Temporal Consistency of Integrity-Ensuring Computations and
Applications to Embedded Systems Security

Xavier Carpent
University of California, Irvine
xcarpent@uci.edu

Norrathep Rattanavipanon
University of California, Irvine
nrattana@uci.edu

ABSTRACT

Assuring integrity of information (e.g., data and/or software) is
usually accomplished by cryptographic means, such as hash func-
tions or message authentication codes (MACs). Computing such
integrity-ensuring functions can be time-consuming if the amount
of input data is large and/or the computing platform is weak. At the
same time, in real-time or safety-critical settings, it is often imprac-
tical or even undesirable to guarantee atomicity of computing a
time-consuming integrity-ensuring function. Meanwhile, standard
correctness and security definitions of such functions assume that
input data (regardless of its size) remains consistent throughout
computation. However, temporal consistency may be lost if another
process interrupts execution of an integrity-ensuring function and
modifies portions of input that either or both: (1) were already
processed, or (2) were not processed yet. Lack of temporal consis-
tency might yield an integrity result that is non-sensical or simply
incorrect. Such subtleties and discrepancies between (implicit) as-
sumptions in definitions and implementations can be a source of
inconsistenceies, which might lead to vulnerabilities.

In this paper, we systematically explore the notion of tempo-
ral consistency of cryptographic integrity-ensuring functions. We
show that its lack in implementations of such functions can lead
to inconsistent results and security violations in protocols and sys-
tems using them, e.g., remote attestation, remote updates and secure
resets. We consider several mechanisms that guarantee temporal
consistency of implementations of integrity-ensuring functions in
embedded systems with a focus on remote attestation. We also
assess performance of proposed mechanisms on two commodity
hardware platforms: LMX6-SabreLite and ODROID-XU4.

KEYWORDS

embedded system security; remote attestation; temporal consis-
tency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS 18, June 4-8, 2018, Incheon, Republic of Korea

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5576-6/18/06...$15.00
https://doi.org/10.1145/3196494.3196526

Karim Eldefrawy
SRI International
karim.eldefrawy@sri.com

Gene Tsudik
University of California, Irvine
gene.tsudik@uci.edu

1 INTRODUCTION

Computation over a large amount of input data is never instanta-
neous. Even if input size is moderate, computation can take a long
time, e.g., if it involves cryptographic primitives, or takes place
on a slow (low-end) processor. Assuring atomicity (i.e., uninter-
ruptibility) of computation might be impractical or even unsafe if
the underlying system provides critical or real-time service. Mean-
while, if computation is cryptographic in nature and its purpose
is to ensure integrity, the result must be temporally consistent. In
other words, it must, at least!, reflect the exact state of input data
at some point in time. These two requirements are potentially con-
flicting: if integrity-related computation is interruptible, its input
might change, such that the result is inconsistent (i.e., wrong) or
non-sensical, i.e., it might correspond to the state of input that
did not exist at any one time. This issue has been surprisingly
under-appreciated in the security research literature.

More generally, we argue that temporal consistency is important
in computing any integrity-ensuring function, e.g., checksums for
error detection, and not only security-relevant ones such as hash
functions, MACs and digital signatures. All these functions are
designed to operate on static input data, which is assumed by their
standard (security) definitions.

This discrepancy between (implicit) theoretical assumptions and
implementations is especially relevant in the context of Remote
Attestation (RA). RA is a security service for remotely assessing
integrity of software and memory (as well as other types of stor-
age) in embedded devices. RA is typically realized as an interaction
between a trusted entity (verifier) and an untrusted, potentially
malware-infected, remote device (prover). Upon a request by veri-
fier, prover computes a measurement of its internal state and returns
the result to verifier for validation. The measurement procedure is
essentially an integrity-ensuring function with additional security
(particulars of which depend on the specific flavor of RA) to pre-
vent malware from falsifying results. Consistency is of paramount
concern for RA, since a measurement result must faithfully reflect
the state of prover’s memory at some point. (NOTE: Hereafter, we
use consistency as a shorthand for temporal consistency). Looking
at prior RA literature, it is unclear exactly at what time — or time
interval - this must hold:

(1) Time when verifier’s request is sent to prover?

(2) Time when verifier’s request is received by prover?

1We say “at least” to mean that the definition of temporal consistency can be expanded
to encompass an interval of time, rather than a single point in time.

https://doi.org/10.1145/3196494.3196526

(3) Time at prover at the very start of its measurement?

(4) Time at prover at the very end of its measurement?

(5) Any time (or interval) between the last two?

(6) The entire period between start and end measurement?
Although this list is not exhaustive, it enumerates the obvious
choices.

As an illustrative example, consider a sensor/actuator fire alarm
application running on “bare-metal” in a low-end embedded de-
vice. This application periodically checks the value of a sensor and
triggers an alarm whenever that value exceeds a certain threshold.
Given its safety-critical function, software integrity of this device is
periodically checked using RA. Upon receipt of a request from the
verifier, the measurement process interrupts the application and
takes over. The measurement process must run uninterrupted in
order to accurately reflect current state of prover’s software. One
obvious downside of uninterrupted measurement is that the critical
application is dormant during this process, even if a real fire occurs.

Whereas, if we favor the critical application and allow the mea-
surement process to be interrupted, another problem arises. Sup-
pose that the device is infected by migratory malware — the type
of malware that can move itself around - as a whole, or in pieces -
in device’s memory and other storage, in order to evade detection.
Such malware can interrupt the measurement process, e.g., half-
way through, and move itself (by copying and erasing) to segments
of memory that have been already covered by the measurement
process. This way, the final measurement result would reflect a
benign (malware-free) state and, upon receiving and checking it,
the verifier would not detect any malware presence. For a more
detailed discussion of migratory malware, we refer to Appendix D
and E.

Although dangers of migratory malware were anticipated
in the design of some software-based attestation methods, e.g.,
Viper and Pioneer [21, 34], tradeoffs between uninterruptibility
(and atomicity) and integrity measurement consistency have
not been considered in hardware and hybrid attestation designs.
Despite their drawbacks, software-based attestation techniques
are inherently less vulnerable to migratory malware, since their
measurement process involves precise timing which would be
noticeably skewed by migratory malware (due to the latter’s efforts
of copying and erasing). However, as we discuss later, they are also
unsuitable for remote attestation where fluctuating network delays
influence overall timing. Thus, the main goal of this paper is to (1)
investigate uninterruptibility/consistency tradeoffs, and (2) design
techniques offering a range of concrete consistency guarantees for
integrity-ensuring computations, while allowing varying degrees
of interruptibility.

Contributions: This paper makes several advances:

(1) First systematic study of temporal consistency in crypto-
graphic integrity-ensuring functions. We show that lack
thereof can yield incorrect (including malicious) or non-
sensical results.

(2) Design and evaluation of several mechanisms that ensure
temporal consistency in the context of embedded systems,
with a focus on applicability to secure remote attestation.

(3) As part of this work, we develop a new security game that
captures temporal consistency in the context of remote

attestation. This security definition may be of independent
interest. (See Appendix A).

Outline: Section 2 overviews remote attestation and discusses
the importance of temporal consistency. Section 3 introduces our
model and notation as well as supporting mechanisms. Section 4
describes several techniques to ensure temporal consistency in re-
mote attestation for embedded and IoT devices. Section 5 describes
implementation and performance evaluation of mechanisms pro-
posed in Section 4. Section 6 discusses related work, and Section 7
concludes the paper.

2 TEMPORAL CONSISTENCY

State-of-the-art in stealthy malware has been advancing at an im-
pressive rate. Malware that erases itself after performing an in-
tended task, typically after stealing credential or financial assets,
has been discovered in recent years [39]. Malware that utilizes re-
sources (CPU and GPU) on personal computers for computationally
heavy (e.g., cryptographic) tasks, mainly to mine cryptocurrencies,
has also been reported [25]. Sophistication of malware has increased
even more in the realm of Cyber-Physical Systems (CPS), Embedded
Systems (ES), and, most recently, Internet-of-Things (IoT). Notable
examples include Stuxnet [20, 36] and Duqu [6]. A recent SANS
Institute survey [16] about IoT threat vectors and concerns lists
malware as the second most highly cited concern (26%), the main
justification being fear of IoT devices spreading malware into enter-
prises. The first concern (31%) was patching and updating software,
and the third was denial-of-service (13%).

2.1 Remote Attestation

In recent years, Remote Attestation (RA) emerged as a distinct se-
curity service for detecting malware on CPS, ES and IoT devices.
RA involves verification of current internal state (i.e., RAM or flash)
of an untrusted remote hardware platform (prover or #rv) by a
trusted entity (verifier or Vrf). RA can help the latter establish
a static or dynamic root of trust in Prv and can also be used to
construct other security services, such as software updates [33] and
secure deletion [28]. Many RA techniques with different assump-
tions, security features and complexities, have been proposed for
the single-prover scenario.

Prior RA results can be divided into three approaches: hardware-
based, software-based, and hybrid. Hardware-based approaches
typically rely on security provided by a Trusted Platform Mod-
ule (TPM) [15]. Despite resisting all, except physical, attacks, the
hardware-based approach is not suitable for low-end and legacy
embedded devices due to its added complexity and costs.

