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ABSTRACT
Remote attestation (RA) is a means of malware detection, typically
realized as an interaction between a trusted verifier and a poten-
tially compromised remote device (prover). RA is especially rele-
vant for low-end embedded devices that are incapable of protecting
themselves against malware infection. Most current RA techniques
require on-demand and uninterruptible (atomic) operation. The for-
mer fails to detect transient malware that enters and leaves between
successive RA instances; the latter involves performing potentially
time-consuming computation over prover’s memory and/or storage,
which can be harmful to the device’s safety-critical functionality
and general availability. However, relaxing either on-demand or
atomic RA operation is tricky and prone to vulnerabilities. This
paper identifies some issues that arise in reconciling requirements
of safety-critical operation with those of secure remote attesta-
tion, including detection of transient and self-relocating malware.
It also investigates mitigation techniques, including periodic self-
measurements as well as interruptible attestation modality that
involves shuffled memory traversals and various memory locking
mechanisms.
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1 INTRODUCTION
Prior to about 10 years ago, preferred targets of malware were
general-purpose computers and, later, smartphones. However, in
recent years, the number and variety of special-purpose computing
devices has increased dramatically. This includes all kinds of embed-
ded devices, cyber-physical systems (CPS) and Internet-of-Things
(IoT) gadgets. They are increasingly occurring in various “smart”
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settings, such as home, office, factory, automotive and public venues.
Despite many benefits, these devices unfortunately also represent
natural and attractive malware attack targets. This is mainly be-
cause they are numerous, inter-connected and/or connected to the
Internet, and their security is either poor or non-existent.

As society becomes increasingly accustomed to being surrounded
by, and deriving benefits from, such devices, their well-being be-
comes a paramount concern. In the context of actuation-capable
devices, malware can impact security and safety, e.g., as demon-
strated by Stuxnet [28]. Whereas, for sensing devices, malware can
undermine privacy by obtaining ambient information. Furthermore,
clever malware can turn vulnerable IoT devices into zombies that
can become sources for DDoS attacks. For example, in Fall 2016, a
multitude of compromised “smart” cameras and DVRs formed the
Mirai Botnet [1] which was used to mount a massive-scale DDoS
attack.

Security is typically not the highest priority for low-end device
manufacturers, due to cost, size or power constraints, as well as
the rush-to-market syndrome. It is thus unrealistic to expect such
devices to have the means to prevent malware attacks. The next
best thing is detection of malware presence. This typically requires
some form of Remote Attestation (RA) – a distinct security ser-
vice for detecting malware on CPS, embedded and IoT devices. RA
is especially applicable to low-end embedded devices incapable of
defending themselves against malware infection. This is in contrast
to more powerful devices (both embedded and general-purpose)
that can avail themselves of sophisticated anti-malware protection.
RA involves verification of current internal state (i.e., RAM and/or
flash) of an untrusted remote hardware platform (prover or Prv) by
a trusted entity (verifier orVrf). IfVrf detects malware presence,
Prv’s software can be re-set or rolled back and out-of-band mea-
sures can be taken to prevent similar infections. In general, RA can
helpVrf establish a static or dynamic root of trust in Prv and can
also be used to construct other security services, such as software
updates [25] and secure deletion [21].

2 BACKGROUND AND MOTIVATION
2.1 RA Overview
Many RA techniques with various assumptions, security features
and complexities have been proposed. Most of them can be divided
into three approaches: hardware-based, software-based, and hybrid.

Hardware-based approaches typically rely on security provided
by a separate and dedicated secure hardware component, such as a
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Trusted Platform Module (TPM) [27]. Despite resisting all, except
physical attacks, hardware-based approaches are unsuitable for
low-end and legacy embedded devices due to its added complexity
and various cost factors.

