. The walking direction is the x-axis. The green circles represent the 3 axes with respect to which the AM 
was computed. According to equation (1), only the AM along the x-axis can produce rotations of the segments 
in the ML plane, identified by the y- and z-axis.



www.nature.com/scientificreports/

1 1SCIENTIfIC REporTS |  (2018) 8:95  | DOI:10.1038/s41598-017-18142-y

perpendicular to the beam was defined as y-axis, with positive pointing leftward with respect to the direction of 
motion; the third axis parallel to the gravity direction was defined as z-axis, pointing upward.

Experimental procedure.  Each participant was asked to walk barefoot from one end of the beam to the 
other. Starting from a standing position with the left foot on the beam and the right foot on the ground, he/she 
started walking after the experimenter gave a go-signal and started the movement recording. Importantly, par-
ticipants were allowed to freely move their arms to maintain balance and there were no time constraints. After 
reaching the end of beam, the participant stepped off the beam with both feet on either side of the beam and stood 
still until the movement recording was stopped. A typical successful trial lasted between 4.51 and 23.28 seconds. 
The participant then returned to the starting position. If the participant lost balance and stepped off the beam 
before reaching the end, the experimenter stopped the recording and the participant returned back to the starting 
position. A typical unsuccessful trial lasted between 0.96 and 18.89 seconds. Each participant performed trials 
until 20 successful trials were completed. After each trial, participants were allowed to take a short rest if needed. 
Participants needed on average 34 ± 16 trials to achieve 20 successful trials. While there were 14 unsuccessful 
trials per participant, this number varied widely between 0 and 52 trials across individuals.

Data analysis.  Commercial Vicon software was used to reconstruct and label the markers, to interpolate 
between short missing segments of the trajectories, and to compute the center-of-mass (COM) of the whole body. 
Kinematic analysis was performed off-line using Matlab v.R2015a (The Mathworks, Natick, MA). Before analysis, 
kinematic data were low-pass-filtered using a Butterworth filter with a cut-off frequency of 20 Hz. To exclude 
transient behaviors, only the time windows between 15% and 85% of the duration of each successful trial were 
considered for analysis. For each unsuccessful trial only the last 3 seconds before the participant stepped off the 
beam were considered. Unsuccessful trials shorter than 2.5 seconds were excluded from the analysis. After this 
exclusion, there were 151 unsuccessful trials in total, on average 9 ± 12 trials per participant, varying between 
0 and 39 trials across individuals. As this study was mainly interested in understanding the organization of the 
kinematics and the AM for balance control in the medio-lateral (ML) plane, the kinematic analysis was confined 
to this ML plane.

Relative orientations of the body segments.  The human body was modeled as a kinematic chain composed of 14 
rigid segments: head, trunk, left and right upper arms, forearms, hands, thighs, shanks and feet. The spatial coor-
dinates of the extrema of each segment (i.e., the ends of each link) were derived from the motion capture data. 
For the head, the first coordinate was obtained computing the average position between the centers of rotation of 
the left and right shoulder, the second coordinate was defined at the average position of the 4 markers attached 
to the head. These coordinates were used to determine the axis parallel to the beam but through the head. For 
each hand, one extremum coincided with the wrist joint, and the other one with the marker applied to the base 
of the index finger on the back of the hand. For each foot, the first extremum coincided with the ankle joint of 
rotation, the second extremum with the marker applied on the top of the big toe. The 3D spatial coordinates of 
the joints of rotation were projected onto the ML plane by setting the coordinates of the joints of rotation along 
the beam direction (x-axis) to zero. For each segment, its relative orientation was computed as the angle between 
that segment and its proximal and adjacent segment. The orientation of the trunk segment was computed with 
respect to the z-axis.

Angular momentum.  The contribution Li(rp) of each segment to the whole-body angular momentum (AM) with 
respect to an axis of rotation passing through the point P was computed as follows:

ω= − × +mL r r r v I( ) ( ) ( ) (1)i P COM i P i COM i i i, ,

where rCOM,i indicates the position vector of the center-of-mass of the i-th segment, vCOM,i its corresponding 
velocity, Ii its inertial tensor, and ωi its corresponding 3D angular velocity. rp indicates the position vector of the 
point P. For each segment, the position of the corresponding center of mass and the inertial tensors Ii were com-
puted using average human anthropometric data and the kinematic measures derived from the motion capture 
data38,39,23. As the analysis focused on the movements in the ML plane, only the AM component parallel to the 
x-direction was considered. This is the component of the vector L that causes rotations of the body segments in 
the ML plane.