Software-based RA techniques offer a very low-cost alternative.
Pioneer [34] is a prominent example of this approach. Its main tool is
the use of a one-time special checksum function that covers memory
(to be attested) in an unpredictable (rather than contiguous) fashion.
Any interference with (or emulation of) the computation of this
checksum is detectable by extra latency that would be incurred by
migratory malware trying to avoid being “caught” by the checksum.
Unfortunately, security of this approach is uncertain after several
attacks on software-based RA schemes (e.g., [5]) were demonstrated.
Another problem with the software-based approach is its strong

Verifier

Prover

Figure 1: Timeline for a typical remote attestation scheme. Verifier’s request is sent at fys; and received at tpr- Computation starts at z. and

ends at fce. Report is sent at £,; and received at ty,.

assumptions about adversarial capabilities, which are unrealistic in
many real networked settings. However, it is the only attestation
option for legacy devices.

Hybrid (software-hardware) RA co-designs have been pro-
posed to overcome limitations of purely software-based techniques.
SMART [11] is the first hybrid RA architecture with minimal hard-
ware modifications to existing micro-controller units (MCUs). In
addition to requiring uninterruptible non-malleable attestation code
and attestation keys in read-only memory (ROM), SMART requires
hard-wired MCU access control rules to allow access to secret keys
only to SMART attestation code. Attestation is performed within
Prv’s ROM-resident attestation code by computing a cryptographic
checksum (e.g., an AES-based CBC-MAC or an SHA2-based HMAC)
over a memory region and returning the result to Vrf. Notably,
SMART requires atomic (uninterruptible) execution of its ROM-
resident attestation code. However, this design feature was moti-
vated by the need to mitigate code-reuse attacks (such as ROP [29])
and not by consistency of computing the measurement. Follow-on
designs, such as TrustLite [19] and TyTAN [2], enhance SMART
with secure interrupt handling.

In this paper, we assume that the measuring process (MP) on
Prv is realized as a keyed integrity-ensuring function computed
over a part (or all) of Prv’s memory, in a “protected” execution
environment. Exact protection depends on the specific security
architecture.

2.2 RA Blueprint

A typical RA scheme operates as follows:
(1) Vrf sends a challenge-bearing attestation request to Prv at
time tys
(2) Prv receives it at time tpy
(3) Computation of MP starts at time g
(4) Computation of MP ends at time #ce
(5) Prv sends the attestation report to Vrf at time #ps
(6) Vrf receives it at time fyr

The timeline for this sequence of events is shown in Figure 1. Com-
putation of MP (in gray) may be deferred due to networking delays,
Vrf’s request authentication, or termination of the previously run-
ning task. However, typically, tpr ~ fcs and tee = tps. Also, Prv
has no control over tys and t,;. Consequently, hereafter we only
consider t5 = tes (With tes = tpr) and te = tee (With tps = tee).

As discussed in Section 1, MP may require time-consuming
computations. The exact time it takes depends on the size of Prv’s
memory, its computational capability, and the underlying crypto-
graphic function(s). As a sample hardware platform, we consider

MP running an ODROID-XU4 [7] - a single-board computer repre-
sentative of medium-to-low-end embedded systems. In most cases,
(keyed) hashing? is the dominant computation, unless memory to
be attested is very small, or the signature algorithm is particularly
expensive. Figure 2 shows the costs of these operations, for vari-
ous attested memory sizes and cryptographic algorithms®. Above
1MB, MP takes longer than 0.01sec, and the cost of most signature
algorithms become comparatively insignificant. Results show that
even hashing a reasonable amount of memory incurs a significant
delay. For example, it takes about 0.9s to measure just 100MB on
ODROID-XU4. Its entire RAM (2GB) can be measured in about 14s.
In a safety-critical setting, this is definitely too long for MP to run
uninterrupted.

As mentioned earlier, recent hybrid RA architectures, such as
TrustLite [19] and TyTAN [2], permit tasks to be interrupted. While
this allows for time-critical processes to run and preserve £rv’s
critical functionality, attestation results might be inconsistent. In-
deed, in TrustLite, since memory can change during execution of
MP, the report produced and sent to Vrf might correspond to
a state of Prv’s memory that never existed in its entirety at any
given time. This is problematic if Prv is infected with migratory
malware. Assuming that such malware resides in the second half of
Prv’s memory, it can interrupt MP after the latter covers the first
half of £rv’s memory, copy itself into the first half, erase traces in
its former location, and resume MP. This way, malware remains
undetected despite the fact that all memory locations have been
measured.

In TyTAN [2], memory of each process is measured individu-
ally. While higher-priority processes may interrupt MP to meet
real-time requirements, the process being measured may not do
so, regardless of its priority. While this protects against a single-
process malware from moving in memory, malware that is spread
over several colluding processes can defeat this counter-measure.
Doing so would require malware to violate process isolation, e.g.,
by exploiting an OS vulnerability. Also, in a low-end device with a
single task (besides MP), this corresponds to uninterruptibility.

SMART [11] disables interrupts as the first step in MP. This
precludes migratory malware. Uninterruptibility is required as a
means to protect the attestation key and to ensure MP is performed
from beginning to end. However, temporal consistency was not
an explicit design goal of SMART. Consequently, although it coinci-
dentally guarantees consistency, SMART is unsuitable for time- or
safety-critical applications.

20r encryption for CBC-MAC.
3For HMAC, the cost of the second hash is negligible compared to hashing data.
Signature time is independent of data sizes, since only the hash of the data is signed.

wex SHAZ56
10" *=+ SHA512
++—+ BLAKEZb
BLAKEZs

10}

= 107%

'_E_. 11 1)

\
2 2 27 g
data [bytes]

Figure 2: Computational costs of several hash functions and digital
signatures on ODROID-XU4.

2.3 A Trivial Approach

One trivial and intuitive way to address the contradicting require-
ments of temporal consistency and safety-critical operation is to
first copy memory to be attested over to an area to which MP has
exclusive write access. This way, computation can be performed
on the copy and MP can be arbitrarily interrupted. This would
presumably maximize availability while providing temporal consis-
tency.

Unfortunately, this simple mechanism prompts some concerns.
First, it requires sufficient additional memory, which may or may
not be available. Second, it requires this additional memory to be
locked (either permanently or on demand) to allow MP exclusive
write access. Third, copying represents an extra step, which results
in longer delays. Finally, it does not fully address the interruptibil-
ity/atomicity conflict; it just makes it smaller. Indeed, if copying
is uninterruptible, the same time-critical issues can arise, while if
interrupts are allowed, migratory malware can, in principle, still
evade detection. This is further discussed in Section 4.3.

In the remainder of this paper, we identify and evaluate other
mechanisms that reconcile temporal consistency with interruptible
execution of MP.

2.4 Attestation Target

The usual target of attestation on Prv is executable code. This code
can reside in RAM or in some non-volatile memory. Sometimes,
it might also be desirable to attest non-executable regions on Prv
(ie., data) .

Let M, of bitsize L, represent Prv’s memory to be attested. If
the reference content of M is a priori known to Vrf and expected
to be immutable, then Prv can execute MP over M and send the
result to Vrf, who can easily validate it. (This is the case if M is
supposed to store static application code.) The same applies if M is
mutable and its entropy is low: “Vrf can compute (or pre-compute)
all possible valid outputs of MP over M and thus validate Prv’s
result.

However, if entropy of M is high, enumeration of possible valid
states by “V'rf can quickly become infeasible. This is likely to occur

when memory to be attested includes data regions, such as program
stack, heap or various registers.

One obvious means of dealing with this problem is for Prv to
return to Vrf the actual contents of (parts of) M that are highly
mutable. For example, if M = [C, D] where C represents immutable
code and D — volatile high-entropy data region(s), £rv can return
the result of running MP over M, accompanied by a copy of D.
Clearly, this only makes sense if D is of modest size, e.g., |D| << L.

Furthermore, if D is a highly variable region content of which is
either irrelevant or must be empty, #rv can easily zero it out before
executing MP. This makes it impossible for malware to hide in
such a region and obviates the need for Prv to send V'rf an explicit
copy of D.

In the remainder of this paper, issues stemming from attestation
of static or dynamic memory regions are orthogonal to our work,

and thus are not discussed further.

3 MODELING TEMPORAL CONSISTENCY

We now introduce the model and notation for temporal consistency
and supporting mechanisms. Although we focus on RA, the model
is generic and relevant to other application domains that involve
integrity-ensuring functions. In addition to this section, we develop
in Appendix A a new definition for a security game that captures
temporal consistency in the context of secure remote attestation;
we believe that this definition may be of independent interest for
future research in remote attestation

We assume that input data is located in Prv’s memory M, which
consists of n contiguous blocks [Mj ... My]. Without loss of gen-
erality, we assume that block bit-size matches that of the integrity-
ensuring function F, e.g., 512 for SHA2-HMAC, or 128 for AES-
CBC-MAC. We use M; to denote content of the i-th block and Mf -
content of M; at time ¢.

