
Temporal Consistency of Integrity-Ensuring Computations and
Applications to Embedded Systems Security
Xavier Carpent

University of California, Irvine

xcarpent@uci.edu

Karim Eldefrawy

SRI International

karim.eldefrawy@sri.com

Norrathep Rattanavipanon

University of California, Irvine

nrattana@uci.edu

Gene Tsudik

University of California, Irvine

gene.tsudik@uci.edu

ABSTRACT
Assuring integrity of information (e.g., data and/or software) is

usually accomplished by cryptographic means, such as hash func-

tions or message authentication codes (MACs). Computing such

integrity-ensuring functions can be time-consuming if the amount

of input data is large and/or the computing platform is weak. At the

same time, in real-time or safety-critical settings, it is often imprac-

tical or even undesirable to guarantee atomicity of computing a

time-consuming integrity-ensuring function. Meanwhile, standard

correctness and security definitions of such functions assume that

input data (regardless of its size) remains consistent throughout

computation. However, temporal consistency may be lost if another

process interrupts execution of an integrity-ensuring function and

modifies portions of input that either or both: (1) were already

processed, or (2) were not processed yet. Lack of temporal consis-

tency might yield an integrity result that is non-sensical or simply

incorrect. Such subtleties and discrepancies between (implicit) as-

sumptions in definitions and implementations can be a source of

inconsistenceies, which might lead to vulnerabilities.

In this paper, we systematically explore the notion of tempo-

ral consistency of cryptographic integrity-ensuring functions. We

show that its lack in implementations of such functions can lead

to inconsistent results and security violations in protocols and sys-

tems using them, e.g., remote attestation, remote updates and secure

resets. We consider several mechanisms that guarantee temporal

consistency of implementations of integrity-ensuring functions in

embedded systems with a focus on remote attestation. We also

assess performance of proposed mechanisms on two commodity

hardware platforms: I.MX6-SabreLite and ODROID-XU4.

KEYWORDS
embedded system security; remote attestation; temporal consis-

tency

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00

https://doi.org/10.1145/3196494.3196526

1 INTRODUCTION
Computation over a large amount of input data is never instanta-

neous. Even if input size is moderate, computation can take a long

time, e.g., if it involves cryptographic primitives, or takes place

on a slow (low-end) processor. Assuring atomicity (i.e., uninter-

ruptibility) of computation might be impractical or even unsafe if

the underlying system provides critical or real-time service. Mean-

while, if computation is cryptographic in nature and its purpose

is to ensure integrity, the result must be temporally consistent. In
other words, it must, at least

1
, reflect the exact state of input data

at some point in time. These two requirements are potentially con-

flicting: if integrity-related computation is interruptible, its input

might change, such that the result is inconsistent (i.e., wrong) or

non-sensical, i.e., it might correspond to the state of input that

did not exist at any one time. This issue has been surprisingly

under-appreciated in the security research literature.

More generally, we argue that temporal consistency is important

in computing any integrity-ensuring function, e.g., checksums for

error detection, and not only security-relevant ones such as hash

functions, MACs and digital signatures. All these functions are

designed to operate on static input data, which is assumed by their

standard (security) definitions.

This discrepancy between (implicit) theoretical assumptions and

implementations is especially relevant in the context of Remote

Attestation (RA). RA is a security service for remotely assessing

integrity of software and memory (as well as other types of stor-

age) in embedded devices. RA is typically realized as an interaction

between a trusted entity (verifier) and an untrusted, potentially

malware-infected, remote device (prover). Upon a request by veri-

fier, prover computes ameasurement of its internal state and returns

the result to verifier for validation. The measurement procedure is

essentially an integrity-ensuring function with additional security

(particulars of which depend on the specific flavor of RA) to pre-

vent malware from falsifying results. Consistency is of paramount

concern for RA, since a measurement result must faithfully reflect

the state of prover’s memory at some point. (NOTE: Hereafter, we
use consistency as a shorthand for temporal consistency). Looking
at prior RA literature, it is unclear exactly at what time – or time

interval – this must hold:

(1) Time when verifier’s request is sent to prover?

(2) Time when verifier’s request is received by prover?

1
We say “at least” to mean that the definition of temporal consistency can be expanded

to encompass an interval of time, rather than a single point in time.

https://doi.org/10.1145/3196494.3196526

(3) Time at prover at the very start of its measurement?

(4) Time at prover at the very end of its measurement?

(5) Any time (or interval) between the last two?

(6) The entire period between start and end measurement?

Although this list is not exhaustive, it enumerates the obvious

choices.

As an illustrative example, consider a sensor/actuator fire alarm

application running on “bare-metal” in a low-end embedded de-

vice. This application periodically checks the value of a sensor and

triggers an alarm whenever that value exceeds a certain threshold.

Given its safety-critical function, software integrity of this device is

periodically checked using RA. Upon receipt of a request from the

verifier, the measurement process interrupts the application and

takes over. The measurement process must run uninterrupted in

order to accurately reflect current state of prover’s software. One

obvious downside of uninterrupted measurement is that the critical

application is dormant during this process, even if a real fire occurs.

Whereas, if we favor the critical application and allow the mea-

surement process to be interrupted, another problem arises. Sup-

pose that the device is infected by migratory malware – the type

of malware that can move itself around – as a whole, or in pieces –

in device’s memory and other storage, in order to evade detection.

Such malware can interrupt the measurement process, e.g., half-

way through, and move itself (by copying and erasing) to segments

of memory that have been already covered by the measurement

process. This way, the final measurement result would reflect a

benign (malware-free) state and, upon receiving and checking it,

the verifier would not detect any malware presence. For a more

detailed discussion of migratory malware, we refer to Appendix D

and E.

Although dangers of migratory malware were anticipated

in the design of some software-based attestation methods, e.g.,

Viper and Pioneer [21, 34], tradeoffs between uninterruptibility

(and atomicity) and integrity measurement consistency have

not been considered in hardware and hybrid attestation designs.

Despite their drawbacks, software-based attestation techniques

are inherently less vulnerable to migratory malware, since their

measurement process involves precise timing which would be

noticeably skewed by migratory malware (due to the latter’s efforts

of copying and erasing). However, as we discuss later, they are also

unsuitable for remote attestation where fluctuating network delays

influence overall timing. Thus, the main goal of this paper is to (1)

investigate uninterruptibility/consistency tradeoffs, and (2) design

techniques offering a range of concrete consistency guarantees for

integrity-ensuring computations, while allowing varying degrees

of interruptibility.

Contributions: This paper makes several advances:

(1) First systematic study of temporal consistency in crypto-

graphic integrity-ensuring functions. We show that lack

thereof can yield incorrect (including malicious) or non-

sensical results.

(2) Design and evaluation of several mechanisms that ensure

temporal consistency in the context of embedded systems,

with a focus on applicability to secure remote attestation.

(3) As part of this work, we develop a new security game that

captures temporal consistency in the context of remote

attestation. This security definition may be of independent

interest. (See Appendix A).

Outline: Section 2 overviews remote attestation and discusses

the importance of temporal consistency. Section 3 introduces our

model and notation as well as supporting mechanisms. Section 4

describes several techniques to ensure temporal consistency in re-

mote attestation for embedded and IoT devices. Section 5 describes

implementation and performance evaluation of mechanisms pro-

posed in Section 4. Section 6 discusses related work, and Section 7

concludes the paper.

2 TEMPORAL CONSISTENCY
State-of-the-art in stealthy malware has been advancing at an im-

pressive rate. Malware that erases itself after performing an in-

tended task, typically after stealing credential or financial assets,

has been discovered in recent years [39]. Malware that utilizes re-

sources (CPU and GPU) on personal computers for computationally

heavy (e.g., cryptographic) tasks, mainly to mine cryptocurrencies,

has also been reported [25]. Sophistication of malware has increased

evenmore in the realm of Cyber-Physical Systems (CPS), Embedded

Systems (ES), and, most recently, Internet-of-Things (IoT). Notable

examples include Stuxnet [20, 36] and Duqu [6]. A recent SANS

Institute survey [16] about IoT threat vectors and concerns lists

malware as the second most highly cited concern (26%), the main

justification being fear of IoT devices spreading malware into enter-

prises. The first concern (31%) was patching and updating software,

and the third was denial-of-service (13%).

2.1 Remote Attestation
In recent years, Remote Attestation (RA) emerged as a distinct se-

curity service for detecting malware on CPS, ES and IoT devices.

RA involves verification of current internal state (i.e., RAM or flash)

of an untrusted remote hardware platform (prover or Prv) by a

trusted entity (verifier or Vrf). RA can help the latter establish

a static or dynamic root of trust in Prv and can also be used to

construct other security services, such as software updates [33] and

secure deletion [28]. Many RA techniques with different assump-

tions, security features and complexities, have been proposed for

the single-prover scenario.

Prior RA results can be divided into three approaches: hardware-

based, software-based, and hybrid. Hardware-based approaches

typically rely on security provided by a Trusted Platform Mod-

ule (TPM) [15]. Despite resisting all, except physical, attacks, the

hardware-based approach is not suitable for low-end and legacy

embedded devices due to its added complexity and costs.

Software-based RA techniques offer a very low-cost alternative.

Pioneer [34] is a prominent example of this approach. Its main tool is

the use of a one-time special checksum function that coversmemory

(to be attested) in an unpredictable (rather than contiguous) fashion.

Any interference with (or emulation of) the computation of this

checksum is detectable by extra latency that would be incurred by

migratory malware trying to avoid being “caught” by the checksum.

Unfortunately, security of this approach is uncertain after several

attacks on software-based RA schemes (e.g., [5]) were demonstrated.

Another problem with the software-based approach is its strong

Prover

Verifier

tvs tpr tcs tce tps tvr

r
e
q

r
e
s
p

Figure 1: Timeline for a typical remote attestation scheme. Verifier’s request is sent at tvs and received at tpr. Computation starts at tcs and
ends at tce. Report is sent at tps and received at tvr.

assumptions about adversarial capabilities, which are unrealistic in

many real networked settings. However, it is the only attestation

option for legacy devices.

Hybrid (software-hardware) RA co-designs have been pro-

posed to overcome limitations of purely software-based techniques.