Software-based RA techniques offer a very low-cost alternative.
Pioneer [26] is a prominent example of this approach; it relies on a
one-time special checksum function that covers memory in an un-
predictable (rather than contiguous) fashion. Any interference with,
or emulation of, the computation of this checksum is detectable
by extra latency incurred by self-relocating malware moving itself
(in parts) while trying to avoid being “caught” by the checksum.
Unfortunately, security of this approach is uncertain after several
attacks on software-based RA schemes (e.g., [8]) were demonstrated.
Another problem with the software-based approach is that it re-
quires strong assumptions about adversarial capabilities, which
are unrealistic in many real settings. However, this is the only RA
option for legacy devices.

Hybrid (software-hardware) RA co-designs attempt to overcome
limitations of purely software-based techniques while minimizing
hardware requirements. Hybrid RA is also especially suitable for
mid-range and low-end embedded devices, which usually lack, or
cannot accommodate, a secure hardware component, such as a
TPM. SMART [12] is the first hybrid RA architecture with minimal
hardware modifications to existing microcontroller units (MCUs).
SMART requires uninterruptible and atomic execution of non-malleable
ROM-resident attestation code which has exclusive access to attes-
tation key(s); this is enforced by hard-wired MCU access control
rules. Actual attestation is performed by Prv computing a cryp-
tographic checksum over a specific memory region and returning
the result to Vrf. Notably, SMART’s requirement for atomic exe-
cution of attestation code was motivated by the need to mitigate
code-reuse, e.g., ROP [22] attacks.

HYDRA [10, 11] implements SMART for devices with a Mem-
ory Management Unit (MMU). It builds upon the formally verified
seL4 [18] microkernel, which ensures process memory isolation
and enforces access control to memory regions. Given guaranteed
process isolation features of seL4, SMART access control rules are
implemented in software and enforced by seL4 in the HYDRA se-
curity architecture. Similar to SMART, HYDRA requires execution
of the attestation process to be atomic. HYDRA achieves this prop-
erty by starting the attestation process with the highest priority,
while assigning lower priorities to all other processes. It requires
hardware-enforced secure boot to securely instantiate seL4 and the
attestation process.

The TrustLite [19] security architecture also supports RA for
low-end devices. It differs from SMART in two ways: First, interrupts
are allowed and handled securely by the CPU Exception Engine.
Second, static access control rules can be programmed in software
using an Execution-Aware Memory Protection Unit (EA-MPU). A
follow-on effort, called TyTAN [3], adopts a similar approach while
providing additional real-time guarantees and dynamic configura-
tion for safety- and security-critical applications.

Aforementioned RA techniques operate in a single prover set-
ting. However, various emerging applications such as [24] require
attesting a group (or a swarm) of interconnected embedded devices.
In that setting, it is beneficial to take advantage of interconnectiv-
ity and perform collective attestation using a dedicated protocol.

Several techniques [2, 4, 23] for efficient RA of large and dynamic
device swarms have been proposed. Attestation results from these
techniques in provide a range of information about the state of
the attested devices. Another swarm RA technique, DARPA [13],
additionally offers a means to detect physical attacks.

2.2 On-Demand RA Timeline
In general terms, the attestation process (MP) on Prv computes
a keyed integrity-ensuring function. The input to this function
(i.e., the aforementioned cryptographic checksum) is all, or part, of
Prv’s memory. An on-demand RA scheme proceeds as follows:

(1) Vrf sends a challenge-bearing attestation request to Prv
(2) Prv receives it and startsMP
(3) Prv finishesMP and sends the attestation report toVrf
(4) Vrf receives the report from Prv and verifies it

The timeline illustrating this sequence of events is shown in Figure 1.
Computation ofMP (in gray) starts at ts and ends at te. However, in
practice, it may be deferred on Prv due to networking delays,Vrf’s
request authentication, or termination of the previously running
task.

Prover

Verifier

ts te

req re
sp

Figure 1: Timeline for an on-demand RA scheme.