We consider computation of R = F(M). For now, we focus on
temporal consistency for sequential functions, i.e., each M; is read
and processed once during the execution of F and blocks are pro-
cessed in order: M1, Mz, ..., Mp. We model a sequential function F
as n independent functions F;, operating on n blocks sequentially.

Content of memory blocks may change during execution of F,
i.e., it might be that M : +M fl for t < t’. However, fetching M; (to
be processed by F;) is considered to be an atomic operation.

We define temporal consistency for integrity-ensuring functions
as follows:

DEFINITION 1. Qutput R of an integrity-ensuring function F is
consistent with input M at time t iff: R = F(M?).

We consider F to be correct and benign, i.e., it faithfully computes
what it is supposed to compute, and its implementation is bug-free.
In the context of RA, this holds since MP (containing F) is protected
by the underlying security architecture. For example, in hybrid RA
architectures, such as TrustLite, TYTAN and SMART, MP is stored
in, and executed from, ROM.

We now consider two specific types of malware.

DEFINITION 2. Migratory malware is present in one or more blocks
of M at ts. It can move (by copying and erasing) itself at any point
during computation of F. Its purpose is to remain in M at t, while
remaining undetected.

DEFINITION 3. Transient malware is present in one or more blocks
of M at time t,. It can erase itself at any point during computation of
F. Its purpose is to escape detection.

If R is consistent with M at a given time ¢, and if R corresponds to
a benign state, it is guaranteed that no malware was present at time
t. This implies that, if t; < t < t., migratory malware cannot escape
detection. Furthermore, if t = t4, neither can transient malware.

4 TEMPORAL CONSISTENCY MECHANISMS

We now describe and analyze several mechanisms that offer various
tradeoffs between consistency guarantees and real-time require-
ments. Consistency is achieved through locking memory regions,
i.e., making them temporarily read-only. Such locking can be real-
ized via system-calls and capabilities enabled by a secure microker-
nel that is supported by underlying hardware features. e.g., as in
the formally-verified seL4 [18] microkernel.

Three points in the timeline of computation of an integrity-
ensuring function F are particularly relevant to our discussion (see
also Figure 3):

(1) t;, the instance where the computation of F starts;

(2) te, the instance when the computation ends;

(3) Optionally, ¢, when Prv is explicitly requested to release

an existing lock. This release request might come from Prv
itself, for instance if R is no longer relevant.

4.1 Simple Approaches

We begin with three obvious options.

4.1.1 No-Lock. The simplest mechanism is a strawman that
does not lock memory. The result is computed using contents of
each memory block M; at the time when F; processes it, which
means that it provides no consistency guarantees. Consequently, it
might not detect migratory or transient malware; see Table 1.

4.1.2 All-Lock. The other extreme is to lock the entire memory
M at tg, and leave it locked throughout computation of F, finally
releasing it all at te. This provides very strong temporal consistency
guarantees at the cost of being very restrictive and unfriendly to
interrupting (potentially critical) tasks that may require modifying
locked memory. R is consistent with M within [#, te]. This also
implies that M is immutable and thus constant from s to te.

4.1.3 All-Lock-Ext. An extended variant of Al11-Lock that
provides extra consistency keeps all memory locked until ¢;. Similar
to All-Lock, R remains consistent with M at every [ts, t;], and M
stays constant from f; to ¢;. An extended lock can be advantageous
if the verifier wishes to guarantee that Prv is in a given state at a
particular time #, as opposed to “some time in the past”.

4.2 Sliding Locks

A natural next step for ensuring temporal consistency is to imple-
ment “sliding” mechanisms to dynamically lock or unlock blocks
of memory during execution of F. Variations of this mechanism are
described below and pictured in Figure 4.

4.2.1 Decreasing Lock (Dec-Lock). This is a less restrictive ver-
sion of Al1-Lock, which still provides strong consistency guaran-
tees. Entire M is locked at t5, and each M; is released as soon as F;

Table 1: Malware detection features.

Migratory Malware | Transient Malware
No-Lock X X
All-Lock 4 v
Dec-Lock v/ v/
Inc-Lock 4 X
Cpy-Lock e v

completes processing it. The output R is consistent with all of M at
time s only. This implies detection of any malware present in M at
.

Let t; be the time that F; starts/that M; is loaded. We have the
additional guarantee that M; remains constant between t and t;. It
is therefore beneficial to start the computation of F with memory
blocks availability of which (to other processes) is important.

4.2.2 Increasing Lock (Inc-Lock). This variant is the opposite
of Dec-Lock. The main idea is to lock blocks as they are processed.
With entire M unlocked at t, it becomes gradually locked as compu-
tation of F proceeds, until it is completely locked at t., after which
it is fully released. Each M; is locked only when it is time for F;.

Output R in this case is consistent with M at . only. This implies
detection of migratory, though not transient, malware. Also, M;
remains constant between t; and t.. Unlike Dec-Lock, it is beneficial
to finish computing F with blocks that require high availability,
since they are locked for the shortest time.

As discussed in Section 4.4.1, Inc-Lock is better-suited for han-
dling non-sequential functions. On the other hand, locking M can
influence the value of the end-result R. In contrast, Dec-Lock guar-
antees consistency at f; when locking has no impact on R. We con-
sider this to be a subtle yet important distinction between Dec-Lock
and Inc-Lock. Put another way, since Dec-Lock does not interfere
with any process until ¢, the result R over the snapshot of M at t; is
in no way influenced by the computation of F. However, Inc-Lock
gradually locks memory and any process that interrupts the execu-
tion of F may or may not have write access to parts of memory that
it needs: the farther along is the computation of F, the less memory
is left unlocked (writable).

4.2.3 Extended Increasing Lock (Inc-Lock-Ext). As with
All-Lock-Ext, it is possible to add extra-computation consistency
to Inc-Lock by only releasing the lock at t;, instead of te. R thus re-
mains additionally consistent with M within the interval [te, ¢,], and
M stays constant in [te, t;]. This type of extension is not naturally
applicable to Dec-Lock since memory is not locked at t.

4.3 Mixing Copying with Locking

To minimize the impact on time-critical tasks, M can be first copied
to M’ and computation of F can be performed with the latter as
input. This approach is described below and shown in Figure 5.

4.3.1 Copy Lock (Cpy-Lock). Cpy-Lock reduces the time M is
locked by first cloning it and running F over the copy. A lock on M
is acquired at t; and M is copied to another memory segment, M’,
which is also locked. M” may be a pre-locked portion of memory
allocated to F, or a lock on it may be acquired at t5. Once copying is
finished at time t., M is entirely free. The second step is to proceed
to computing R = F(M’).

Figure 3: Timeline for computation of R = F(M). Computation starts at t; and ends at .. Consistency of R is considered until #,. A change to
M at time A or D has no effect. Impact of a change at time B or C depends on the consistency mechanism.

‘|

te

3 tr tr
L L L
(a) Dec-Lock (b} Inc-Lock

(c) Inc-Lock-Ext

Figure 4: Sliding mechanisms discussed in Section 4.2. M is repre-
sented horizontally. Locked portion of M is in gray.

The same guarantees as All-Lock apply here: R is consistent
with M in [ts, tc]-

Cpy-Lock only makes sense if t; < te, i.e., if computation of F is
more time-consuming than copying M. Depending on how memory
locking and unlocking is implemented, it might be better to use
Dec-Lock during the copy, instead of A11-Lock. Even though the
process is less streamlined and possibly less efficient, it may be
friendlier towards real-time write requirements on M. Likewise, it
is possible to dynamically acquire and release the lock on M’ if it
is not entirely allocated to F.

4.3.2 Cpy-Lock & Writeback. To extend consistency until #,
one can copy M’ back to M once computation of F(M’) is finished.
M is locked at te until #;. This way, R is consistent with M within
the intervals [ts,] and [te, t;]. Consequently, M’ = M’ and M
remains constant between t. and t;. Similar to Cpy-Lock, it might
be less constraining to use Dec-Lock during the copy and Inc-Lock
during the writeback, instead of ALl1-Lock.

4.4 Variations on the Theme

We outline some extensions to previously discussed mechanisms.

4.4.1 Non-Sequential Functions. Some functions are not sequen-
tial, e.g., they might require input blocks to be used concurrently or
might reuse blocks in computation. Simple mechanisms (No-Lock
or Al1-Lock) are not affected by this. However, dynamic locking
techniques need to be amended.

A lock on M; needs to be acquired the first time that block is
needed by F. Likewise, a lock on M; can only be released when M;
is no longer required. Consequently, in non-sequential functions,
locks may be acquired sooner, or released later, than in sequential

: H
te

te te
ter

ty tr

(a) Cpy-Lock (b) Cpy-Lock & Writeback

Figure 5: Mechanisms discussed in Section 4.3. M is represented
horizontally. Locked portion of M is in gray.

ts ts

te te

tr ty

Y Y A J r

(a) Dec-Lock (Non-Sequential) (b) Inc-Lock (Non-Sequential)

Figure 6: Locked memory in sliding mechanisms of Section 4.2 for
non-sequential F. Time goes from top to bottom, and M is repre-
sented horizontally. Locked portion of M is in gray.

functions. Figure 6 shows the effect on Dec-Lock and Inc-Lock. A
larger gray area indicates more restrictive operation for real-time
systems (for the same guarantees of consistency), though still less
restrictive than the A11-Lock.