SMART [11] is the first hybrid RA architecture with minimal hard-

ware modifications to existing micro-controller units (MCUs). In

addition to requiring uninterruptible non-malleable attestation code

and attestation keys in read-only memory (ROM), SMART requires

hard-wired MCU access control rules to allow access to secret keys

only to SMART attestation code. Attestation is performed within

Prv’s ROM-resident attestation code by computing a cryptographic

checksum (e.g., an AES-based CBC-MAC or an SHA2-based HMAC)

over a memory region and returning the result to Vrf. Notably,
SMART requires atomic (uninterruptible) execution of its ROM-

resident attestation code. However, this design feature was moti-

vated by the need to mitigate code-reuse attacks (such as ROP [29])

and not by consistency of computing the measurement. Follow-on

designs, such as TrustLite [19] and TyTAN [2], enhance SMART

with secure interrupt handling.

In this paper, we assume that the measuring process (MP) on
Prv is realized as a keyed integrity-ensuring function computed

over a part (or all) of Prv’s memory, in a “protected” execution

environment. Exact protection depends on the specific security

architecture.

2.2 RA Blueprint
A typical RA scheme operates as follows:

(1) Vrf sends a challenge-bearing attestation request to Prv at
time tvs

(2) Prv receives it at time tpr
(3) Computation of MP starts at time tcs
(4) Computation of MP ends at time tce
(5) Prv sends the attestation report to Vrf at time tps
(6) Vrf receives it at time tvr

The timeline for this sequence of events is shown in Figure 1. Com-

putation ofMP (in gray) may be deferred due to networking delays,

Vrf’s request authentication, or termination of the previously run-

ning task. However, typically, tpr ≈ tcs and tce ≈ tps. Also, Prv
has no control over tvs and tvr. Consequently, hereafter we only
consider ts B tcs (with tcs = tpr) and te B tce (with tps = tce).

As discussed in Section 1, MP may require time-consuming

computations. The exact time it takes depends on the size of Prv’s
memory, its computational capability, and the underlying crypto-

graphic function(s). As a sample hardware platform, we consider

MP running an ODROID-XU4 [7] – a single-board computer repre-

sentative of medium-to-low-end embedded systems. In most cases,

(keyed) hashing
2
is the dominant computation, unless memory to

be attested is very small, or the signature algorithm is particularly

expensive. Figure 2 shows the costs of these operations, for vari-

ous attested memory sizes and cryptographic algorithms
3
. Above

1MB,MP takes longer than 0.01sec, and the cost of most signature

algorithms become comparatively insignificant. Results show that

even hashing a reasonable amount of memory incurs a significant

delay. For example, it takes about 0.9s to measure just 100MB on

ODROID-XU4. Its entire RAM (2GB) can be measured in about 14s.

In a safety-critical setting, this is definitely too long for MP to run

uninterrupted.

As mentioned earlier, recent hybrid RA architectures, such as

TrustLite [19] and TyTAN [2], permit tasks to be interrupted. While

this allows for time-critical processes to run and preserve Prv’s
critical functionality, attestation results might be inconsistent. In-
deed, in TrustLite, since memory can change during execution of

MP, the report produced and sent to Vrf might correspond to

a state of Prv’s memory that never existed in its entirety at any

given time. This is problematic if Prv is infected with migratory

malware. Assuming that such malware resides in the second half of

Prv’s memory, it can interrupt MP after the latter covers the first

half of Prv’s memory, copy itself into the first half, erase traces in

its former location, and resumeMP. This way, malware remains

undetected despite the fact that all memory locations have been

measured.

In TyTAN [2], memory of each process is measured individu-

ally. While higher-priority processes may interrupt MP to meet

real-time requirements, the process being measured may not do

so, regardless of its priority. While this protects against a single-

process malware from moving in memory, malware that is spread

over several colluding processes can defeat this counter-measure.

Doing so would require malware to violate process isolation, e.g.,

by exploiting an OS vulnerability. Also, in a low-end device with a

single task (besides MP), this corresponds to uninterruptibility.

SMART [11] disables interrupts as the first step in MP. This
precludes migratory malware. Uninterruptibility is required as a

means to protect the attestation key and to ensureMP is performed

from beginning to end. However, temporal consistency was not

an explicit design goal of SMART. Consequently, although it coinci-
dentally guarantees consistency, SMART is unsuitable for time- or

safety-critical applications.

2
Or encryption for CBC-MAC.

3
For HMAC, the cost of the second hash is negligible compared to hashing data.

Signature time is independent of data sizes, since only the hash of the data is signed.

26 28 210 212 214 216 218 220 222 224 226 228 230

data [bytes]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

tfi
m
e
[
s]

rsa1024

rsa2048

rsa4096

ecdsap160

ecdsap224

ecdsap256

SHA256

SHA512

BLAKE2b

BLAKE2s

Ffigure2:Computatfionaflcostsofseveraflhashfunctfionsanddfigfitafl
sfignaturesonODROID-XU4.

2.3 ATrfivfiaflApproach

Onetrfivfiaflandfintufitfivewaytoaddressthecontradfictfingrequfire-
mentsoftemporaflconsfistencyandsafety-crfitficafloperatfionfisto
firstcopymemorytobeattestedovertoanareatowhfichMPhas
excflusfivewrfiteaccess.Thfisway,computatfioncanbeperformed
onthecopyandMPcanbearbfitrarfiflyfinterrupted.Thfiswoufld
presumabflymaxfimfizeavafiflabfiflfitywhfifleprovfidfingtemporaflconsfis-
tency.
Unfortunatefly,thfissfimpflemechanfismpromptssomeconcerns.

Ffirst,fitrequfiressuficfientaddfitfionaflmemory,whfichmayormay
notbeavafiflabfle.Second,fitrequfiresthfisaddfitfionaflmemorytobe
flocked(efitherpermanentflyorondemand)toaflflowMPexcflusfive
wrfiteaccess.Thfird,copyfingrepresentsanextrastep,whfichresuflts
finflongerdeflays.Ffinaflfly,fitdoesnotfuflflyaddressthefinterruptfibfifl-
fity/atomficfityconflfict;fitjustmakesfitsmaflfler.Indeed,fifcopyfing
fisunfinterruptfibfle,thesametfime-crfitficaflfissuescanarfise,whfiflefif
finterruptsareaflflowed,mfigratorymaflwarecan,finprfincfipfle,stfiflfl
evadedetectfion.ThfisfisfurtherdfiscussedfinSectfion4.3.
Intheremafinderofthfispaper,wefidentfifyandevafluateother

mechanfismsthatreconcfifletemporaflconsfistencywfithfinterruptfibfle
executfionofMP.

2.4 AttestatfionTarget

TheusuafltargetofattestatfiononPrvfisexecutabflecode.Thfiscode
canresfidefinRAMorfinsomenon-voflatfiflememory.Sometfimes,
fitmfightaflsobedesfirabfletoattestnon-executabfleregfionsonPrv
(fi.e.,data).
LetM,ofbfitsfizeL,representPrv’smemorytobeattested.If

thereferencecontentofMfisaprfiorfiknowntoVrfandexpected
tobefimmutabfle,thenPrvcanexecuteMPoverMandsendthe
resuflttoVrf,whocaneasfiflyvaflfidatefit.(ThfisfisthecasefifMfis
supposedtostorestatficappflficatfioncode.)ThesameappflfiesfifMfis
mutabfleandfitsentropyfisflow:Vrfcancompute(orpre-compute)
aflflpossfibflevaflfidoutputsofMPoverMandthusvaflfidatePrv’s
resuflt.
However,fifentropyofMfishfigh,enumeratfionofpossfibflevaflfid

statesbyVrfcanqufickflybecomefinfeasfibfle.Thfisfisflfikeflytooccur

whenmemorytobeattestedfincfludesdataregfions,suchasprogram
stack,heaporvarfiousregfisters.
OneobvfiousmeansofdeaflfingwfiththfisprobflemfisforPrvto

returntoVrftheactuaflcontentsof(partsof)Mthatarehfighfly
mutabfle.Forexampfle,fifM=[C,D]whereCrepresentsfimmutabfle
codeandD–voflatfiflehfigh-entropydataregfion(s),Prvcanreturn
theresufltofrunnfingMPoverM,accompanfiedbyacopyofD.
Cflearfly,thfisonflymakessensefifDfisofmodestsfize,e.g.,|D|<<L.
Furthermore,fifDfisahfighflyvarfiabfleregfioncontentofwhfichfis

efitherfirreflevantormustbeempty,Prvcaneasfiflyzerofitoutbefore
executfingMP.Thfismakesfitfimpossfibfleformaflwaretohfidefin
sucharegfionandobvfiatestheneedforPrvtosendVrfanexpflficfit
copyofD.
Intheremafinderofthfispaper,fissuesstemmfingfromattestatfion

ofstatficordynamficmemoryregfionsareorthogonafltoourwork,
andthusarenotdfiscussedfurther.

3 MODELINGTEMPORALCONSISTENCY

Wenowfintroducethemodeflandnotatfionfortemporaflconsfistency
andsupportfingmechanfisms.AflthoughwefocusonRA,themodefl
fisgenerficandreflevanttootherappflficatfiondomafinsthatfinvoflve
fintegrfity-ensurfingfunctfions.Inaddfitfiontothfissectfion,wedeveflop
finAppendfixAanewdefinfitfionforasecurfitygamethatcaptures
temporaflconsfistencyfinthecontextofsecureremoteattestatfion;
webeflfievethatthfisdefinfitfionmaybeoffindependentfinterestfor
futureresearchfinremoteattestatfion
WeassumethatfinputdatafisflocatedfinPrv’smemoryM,whfich

consfistsofncontfiguousbflocks[M1...Mn].Wfithoutflossofgen-
eraflfity,weassumethatbflockbfit-sfizematchesthatofthefintegrfity-
ensurfingfunctfionF,e.g.,512forSHA2-HMAC,or128forAES-
CBC-MAC.WeuseMfitodenotecontentofthefi-thbflockandM

t
fi–

contentofMfiattfimet.
WeconsfidercomputatfionofR=F(M).Fornow,wefocuson

temporaflconsfistencyforsequentfiaflfunctfions,fi.e.,eachMfifisread
andprocessedoncedurfingtheexecutfionofFandbflocksarepro-
cessedfinorder:M1,M2,...,Mn.WemodeflasequentfiaflfunctfionF
asnfindependentfunctfionsFfi,operatfingonnbflockssequentfiaflfly.
ContentofmemorybflocksmaychangedurfingexecutfionofF,

fi.e.,fitmfightbethatMtfi Mt
′

fifort<t
′.However,fetchfingMfi(to

beprocessedbyFfi)fisconsfideredtobeanatomficoperatfion.
Wedefinetemporaflconsfistencyforfintegrfity-ensurfingfunctfions

asfoflflows:

Deffinfitfion1.OutputRofanfintegrfity-ensurfingfunctfionFfis
consfistentwfithfinputMattfimetfif:R=F(Mt).