For each participant, the AM was computed about 3 axes passing through 3 different points in the ML plane 
(Fig. 7b): (1) the average position of the head computed across all trials, (2) the position of the whole-body COM 
over time, and (3) the center of the beam. The center of the beam and the average position of the head of each 
participant were fixed points in the ML plane. In contrast, the position of the whole-body COM changed over 
time. However, it is well known that, for the COM, the derivative of the AM computed with respect to the x-axis 
passing though the COM is always equal to the external moments applied to the body. The Euler’s law10 was there-
fore always valid independently of the chosen axis. The total AM was computed by summing the contributions 
of all body segments:

∑= =L r L r( ) ( ), (2)P i i P1
14

Index of stability.  The velocity of the whole-body center-of-mass along the ML direction, VCOM, showed 
marked fluctuations in time, coincident with variations in segmental kinematics (see Fig. 1 for illustration). To 
characterize this ML velocity, the root mean square error (RMS) was calculated over the specified duration of 
each successful and unsuccessful trial VCOMRMS.
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Analysis of dimensionality.  Principal component analysis40 (PCA) is an unsupervised learning method that 
allows to decompose an input matrix X into the linear combination of a finite set of orthonormal basis vectors, 
referred to as principal components. These basis vectors are weighted by a set of scalar coefficients. In order to 
analyze the spatio-temporal coordination of the relative orientations of the body segments, PCA was applied to 
the covariance matrix of the segmental orientations. To analyze the dimensionality of the segmental AM con-
tributions, PCA was applied to the covariance matrix of the AM components parallel to the walking direction, 
i.e. the direction causing the rotation of the body segments in the frontal plane. In order to reduce the variability 
across study participants, the AM contributions were represented in dimensionless form prior to PCA. For this 
purpose, they were normalized with respect to the product between the participant’s body mass (kg), walking 
speed (m/s) and body height (m). The covariance matrix was used instead of the correlation matrix to avoid 
any amplitude normalization of the signals from different orientations or body segments. Subsequently, only 
the minimum number of components was retained that was sufficient to account for at least 95% of the total 
variance (VAF)41.

A VARIMAX rotation was applied to the retained components to simplify the interpretation of the factors42. 
The direct effect of the VARIMAX rotation was a sparsification of the components, making the elements of each 
component very small or zero. The fewer elements of the components are different from zero, the easier it is to 
provide a functional interpretation of the components. To quantify the level of sparseness for each rotated factor, 
Hoyer’s index was used43. More specifically, sparsity was defined as follows:

= − ⋅ − −
 N NSparsity ( / ) ( 1) , (3)1 2

1

where N indicates the number of elements in each component (here N = 14 for both segmental orientations and 
AM contributions) and 1 and 2 indicate the 1-norm and the 2-norm, respectively. This measure varies between 
0 and 1, where zero means that the factor is not sparse, and 1 signifies the maximum level of sparsity, where only 
one element of the factor is different from zero.

Similarity between components.  In order to assess similarity between different principal components associated 
with different axes, different participants, or the 2 types of trials (successful versus unsuccessful), a similarity 
measure S was computed for all possible pairings. To obtain the similarity S, the corresponding scalar product 
was computed after the components were normalized with respect to their norms. Thus, given 2 principal com-
ponents u and v, their similarity was defined as follows:

=
⋅S u v

u v (4)

where ⋅  indicates the Euclidian norm. The index S represents the cosine of the angles between the vectors 
identified by the 2 components. When the index is equal to 1, the components are proportional to each other, 
while S = 0 implies that they are orthogonal. The index S is equivalent to the uncentered Pearson correlation 
coefficient.

The principal components of this first best-matching pair were then removed from the corresponding sets 
and the procedure was repeated for the second-best matching pair, and so forth. This procedure was iterated until 
all components had been matched. The computation of the similarity S between 2 sets of components provided 
a quantitative assessment of the extent to which the patterns of covariation of the segmental orientations or seg-
mental AM contributions relative to 2 axes, 2 participants, or successful or unsuccessful trials differed from each 
other.

Cross-validation.  A cross-validation procedure was performed to assess the extent to which the organizations of 
the relative orientations of the body segments and of the AM identified by PCA were invariant across participants 
or successful or unsuccessful trials. Each set of principal components identified in one participant or in one type 
of trial was used to reconstruct the data from the other participants by least-square approximation. The goodness 
of reconstruction was quantified in terms of variance accounted for. The goodness-of-fit measures were averaged 
across all pairings between participants to obtain a single reproducibility score. We also computed the extent to 
which head, trunk, arms and legs contributed separately to the total AM. Their contributions were quantified in 
terms of percentage of variance accounted for.

Statistical analysis.  Mean and standard deviation were used to summarize the data. The similarity between 
2 time series was quantified by computing the corresponding centered Pearson’s correlation coefficient R. The 
amplitudes of temporal signals were characterized by computing the corresponding root mean square values 
RMS. A Welch t-test was applied to compare RMS values of medio-lateral velocity across participants and tri-
als, i.e. with unequal and different sample sizes. A multiple regression analysis was conducted to test whether 
COM-stability in the ML plane (quantified by VCOMRMS), the type of trial (successful/unsuccessful) and their 
interaction predicted the RMS value of the scaling coefficient associated with one principal component (the one 
associated with the trunk segment and obtained from the AM computed with respect to the trunk).

Data availability.  The data that support the findings of this study are available from the authors of the article. 
Restrictions apply to the general availability of these data, which were used under license for the current study, 
and so are not publicly available. However, data are available from the authors upon reasonable request.
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