Dec-Lock requires the execution environment to be aware of
blocks that are no longer needed for the remainder of computation
of F.If that information is not available, locks cannot be released un-
til t, in which case Dec-Lock degenerates to AL1-Lock. Inc-Lock
does not have this issue (blocks are locked the first time they are
needed for F and not freed until z¢).

4.4.2 Adaptive Locking. Multiple mechanisms can be combined
in order to achieve alternative timings of consistency in computing

F. For example, to achieve consistency at t; (ts < tr < fe), we
can combine the use of: (1) Inc-Lock on [My, ..., My], and (2)
Dec-Lock on [Mg, ..., Mp]. Nevertheless, it is somewhat unclear
if and when such hybrids may be useful in practice. One potentially
relevant application is adaptive locking that aims to minimize impact
on other processes, especially, if the execution environment is aware
of other processes’ interrupt schedules.

4.4.3 Lazy Copy (Cpy-Lazy). Another variation of copy-based
mechanisms in Section 4.3 is Cpy-Lazy. It involves using A11-Lock*
on M with a lazy (or reactive) copy mechanism. When another pro-
cess interrupts F and, during its execution, wishes to write M;, this
block is first copied to M]. The lock on M; is then released so the
process can write to it. The rationale for Cpy-Lazy is that copying
only what is, and when, necessary reduces overhead. This is partic-
ularly relevant when few blocks are likely to be modified during
computation of F. However, if many blocks are to be modified and
copied, cumulative overhead might exceed that of a single bulk
copy. Another consideration is whether there is OS or hardware
(e.g., MPU) support for the “interrupt-on-write” primitive required
to implement Cpy-Lazy.

4.5 Uninterruptibility vs. Locking

All mechanisms described above achieve consistency by temporar-
ily locking (parts of) memory. As mentioned earlier, uninterrupt-
ibility of computation of F (e.g., as in SMART [11]) also provides
consistency, though rigidly, i.e., for the interval [, t.]. There are
other differences:

e Even when M is locked entirely or partially, other processes
can interrupt execution of F and modify memory outside of
M, as well as read all memory, including M. This does not
violate consistency of F’s result R.

e Whereas, if F is uninterruptible and the underlying hard-
ware platform is a single-CPU device, other processes are
completely blocked, regardless of whether M is locked.

e If multiple CPUs have shared memory access, uninterruptibil-
ity does not guarantee consistency, since a process running
on a CPU different from the one running F can modify M
concurrently.

e Locking is more flexible than uninterruptibility: while lock-
ing and unlocking of M can be dynamic and gradual (ie.,
block-wise), execution of F is rigid: either it is interruptible or
not. For example, SMART provides consistency only because,
in a single-CPU device, uninterruptibility is equivalent to
All-Lock.

4.6 Memory Access Violations

If some process P’ tries to write to M; which is currently locked by
process P running F, a memory access violation occurs (recall that
read access to M requires no extra handling). P and P’ might be run-
ning concurrently, on different CPUs, or P’ might have interrupted
P. There are several alternatives:

If P handles the situation, one possibility is to abort F and ter-
minate P. This approach is the most friendly with respect to P’
and other processes. However, it makes it easy for a malicious

It can also be easily adapted to Inc-Lock and Dec-Lock.

process to starve P, i.e., prevent F from ever completing. Other-
wise, we can adopt the reactive Cpy-Lazy approach discussed in
Section 4.4.3. Alternatively, P’ can be aborted. Though this would
allow P (and thus F) to complete uninterrupted, it might be imprac-
tical in safety-critical scenarios. Another possibility is to stall P’/
until M; is unlocked. This approach is gentler, although it might
still be problematic, depending on how long P’ has to wait.

4.7 Inconsistency Detection

Another approach to enforce consistency is to detect inconsistency.
The memory M is not locked but instead a trigger is setup such
that the integrity measuring (e.g., attestation) process is alerted if
any changes occur to M during the computation of F. If any such
changes occur, the result produced is thus no longer consistent
throughout the computation. Depending on the strategy for dealing
with inconsistency, the computation of F can be stopped, continued,
or restarted. An implementation of this is presented and discussed
in Section 5.5.

The clear benefit of inconsistency detection over consistency
enforcement is that it does not interfere with the execution of other
processes. This is particularly relevant in time-critical applications
when availability must be maintained at all times. The drawback
is that consistency might not be guaranteed, depending on the
strategy used whenever an inconsistency is detected. This may lead
to attestation never terminating if inconsistencies are constantly
created, even by benign software.

5 IMPLEMENTATION & EVALUATION

Our prototype of temporal consistency mechanisms is realized
in the context of HYDRA hybrid RA architecture [10]. Below, we
overview HYDRA, discuss implementation details of each mecha-
nism and assess their performance on two popular low- to medium-
end development boards: LMX6-SabreLite [9] and ODROID-XU4 [7].
Security considerations for our implemented mechanisms are dis-
cussed in Appendix B.

5.1 HYDRA

HYDRA implements a hybrid RA design for devices with a Memory
Management Unit (MMU). It builds upon the formally verified seL4
[18] microkernel, which ensures process memory isolation and
enforces access control to memory regions. Using the (mathemati-
cally) proven isolation features of seL4, access control rules can be
implemented in software and enforced by the microkernel. Note
that, in addition to the design of seL4 being formally verified and
ensured to guarantee isolation, seL4 software implementation is
also formally verified for conformance to the design.

HYDRA stores an attestation key (%) and attestation code (that
computes a MAC using K) in a writable memory region (e.g., flash
or RAM) and configures the system such that no other process, be-
sides the attestation process (P;;), can access this memory region.
Access control configuration in HYDRA also involves P4;; having
exclusive access to its thread control block as well as to memory
regions used for K-related computations. The latter ensures that K
is properly protected. To ensure uninterruptibility, HYDRA runs the
attestation process as the so-called initial user-space process with
the highest scheduling priority. As the initial user-space process in

seld, Pay; is also initialized with capabilities to all memory pages.
Meanwhile, the rest of user-space processes are assigned lower
priorities and spawned by Py4;;. Finally, hardware-enforced secure
boot feature is used to ensure integrity of sel4 itself and of P4;;
when the system is initialized.

5.2 Experimental Setup

Our implementation ensures temporal consistency by locking mem-
ory regions. It thus does not require the execution of P4;; to be
uninterruptible, unlike the original HYDRA implementation [10].
As a result, all user-space processes, including P4;;, have the same
priority in our implementation.

The microkernel executable is compiled from the unmodified
sel4 source code v4.0.0 [27]. Our user-space code is based on open-
source selLd libraries [26], mostly for providing abstractions for
processes, memory management and virtual address space.

5.3 Experimental Results: Primitives

Our implementation of mechanisms discussed in Section 4 consists
of four primitives: LockPage, UnlockPage, CopyMem and MacMem.
In HYDRA (and in seL4, in general), locking and unlocking a memory
page can be invoked from user-space (by authorized processes) and
handled inside the kernel.

To lock a specific page, Pa¢+ needs to perform three steps: (1)
revoke all capabilities associated with the page 3, (2) create a read-
only capability to the page, (3) assign the new capability to a
targeted process and map the page into the process’ virtual ad-
dress space. Unlocking can be done similarly by using a read-
and-write capability, instead of a read-only capability. In terms
of sel4 implementation, each of these primitives translates into
three function calls: seL4_CNode_Revoke(), seL4_CNode_Copy()
and seLld_ARCH_Page_Map().

Another parameter related to Lock Page and UnlockPage is mem-
ory page size, which can differ depending on the underlying
instruction-set architecture. For instance, LMX6-SabreLite, which
is based on the ARMv7-A architecture, only supports the follow-
ing page sizes: 4KB, 64KB, 1MB and 16MB. CopyMem performs a
memory copy between source and destination RAM locations. We
note that only Cpy-Lock requires this primitive. Finally, MacMem
performs a MAC computation over a memory range. MacMem is
implemented as a keyed hash using: BLAKE2S [31], AES256-CBC
based MAC [17] and HMAC-SHA256 [37] algorithms.

Figure 7 illustrates run-time of primitive operations on 16MB
of memory. Results show that page size heavily influences perfor-
mance of LockPage and UnlockPage: the larger the page size, the
faster it is to lock or unlock memory of the same size. This is ex-
pected, because larger pages result in fewer entries that need to
be modified in a page table. Run-time performance of CopyMem
and MacMem, however, remains almost unchanged, regardless of
page size. In addition, the same figure suggests that run-times of
CopyMem, LockPage and UnlockPage are relatively fast, compared
to that of MacMem. The first three primitives take at most 9% of
MacMem’s run-time.

>This step by default includes modifying the corresponding page table entry, clearing
a cache line and invalidating a TLB entry.