WeconsfiderFtobecorrectandbenfign,fi.e.,fitfafithfuflflycomputes
whatfitfissupposedtocompute,andfitsfimpflementatfionfisbug-free.
InthecontextofRA,thfishofldssfinceMP(contafinfingF)fisprotected
bytheunderflyfingsecurfityarchfitecture.Forexampfle,finhybrfidRA
archfitectures,suchasTrustLfite,TyTANandSMART,MPfisstored
fin,andexecutedfrom,ROM.
Wenowconsfidertwospecfifictypesofmaflware.

Deffinfitfion2.Mfigratorymaflwarefispresentfinoneormorebflocks
ofMatts.Itcanmove(bycopyfinganderasfing)fitseflfatanypofint
durfingcomputatfionofF.ItspurposefistoremafinfinMattewhfifle
remafinfingundetected.

Definition 3. Transient malware is present in one or more blocks
ofM at time ts. It can erase itself at any point during computation of
F . Its purpose is to escape detection.

If R is consistent withM at a given time t , and if R corresponds to

a benign state, it is guaranteed that no malware was present at time

t . This implies that, if ts ≤ t ≤ te, migratory malware cannot escape

detection. Furthermore, if t = ts, neither can transient malware.

4 TEMPORAL CONSISTENCY MECHANISMS
We now describe and analyze several mechanisms that offer various

tradeoffs between consistency guarantees and real-time require-

ments. Consistency is achieved through locking memory regions,

i.e., making them temporarily read-only. Such locking can be real-

ized via system-calls and capabilities enabled by a secure microker-

nel that is supported by underlying hardware features. e.g., as in

the formally-verified seL4 [18] microkernel.

Three points in the timeline of computation of an integrity-

ensuring function F are particularly relevant to our discussion (see

also Figure 3):

(1) ts, the instance where the computation of F starts;
(2) te, the instance when the computation ends;
(3) Optionally, tr when Prv is explicitly requested to release

an existing lock. This release request might come from Prv
itself, for instance if R is no longer relevant.

4.1 Simple Approaches
We begin with three obvious options.

4.1.1 No-Lock. The simplest mechanism is a strawman that

does not lock memory. The result is computed using contents of

each memory block Mi at the time when Fi processes it, which
means that it provides no consistency guarantees. Consequently, it

might not detect migratory or transient malware; see Table 1.

4.1.2 All-Lock. The other extreme is to lock the entirememory

M at ts, and leave it locked throughout computation of F , finally
releasing it all at te. This provides very strong temporal consistency

guarantees at the cost of being very restrictive and unfriendly to

interrupting (potentially critical) tasks that may require modifying

locked memory. R is consistent with M within [ts, te]. This also
implies thatM is immutable and thus constant from ts to te.

4.1.3 All-Lock-Ext. An extended variant of All-Lock that

provides extra consistency keeps all memory locked until tr. Similar

to All-Lock, R remains consistent withM at every [ts, tr], andM
stays constant from ts to tr. An extended lock can be advantageous

if the verifier wishes to guarantee that Prv is in a given state at a

particular time tr, as opposed to “some time in the past”.

4.2 Sliding Locks
A natural next step for ensuring temporal consistency is to imple-

ment “sliding” mechanisms to dynamically lock or unlock blocks

of memory during execution of F . Variations of this mechanism are

described below and pictured in Figure 4.

4.2.1 Decreasing Lock (Dec-Lock). This is a less restrictive ver-
sion of All-Lock, which still provides strong consistency guaran-

tees. EntireM is locked at ts, and eachMi is released as soon as Fi

Table 1: Malware detection features.

Migratory Malware Transient Malware

No-Lock ✗ ✗

All-Lock ✓ ✓

Dec-Lock ✓ ✓

Inc-Lock ✓ ✗

Cpy-Lock ✓ ✓

completes processing it. The output R is consistent with all ofM at

time ts only. This implies detection of any malware present inM at

ts.
Let ti be the time that Fi starts/thatMi is loaded. We have the

additional guarantee thatMi remains constant between ts and ti . It
is therefore beneficial to start the computation of F with memory

blocks availability of which (to other processes) is important.

4.2.2 Increasing Lock (Inc-Lock). This variant is the opposite
of Dec-Lock. The main idea is to lock blocks as they are processed.

With entireM unlocked at ts, it becomes gradually locked as compu-

tation of F proceeds, until it is completely locked at te, after which
it is fully released. EachMi is locked only when it is time for Fi .

Output R in this case is consistent withM at te only. This implies

detection of migratory, though not transient, malware. Also, Mi
remains constant between ti and te. Unlike Dec-Lock, it is beneficial
to finish computing F with blocks that require high availability,

since they are locked for the shortest time.

As discussed in Section 4.4.1, Inc-Lock is better-suited for han-

dling non-sequential functions. On the other hand, lockingM can

influence the value of the end-result R. In contrast, Dec-Lock guar-

antees consistency at ts when locking has no impact on R. We con-

sider this to be a subtle yet important distinction between Dec-Lock
and Inc-Lock. Put another way, since Dec-Lock does not interfere

with any process until ts, the result R over the snapshot ofM at ts is
in no way influenced by the computation of F . However, Inc-Lock
gradually locks memory and any process that interrupts the execu-

tion of F may or may not have write access to parts of memory that

it needs: the farther along is the computation of F , the less memory

is left unlocked (writable).

4.2.3 Extended Increasing Lock (Inc-Lock-Ext). As with

All-Lock-Ext, it is possible to add extra-computation consistency

to Inc-Lock by only releasing the lock at tr, instead of te. R thus re-

mains additionally consistent withM within the interval [te, tr], and
M stays constant in [te, tr]. This type of extension is not naturally

applicable to Dec-Lock since memory is not locked at te.

4.3 Mixing Copying with Locking
To minimize the impact on time-critical tasks,M can be first copied

to M ′
and computation of F can be performed with the latter as

input. This approach is described below and shown in Figure 5.

4.3.1 Copy Lock (Cpy-Lock). Cpy-Lock reduces the timeM is

locked by first cloning it and running F over the copy. A lock onM
is acquired at ts andM is copied to another memory segment,M ′

,

which is also locked.M ′
may be a pre-locked portion of memory

allocated to F , or a lock on it may be acquired at ts. Once copying is
finished at time tc ,M is entirely free. The second step is to proceed

to computing R = F (M ′).

ts te tr

A B C D

Ffigure3:TfimeflfineforcomputatfionofR=F(M).Computatfionstartsattsandendsatte.ConsfistencyofRfisconsfidereduntfifltr.Achangeto
MattfimeAorDhasnoefect.ImpactofachangeattfimeBorCdependsontheconsfistencymechanfism.

ts

te

tr

ts

(a)Dec-Lock

ts

te

tr

ts

(b)Inc-Lock

ts

te

tr

ts

(c)Inc-Lock-Ext

Ffigure4:SflfidfingmechanfismsdfiscussedfinSectfion4.2.Mfisrepre-
sentedhorfizontaflfly.LockedportfionofMfisfingray.

ThesameguaranteesasAflfl-Lockappflyhere:Rfisconsfistent
wfithMfin[ts,tc].
Cpy-Lockonflymakessensefiftc<te,fi.e.,fifcomputatfionofFfis

moretfime-consumfingthancopyfingM.Dependfingonhowmemory
flockfingandunflockfingfisfimpflemented,fitmfightbebettertouse
Dec-Lockdurfingthecopy,finsteadofAflfl-Lock.Eventhoughthe
processfisflessstreamflfinedandpossfibflyflesseficfient,fitmaybe
frfiendflfiertowardsreafl-tfimewrfiterequfirementsonM.Lfikewfise,fit
fispossfibfletodynamficaflflyacqufireandrefleasetheflockonM′fiffit
fisnotentfireflyaflflocatedtoF.

4.3.2 Cpy-Lock&Wrfiteback.Toextendconsfistencyuntfifltr,
onecancopyM′backtoMoncecomputatfionofF(M′)fisfinfished.
Mfisflockedatteuntfifltr.Thfisway,RfisconsfistentwfithMwfithfin
thefintervafls[ts,tc]and[te,tr].Consequentfly,M

ts=Mte,andM
remafinsconstantbetweenteandtr.SfimfiflartoCpy-Lock,fitmfight
beflessconstrafinfingtouseDec-LockdurfingthecopyandInc-Lock
durfingthewrfiteback,finsteadofAflfl-Lock.

4.4 VarfiatfionsontheTheme

Weoutflfinesomeextensfionstoprevfiousflydfiscussedmechanfisms.

4.4.1 Non-SequentfiaflFunctfions.Somefunctfionsarenotsequen-
tfiafl,e.g.,theymfightrequfirefinputbflockstobeusedconcurrentflyor
mfightreusebflocksfincomputatfion.Sfimpflemechanfisms(No-Lock
orAflfl-Lock)arenotafectedbythfis.However,dynamficflockfing
technfiquesneedtobeamended.
AflockonMfineedstobeacqufiredthefirsttfimethatbflockfis

neededbyF.Lfikewfise,aflockonMficanonflyberefleasedwhenMfi
fisnoflongerrequfired.Consequentfly,finnon-sequentfiaflfunctfions,
flocksmaybeacqufiredsooner,orrefleasedflater,thanfinsequentfiafl

ts
tc

te

tr

(a)Cpy-Lock

ts
tc

te
tc′

tr

(b)Cpy-Lock&Wrfiteback

Ffigure5:MechanfismsdfiscussedfinSectfion4.3.M fisrepresented
horfizontaflfly.LockedportfionofMfisfingray.

ts

te

tr

ts

(a)Dec-Lock(Non-Sequentfiafl)

ts

te

tr

ts

(b)Inc-Lock(Non-Sequentfiafl)

Ffigure6:LockedmemoryfinsflfidfingmechanfismsofSectfion4.2for
non-sequentfiaflF.Tfimegoesfromtoptobottom,andM fisrepre-
sentedhorfizontaflfly.LockedportfionofMfisfingray.

functfions.Ffigure6showstheefectonDec-LockandInc-Lock.A
flargergrayareafindficatesmorerestrfictfiveoperatfionforreafl-tfime
systems(forthesameguaranteesofconsfistency),thoughstfiflflfless
restrfictfivethantheAflfl-Lock.
Dec-Lockrequfirestheexecutfionenvfironmenttobeawareof

bflocksthatarenoflongerneededfortheremafinderofcomputatfion
ofF.Ifthatfinformatfionfisnotavafiflabfle,flockscannotberefleasedun-
tfiflte,finwhfichcaseDec-LockdegeneratestoAflfl-Lock.Inc-Lock
doesnothavethfisfissue(bflocksareflockedthefirsttfimetheyare
neededforFandnotfreeduntfiflte).