2.3 RA Coverage
The usual RA coverage on Prv includes executable code residing
in RAM or in some non-volatile memory. RA might also cover non-
executable regions on Prv, i.e., data. LetM , of bit-size L, represent
Prv’s memory to be attested. If content ofM is known a priori to
Vrf and expected to be immutable, then Prv can executeMP over
M and send the result toVrf, which can easily validate it. The same
applies if M is mutable and its entropy is low: Vrf can compute
(or pre-compute) all possible valid (benign) results ofMP overM
and thus validate Prv’s result. However, if entropy of M is high,
enumeration of its possible valid states can become infeasible. This
is likely to occur when parts of M correspond to data, e.g., stack,
heap and registers. One way to address this issue is forPrv to return
toVrf the actual contents of parts of M that are highly mutable.
For example, ifM = [C,D] whereC represents immutable code and
D – volatile high-entropy data region(s), Prv can return the fixed-
size measurement result produced byMP over M , accompanied
by a copy of D. Clearly, this only makes sense if |D | is small, i.e.,
|D | << L. Furthermore, if content ofD is irrelevant toVrf, Prv can
easily zero it out before executingMP. This makes it impossible
for malware to hide in such regions, and obviates the need for Prv
to sendVrf an explicit copy of D.

2.4 Timing Overhead
Timing complexity (overhead) ofMP on Prv is dominated by mea-
surement of attested memory, which, in turn, depends on the size



ofthatmemory,Prv’scomputatfionalcapabfilfitfies,andunderlyfing
cryptographficfunctfion(s).Onenaturalwaytoobtafinameasure-
mentwfithhybrfidorhardwareRAtechnfiques1fisbycomputfinga
MessageAuthentficatfionCode(MAC),basedefitheronhashfing(e.g.,
HMAC-SHA-2[20])orencryptfion(e.g.,AES-CBC-MAC[15]).We
focusonhash-basedMACs.Alternatfively,ameasurementcanbe
obtafinedbycomputfingaDfigfitalSfignature,vfiathestandardhash-
and-sfignmethod,e.g.,usfingRSA[17]orEC-DSA[16].MACsare
clearlymuchcheaperthansfignatures.Whereas,fifnon-repudfiatfion
orstrongorfigfinauthentficatfionfisrequfired,sfignaturesarejustfified.
RegardlessofMACsorsfignatures,tfimfingoverheadfismostly

determfinedbyhashfing.Theactualsfignaturetfimefisfindependent
ofmemorysfize,sfinceonlythefixed-sfizehashfisactuallysfigned.Of
course,forsmallmemorysfizes,sfignaturecomputatfionfisthemafin
costcomponent.However,foranysfignaturealgorfithm,therefisa
pofintatwhfichthecostofhashfingexceedsthatofsfignfing.Also,
forHMAC-basedMACs,thecostoftheouterhashfisneglfigfible
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Ffigure2:Tfimfingsofseveralhashfunctfionsandsfignatureson
ODROID-XU4.

Wenowfillustratesomeconcretetfimfingmeasurements.Asa
samplePrvhardwareplatform,weuseODROID-XU4[9],apopular
sfingle-boardMCUrepresentatfiveofmedfium-to-low-endembedded
systems.Ffigure2showstfimfingsofMPforvarfiousmemorysfizes,
andforseveralhashandsfignaturechofices.Wepfickedsomepopular
hashfunctfions:SHA-256,SHA-512,Blake2bandBlake2s(thelatter
twoarefinpartficularwellsufitedforembeddedsystems),aswellas
popularsfignatureschemes:RSA-1024,RSA-2048,RSA-4096,ECDSA-
160,ECDSA-224,andECDSA-256.
AsfillustratedfinFfigure2,forfinputsfizesover1MB,MPtakes

longerthan0.01sec,andthecostofmostsfignaturealgorfithms
becomecomparatfivelyfinsfignfificant.Resultsshowthatevenhashfing
areasonablysmallamountofmemoryfincursasfignfificantdelay,e.g.,
about0.9sectomeasurejust100MBonODROID-XU4.Measurfing
fitsentfireRAM(2GB)fisqufitetfime-consumfingatnearly14sec.