I 4KB Page Size
[64KB Page Size

[1MB Page Size
[16MB Page Size
10t |
102
£ 1n3
510
104
10
10-5 1 1 1 1 I 1
LockPage UnlockPage CopyMem Keyed AES256-CBC HMAC-
BLAKE2S MAC SHA256

Figure 7: Performance of primitives with 16MB of memory on
LMX6-SabreLite.

Finally, we evaluate and compare performance of the various
primitives on L.MX6-SabreLite running at 1.0GHz, and ODROID-
XU4 running at 2.1GHz. Figure 8 shows the results of this com-
parison. It shows that: (1) run-times of Lock Page and Unlock Page
primitives are still roughly the same on both hardware platforms,
and (2) MacMem remains, by far, the most time-consuming primi-
tive.

5.4 Experimental Results: Mechanisms

We assess performance of five temporal consistency mechanisms -
No-Lock, All-Lock, Dec-Lock, Inc-Lock and Cpy-Lock — on the
SabreLite board. No-Lock is the baseline and it directly translates
into the MacMem primitive. A11-Lock, Dec-Lock and Inc-Lock
all require additional steps of sequentially locking and unlocking
memory blocks. For its part, Cpy-Lock involves all four primitives.

Figure 9 demonstrates run-time performance of aforementioned
mechanisms (using BLAKE2S as the underlying function) with
various memory sizes: 16MB to 96MB, and page sizes 4KB and
64KB. Results can be summarized as follows:

e Run-time of all mechanisms is linear in terms of memory
size. This is expected since they are built upon a sequential
function, i.e., a MAC.

e Run-time of MAC computation on large memory sizes is in-
deed non-negligible, e.g., it takes around 4 seconds for keyed
BLAKEZ2S over 96MB of memory. This clearly demonstrates
the need for ensuring temporal consistency, especially, in
settings where P;; needs to be interruptible.

e Run-times of All-Lock, Dec-Lock and Inc-Lock are all
roughly equal, in all cases. This is also expected, since each
of these three mechanisms involves a similar number of
invocations of primitives.

e The difference in run-time between baseline and Al11-Lock,
Dec-Lock and Inc-Lock decreases as page size grows. This
difference then becomes negligible (< 0.1%) when page size
reaches 1MB. Thus, it is beneficial to use these mechanisms
with reasonably large page sizes. One disadvantage of larger
page sizes is that memory pages, on average, will be locked
for longer periods.

I |.MX6-Sabrelite
1 ODROID-XU4
10t
=
3
£
107
107

LockPage UnlockPage CopyMem MacMem (Keyed
BLAKE2S)

Figure 8: Performance of primitives with 16MB memory on LMX6-

SabreLite and ODROID-XU4.

e Cpy-Lock comes out as the preferred mechanism. It incurs
small (~ 8%) run-time overhead; however, this mechanism
provides much better availability as memory is locked for
a very short amount of time (only during the copying pro-
cess). However, recall that an obvious disadvantage is that it
requires additional memory of size M’.

5.5 Implementation of Inconsistency Detection

We could implement the inconsistency detection mechanism by
having P4;; detect whether any dirty/accessed bits are set after
each measurement is completed. However, this obvious approach
falls short in the context of HYDRA. Doing so would imply some
modifications to the existing kernel, which may consequently break
formally verified properties of sel4.

Instead, we base our implementation of inconsistency detection
on the A11-L ock implementation. The idea is to have P first lock
memory to be attested before starting to compute the integrity-
ensuring function, e.g., the MAC. If the computation completes
without interruptions or detecting any inconsistency, Pa;; then
unlocks the memory; this scenario resembles typical Al1-Lock
execution. However, if another process (denoted by P’) attempts
to modify any part of the locked memory, the kernel will suspend
execution of P’ and P4;; will be made aware of such inconsistency;
Py4¢ then resolves the inconsistency by unlocking the memory
and resuming execution of P’. Note that this implementation still
requires some interference with other processes as P’ is suspended
when inconsistency occurs. However, we show later in Section 5.6
that the overhead from this interference is very small compared to
the actual measurement runtime.

To implement this mechanism in HYDRA, we decompose Pq;;
into the following three threads:

® Thehacksum: computing the integrity-ensuring function and
returning an attestation result to Thy,,i, on success.

® Theyt: listening for any memory write fault and notifying
Thmain when there is an attempt to modify memory being
attested.

® Thain: managing the other two threads, locking and unlock-
ing memory and reporting to ‘Vrf when an inconsistency
occurs.

& © No-Lock (Baseline)
* % Inc-Lock
@0 Declock e
aH % All-Lock sy
— Cpy-lock / e
a" -
73 e
g /,—‘:ﬁ
3 gl
< -
<2 /‘fr -
1 /
=
o
10 20 30 40 50 &0 70 BO 90 100

memory size [MB]

(a) 4KB Page Size

T T
No-Lock (Baseline)

& e
* * Inc-Lock
o Declock
al{% s Al-lock -
— Cpy-lock I//"
w3 ,/
2 /
T
22 /='
1 ==
&
0
10 20 30 a0 50 60 70 80 90 100

memory size [MB]

(b) 64KB Page Size

Figure 9: Run-time of various temporal consistency ensuring
mechanisms in LMXé6-SabreLite.

Unlike Thepecksum and Thain, implementing Thg, i is not triv-
ial; it requires support from the underlying hardware and/or kernel
in order to: (1) detect whenever a process causes a fault and (2)
examine whether the fault is caused by an invalid write access and
whether it happens within a specific memory range. Fortunately,
these operations are already available in seL4 without requiring
modifications to the kernel.

We implement Thg,,¢ by leveraging how a fault endpoint works
in sel4. An endpoint is an seL4 object that allows a small amount
of data to be transferred between two threads. When a process
or a thread faults, the selL4 kernel automatically sends a fault IPC
message to its registered fault endpoint. This fault IPC message
provides useful information that helps Th¢,,; decide whether the
fault will result in memory inconsistency. For instance, the message
includes a type of fault (e.g. page fault, capability fault, or unknown
syscall), address that causes the fault and whether a read or write
access causes the fault®. In our implementation, Thpyain shares a
single fault endpoint among all user-space processes, allowing a
fault caused by any process to be transmitted to this fault endpoint.
The last step of the implementation is to have Thg,, wait for an
incoming message from the fault endpoint and notify Thpjy if the

©See http://seld.systems/Info/Docs/seL4-manual-latest. pdf for full details.

Detectl;

ComputeChecksum

alt) Thepecmm replies first

return: Checksum

Suspend

return: Inconsist Det ected, P

Suspend

Unlock Page+
Resume(P")
P

Resume

return: Checksum

output:
Checksum + Inconsist

P

Figure 10: Sequence diagram of P,4;; with memory inconsistency
detection during single attestation instance. P4;; chooses to resume
execution of Thepecksym after P’ causes memory inconsistency.

message indicates the attempted write access on memory being
attested. A sample code for Thg,; is provided in Appendix C.

A diagram in Figure 10 summarizes the sequence of operation
of our modified Py;; during a single attestation instance. First,
Thmain locks entire memory to be attested, then calls Thepecksum
and Thg,, |t via a shared endpoint and waits for their replies. There
are two possible scenarios:

(1) If no process attempts to write into attested memory during
attestation, Th packsum Successfully completes and returns
to Thyaj, With an attestation token. Thy,,;, then promptly
unlocks attested memory.

(2) Otherwise, the kernel suspends P’ and transmits a fault [PC
message to Th,,jt- Once receiving it, The,, replies back to
Thmain, which suspends Th¢pecksum, unlocks memory, and
resumes execution of P’. Thy,i, can also choose to abort,
continue or restart execution of Thepecksum-

Finally, Thpain outputs the result (an attestation token and/or
whether any inconsistency occurs or not) back to Vrf.

10

T T T T
% # All-Lock: Temporal Consistency Mechanism
& Inconsistency Detection (without inconsistency)
= Inconsistency Detection (with inconsistency)

B He @ No-lock: Attestation without C y Guarantee

RN

run-time [s]
+
A

>

qﬂ 20 30 40 50 &0 70 8o 90 100
memory size [ME]

Figure 11: Run-time of inconsistency detection with 4KB page size
on LMXe6-SabreLite.

0.16 || &2 Unlock Only Page Causing Inconsist (Alt)
- Attested Mem: BOMBE Mem (20480 pages)
o1all ™7 Attested Mem: 48MB Mem (12288 pages)
: — Attested Mem: 16MB Mem (4096 pages)
0121
) 010
Z .08
<
2
006
004
002
0.00
o 5 10 15 20 25 30 35

of modified pages

Figure 12: Downtime of the faulting process P’ when its actions re-
sult in an inconsistency with 4KB page size on . MX6-SabreLite. Hor-
izontal lines represent downtime from the approach where P4;; re-
solves inconsistency by unlocking entire memory of P’.

5.6 Experimental Results: Inconsistency
Detection

To evaluate performance of the inconsistency detection mechanism,
we experimented by running two processes — modified P4;; and P’
— with the same execution priority on LMX6-SabreLite. (Multiple
same-priority processes are scheduled in a round-robin fashion.)
Thus, timing results for this experiment differ from others that
consider only P4 running at any given time.