4.4.2 AdaptfiveLockfing.Mufltfipflemechanfismscanbecombfined
finordertoachfieveaflternatfivetfimfingsofconsfistencyfincomputfing

F . For example, to achieve consistency at tk (ts ≤ tk ≤ te), we
can combine the use of: (1) Inc-Lock on [M0, . . . ,Mk], and (2)

Dec-Lock on [Mk , . . . ,Mn]. Nevertheless, it is somewhat unclear

if and when such hybrids may be useful in practice. One potentially

relevant application is adaptive locking that aims tominimize impact

on other processes, especially, if the execution environment is aware

of other processes’ interrupt schedules.

4.4.3 Lazy Copy (Cpy-Lazy). Another variation of copy-based

mechanisms in Section 4.3 is Cpy-Lazy. It involves using All-Lock4

onM with a lazy (or reactive) copy mechanism. When another pro-

cess interrupts F and, during its execution, wishes to writeMi , this

block is first copied toM ′
i . The lock onMi is then released so the

process can write to it. The rationale for Cpy-Lazy is that copying

only what is, and when, necessary reduces overhead. This is partic-

ularly relevant when few blocks are likely to be modified during

computation of F . However, if many blocks are to be modified and

copied, cumulative overhead might exceed that of a single bulk

copy. Another consideration is whether there is OS or hardware

(e.g., MPU) support for the “interrupt-on-write” primitive required

to implement Cpy-Lazy.

4.5 Uninterruptibility vs. Locking
All mechanisms described above achieve consistency by temporar-

ily locking (parts of) memory. As mentioned earlier, uninterrupt-

ibility of computation of F (e.g., as in SMART [11]) also provides

consistency, though rigidly, i.e., for the interval [ts, te]. There are
other differences:

• Even whenM is locked entirely or partially, other processes

can interrupt execution of F and modify memory outside of

M , as well as read all memory, including M . This does not

violate consistency of F ’s result R.
• Whereas, if F is uninterruptible and the underlying hard-

ware platform is a single-CPU device, other processes are

completely blocked, regardless of whetherM is locked.

• If multiple CPUs have sharedmemory access, uninterruptibil-

ity does not guarantee consistency, since a process running
on a CPU different from the one running F can modify M
concurrently.

• Locking is more flexible than uninterruptibility: while lock-

ing and unlocking of M can be dynamic and gradual (i.e.,

block-wise), execution of F is rigid: either it is interruptible or

not. For example, SMART provides consistency only because,

in a single-CPU device, uninterruptibility is equivalent to

All-Lock.

4.6 Memory Access Violations
If some process P ′ tries to write toMi which is currently locked by

process P running F , a memory access violation occurs (recall that

read access toM requires no extra handling). P and P ′ might be run-

ning concurrently, on different CPUs, or P ′ might have interrupted

P . There are several alternatives:
If P handles the situation, one possibility is to abort F and ter-

minate P . This approach is the most friendly with respect to P ′

and other processes. However, it makes it easy for a malicious

4
It can also be easily adapted to Inc-Lock and Dec-Lock.

process to starve P , i.e., prevent F from ever completing. Other-

wise, we can adopt the reactive Cpy-Lazy approach discussed in

Section 4.4.3. Alternatively, P ′ can be aborted. Though this would

allow P (and thus F) to complete uninterrupted, it might be imprac-

tical in safety-critical scenarios. Another possibility is to stall P ′

until Mi is unlocked. This approach is gentler, although it might

still be problematic, depending on how long P ′ has to wait.

4.7 Inconsistency Detection
Another approach to enforce consistency is to detect inconsistency.
The memory M is not locked but instead a trigger is setup such

that the integrity measuring (e.g., attestation) process is alerted if

any changes occur toM during the computation of F . If any such

changes occur, the result produced is thus no longer consistent

throughout the computation. Depending on the strategy for dealing

with inconsistency, the computation of F can be stopped, continued,

or restarted. An implementation of this is presented and discussed

in Section 5.5.

The clear benefit of inconsistency detection over consistency

enforcement is that it does not interfere with the execution of other

processes. This is particularly relevant in time-critical applications

when availability must be maintained at all times. The drawback

is that consistency might not be guaranteed, depending on the

strategy used whenever an inconsistency is detected. This may lead

to attestation never terminating if inconsistencies are constantly

created, even by benign software.

5 IMPLEMENTATION & EVALUATION
Our prototype of temporal consistency mechanisms is realized

in the context of HYDRA hybrid RA architecture [10]. Below, we

overview HYDRA, discuss implementation details of each mecha-

nism and assess their performance on two popular low- to medium-

end development boards: I.MX6-SabreLite [9] andODROID-XU4 [7].

Security considerations for our implemented mechanisms are dis-

cussed in Appendix B.

5.1 HYDRA
HYDRA implements a hybrid RA design for devices with a Memory

Management Unit (MMU). It builds upon the formally verified seL4

[18] microkernel, which ensures process memory isolation and

enforces access control to memory regions. Using the (mathemati-

cally) proven isolation features of seL4, access control rules can be

implemented in software and enforced by the microkernel. Note

that, in addition to the design of seL4 being formally verified and

ensured to guarantee isolation, seL4 software implementation is

also formally verified for conformance to the design.

HYDRA stores an attestation key (K) and attestation code (that

computes a MAC using K) in a writable memory region (e.g., flash

or RAM) and configures the system such that no other process, be-

sides the attestation process (PAtt), can access this memory region.

Access control configuration in HYDRA also involves PAtt having
exclusive access to its thread control block as well as to memory

regions used forK-related computations. The latter ensures thatK

is properly protected. To ensure uninterruptibility, HYDRA runs the

attestation process as the so-called initial user-space process with
the highest scheduling priority. As the initial user-space process in

seL4,PAttfisaflsofinfitfiaflfizedwfithcapabfiflfitfiestoaflflmemorypages.
Meanwhfifle,therestofuser-spaceprocessesareassfignedflower
prfiorfitfiesandspawnedbyPAtt.Ffinaflfly,hardware-enforcedsecure
bootfeaturefisusedtoensurefintegrfityofseL4fitseflfandofPAtt
whenthesystemfisfinfitfiaflfized.

5.2 ExperfimentaflSetup

Ourfimpflementatfionensurestemporaflconsfistencybyflockfingmem-
oryregfions.ItthusdoesnotrequfiretheexecutfionofPAtttobe
unfinterruptfibfle,unflfiketheorfigfinaflHYDRAfimpflementatfion[10].
Asaresuflt,aflfluser-spaceprocesses,fincfludfingPAtt,havethesame
prfiorfityfinourfimpflementatfion.
Themficrokerneflexecutabflefiscompfifledfromtheunmodfified

seL4sourcecodev4.0.0[27].Ouruser-spacecodefisbasedonopen-
sourceseL4flfibrarfies[26],mostflyforprovfidfingabstractfionsfor
processes,memorymanagementandvfirtuafladdressspace.

5.3 ExperfimentaflResuflts:Prfimfitfives

OurfimpflementatfionofmechanfismsdfiscussedfinSectfion4consfists
offourprfimfitfives:LockPaдe,UnflockPaдe,CopyMemandMacMem.
InHYDRA(andfinseL4,fingenerafl),flockfingandunflockfingamemory
pagecanbefinvokedfromuser-space(byauthorfizedprocesses)and
handfledfinsfidethekernefl.
Toflockaspecfificpage,PAttneedstoperformthreesteps:(1)

revokeaflflcapabfiflfitfiesassocfiatedwfiththepage5,(2)createaread-
onflycapabfiflfitytothepage,(3)assfignthenewcapabfiflfitytoa
targetedprocessandmapthepagefintotheprocess’vfirtuaflad-
dressspace.Unflockfingcanbedonesfimfiflarflybyusfingaread-
and-wrfitecapabfiflfity,finsteadofaread-onflycapabfiflfity.Interms
ofseL4fimpflementatfion,eachoftheseprfimfitfivestransflatesfinto
threefunctfioncaflfls:seL4_CNode_Revoke(),seL4_CNode_Copy()
andseL4_ARCH_Paдe_Map().
AnotherparameterreflatedtoLockPaдeandUnflockPaдefismem-

orypagesfize,whfichcandfiferdependfingontheunderflyfing
finstructfion-setarchfitecture.Forfinstance,I.MX6-SabreLfite,whfich
fisbasedontheARMv7-Aarchfitecture,onflysupportsthefoflflow-
fingpagesfizes:4KB,64KB,1MBand16MB.CopyMemperformsa
memorycopybetweensourceanddestfinatfionRAMflocatfions.We
notethatonflyCpy-Lockrequfiresthfisprfimfitfive.Ffinaflfly,MacMem
performsaMACcomputatfionoveramemoryrange.MacMemfis
fimpflementedasakeyedhashusfing:BLAKE2S[31],AES256-CBC
basedMAC[17]andHMAC-SHA256[37]aflgorfithms.
Ffigure7fiflflustratesrun-tfimeofprfimfitfiveoperatfionson16MB

ofmemory.Resufltsshowthatpagesfizeheavfiflyfinfluencesperfor-
manceofLockPaдeandUnflockPaдe:theflargerthepagesfize,the
fasterfitfistoflockorunflockmemoryofthesamesfize.Thfisfisex-
pected,becauseflargerpagesresufltfinfewerentrfiesthatneedto
bemodfifiedfinapagetabfle.Run-tfimeperformanceofCopyMem
andMacMem,however,remafinsaflmostunchanged,regardflessof
pagesfize.Inaddfitfion,thesamefiguresuggeststhatrun-tfimesof
CopyMem,LockPaдeandUnflockPaдearereflatfiveflyfast,compared
tothatofMacMem.Thefirstthreeprfimfitfivestakeatmost9%of
MacMem’srun-tfime.

5Thfisstepbydefaufltfincfludesmodfifyfingthecorrespondfingpagetabfleentry,cflearfing

LockPage UnflockPage CopyMem Keyed
 BLAKE2S

AES256-CBC
MAC

HMAC-
SHA256

10-6

10-5

10-4

10-3

10-2

10-1

100

101

r
u
n-
tfi
m
e
[s
]

4KB Page Sfize

64KB Page Sfize

1MB Page Sfize

16MB Page Sfize

acacheflfineandfinvaflfidatfingaTLBentry.