1Asmentfionedearlfier,software-basedRAtechnfiquesusecustomchecksums,rather
thancryptographficfunctfions.

2.5 RAfinSafety-CrfitficalSettfings

Sfincelow-enddevficesareoftenusedfinreal-tfimeandsafety-crfitfical
applficatfions,fitfisfimportanttomfinfimfizethefimpactofRAonnormal
operatfion(fi.e.,avafilabfilfity)ofsuchdevfices.Inpartficular,fitmfight
beundesfirabletoallowattestatfioncodeonPrvtorunwfithout
finterruptfion,consfiderfingthatcomputfingameasurementovera
substantfialamountofmemorymfighttakearelatfivelylongtfime,
asshownabovefinSectfion2.4.
Forexample,consfiderasensor-actuatorfirealarmapplficatfion

runnfingover“bare-metal”onalow-endembeddedPrv,powered
byODROID-XU4.Thfisapplficatfionperfiodfically(say,everysecond)
checksthevalueoffitstemperaturesensorandtrfiggersanalarm
wheneverthatvalueexceedsacertafinthreshold.Gfivenfitssafety-
crfitficalfunctfion,softwarefintegrfityofPrvfisperfiodficallyvalfidated
vfiaRA,wheretheroleofVrffisplayedbyafire-alarmcontroller
orasmartcontrolpanel.UponrecefiptofarequestfromVrf,MP
finterruptsthecrfitficalapplficatfionandtakesover.UsfingahybrfidRA
technfique(e.g.,SMART),MPmustrununfinterruptedfinorderto
accuratelyrelectPrv’scurrentstate.Assumfingattestedmemory
sfizeof1GB,MPwouldrunforapproxfimately7sec.However,fifan
actualfirebreaksoutsoonafterMPstarts,fitwouldtakeavery
longtfimefortheapplficatfiontoregafincontrol,sensethefireand
soundthealarm.Precfioustfimelostasaresultofnon-finterruptfible
MPmfightcausedfisastrousconsequences.
Atthfispofint,fitfisnaturaltoconcludethattheatomficfityrequfire-

mentshouldberelaxedandMPshouldbefinterruptfiblebyalegfitfi-
matetfime-crfitficalapplficatfion.Unfortunately,allowfingfinterruptsfin
theattestatfioncodeopensthedoorformalwaredetectfionevasfion
strategfies.Forexample,fifPrvfiscompromfised,fitstfime-crfitfical
applficatfionmfightcontafinmalwarewhfichpresumablywantsto
avofiddetectfion.Whenconfrontedwfithfimmfinentattestatfionand
thussubsequentdetectfion,fitmaywantto:
•Sfimplyerasefitself,perhapsfinordertoreappearlater.Thfis
fisanexampleoftransfientmalware.Moregenerally,tran-
sfientmalwarefisonethatfinfectsPrvandlaterleaves,fideally
leavfingnotrace.
•RemafinonPrvandtrytoavofiddetectfionbymovfingfitself
arounddurfingattestatfion.Thfisbehavfiorcorrespondstoself-
relocatfingmalware.

Therefore,fitbecomesclearthattherefisanfinherentconlfictbe-
tweentheneedsofsafety-crfitficalapplficatfionsandRAsecurfity
requfirements.Resolvfingthfisconlfictrepresentsamajorchallenge
thatweexplorefintheremafinderofthfispaper.

3 SOLUTIONLANDSCAPE

Inthfissectfion,weconsfidersomepotentfialapproachestoreconcfile
securfityrequfirementsofRAwfiththoseofsafety-crfitficalapplfica-
tfions.Table1presentsasummaryofpropertfiesandspecfificfitfiesof
thesepotentfialsolutfions.

3.1 MemoryLockfing

Asmentfionedearlfier,hybrfidRAarchfitectures,suchasTrustLfite[19]
andTyTAN[3],permfittaskstobefinterrupted.Whfilethfisallowsfor
tfime-crfitficalprocessestorunandpreservePrv’scrfitficalfunctfion-
alfity,attestatfionresultsmfightbefinconsfistent.Indeed,finTrustLfite,



Table 1: Summary of features provided by potential solutions.