Results in Figure 11 show the performance comparison of: (1)
the inconsistency detection mechanism (with and without incon-
sistency occurring), (2) A11-Lock, and (3) attestation without con-
sistency guarantee or No-Lock on 16MB to 96MB memory. In this
experiment, we assume that P4;; chooses to resolve inconsistency
by unlocking the entire memory of P’. In case of no inconsistency,
our mechanism (as expected) performs as well as Al1-Lock and
roughly 6% slower than No-Lock. On the other hand, when an in-
consistency occurs, the mechanism (surprisingly) runs 3% faster.
While this may seem counter-intuitive, we found that improved
performance is caused by Thyain performing memory unlocking
while P’ is being suspended. This results in run-time of the unlock

operation being ~2x faster than that of the same operation in its
counterpart, where memory unlocking is performed concurrently
with P’.

We now consider the alternative, whereby P4;; resolves the
inconsistency by unlocking only the page that causes it, instead
of unlocking entire memory. Clearly, runtime overhead of this
approach depends on the number of times inconsistency is trig-
gered 7 during attestation. In this experiment, we measure overhead
through downtime of P’, i.e., total elapsed time for P’ to complete
writing into locked pages. Figure 12 illustrates that overhead, as
expected, is linear in terms of a number of modified pages. It also
shows that it is more beneficial to use the alternative approach
where P’ is expected to perform only a few memory writes. In our
experimental setting, this threshold is around 0.12% of P’ memory

pages.

6 RELATED WORK

To the best of our knowledge, there has been no prior work on tem-
poral consistency of integrity-ensuring functions, though it is pos-
sible that this concept has been considered under a different guise
in the cryptographic literature. Extended versions Inc-Lock-Ext
and Cpy-Lock & Writeback can be viewed as a form of protection
against “Time of Check Time of Use” (TOCTOU) attacks in certain
applications.

The “Provable Virus Detection” method discussed in [22] is a
very relevant result. In it, a secret is embedded within software
running on a device is periodically checked by a trusted verifier.
The argument is that injected malware consistently destroys the
secret, and its presence is therefore detectable. While promising,
[22] only deals with malware directly inserted into a system (e.g.,
via DMA) and requires substantial modifications to the CPU.

One alternative way to detect malware without locking mem-
ory (however, without guaranteed consistency) is explored in [4].
Memory is measured in a random order, which cannot be learned
or anticipated by malware. Since memory is never locked, this is
an advantage for time-sensitive applications. The main drawback
of [4] is its probabilistic nature, which can lead to a significantly
increased time to perform attestation.

The rest of this section focuses on related work in RA.

RA aims to detect malware presence by verifying integrity of
a remote and untrusted embedded (or IoT) device. It is typically
realized as a protocol, whereby a trusted verifier interacts with a
remote prover to obtain a challenge-based integrity measurement
of the latter’s memory state. RA techniques fall into three main
categories: hardware-based, software-based, and hybrid.

Hardware-based attestation [32, 38] uses dedicated hardware com-
ponents, such as a Trusted Platform Module (TPM) [15], ARM Trust-
Zone [23] or Intel SGX [8] to execute attestation code in a trusted
execution environment. Even though such features are currently
available in personal computers, laptops and smartphones, they are
still considered a “luxury” for low-end embedded devices.

Software-based attestation [34, 35] requires no hardware support
and performs attestation solely based on software and precise tim-
ing measurements. When deployed on a single-processor system,
this approach can ensure temporal consistency; malware could try

"This is equivalent to the number of memory pages of P’ modified during attestation.

to interrupt the measurement process and cause temporal inconsis-
tency (e.g. by moving itself around) during attestation. However,
this action will result in additional delay, which is then detectable by
Vrf. Software-based approaches limit the prover to being one-hop
away from the verifier, in order to ensure that the round-trip time
is either negligible or fixed. Such approaches also rely on strong
assumptions about attackers’ behavior [1] and are typically used
only for legacy devices, where no other RA techniques are viable.

Finally, hybrid attestation [2, 11, 19], based on software/hardware
co-design, realizes RA while attempting to minimize required hard-
ware features and the software footprint. SMART [11] is the first
hybrid RA design with minimal hardware modifications to existing
microcontroller units (MCUs). It has the following key features:

e Attestation code is immutable: it is located in, and executed
from, ROM.

o Attestation code is safe: its execution always terminates and
leaks no information other than the attestation result.

e Attestation code is executed atomically: (1) it is uninterrupt-
ible, and (2) it starts from the first instruction and exits at the
last instruction. (This is enforced by hard-wired MCU access
controls and disabling interrupts upon entry of attestation
code.)

o A secret attestation key is stored in an isolated memory
location that can be accessed (based on hard-wired MCU
rules) only from within attestation code.

Subsequently, [3] extended SMART to defend against verifier imper-
sonation and denial-of-service (DoS) attacks. The resultant design
(SMART+) additionally requires prover to have a Reliable Read-Only
Clock (RROC), which is needed to perform verifier authentication
and prevent replay, reorder and delay attacks. To ensure reliability,
RROC cannot be modified by non-physical (software) means. Upon
receiving a verifier request, ROM-resident attestation code checks
the request’s freshness using RROC, authenticates it, and only then
proceeds to perform attestation.

TrustLite [19] security architecture also supports RA for low-end
devices. It differs from SMART in two ways: First, interrupts are
allowed and are handled securely by the CPU Exception Engine.
Second, static access control rules can be programmed in software
using an Execution-Aware Memory Protection Unit (EA-MPU). A
follow-on effort, called TyTAN [2], adopts a similar approach while
providing additional real-time guarantees and dynamic configu-
ration for safety- and security-critical applications. As mentioned
earlier, both TrustLite [19] and TyTAN [2] support interrupts. While
this allows for time-critical processes to take priority over others
and to preserve Prv’s functionality, attestation results may not be
consistent. Memory can change once attestation is interrupted and
the final attestation result might correspond to a state of Prv’s
memory that never existed.

In summary, RA architectures that disable interrupts, or ensure
atomic execution through other means, automatically (though only
coincidentally) ensure temporal consistency on single-processor
devices. In multi-processor settings, atomic execution is insufficient.
Whereas, RA architectures that allow interrupts must ensure tem-
poral consistency (e.g., via mechanisms described in this paper);
otherwise nonsensical or incorrect results might be produced.

7 CONCLUSIONS

In this paper we explore the discrepancy between (implicit) theoret-
ical assumptions and implementations of cryptographic integrity-
ensuring functions, focusing on the context of Remote Attestation
(RA). We show that, in practice, inputs to such functions can change
during computation, and that the vulnerability window can be
large, since cryptographic computations can be time-consuming.
We propose multiple practical mechanisms to ensure consistency of
integrity-ensuring functions. They offer tradeoffs between consis-
tency guarantees, performance overhead, and impact on memory
availability. We implement proposed mechanisms on two commod-
ity platforms in the context of a hybrid RA architecture for em-
bedded systems. Results show that locking/unlocking of memory
incurs negligible overhead over computing cryptographic integrity-
ensuring functions, e.g., MACs. We demonstrate that ensuring tem-
poral consistency can be achieved with less than 10% overhead
on both platforms, while providing much better availability for
time-critical applications. We believe that this paper highlights im-
portant issues that have been surprisingly under-appreciated in the
security research literature, yet are crucial for correct and secure
operations in RA and other security services building upon it.
SUPPORT: This work was supported in part by (1) DHS, under sub-
contract from HRL Laboratories, (2) ARO under contract: W911NF-
16-1-0536, and (3) NSF WiFiUS Program Award #: 1702911.

REFERENCES

[1] Tigist Abera, N Asokan, Lucas Davi, Farinaz Koushanfar, Andrew Paverd, Ahmad-
Reza Sadeghi, and Gene Tsudik. 2016. Invited: Things, trouble, trust: on building
trust in IoT systems. In ACM/IEEE Design Automation Conference (DAC).

[2] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-
mann, and Patrick Koeberl. 2015. TyTAN: tiny trust anchor for tiny devices. In
ACM/IEEE Design Automation Conference (DAC).

[3] Ferdinand Brasser, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. Remote Attes-
tation for Low-End Embedded Devices: the Prover’s Perspective. In ACM/IEEE
Design Automation Conference (DAC).

[4] Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. 2018. Remote
Attestation of IoT Devices via SMARM: Shuffled Measurements Against Roving
Malware. In IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2018.

[5] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.
2009. On the Difficulty of Software-based Attestation of Embedded Devices.
In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS).

[6] Eric Chien, Liam OMurchu, and Nicolas Falliere. 2012. W32.Duqu: The Precursor
to the Next Stuxnet. In Proceedings of the 5th USENIX Conference on Large-Scale
Exploits and Emergent Threats.

[7] Hardkernel co. Ltd. 2013. ODROID-XU4. (2013). http://www.hardkernel.com/
main/products/prdt_info.php?g_code=G143452239825

[8] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive (2016).