Ffigure7:Performanceofprfimfitfiveswfith16MBof memoryon
I.MX6-SabreLfite.

Ffinaflfly,weevafluateandcompareperformanceofthevarfious
prfimfitfivesonI.MX6-SabreLfiterunnfingat1.0GHz,andODROID-
XU4runnfingat2.1GHz.Ffigure8showstheresufltsofthfiscom-
parfison.Itshowsthat:(1)run-tfimesofLockPaдeandUnflockPaдe
prfimfitfivesarestfiflflroughflythesameonbothhardwarepflatforms,
and(2)MacMemremafins,byfar,themosttfime-consumfingprfimfi-
tfive.

5.4 ExperfimentaflResuflts:Mechanfisms

Weassessperformanceoffivetemporaflconsfistencymechanfisms–
No-Lock,Aflfl-Lock,Dec-Lock,Inc-LockandCpy-Lock–onthe
SabreLfiteboard.No-Lockfisthebaseflfineandfitdfirectflytransflates
fintotheMacMemprfimfitfive.Aflfl-Lock,Dec-LockandInc-Lock
aflflrequfireaddfitfionaflstepsofsequentfiaflflyflockfingandunflockfing
memorybflocks.Forfitspart,Cpy-Lockfinvoflvesaflflfourprfimfitfives.
Ffigure9demonstratesrun-tfimeperformanceofaforementfioned

mechanfisms(usfingBLAKE2Sastheunderflyfingfunctfion)wfith
varfiousmemorysfizes:16MBto96MB,andpagesfizes4KBand
64KB.Resufltscanbesummarfizedasfoflflows:
•Run-tfimeofaflflmechanfismsfisflfinearfintermsofmemory
sfize.Thfisfisexpectedsfincetheyarebufifltuponasequentfiafl
functfion,fi.e.,aMAC.
•Run-tfimeofMACcomputatfiononflargememorysfizesfisfin-
deednon-negflfigfibfle,e.g.,fittakesaround4secondsforkeyed
BLAKE2Sover96MBofmemory.Thfiscflearflydemonstrates
theneedforensurfingtemporaflconsfistency,especfiaflfly,fin
settfingswherePAttneedstobefinterruptfibfle.
•Run-tfimesofAflfl-Lock,Dec-LockandInc-Lockareaflfl
roughflyequafl,finaflflcases.Thfisfisaflsoexpected,sfinceeach
ofthesethreemechanfismsfinvoflvesasfimfiflarnumberof
finvocatfionsofprfimfitfives.
•Thedfiferencefinrun-tfimebetweenbaseflfineandAflfl-Lock,
Dec-LockandInc-Lockdecreasesaspagesfizegrows.Thfis
dfiferencethenbecomesnegflfigfibfle(<0.1%)whenpagesfize
reaches1MB.Thus,fitfisbeneficfiafltousethesemechanfisms
wfithreasonabflyflargepagesfizes.Onedfisadvantageofflarger
pagesfizesfisthatmemorypages,onaverage,wfiflflbeflocked
forflongerperfiods.

LockPage UnflockPage CopyMem MacMem (Keyed
BLAKE2S)

10-3

10-2

10-1

100

r
u
n-
tfi
m
e
fi
n
[s
]

I.MX6-SabreLfite

ODROID-XU4

Ffigure8:Performanceofprfimfitfiveswfith16MBmemoryonI.MX6-
SabreLfiteandODROID-XU4.

•Cpy-Lockcomesoutasthepreferredmechanfism.Itfincurs
smaflfl(∼8%)run-tfimeoverhead;however,thfismechanfism
provfidesmuchbetteravafiflabfiflfityasmemoryfisflockedfor
averyshortamountoftfime(onflydurfingthecopyfingpro-
cess).However,recaflflthatanobvfiousdfisadvantagefisthatfit
requfiresaddfitfionaflmemoryofsfizeM′.

5.5 ImpflementatfionofInconsfistencyDetectfion

Wecoufldfimpflementthefinconsfistencydetectfionmechanfismby
havfingPAttdetectwhetheranydfirty/accessedbfitsaresetafter
eachmeasurementfiscompfleted.However,thfisobvfiousapproach
faflflsshortfinthecontextofHYDRA.Dofingsowoufldfimpflysome
modfificatfionstotheexfistfingkernefl,whfichmayconsequentflybreak
formaflflyverfifiedpropertfiesofseL4.
Instead,webaseourfimpflementatfionoffinconsfistencydetectfion

ontheAflfl-Lockfimpflementatfion.ThefideafistohavePAttfirstflock
memorytobeattestedbeforestartfingtocomputethefintegrfity-
ensurfingfunctfion,e.g.,theMAC.Ifthecomputatfioncompfletes
wfithoutfinterruptfionsordetectfinganyfinconsfistency,PAttthen
unflocksthememory;thfisscenarfioresembflestypficaflAflfl-Lock
executfion.However,fifanotherprocess(denotedbyP′)attempts
tomodfifyanypartoftheflockedmemory,thekerneflwfiflflsuspend
executfionofP′andPAttwfiflflbemadeawareofsuchfinconsfistency;
PAttthenresoflvesthefinconsfistencybyunflockfingthememory
andresumfingexecutfionofP′.Notethatthfisfimpflementatfionstfiflfl
requfiressomefinterferencewfithotherprocessesasP′fissuspended
whenfinconsfistencyoccurs.However,weshowflaterfinSectfion5.6
thattheoverheadfromthfisfinterferencefisverysmaflflcomparedto
theactuaflmeasurementruntfime.
TofimpflementthfismechanfismfinHYDRA,wedecomposePAtt

fintothefoflflowfingthreethreads:

•Thchecksum:computfingthefintegrfity-ensurfingfunctfionand
returnfinganattestatfionresuflttoThmafinonsuccess.
•Thfauflt:flfistenfingforanymemorywrfitefaufltandnotfifyfing
Thmafinwhentherefisanattempttomodfifymemorybefing
attested.
•Thmafin:managfingtheothertwothreads,flockfingandunflock-
fingmemoryandreportfingtoVrfwhenanfinconsfistency

10 20 30 40 50 60 70 80 90 100

memory sfize [MB]

0

1

2

3

4

5

r
u
n-
tfi
m
e
[s
]

No-Lock (Baseflfine)

Inc-Lock

Dec-Lock

Aflfl-Lock

Cpy-Lock

occurs.

10 20 30 40 50 60 70 80 90 100

memory sfize [MB]

0

1

2

3

4

5

r
u
n-
tfi
m
e
[s
]

No-Lock (Baseflfine)

Inc-Lock

Dec-Lock

Aflfl-Lock

Cpy-Lock

(a)4KBPageSfize

(b)64KBPageSfize

Ffigure9:Run-tfimeofvarfioustemporaflconsfistencyensurfing
mechanfismsfinI.MX6-SabreLfite.

UnflfikeThchecksumandThmafin,fimpflementfingThfaufltfisnottrfiv-
fiafl;fitrequfiressupportfromtheunderflyfinghardwareand/orkernefl
finorderto:(1)detectwheneveraprocesscausesafaufltand(2)
examfinewhetherthefaufltfiscausedbyanfinvaflfidwrfiteaccessand
whetherfithappenswfithfinaspecfificmemoryrange.Fortunatefly,
theseoperatfionsareaflreadyavafiflabflefinseL4wfithoutrequfirfing
modfificatfionstothekernefl.
WefimpflementThfaufltbyfleveragfinghowafaufltendpofintworks

finseL4.AnendpofintfisanseL4objectthataflflowsasmaflflamount
ofdatatobetransferredbetweentwothreads.Whenaprocess
orathreadfauflts,theseL4kerneflautomatficaflflysendsafaufltIPC
messagetofitsregfisteredfaufltendpofint.ThfisfaufltIPCmessage
provfidesusefuflfinformatfionthatheflpsThfaufltdecfidewhetherthe
faufltwfiflflresufltfinmemoryfinconsfistency.Forfinstance,themessage
fincfludesatypeoffauflt(e.g.pagefauflt,capabfiflfityfauflt,orunknown
syscaflfl),addressthatcausesthefaufltandwhetherareadorwrfite
accesscausesthefauflt6.Inourfimpflementatfion,Thmafinsharesa
sfingflefaufltendpofintamongaflfluser-spaceprocesses,aflflowfinga
faufltcausedbyanyprocesstobetransmfittedtothfisfaufltendpofint.
TheflaststepofthefimpflementatfionfistohaveThfaufltwafitforan
fincomfingmessagefromthefaufltendpofintandnotfifyThmafinfifthe

6Seehttp://sefl4.systems/Info/Docs/seL4-manuafl-flatest.pdfforfuflfldetafifls.

Thfauflt Thmafin Thchecksum

LockPaдe

DetectInconsfist

ComputeChecksum

return:Checksum

Suspend

UnflockPaдe

output:

Checksum

return:InconsfistDetected,P′

Suspend

UnflockPaдe+

Resume(P′)

Resume

return:Checksum

output:

Checksum+Inconsfist

afltaflt Thchecksumrepflfiesfirst

Ffigure10:SequencedfiagramofPAttwfithmemoryfinconsfistency
detectfiondurfingsfingfleattestatfionfinstance.PAttchoosestoresume

executfionofThchecksumafterP
′causesmemoryfinconsfistency.

messagefindficatestheattemptedwrfiteaccessonmemorybefing
attested.AsampflecodeforThfaufltfisprovfidedfinAppendfixC.
AdfiagramfinFfigure10summarfizesthesequenceofoperatfion

ofourmodfifiedPAttdurfingasfingfleattestatfionfinstance.Ffirst,
Thmafinflocksentfirememorytobeattested,thencaflflsThchecksum
andThfaufltvfiaasharedendpofintandwafitsforthefirrepflfies.There
aretwopossfibflescenarfios:

(1)Ifnoprocessattemptstowrfitefintoattestedmemorydurfing
attestatfion,Thchecksumsuccessfuflflycompfletesandreturns
toThmafinwfithanattestatfiontoken.Thmafinthenpromptfly
unflocksattestedmemory.

(2)Otherwfise,thekerneflsuspendsP′andtransmfitsafaufltIPC
messagetoThfauflt.Oncerecefivfingfit,Thfaufltrepflfiesbackto
Thmafin,whfichsuspendsThchecksum,unflocksmemory,and
resumesexecutfionofP′.Thmafincanaflsochoosetoabort,
contfinueorrestartexecutfionofThchecksum.