Solutions Malware Detection Writable Mem.
Availability

Consistency
Guarantees Interruptibility Unattended

Setting
Extra HW

Requirements
Run-Time
OverheadSelf-relocating Transient

Baseline: SMART-based
✓ ✓ ✗ ✓ ✗ ✗ Baseline BaselineOn-Demand RA [12]

Memory
Locking [5]

All-Lock ✓ ✓ ✗

✓
✓

(to some degree) ✗

Dynamically
Configurable
MPU or MMU

LowDec-Lock ✓ ✓ ✓ (to some degree)
Inc-Lock ✓ ✗ ✓ (to some degree)

Shuffled Measurement [7] ✓
(high prob.) ✗ ✓ ✗

✓
(to some degree) ✗

None (optionally
Secure Memory) High

Self-Measurement [6, 14] ✓ ✓ ✗ ✓
✗ (may be made
context aware) ✓ Secure Clock None

Figure 3: Overview of potential solutions.

since memory can change during execution ofMP, the report pro-
duced and sent toVrf might correspond to a state of Prv’s memory
that never existed in its entirety at any given time. This is problem-
atic ifVrf is infected with self-relocating malware. Assuming that
such malware resides in the second half of Prv’s memory, it can
interruptMP after the latter covers the first half of Prv’s memory,
copy itself into the first half, erase traces in its former location, and
resumeMP. This way, malware remains undetected despite the
fact that all memory locations have been measured.

In TyTAN [3], memory of each process is measured individu-
ally. While higher-priority processes may interruptMP to meet
real-time requirements, the process being measured may not do so,
regardless of its priority. This may protect against a single-process
malware from moving itself in memory. However, malware that
is spread over several colluding processes can defeat this counter-
measure. Doing so would require malware to violate process iso-
lation, e.g., by exploiting an OS vulnerability. Also, in a low-end
device with a single task (besidesMP), this corresponds to unin-
terruptible operation.

SMART [12] disables interrupts as the first step inMP. This pre-
cludes self-relocating malware. Uninterruptibility is required to
protect the attestation key and to ensure thatMP is performed
from beginning to end. However, temporal consistency was not
an explicit design goal of SMART. Consequently, although it coinci-
dentally guarantees consistency, SMART is unsuitable for time- or
safety-critical applications.

Several mechanisms that offer various tradeoffs between consis-
tency guarantees and real-time requirements were proposed and
prototyped over the HYDRA hybrid-RA architecture in [5]. Consis-
tency is achieved through locking memory regions, i.e., temporarily
making them read-only. Locking can be realized via system-calls
and capabilities enabled by a secure microkernel that is supported
by underlying hardware features, e.g., as in seL4 [18] microkernel.

ts te tr

A B C D

Figure 4: Timeline for computation of F . It starts at ts and ends at
te. Consistency is considered until tr. A change to M at time A or
D has no effect. Impact of a change at time B or C depends on the
consistency mechanism.

Three points in the timeline of computation of an integrity-ensuring
function 2 F are relevant to our discussion (see Figure 4):

(1) ts– computation of F starts;
(2) te– computation ends;
(3) Optionally, tr– Prv is explicitly requested to release a current

memory lock.

3.1.1 Basic Approaches. There are three obvious options:
(1) No-Lock:The simplest mechanism is a strawman that does

not lock memory. The result is computed using contents of
each memory block at the time when F processes it, which
means that it provides no consistency guarantees. Thus, it
might not detect self-relocating or transient malware.

(2) All-Lock: The other extreme is to lock the entire memoryM
at ts, and leave it locked throughout computation of F , finally
releasing it all at te. This provides very strong temporal
consistency guarantees at the cost of being very restrictive
and unfriendly to interrupting (potentially critical) tasks that
may require modifying locked memory. The measurement
is consistent withM within [ts,te]. This also implies thatM
is immutable and thus constant from ts to te.