[9] Boundary Devices. 2017. BD-SL-LMX6. (2017). https://boundarydevices.com/

product/sabre-lite-imx6-sbc/

Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. 2017. HYDRA:

Hybrid Design for Remote Attestation (Using a Formally Verified Microkernel).

In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and

Mobile Networks (WiSec).

Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.

SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root of

Trust. In Network and Distributed System Security Symposium (NDSS).

[12] F-Secure. 2018. Brain Description. (2018). https://www.f-secure.com/v-descs/

brain.shtml

F-Secure. 2018. Cabanas Description. (2018). https://www.f-secure.com/v-descs/

cabanas.shtml

[14] F-Secure. 2018. Frodo Description. (2018). https://www.f-secure.com/v-descs/

frodo.shtml

Trusted Computing Group. 2017. Trusted Platform Module (TPM). (2017). http:

/[www.trustedcomputinggroup.org/work-groups/trusted-platform-module/

=
=2

—_
—

[13

[15

[16]

[17

(18

[19

IS
=

[21

[22

[23

[24

[25

Iy
S

[27

[28

[29]

[30

[31

@
&,

[33

[34

[40]

SANS Institute. 2014. Securing the Internet of Things Survey.
(2014). https://www.sans.org/reading-room/whitepapers/analyst/
securing-internet-things- survey-34785

ISO/IEC. 2011. Information technology — Security techniques — Message Authenti-
cation Codes (MACs) — Part 1: Mechanisms using a block cipher. Standard. ISO.
Gerwin Klein, Kevin Elphinstone, Gernot Heiser, et al. 2009. seL4: Formal verifi-
cation of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles.

Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
2014. TrustLite: A security architecture for tiny embedded devices. In ACM
European Conference on Computer Systems (EuroSys).

Ralph Langner. 2013. To Kill a Centrifuge a Technical Analysis of What Stuxnet’s
Creators Tried to Achieve. (2013).

Yanlin Li, Jonathan M. McCune, and Adrian Perrig. 2011. VIPER: Verifying the
Integrity of PERipherals’ Firmware. In Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS).

Richard J. Lipton, Rafail Ostrovsky, and Vassilis Zikas. 2016. Provably Secure
Virus Detection: Using The Observer Effect Against Malware. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP.

ARM Ltd. 2017. ARM TrustZone. (2017). https://www.arm.com/products/
security-on-arm/trustzone

LWN.net. 2018. DR rootkit released under the GPL. (2018). https://lwn.net/
Articles/297775/

Wired Magazine. 2013. Trojan Turns Your PC Into Bitcoin Mining Slave. (2013).
https://www.wired.com/2013/04/bitcoin-trojan

National ICT Australia and other contributors. 2014. seL4 Libraries. (2014).
https://github.com/seL4/seL4_libs

National ICT Australia and other contributors. 2014. The seL4 Repository. (2014).
https://github.com/seL4/seL4

Daniele Perito and Gene Tsudik. 2010. Secure Code Update for Embedded Devices
via Proofs of Secure Erasure.. In ESORICS.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
Oriented Programming: Systems, Languages, and Applications. ACM Trans. Inf.
Syst. Secur. (2012).

Ethan M Rudd, Andras Rozsa, Manuel Giinther, and Terrance E Boult. 2017. A
Survey of Stealth Malware Attacks, Mitigation Measures, and Steps Toward
Autonomous Open World Solutions. IEEE Communications Surveys & Tutorials
(2017).

M]J Saarinen and JP Aumasson. 2015. The BLAKEZ2 cryptographic hash and message
authentication code (MAC), RFC 7693. Technical Report. IETF.

Dries Schellekens, Brecht Wyseur, and Bart Preneel. 2008. Remote attestation on
legacy operating systems with trusted platform modules. Science of Computer
Programming (2008).

Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. 2006. SCUBA: Secure Code Update By Attestation in Sensor Networks.
In ACM Workshop on Wireless Security (WiSe).

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,
and Pradeep Khosla. 2005. Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles.

Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla. 2004.
SWATT: Software-based attestation for embedded devices. In IEEE Symposium
on Research in Security and Privacy (S&P).

IEEE Spectrum. 2013. The Real Story of Stuxnet. (2013). http://spectrum.ieee.
org/telecom/security/the-real-story-of-stuxnet

Secure Hash Standard. 2002. FIPS PUB 180-2. (2002).

Frederic Stumpf, Omid Tafreschi, Patrick Réder, and Claudia Eckert. 2006. A
Robust Integrity Reporting Protocol for Remote Attestation. In Workshop on
Advances in Trusted Computing (WATC).

Symantec. 2015. GreenDispencer: Self-deleting Malware. (2015). https://www.
symantec.com/security_response/writeup.jsp?docid=2015-092513-0300-99

Wei Yan, Zheng Zhang, and Nirwan Ansari. 2008. Revealing packed malware.
seCurity & PrivaCy (2008).

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
https://www.f-secure.com/v-descs/brain.shtml
https://www.f-secure.com/v-descs/brain.shtml
https://www.f-secure.com/v-descs/cabanas.shtml
https://www.f-secure.com/v-descs/cabanas.shtml
https://www.f-secure.com/v-descs/frodo.shtml
https://www.f-secure.com/v-descs/frodo.shtml
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.sans.org/reading-room/whitepapers/analyst/securing-internet-things-survey-34785
https://www.sans.org/reading-room/whitepapers/analyst/securing-internet-things-survey-34785
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://lwn.net/Articles/297775/
https://lwn.net/Articles/297775/
https://www.wired.com/2013/04/bitcoin-trojan
https://github.com/seL4/seL4_libs
https://github.com/seL4/seL4
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
https://www.symantec.com/security_response/writeup.jsp?docid=2015-092513-0300-99
https://www.symantec.com/security_response/writeup.jsp?docid=2015-092513-0300-99

APPENDIX

A TEMPORAL CONSISTENCY SECURITY
GAME

We build upon the theoretical model of a processor architecture
and syntax from [22]. The work in [22] focuses on virus detec-
tion by constructing a scheme that interleaves secret shares of
cryptographic keys with the actual memory. This scheme requires
modifications to the instructions of the processor, in order to recon-
struct such keys and use them to ensure integrity (and thus detect
unauthorized modifications by malware) of memory content with
every read and write. Our work differs from [22], since we do not
require any modification to the underlying processor architecture,
as evident in our implementation.

A.1 System (Memory and CPU) Model

We model the prover as a random access machine RAM made up
of two components: a random access memory M, and a central
processing unit CPU. M consists of three sections:

(1) MEM- standard random access memory.

(2) ROM- read-only memory. This section of memory will store
the code for a measuring process MP.

(3) ProMEM- protected memory, that can only be written to from
instructions in ROM. This section of memory will store data
to be used by the MP in ROM.

CPU consists of registers (including input and output register) and
an instruction set. Communication between M and CPU occurs in
fetch-execute cycles, which are referred to as rounds below.

A.2 Syntax of a Consistent Integrity-Ensuring
Measurement Scheme

A consistent integrity-ensuring measuring scheme (CM%) is a
tuple of algorithms (Gen, Challenge, Respond, Verify) defined as:
e Gen(A): Generates a secret key K on input of a security
parameter A.
o Challenge(s): Generates a random challenge ¢ on input of a
seed s.
® Respond(M, ¢, K): Generates a response r to a given chal-
lenge c (based on content of memory M).
® Verify(c, r, K): Outputs a bit b indicating whether r is a valid
response to the challenge c.

A.3 Consistent Integrity Ensuring
Measurement Attack Game

In the following game, A is allowed to choose a piece of code (or
data) to inject into memory at any point in time. At some point in
time chosen by /A, a challenge is issued. A wins if its code (or data)
is injected before the game ends, but the response to the challenge
is correct.

Recall that, in Section 2, we described a typical RA scheme as
follows:

(1) Vrf sends a challenge-bearing attestation request to Prv at

time tyg
(2) Prv receives it at time tpr
(3) Computation of MP starts at time fs

Table 2: Notation

A The adversary

c The challenger

Pinit # rounds at beginning of security game
(before issuing challenge)

Pinsert #rounds before A’s code is injected

Pattest #rounds after issuing the challenge

v Code that A injects into MEM

Mp Integrity-ensuring measurement function

that runs Respond algorithm.

(4) Computation of MP ends at time #e

(5) Prv sends the attestation report to V'rf at time fps

(6) “Vrf receives it at time £,y
The formal security game of CMP is defined in terms of rounds,
where if tys = tpy = tcs, they would all correspond to the instant at
the end of the rounds pjp;; when the challenge is issued. The end
of pattest corresponds to time when computation of the integrity
ensuring function ends at: fce = tps = tvr.

DEFINITION 4. We say that a consistent integrity-ensuring measur-
ing scheme (CMP) is secure if a non-empty piece of code is inserted
before the attack game terminates, and:

Pr(b=1) < p(d)
where u(A) is a negligible function.

Figure 13 contains the definition of the security game for a con-
sistent integrity-ensuring measuring scheme (CM%).