Ffinaflfly,Thmafinoutputstheresuflt(anattestatfiontokenand/or
whetheranyfinconsfistencyoccursornot)backtoVrf

10 20 30 40 50 60 70 80 90 100

memory sfize [MB]

0

2

4

6

8

10

r
u
n-
tfi
m
e
[s
]

Aflfl-Lock: Temporafl Consfistency Mechanfism

Inconsfistency Detectfion (wfithout finconsfistency)

Inconsfistency Detectfion (wfith finconsfistency)

No-Lock: Attestatfion wfithout Consfistency Guarantee

.

Ffigure11:

0 5 10 15 20 25 30 35

of modfiffied pages

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

r
u
n-
tfi
m
e
[
s]

Unflock Onfly Page Causfing Inconsfist (Aflt)

Attested Mem: 80MB Mem (20480 pages)

Attested Mem: 48MB Mem (12288 pages)

Attested Mem: 16MB Mem (4096 pages)

Run-tfimeoffinconsfistencydetectfionwfith4KBpagesfize

onI.MX6-SabreLfite.

Ffigure12:DowntfimeofthefaufltfingprocessP′whenfitsactfionsre-
sufltfinanfinconsfistencywfith4KBpagesfizeonI.MX6-SabreLfite.Hor-
fizontaflflfinesrepresentdowntfimefromtheapproachwherePAttre-

soflvesfinconsfistencybyunflockfingentfirememoryofP′.

5.6 ExperfimentaflResuflts:Inconsfistency
Detectfion

Toevafluateperformanceofthefinconsfistencydetectfionmechanfism,
weexperfimentedbyrunnfingtwoprocesses–modfifiedPAttandP

′

–wfiththesameexecutfionprfiorfityonI.MX6-SabreLfite.(Mufltfipfle
same-prfiorfityprocessesareschedufledfinaround-robfinfashfion.)
Thus,tfimfingresufltsforthfisexperfimentdfiferfromothersthat
consfideronflyPAttrunnfingatanygfiventfime.
ResufltsfinFfigure11showtheperformancecomparfisonof:(1)

thefinconsfistencydetectfionmechanfism(wfithandwfithoutfincon-
sfistencyoccurrfing),(2)Aflfl-Lock,and(3)attestatfionwfithoutcon-
sfistencyguaranteeorNo-Lockon16MBto96MBmemory.Inthfis
experfiment,weassumethatPAttchoosestoresoflvefinconsfistency
byunflockfingtheentfirememoryofP′.Incaseofnofinconsfistency,
ourmechanfism(asexpected)performsasweflflasAflfl-Lockand
roughfly6%sflowerthanNo-Lock.Ontheotherhand,whenanfin-
consfistencyoccurs,themechanfism(surprfisfingfly)runs3%faster.
Whfiflethfismayseemcounter-fintufitfive,wefoundthatfimproved
performancefiscausedbyThmafinperformfingmemoryunflockfing
whfifleP′fisbefingsuspended.Thfisresufltsfinrun-tfimeoftheunflock

operation being ∼2x faster than that of the same operation in its

counterpart, where memory unlocking is performed concurrently

with P ′.
We now consider the alternative, whereby PAtt resolves the

inconsistency by unlocking only the page that causes it, instead

of unlocking entire memory. Clearly, runtime overhead of this

approach depends on the number of times inconsistency is trig-

gered
7
during attestation. In this experiment, we measure overhead

through downtime of P ′, i.e., total elapsed time for P ′ to complete

writing into locked pages. Figure 12 illustrates that overhead, as

expected, is linear in terms of a number of modified pages. It also

shows that it is more beneficial to use the alternative approach

where P ′ is expected to perform only a few memory writes. In our

experimental setting, this threshold is around 0.12% of P ′ memory

pages.

6 RELATED WORK
To the best of our knowledge, there has been no prior work on tem-

poral consistency of integrity-ensuring functions, though it is pos-

sible that this concept has been considered under a different guise

in the cryptographic literature. Extended versions Inc-Lock-Ext
and Cpy-Lock & Writeback can be viewed as a form of protection

against “Time of Check Time of Use” (TOCTOU) attacks in certain

applications.

The “Provable Virus Detection” method discussed in [22] is a

very relevant result. In it, a secret is embedded within software

running on a device is periodically checked by a trusted verifier.

The argument is that injected malware consistently destroys the

secret, and its presence is therefore detectable. While promising,

[22] only deals with malware directly inserted into a system (e.g.,

via DMA) and requires substantial modifications to the CPU.

One alternative way to detect malware without locking mem-

ory (however, without guaranteed consistency) is explored in [4].

Memory is measured in a random order, which cannot be learned

or anticipated by malware. Since memory is never locked, this is

an advantage for time-sensitive applications. The main drawback

of [4] is its probabilistic nature, which can lead to a significantly

increased time to perform attestation.

The rest of this section focuses on related work in RA.

RA aims to detect malware presence by verifying integrity of

a remote and untrusted embedded (or IoT) device. It is typically

realized as a protocol, whereby a trusted verifier interacts with a

remote prover to obtain a challenge-based integrity measurement

of the latter’s memory state. RA techniques fall into three main

categories: hardware-based, software-based, and hybrid.

Hardware-based attestation [32, 38] uses dedicated hardware com-

ponents, such as a Trusted PlatformModule (TPM) [15], ARMTrust-

Zone [23] or Intel SGX [8] to execute attestation code in a trusted

execution environment. Even though such features are currently

available in personal computers, laptops and smartphones, they are

still considered a “luxury” for low-end embedded devices.

Software-based attestation [34, 35] requires no hardware support

and performs attestation solely based on software and precise tim-

ing measurements. When deployed on a single-processor system,

this approach can ensure temporal consistency; malware could try

7
This is equivalent to the number of memory pages of P ′

modified during attestation.

to interrupt the measurement process and cause temporal inconsis-

tency (e.g. by moving itself around) during attestation. However,

this action will result in additional delay, which is then detectable by

Vrf. Software-based approaches limit the prover to being one-hop

away from the verifier, in order to ensure that the round-trip time

is either negligible or fixed. Such approaches also rely on strong

assumptions about attackers’ behavior [1] and are typically used

only for legacy devices, where no other RA techniques are viable.

Finally, hybrid attestation [2, 11, 19], based on software/hardware
co-design, realizes RA while attempting to minimize required hard-

ware features and the software footprint. SMART [11] is the first

hybrid RA design with minimal hardware modifications to existing

microcontroller units (MCUs). It has the following key features:

• Attestation code is immutable: it is located in, and executed

from, ROM.

• Attestation code is safe: its execution always terminates and

leaks no information other than the attestation result.

• Attestation code is executed atomically: (1) it is uninterrupt-

ible, and (2) it starts from the first instruction and exits at the

last instruction. (This is enforced by hard-wired MCU access

controls and disabling interrupts upon entry of attestation

code.)

• A secret attestation key is stored in an isolated memory

location that can be accessed (based on hard-wired MCU

rules) only from within attestation code.

Subsequently, [3] extended SMART to defend against verifier imper-

sonation and denial-of-service (DoS) attacks. The resultant design

(SMART+) additionally requires prover to have a Reliable Read-Only

Clock (RROC), which is needed to perform verifier authentication

and prevent replay, reorder and delay attacks. To ensure reliability,

RROC cannot be modified by non-physical (software) means. Upon

receiving a verifier request, ROM-resident attestation code checks

the request’s freshness using RROC, authenticates it, and only then

proceeds to perform attestation.

TrustLite [19] security architecture also supports RA for low-end

devices. It differs from SMART in two ways: First, interrupts are

allowed and are handled securely by the CPU Exception Engine.

Second, static access control rules can be programmed in software

using an Execution-Aware Memory Protection Unit (EA-MPU). A

follow-on effort, called TyTAN [2], adopts a similar approach while

providing additional real-time guarantees and dynamic configu-

ration for safety- and security-critical applications. As mentioned

earlier, both TrustLite [19] and TyTAN [2] support interrupts. While

this allows for time-critical processes to take priority over others

and to preserve Prv’s functionality, attestation results may not be

consistent. Memory can change once attestation is interrupted and

the final attestation result might correspond to a state of Prv’s
memory that never existed.

In summary, RA architectures that disable interrupts, or ensure

atomic execution through other means, automatically (though only

coincidentally) ensure temporal consistency on single-processor

devices. In multi-processor settings, atomic execution is insufficient.

Whereas, RA architectures that allow interrupts must ensure tem-

poral consistency (e.g., via mechanisms described in this paper);

otherwise nonsensical or incorrect results might be produced.

7 CONCLUSIONS
In this paper we explore the discrepancy between (implicit) theoret-

ical assumptions and implementations of cryptographic integrity-

ensuring functions, focusing on the context of Remote Attestation

(RA). We show that, in practice, inputs to such functions can change

during computation, and that the vulnerability window can be

large, since cryptographic computations can be time-consuming.

We propose multiple practical mechanisms to ensure consistency of

integrity-ensuring functions. They offer tradeoffs between consis-

tency guarantees, performance overhead, and impact on memory

availability. We implement proposed mechanisms on two commod-

ity platforms in the context of a hybrid RA architecture for em-

bedded systems. Results show that locking/unlocking of memory

incurs negligible overhead over computing cryptographic integrity-

ensuring functions, e.g., MACs. We demonstrate that ensuring tem-

poral consistency can be achieved with less than 10% overhead

on both platforms, while providing much better availability for

time-critical applications. We believe that this paper highlights im-

portant issues that have been surprisingly under-appreciated in the

security research literature, yet are crucial for correct and secure

operations in RA and other security services building upon it.

SUPPORT: This work was supported in part by (1) DHS, under sub-
contract from HRL Laboratories, (2) ARO under contract: W911NF-

16-1-0536, and (3) NSF WiFiUS Program Award #: 1702911.

REFERENCES
[1] Tigist Abera, N Asokan, Lucas Davi, Farinaz Koushanfar, Andrew Paverd, Ahmad-

Reza Sadeghi, and Gene Tsudik. 2016. Invited: Things, trouble, trust: on building

trust in IoT systems. In ACM/IEEE Design Automation Conference (DAC).
[2] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-

mann, and Patrick Koeberl. 2015. TyTAN: tiny trust anchor for tiny devices. In

ACM/IEEE Design Automation Conference (DAC).
[3] Ferdinand Brasser, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. Remote Attes-

tation for Low-End Embedded Devices: the Prover’s Perspective. In ACM/IEEE
Design Automation Conference (DAC).