(3) All-Lock-Ext: An extended variant of All-Lock that pro-
vides extra consistency keeps all memory locked until tr.
Similar to All-Lock, the measurement remains consistent
with M at every [ts,tr], and M stays constant from ts to tr.
An extended lock can be advantageous ifVrf wishes to guar-
antee that Prv is in a given state at a particular time tr, as
opposed to “some time in the past”.

3.1.2 Sliding-Lock Approaches. Several sliding-lockmechanisms
that dynamically lock or unlock blocks of memory during execu-
tion of F were proposed in [5]. In the Decreasing Lock (Dec-Lock)
mechanism, the entireM is locked at ts, and each block is released
as soon as F completes processing it. The measurement is consistent
2An integrity-ensuring function (e.g., MAC) F is a main component ofMP.



with all ofM at time ts only. This implies detection of any malware
present in M at ts. The Increasing Lock (Inc-Lock) mechanism
locks blocks as they are processed. EntireM is unlocked at ts and it
is gradually locked as computation of F proceeds, until it is com-
pletely locked at te, after which it is fully released. In other words,
each memory block is locked only when it is required for F . The
measurement is consistent withM at te only. This implies detection
of self-relocating, though not transient, malware. Unlike Dec-Lock,
it is beneficial to end the computation of F with blocks that require
high availability, since they are locked for the shortest time. As with
All-Lock-Ext, it is possible to add extra-computation consistency
to Inc-Lock by only releasing the lock at tr, instead of te. Then, the
measurement is consistent withM within the entire interval [te,tr],
andM stays constant within [te,tr]. This type of extension is not
naturally applicable to Dec-Lock since memory is not locked at te.
For more details on other mechanisms and extensions, along with
implementation details and experimental results, we refer to [5].

3.2 Shuffled Measurements
MakingMP interruptible without memory locking (see No-Lock
in Section 3.1.1) may be vulnerable to self-relocating malware. It is
nevertheless the approach taken in SMARM [7], with the following
additional twist: memory is measured in a random, secret order.
This order is established randomly when the measurement starts,
and then stored in secure memory (or encrypted in non-secure
memory).

SMARM makes the realistic assumption that malware is unable
to determine what blocks have been measured, when the measure-
ment is performed in a random order. However, it may be able to
determine how far along the measurement is at any given point,
and thus deduce how many blocks have been measured. Given this
information, the optimal strategy for the malware is established
as follows: malware relocates (copies itself to another block, then
resets its former location to a healthy state) at a random location in
memory at least once during the measurement of each block. This
leads to a probability of escape of e−1 ≈ 0.37 (see [7] for details).

Due to this non-negligible probability, multiple successive and in-
dependent measurements are required to achieve reliable detection
of malware. With independent measurements, the probability that
a piece of malware present on Prv consistently escape detection
drops exponentially. For instance, after 13 checks that probability
is below 10−6.

SMARM thus results in: (1) increased time to attain a negligible
probability of false negatives (due to successive measurements),
and (2) additional memory to store the permutation, as compared
to techniques using deterministic order with non-interruptibility
or non-malleability. However, SMARM can mitigate self-relocating
malware for time- and/or safety-critical applications, without re-
sorting to memory locking.

3.3 Self-Measurements
In a typical setting, RA is as an on-demand security service: cur-
rent state of Prv is measured in real-time when a request from
Vrf is received. Though natural, on-demand RA has two impor-
tant limitations. First, it is a poor match for unattended devices,
since transient malware cannot be detected if it leaves Prv by the

. . . . . .

time

measurement

collection

TM

TC

infection 1 (undetected)

infection 2 (detected)

Figure 5: QoA illustration: Infection 1 by transient malware
is undetected; Infection 2 is detected.TM – time between two
measurements and TC – time between two collections.

time attestation is performed. Second, for a device working under
real-time constraints (safety-critical operation) on-demand RA is a
potentially time-consuming task, which deviates from the device’s
main function.