Shared by A and C: random access machine RAM = (M, CPU),
program W, integrity ensuring measurement function MP (e.g., an
HMAC), security parameter A, and consistent integrity-ensuring
measurement function CMP.

(1) A chooses the following and provides them to C:
e Inputs: x = x1||. .. ||x; for RAM.
* Values: Pinits Pinsert and Pattests all pol)mamjal ina
e Code v to be injected into MEM, and memory location i to
insert it (and optionally a list of other memory locations v
should be moved to at subsequent rounds after insertion
at Pi nsert}-

(2) € runs Gen(A) to generate setup parameters.

(3) C simulates p;nis rounds of execution. If round pinsers is
reached, v is inserted into MEM at the beginning of that round.
If program halts, go to step 4.

(4) C initiates C M%P by generating a challenge ¢ by invoking
Challenge and writing it to the input register. C invokes ROM
which contain executable code of MP. C simulates execution
of pattest Tounds. If round p;p, e, is reached, v is inserted
into MEM at the beginning of that round. If program halts,
proceed to step 5.

(5) C interprets data in output register as r, a response to its chal-
lenge, and outputs bit b, which is the result of Verify(c, r, K).

Figure 13: C M P Security Game

B SECURITY ARGUMENTS &
CONSIDERATIONS

We consider two approaches: Dec-Lock and Al1-Lock, and sketch
out corresponding security proofs. Security of remaining ap-
proaches is quite similar. For the purpose of this section, our instanti-
ations of Dec-Lock and A11-Lock is within the HYDRA architecture.
Proof sketches are only valid for these specific instantiations since
they rely on features ensured by HYDRA. The required (memory
isolation and access control) features are instantiated in HYDRA
using seL4 which is formally verified. HYDRA uses a secure HMAC
as the MP.

B.1 Preliminaries and Assumptions
We capture HYDRA features by the following assumptions:

(1) Assumption-1 (memory access control): memory regions
locked, or configured as read-only, cannot be written to by
any process.

(2) Assumption-2 (memory isolation): each process, except the
attestation one, can only access its own memory space.

(3) Assumption-3 (MP is secure): A secure HMAC is used to
implement MP.

B.2 Proof Sketch for Dec-Lock

Considering the security game in Figure 13, there are two cases:

(1) A supplied pinsert < pattest
(2) A supplied pinsert > partest

The first case is trivial, since there is no memory modification after
attestation starts, i.e., temporal consistency follows by construction
of the case. If everything works as expected, MP computes r on
MEM and Verify(c, r, K) should fail, i.e., b = 0. b would be 0 because
v is now in MEM before MP starts. Thus, the value of r will indicate
that; otherwise, MP is insecure, which contradicts Assumption-
3. Computation, intermediate and final results of MP cannot be
directly affected, since this would violate Assumption-2.

The second case is more subtle. Recall that, in Dec-Lock, entire
memory is locked at tys = tpr = tes = pinit, and incrementally
unlocked as computation of MP proceeds. Assume that memory
location i is unlocked after it is processed in round pgrrest + J,
i.e., one memory location is processed per round after attestation
starts. If memory location i, where v is to be inserted, is still locked
during pinsert, i-€., if partest < pinsert < Pattest + Jj, then based
on Assumption-1 above, v cannot be inserted into MEM. In order to
insert v, memory location i has to be unlocked during pinsers, i-€.,
Pattest +Jj < Pinsert; this means that during computation of MP
the memory was consistent. Note that the case of pgsresr +j <
pinsert 1s reduced to case 1 in the next attestation round request.
Thus, security follows as the first case above.

B.3 Proof Sketch for Al11-Lock

Considering the security game in Figure 13, there are two cases:

(1) A supplied pinsert < partest

(2) A supplied pinsert > pattest
The first case is the same as in Dec-Lock.
In the second case, since pinserr > Parrest and, at pgrress, all
memory is locked, by Assumption-1 insertion of v into location i

will fail, MEM will remain consistent and a correct r will be produced;
Verify(c, r, i) will succeed and produce b = 1.

C SAMPLE CODE FOR THprauLT

void handle_fault(seL4_CPtr fault_ep, seL4_CPtr main_ep)
{
seL4_Word sender_badge = 0;
while(1) {
seL4_MessageInfo_t tag = seL4_Recv(fault_ep, &sender_badge);
seL4_Word fault_addr = seL4_GetMR(seL4_VMFault_Addr);
if(seL4_MessageInfo_get_label(tag) == selL4_Fault_VMFault && !
seld4utils_is_read_fault() && is_being_attested(fault_addr))
{
/% Return back to the main thread with a process causing inconsistency */
seL4_SetMR(@, sender_badge);
seL4_Send(main_ep, tag);
}
}
}

void create_fault_handler_thread(seL4_CPtr fault_ep, seL4_CPtr main_ep)
{
sel4utils_thread_t fault_thread;
seL4_CPtr cspace_cap = simple_get_cnode(&simple);
int error = sel4utils_configure_thread(&vka, &vspace, &vspace, selL4_CapNull,
seL4_MaxPrio, cspace_cap, seL4_NilData, &fault_thread);
assert(error == 0);
error = sel4utils_start_thread(&fault_thread, handle_fault, (void*) fault_ep,
(void*) main_ep, 1);
assert(error == 0);

3

D MIGRATORY MALWARE ATTACK

Figure 14 illustrates an example of migratory malware that violates
temporal consistency during execution of MP. The attack timeline
is as follows:

e At time ty, malware enters and infects Prv. We assume that
malware resides at the tail end of program memory. 8

e Attime t; > to, malware intercepts Vrf’s attestation request,
e.g., by modifying the interrupt handler for the network
device driver. It then sets an interrupt timer for #, and invokes
MP.

o MP runs without interruption from #; to t,.

e At ty > t1, malware interrupts MP. It then copies itself to
the part of memory that was already measured, erases itself
from its prior location, and resumes execution of MP.

e At time t4, MP completes and produces the measurement
for delivery to Vrf.

Throughout this process (t; — t4) malware is never covered by
MP. It thus successfully escapes detection, since the measurement
reflects a malware-free state.

E IS MIGRATORY MALWARE REALISTIC?

The stance taken in this paper is proactive in nature. One of the
goals is a technique that prevents migratory malware from escap-
ing detection (i.e., subverting attestation) on low-end embedded
systems. Thus far, there have been no public reports of migratory
malware. Nonetheless, we believe that it is realistic and not far-
fetched, especially, on low-end embedded systems that involve

81f program memory is insufficient to contain both existing firmware and malware,
the latter can use the executable compression technique [40] to reduce the sizes of
both firmware and itself.

Firmware

Malware Malware |~

¥

t_z tO

I:l Not-yet-measured memory

T I
ty t, Time

- Measured memory

Figure 14: Program memory of infected Prv before (at #;), during (at ¢, t3) and after (at #,) the measurement process.

applications running on “bare metal” and even those capable of
supporting a rudimentary microkernel.

In a more traditional computing setting (e.g., PCs, laptops, tablets,
and smartphones) anticipated migratory malware resembles the
behavior of stealthy viruses [30] that employ various evasion tech-
niques to conceal their existence during a virus scan. Typical eva-
sion techniques involve an operating system and rely on intercep-
tion of system calls as well as manipulation of returned data. For
example, [13] conceals the size of infected files by returning the
original size when the DIR command is invoked. Another example
is [12, 14, 24] that redirect all access to an infected file to an area
storing the original file.

In principle, stealthy malware might also hide its presence by
moving itself into an area that has already been covered by a virus
scanner, similar to our migratory malware. We believe that this
is quite plausible in embedded systems, where a memory migra-
tion cannot be detected in software, without using some kind of a
temporal consistency mechanism.

	Abstract
	1 Introduction
	2 Temporal Consistency
	2.1 Remote Attestation
	2.2 RA Blueprint
	2.3 A Trivial Approach
	2.4 Attestation Target

	3 Modeling Temporal Consistency
	4 Temporal Consistency Mechanisms
	4.1 Simple Approaches
	4.2 Sliding Locks
	4.3 Mixing Copying with Locking
	4.4 Variations on the Theme
	4.5 Uninterruptibility vs. Locking
	4.6 Memory Access Violations
	4.7 Inconsistency Detection

	5 Implementation & Evaluation
	5.1 HYDRA
	5.2 Experimental Setup
	5.3 Experimental Results: Primitives
	5.4 Experimental Results: Mechanisms
	5.5 Implementation of Inconsistency Detection
	5.6 Experimental Results: Inconsistency Detection

	6 Related Work
	7 Conclusions
	References
	A Temporal Consistency Security Game
	A.1 System (Memory and CPU) Model
	A.2 Syntax of a Consistent Integrity-Ensuring Measurement Scheme
	A.3 Consistent Integrity Ensuring Measurement Attack Game

	B Security Arguments & Considerations
	B.1 Preliminaries and Assumptions
	B.2 Proof Sketch for Dec-Lock
	B.3 Proof Sketch for All-Lock

	C Sample Code for Thfault
	D Migratory Malware Attack
	E Is Migratory Malware Realistic?