[4] Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. 2018. Remote

Attestation of IoT Devices via SMARM: Shuffled Measurements Against Roving

Malware. In IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2018.

[5] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.

2009. On the Difficulty of Software-based Attestation of Embedded Devices.

In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS).

[6] Eric Chien, Liam OMurchu, and Nicolas Falliere. 2012. W32.Duqu: The Precursor

to the Next Stuxnet. In Proceedings of the 5th USENIX Conference on Large-Scale
Exploits and Emergent Threats.

[7] Hardkernel co. Ltd. 2013. ODROID-XU4. (2013). http://www.hardkernel.com/

main/products/prdt_info.php?g_code=G143452239825

[8] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive (2016).

[9] Boundary Devices. 2017. BD-SL-I.MX6. (2017). https://boundarydevices.com/

product/sabre-lite-imx6-sbc/

[10] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. 2017. HYDRA:

Hybrid Design for Remote Attestation (Using a Formally Verified Microkernel).

In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec).

[11] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.

SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root of

Trust. In Network and Distributed System Security Symposium (NDSS).
[12] F-Secure. 2018. Brain Description. (2018). https://www.f-secure.com/v-descs/

brain.shtml

[13] F-Secure. 2018. Cabanas Description. (2018). https://www.f-secure.com/v-descs/

cabanas.shtml

[14] F-Secure. 2018. Frodo Description. (2018). https://www.f-secure.com/v-descs/

frodo.shtml

[15] Trusted Computing Group. 2017. Trusted Platform Module (TPM). (2017). http:

//www.trustedcomputinggroup.org/work-groups/trusted-platform-module/

[16] SANS Institute. 2014. Securing the Internet of Things Survey.

(2014). https://www.sans.org/reading-room/whitepapers/analyst/

securing-internet-things-survey-34785

[17] ISO/IEC. 2011. Information technology – Security techniques – Message Authenti-
cation Codes (MACs) – Part 1: Mechanisms using a block cipher. Standard. ISO.

[18] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, et al. 2009. seL4: Formal verifi-

cation of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles.

[19] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.

2014. TrustLite: A security architecture for tiny embedded devices. In ACM
European Conference on Computer Systems (EuroSys).

[20] Ralph Langner. 2013. To Kill a Centrifuge a Technical Analysis of What Stuxnet’s

Creators Tried to Achieve. (2013).

[21] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. 2011. VIPER: Verifying the

Integrity of PERipherals’ Firmware. In Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS).

[22] Richard J. Lipton, Rafail Ostrovsky, and Vassilis Zikas. 2016. Provably Secure

Virus Detection: Using The Observer Effect AgainstMalware. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP.

[23] ARM Ltd. 2017. ARM TrustZone. (2017). https://www.arm.com/products/

security-on-arm/trustzone

[24] LWN.net. 2018. DR rootkit released under the GPL. (2018). https://lwn.net/

Articles/297775/

[25] Wired Magazine. 2013. Trojan Turns Your PC Into Bitcoin Mining Slave. (2013).

https://www.wired.com/2013/04/bitcoin-trojan

[26] National ICT Australia and other contributors. 2014. seL4 Libraries. (2014).

https://github.com/seL4/seL4_libs

[27] National ICT Australia and other contributors. 2014. The seL4 Repository. (2014).

https://github.com/seL4/seL4

[28] Daniele Perito and Gene Tsudik. 2010. Secure Code Update for Embedded Devices

via Proofs of Secure Erasure.. In ESORICS.
[29] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-

Oriented Programming: Systems, Languages, and Applications. ACM Trans. Inf.
Syst. Secur. (2012).

[30] Ethan M Rudd, Andras Rozsa, Manuel Günther, and Terrance E Boult. 2017. A

Survey of Stealth Malware Attacks, Mitigation Measures, and Steps Toward

Autonomous Open World Solutions. IEEE Communications Surveys & Tutorials
(2017).

[31] MJ Saarinen and JP Aumasson. 2015. The BLAKE2 cryptographic hash and message
authentication code (MAC), RFC 7693. Technical Report. IETF.

[32] Dries Schellekens, Brecht Wyseur, and Bart Preneel. 2008. Remote attestation on

legacy operating systems with trusted platform modules. Science of Computer
Programming (2008).

[33] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep

Khosla. 2006. SCUBA: Secure Code Update By Attestation in Sensor Networks.

In ACM Workshop on Wireless Security (WiSe).
[34] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,

and Pradeep Khosla. 2005. Pioneer: Verifying Code Integrity and Enforcing

Untampered Code Execution on Legacy Systems. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles.

[35] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla. 2004.

SWATT: Software-based attestation for embedded devices. In IEEE Symposium
on Research in Security and Privacy (S&P).

[36] IEEE Spectrum. 2013. The Real Story of Stuxnet. (2013). http://spectrum.ieee.

org/telecom/security/the-real-story-of-stuxnet

[37] Secure Hash Standard. 2002. FIPS PUB 180-2. (2002).

[38] Frederic Stumpf, Omid Tafreschi, Patrick Röder, and Claudia Eckert. 2006. A

Robust Integrity Reporting Protocol for Remote Attestation. In Workshop on
Advances in Trusted Computing (WATC).

[39] Symantec. 2015. GreenDispencer: Self-deleting Malware. (2015). https://www.

symantec.com/security_response/writeup.jsp?docid=2015-092513-0300-99

[40] Wei Yan, Zheng Zhang, and Nirwan Ansari. 2008. Revealing packed malware.

seCurity & PrivaCy (2008).

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
https://www.f-secure.com/v-descs/brain.shtml
https://www.f-secure.com/v-descs/brain.shtml
https://www.f-secure.com/v-descs/cabanas.shtml
https://www.f-secure.com/v-descs/cabanas.shtml
https://www.f-secure.com/v-descs/frodo.shtml
https://www.f-secure.com/v-descs/frodo.shtml
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.sans.org/reading-room/whitepapers/analyst/securing-internet-things-survey-34785
https://www.sans.org/reading-room/whitepapers/analyst/securing-internet-things-survey-34785
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://lwn.net/Articles/297775/
https://lwn.net/Articles/297775/
https://www.wired.com/2013/04/bitcoin-trojan
https://github.com/seL4/seL4_libs
https://github.com/seL4/seL4
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
https://www.symantec.com/security_response/writeup.jsp?docid=2015-092513-0300-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-092513-0300-99

APPENDIX

A TEMPORALCONSISTENCYSECURITY
GAME

Webufiflduponthetheoretficaflmodeflofaprocessorarchfitecture
andsyntaxfrom[22].Theworkfin[22]focusesonvfirusdetec-
tfionbyconstructfingaschemethatfinterfleavessecretsharesof
cryptographfickeyswfiththeactuaflmemory.Thfisschemerequfires
modfificatfionstothefinstructfionsoftheprocessor,finordertorecon-
structsuchkeysandusethemtoensurefintegrfity(andthusdetect
unauthorfizedmodfificatfionsbymaflware)ofmemorycontentwfith
everyreadandwrfite.Ourworkdfifersfrom[22],sfincewedonot
requfireanymodfificatfiontotheunderflyfingprocessorarchfitecture,
asevfidentfinourfimpflementatfion.

A.1 System(MemoryandCPU)Modefl

WemodefltheproverasarandomaccessmachfineRAMmadeup
oftwocomponents:arandomaccessmemoryM,andacentrafl
processfingunfitCPU.Mconsfistsofthreesectfions:
(1)MEM–standardrandomaccessmemory.
(2)ROM–read-onflymemory.Thfissectfionofmemorywfiflflstore
thecodeforameasurfingprocessMP.

(3)ProMEM–protectedmemory,thatcanonflybewrfittentofrom
finstructfionsfinROM.Thfissectfionofmemorywfiflflstoredata
tobeusedbytheMPfinROM.

CPUconsfistsofregfisters(fincfludfingfinputandoutputregfister)and
anfinstructfionset.CommunficatfionbetweenMandCPUoccursfin
fetch-executecycfles,whficharereferredtoasroundsbeflow.

A.2 SyntaxofaConsfistentIntegrfity-Ensurfing
MeasurementScheme

Aconsfistentfintegrfity-ensurfingmeasurfingscheme(CMP)fisa
tupfleofaflgorfithms(Gen,Chaflflenge,Respond,Verfify)definedas:
•Gen(λ):GeneratesasecretkeyKonfinputofasecurfity
parameterλ.
•Chaflflenge(s):Generatesarandomchaflflengeconfinputofa
seeds.
•Respond(M,c,K):Generatesaresponsertoagfivenchafl-
flengec(basedoncontentofmemoryM).
•Verfify(c,r,K):Outputsabfitbfindficatfingwhetherrfisavaflfid
responsetothechaflflengec.

A.3 ConsfistentIntegrfityEnsurfing
MeasurementAttackGame

Inthefoflflowfinggame,Afisaflflowedtochooseapfieceofcode(or
data)tofinjectfintomemoryatanypofintfintfime.Atsomepofintfin
tfimechosenbyA,achaflflengefisfissued.Awfinsfiffitscode(ordata)
fisfinjectedbeforethegameends,buttheresponsetothechaflflenge
fiscorrect.
Recaflflthat,finSectfion2,wedescrfibedatypficaflRAschemeas

foflflows:
(1)Vrfsendsachaflflenge-bearfingattestatfionrequesttoPrvat
tfimetvs

(2)Prvrecefivesfitattfimetpr
(3)ComputatfionofMPstartsattfimetcs

Tabfle2:Notatfion

A Theadversary
C Thechaflflenger

ρfinfit #roundsatbegfinnfingofsecurfitygame
(beforefissufingchaflflenge)

ρfinsert #roundsbeforeA’scodefisfinjected

ρattest #roundsafterfissufingthechaflflenge
v CodethatAfinjectsfintoMEM
MP Integrfity-ensurfingmeasurementfunctfion

thatrunsRespondaflgorfithm.

(4)ComputatfionofMPendsattfimetce
(5)PrvsendstheattestatfionreporttoVrfattfimetps
(6)Vrfrecefivesfitattfimetvr

TheformaflsecurfitygameofCMPfisdefinedfintermsofrounds,
wherefiftvs=tpr=tcs,theywoufldaflflcorrespondtothefinstantat
theendoftheroundsρfinfitwhenthechaflflengefisfissued.Theend
ofρattestcorrespondstotfimewhencomputatfionofthefintegrfity
ensurfingfunctfionendsat:tce=tps=tvr.