To address these limitations, in ERASMUS [6], Prv performs
recurrent self-initiated measurements (“self-measurements”) that
it stores locally.Vrf occasionally contacts Prv, collects its stored
measurements and verifies them. This highlights two components
of the “Quality of Attestation” (QoA) notion: (1) how often Prv’s
memory is measured, and (2) how often measurements are verified.
Figure 5 illustrates these two components, which are conjoined
in on-demand RA. However, ERASMUS decouples them and thus
offers some advantages. Most importantly, measurements can be
performed more often without increasedVrf participation. This
is an important security consideration, since frequency of (self-)-
measurements determines the window of opportunity for transient
malware. Another advantage is that measurement scheduling can
be made context-aware, which is important for safety-critical appli-
cations. Although it does not fully resolve the conflict between RA
security and critical application needs, ERASMUS offers some pos-
sible compromises, e.g., (1) interruptingMP when the application
must run;MP can be rescheduled to run thereafter, or (2) adapting
MP scheduling such that it does not interfere with application
scheduling.

However, ERASMUS does not obviate the need for on-demand
attestation. On-demand attestation is still necessary in applications
where a quick reaction to infection is crucial; it is the only way
to provide the maximum freshness for the attestation, given that
verification is performed immediately after the measurement. Fortu-
nately, ERASMUS can easily be coupledwith on-demand attestation:
measurements can be made on Prv based on a schedule as well as
when receiving a query byVrf.

SeED [14] is an approach similar to ERASMUS. In it, Prv is re-
sponsible for initiating the attestation protocol. Vrf awaits and
verifies attestation responses that it has not initiated. Verifying
attestation responses coming from Prv at random times allows
Vrf to determine the overall integrity of Prv. This approach brings
multiple challenges: First, since the response is not bound to a
random challenge sent by Vrf, it is prone to replay attacks. To
overcome this challenge, SeED requires either monotonic counters
or synchronized real time clocks. Second, letting the untrusted Prv



determine the attestation time, renders attestation susceptible to
transient malware that is capable of disinfecting a malicious Prv
right before the initiating of attestation. This challenge can be over-
come by keeping attestation time secret from all software running
on Prv, i.e., attestation is triggered through a dedicated timeout
circuit that has exclusive access to the clock. Third, mitigating a
communication adversary that is capable of dropping malicious
attestation responses requiresVrf know when it expects to receive
an attestation response. This can be done by sharing a short random
seed between Prv andVrf.

Lack of interaction makes SeED inherently resilient to DoS at-
tacks, which aim at exhausting Prv’s resources and prevent it from
performing its tasks. This feature is of particular importance in
safety-critical applications. Furthermore, SeED improves the effi-
ciency of RA due to its low communication overhead and low net-
work congestion. This improvement leads to a decrease in power
consumption of Prv.

In order to provide security against communication and tran-
sient malware, SeED requires multiple additional assumptions and
hardware components that are not necessary for conventional RA.
In particular, synchronized real time clocks might not be available
on low-end Prv-s. On the other hand, since the communication in
SeED is unidirectional false positives caused by network portioning
or communication problems can be problematic as there is no mean
of acknowledging the receipt of an attestation response.

4 CONCLUSIONS
In this paper we identified some challenges that stem from the
conflict between security requirements of RA and safety-critical
application needs. Current techniques require atomicMP execu-
tion on Prv. We showed that, since RA can be time-consuming, it
can interfere significantly with Prv availability, thus dangerously
hampering safety-critical applications. On the other hand, making
MP interruptible can lead to failure to detect self-relocating and/or
transient malware.

We examined recent techniques that aim to resolve this con-
flict. They fall into two categories: (i) periodic self-measurements
and (ii) interruptible attestation modality that involves shuffled
memory traversals and various memory locking mechanisms. Such
mitigation techniques offer tradeoffs between malware detection
guarantees, temporal consistency guarantees and performance over-
head. We believe that these techniques collectively represent the
first step towards practical RA in safety-critical embedded devices
and a foundation for subsequent research in this area.
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