Deffinfitfion4.Wesaythataconsfistentfintegrfity-ensurfingmeasur-
fingscheme(CMP)fissecurefifanon-emptypfieceofcodefisfinserted
beforetheattackgametermfinates,and:

Pr(b=1)≤µ(λ)

whereµ(λ)fisanegflfigfibflefunctfion.

Ffigure13contafinsthedefinfitfionofthesecurfitygameforacon-
sfistentfintegrfity-ensurfingmeasurfingscheme(CMP).

SharedbyAandC:randomaccessmachfineRAM=(M,CPU),
programW,fintegrfityensurfingmeasurementfunctfionMP(e.g.,an

HMAC),securfityparameterλ,andconsfistentfintegrfity-ensurfing

measurementfunctfionCMP.

(1)AchoosesthefoflflowfingandprovfidesthemtoC:
•Inputs:x=x1||...||xfiforRAM.
•Vaflues:ρfinfit,ρfinsertandρattest,aflflpoflynomfiaflfinλ.

•CodevtobefinjectedfintoMEM,andmemoryflocatfionfito

finsertfit(andoptfionaflflyaflfistofothermemoryflocatfionsv
shoufldbemovedtoatsubsequentroundsafterfinsertfion
atρfinsert).

(2)CrunsGen(λ)togeneratesetupparameters.
(3)Csfimuflatesρfinfitroundsofexecutfion.Ifroundρfinsertfis

reached,vfisfinsertedfintoMEMatthebegfinnfingofthatround.
Ifprogramhaflts,gotostep4.

(4)CfinfitfiatesCMPbygeneratfingachaflflengecbyfinvokfing
Chaflflengeandwrfitfingfittothefinputregfister.CfinvokesROM
whfichcontafinexecutabflecodeofMP.Csfimuflatesexecutfion

ofρattestrounds.Ifroundρfinsertfisreached,vfisfinserted

fintoMEMatthebegfinnfingofthatround.Ifprogramhaflts,
proceedtostep5.

(5)Cfinterpretsdatafinoutputregfisterasr,aresponsetofitschafl-
flenge,andoutputsbfitb,whfichfistheresufltofVerfify(c,r,K).

Ffigure13:CMPSecurfityGame

B SECURITY ARGUMENTS &
CONSIDERATIONS

We consider two approaches: Dec-Lock and All-Lock, and sketch

out corresponding security proofs. Security of remaining ap-

proaches is quite similar. For the purpose of this section, our instanti-

ations of Dec-Lock and All-Lock is within the HYDRA architecture.

Proof sketches are only valid for these specific instantiations since

they rely on features ensured by HYDRA. The required (memory

isolation and access control) features are instantiated in HYDRA

using seL4 which is formally verified. HYDRA uses a secure HMAC

as the MP.

B.1 Preliminaries and Assumptions
We capture HYDRA features by the following assumptions:

(1) Assumption-1 (memory access control): memory regions

locked, or configured as read-only, cannot be written to by

any process.

(2) Assumption-2 (memory isolation): each process, except the

attestation one, can only access its own memory space.

(3) Assumption-3 (MP is secure): A secure HMAC is used to

implement MP.

B.2 Proof Sketch for Dec-Lock
Considering the security game in Figure 13, there are two cases:

(1) A supplied ρinser t ≤ ρattest
(2) A supplied ρinser t > ρattest

The first case is trivial, since there is no memory modification after

attestation starts, i.e., temporal consistency follows by construction

of the case. If everything works as expected, MP computes r on
MEM and Verify(c, r ,K) should fail, i.e., b = 0. b would be 0 because

v is now in MEM beforeMP starts. Thus, the value of r will indicate
that; otherwise, MP is insecure, which contradicts Assumption-

3. Computation, intermediate and final results of MP cannot be

directly affected, since this would violate Assumption-2.

The second case is more subtle. Recall that, in Dec-Lock, entire
memory is locked at tvs = tpr = tcs = ρinit , and incrementally

unlocked as computation of MP proceeds. Assume that memory

location i is unlocked after it is processed in round ρattest + j,
i.e., one memory location is processed per round after attestation

starts. If memory location i , where v is to be inserted, is still locked

during ρinser t , i.e., if ρattest < ρinser t < ρattest + j, then based

on Assumption-1 above, v cannot be inserted into MEM. In order to

insert v , memory location i has to be unlocked during ρinser t , i.e.,
ρattest + j < ρinser t ; this means that during computation of MP
the memory was consistent. Note that the case of ρattest + j <
ρinser t is reduced to case 1 in the next attestation round request.

Thus, security follows as the first case above.

B.3 Proof Sketch for All-Lock
Considering the security game in Figure 13, there are two cases:

(1) A supplied ρinser t ≤ ρattest
(2) A supplied ρinser t > ρattest

The first case is the same as in Dec-Lock.
In the second case, since ρinser t > ρattest and, at ρattest , all
memory is locked, by Assumption-1 insertion of v into location i

will fail, MEMwill remain consistent and a correct r will be produced;
Verify(c, r ,K) will succeed and produce b = 1.

C SAMPLE CODE FOR THFAULT

void handle_fault(seL4_CPtr fault_ep, seL4_CPtr main_ep)

{

seL4_Word sender_badge = 0;

while(1) {

seL4_MessageInfo_t tag = seL4_Recv(fault_ep, &sender_badge);

seL4_Word fault_addr = seL4_GetMR(seL4_VMFault_Addr);

if(seL4_MessageInfo_get_label(tag) == seL4_Fault_VMFault && !

sel4utils_is_read_fault() && is_being_attested(fault_addr))

{

/* Return back to the main thread with a process causing inconsistency */

seL4_SetMR(0, sender_badge);

seL4_Send(main_ep, tag);

}

}

}

void create_fault_handler_thread(seL4_CPtr fault_ep, seL4_CPtr main_ep)

{

sel4utils_thread_t fault_thread;

seL4_CPtr cspace_cap = simple_get_cnode(&simple);

int error = sel4utils_configure_thread(&vka, &vspace, &vspace, seL4_CapNull,

seL4_MaxPrio, cspace_cap, seL4_NilData, &fault_thread);

assert(error == 0);

error = sel4utils_start_thread(&fault_thread, handle_fault, (void*) fault_ep,

(void*) main_ep, 1);

assert(error == 0);

}

D MIGRATORY MALWARE ATTACK
Figure 14 illustrates an example of migratory malware that violates

temporal consistency during execution ofMP. The attack timeline

is as follows:

• At time t0, malware enters and infects Prv. We assume that

malware resides at the tail end of program memory.
8

• At time t1 > t0, malware interceptsVrf’s attestation request,
e.g., by modifying the interrupt handler for the network

device driver. It then sets an interrupt timer for t2 and invokes
MP.

• MP runs without interruption from t1 to t2.
• At t2 > t1, malware interrupts MP. It then copies itself to

the part of memory that was already measured, erases itself

from its prior location, and resumes execution of MP.
• At time t4, MP completes and produces the measurement

for delivery to Vrf.

Throughout this process (t1 → t4) malware is never covered by

MP. It thus successfully escapes detection, since the measurement

reflects a malware-free state.

E IS MIGRATORY MALWARE REALISTIC?
The stance taken in this paper is proactive in nature. One of the

goals is a technique that prevents migratory malware from escap-

ing detection (i.e., subverting attestation) on low-end embedded

systems. Thus far, there have been no public reports of migratory

malware. Nonetheless, we believe that it is realistic and not far-

fetched, especially, on low-end embedded systems that involve

8
If program memory is insufficient to contain both existing firmware and malware,

the latter can use the executable compression technique [40] to reduce the sizes of

both firmware and itself.

Ffigure14:ProgrammemoryoffinfectedPrvbefore(att1),durfing(att2,t3)andafter(att4)themeasurementprocess.

appflficatfionsrunnfingon“baremetafl"andeventhosecapabfleof
supportfingarudfimentarymficrokernefl.
Inamoretradfitfionaflcomputfingsettfing(e.g.,PCs,flaptops,tabflets,

andsmartphones)antficfipatedmfigratorymaflwareresembflesthe
behavfiorofsteaflthyvfiruses[30]thatempfloyvarfiousevasfiontech-
nfiquestoconceaflthefirexfistencedurfingavfirusscan.Typficafleva-
sfiontechnfiquesfinvoflveanoperatfingsystemandreflyonfintercep-
tfionofsystemcaflflsasweflflasmanfipuflatfionofreturneddata.For
exampfle,[13]conceaflsthesfizeoffinfectedfiflesbyreturnfingthe
orfigfinaflsfizewhentheDIRcommandfisfinvoked.Anotherexampfle
fis[12,14,24]thatredfirectaflflaccesstoanfinfectedfifletoanarea
storfingtheorfigfinaflfifle.
Inprfincfipfle,steaflthymaflwaremfightaflsohfidefitspresenceby

movfingfitseflffintoanareathathasaflreadybeencoveredbyavfirus
scanner,sfimfiflartoourmfigratorymaflware.Webeflfievethatthfis
fisqufitepflausfibflefinembeddedsystems,whereamemorymfigra-
tfioncannotbedetectedfinsoftware,wfithoutusfingsomekfindofa
temporaflconsfistencymechanfism.

	Abstract
	1 Introduction
	2 Temporal Consistency
	2.1 Remote Attestation
	2.2 RA Blueprint
	2.3 A Trivial Approach
	2.4 Attestation Target

	3 Modeling Temporal Consistency
	4 Temporal Consistency Mechanisms
	4.1 Simple Approaches
	4.2 Sliding Locks
	4.3 Mixing Copying with Locking
	4.4 Variations on the Theme
	4.5 Uninterruptibility vs. Locking
	4.6 Memory Access Violations
	4.7 Inconsistency Detection

	5 Implementation & Evaluation
	5.1 HYDRA
	5.2 Experimental Setup
	5.3 Experimental Results: Primitives
	5.4 Experimental Results: Mechanisms
	5.5 Implementation of Inconsistency Detection
	5.6 Experimental Results: Inconsistency Detection

	6 Related Work
	7 Conclusions
	References
	A Temporal Consistency Security Game
	A.1 System (Memory and CPU) Model
	A.2 Syntax of a Consistent Integrity-Ensuring Measurement Scheme
	A.3 Consistent Integrity Ensuring Measurement Attack Game

	B Security Arguments & Considerations
	B.1 Preliminaries and Assumptions
	B.2 Proof Sketch for Dec-Lock
	B.3 Proof Sketch for All-Lock

	C Sample Code for Thfault
	D Migratory Malware Attack
	E Is Migratory Malware Realistic?

