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Abstract

Many studies have shown that greenhouse gas (GHG)-induced global warming may lead to increased surface aridity and more
droughts in the twenty-first century due to decreased precipitation in the subtropics and increased evaporative demand associated
with higher vapor pressure deficit under warmer temperatures. Some recent studies argue that increased water use efficiency by
plants under elevated CO, may reduce the evaporative demand and therefore mitigate the drying. Here we first discuss the model-
projected changes in precipitation amount and frequency that affect the surface water balance and aridity and then the changes in
actual and potential evapotranspiration under GHG-induced warming. The effects of the GHG-induced warming and changes in
plants’ physiology under elevated CO, on precipitation, soil moisture, and runoff are quantified and compared by analyzing
different model experiments with and without the physiologic response. The surface drying effect of GHG-induced warming is
found to dominate over the wetting effect of plants’ physiology in response to increasing CO,, leading to similar surface drying
patterns in climate model simulations with or without the physiologic response in the twenty-first century. Part of the drying
comes from increased dry spells (i.e., more dry days) and a flattening of the histograms of drought indices as GHGs increase, with
the latter leading to widespread increases in hydrological drought even over areas with increasing mean runoff. Because of this,
the change pattern of the mean cannot be used to represent drought changes. Consistent with the projected drying in the twenty-
first century, recent analyses of model experiments suggest wetter land surfaces during the last glacial maximum, which implies
that dusty air during cold glacial periods may have resulted from other factors, such as stronger winds and more dust sources,
rather than drier land surfaces. Finally, the drying in the subtropics does not appear to be just a transient response to increased
GHGs, as the warming and precipitation change patterns do not vary significantly over time in 500-year simulations with
increased CO, contents by a fully coupled climate model.

Keywords Global warming - Climate projection - Drought - Precipitation - Evapotranspiration - Soil moisture - Runoff - Wateruse
efficiency - Stomatal conductance - Last glacial maximum

Introduction and Outstanding Issues

This article is part of the Topical Collection on Climate Change and Drought is a recurring extreme climate event over land
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Prolonged precipitation deficits often result in not only me-
teorological droughts but also agricultural and hydrological
droughts. However, estimates of changes in historical [27]
and model-projected future drought [9, 10, 15, 101, 102]
may depend on which drought index one uses. Furthermore,
up to now, historical changes in precipitation [1, 24, 27, 42]
and drought [19, 20, 26, 27, 96-98, 108] are still dominated
by internal climate variations such as those associated with the
Inter-decadal Pacific Oscillation (IPO) and the Atlantic Multi-
decadal Oscillation (AMO) [21, 33, 41, 52]; thus, compari-
sons between observed and model-simulated precipitation and
drought changes need to be very careful [46, 50], as one might
be comparing internal variability-induced multi-decadal
changes with that induced by increasing greenhouse gases
(GHGs). Because the two are likely to have very different
spatial and temporal characteristics, such an inappropriate
comparison may lead to misleading conclusions.

By definition, precipitation deficits are the primary cause of
drought. What causes a prolonged precipitation deficit (and
thus drought) over a certain region and time is often related to
anomalous atmospheric circulation (often with high pressure)
that suppresses the formation of clouds and precipitation [51,
69] or a shift in the rainbelt [95]. The reduction in clouds and
precipitation leads to a drier surface, less evaporation, warmer
temperatures, lower relative humidity, increased evaporative
demand or potential evapotranspiration (PET), and thus fur-
ther reduction in clouds and precipitation. These changes
greatly enhance the drying initially triggered by the precipita-
tion deficit, thereby worsening the drought condition [95].
Such a land-atmosphere feedback loop, which amplifies the
drying caused by atmospheric circulation changes [4], can
continue until a major change in weather patterns that brings
substantial precipitation to the region to end the local feedback
loop and the drought. A large number of studies [8, 16, 37, 40,
49, 53, 54,56, 78, 83, 84, 87-89, 91, 95, 103] have shown that
anomalous atmospheric circulation and prolonged precipita-
tion deficits over many land regions, especially in North
America, Africa, and Australia, can be caused by persistent
sea surface temperature (SST) anomalies in the tropical and
North Pacific and the North Atlantic, where SSTs often expe-
rience decadal to multi-decadal oscillations [60], although se-
vere droughts over North America and other regions can occur
without a clear SST forcing [51]. Recent attempts to predict
seasonal droughts based on their links to SSTs have showed
only limited skills [89].

Given the well-studied links between land precipitation and
SSTs, and the dependence of regional precipitation response
to greenhouse gas (GHG) forcing on SST change patterns [11,
100], one would expect that model-projected future changes
in land precipitation and thus drought will depend on model-
projected SST change patterns, which are found to be corre-
lated with the spatial patterns of the temperature variance in
current climate [22]. In particular, the predicted decrease in
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subtropical precipitation (and thus drying in that region) in the
twenty-first century [102] was linked to the meridional SST
gradient [11]. Thus, current model projections of future pre-
cipitation and drought may be closely linked to their projected
warming patterns, especially the meridional SST gradients in
the low latitudes.

Many studies have only considered the impact of accumu-
lative precipitation amount on drought, yet precipitation fre-
quency (the fraction of time it precipitates) and intensity (the
precipitation rate averaged over the precipitating time) also
have significant effects on surface evaporation, runoff, soil
moisture, and thus agricultural and hydrological droughts
[76]. Climate models project large increases in precipitation
intensity but decreases in frequency [28, 90, 94], which could
potentially lead to more dry spells and floods [93]. Such an
effect has not been included in most drought analyses, except
those that make use of climate model output of soil moisture
and runoff [85, 101, 102, 104], which already included this
effect within the coupled climate models.

For changes in surface aridity (i.e., surface dryness or soil
moisture content), agricultural and hydrological droughts un-
der GHG-induced global warming, the increase in PET asso-
ciated with rising air temperatures was first noticed by Dai
etal. [26] and later found to be very important in many studies
[34, 38, 80, 81, 101]. The primary cause for the ubiquitous
PET increase is a large rise in surface vapor pressure deficit
(VPD) in both recent observations and model projections [27,
36, 80] induced by rising air temperatures together with near
constant surface relative humidity (RH) over land during re-
cent periods [17, 43, 107] or slight decreases in the twenty-
first century [12, 14]. Some recent studies (e.g., [0, 64, 92])
suggest that stomatal conductance reductions induced by ele-
vated CO, levels [57, 62], increased water vapor demand [12,
70], and decreasing soil moisture [14, 101, 104] may reduce
PET in future climate [7], yet these effects are often not con-
sidered in offline PET calculations.

However, as listed in Swann et al. [92], most of the CMIP5
models already either used the Ball-Berry ([3] (which is based
on relative humidity and thus not a good measure of VPD) or
the Leuning ([59] (which is based on VPD) stomatal conduc-
tance formulation to account for the effect of elevated CO,
and changes in humidity on leaf stomatal conductance, al-
though improvements are still needed, especially for account-
ing for the effects from decreasing soil moisture and increas-
ing VPD (mainly for models using the Ball-Berry formula-
tion) [7]. Thus, the stomatal effect of increased CO, has al-
ready been included in most of the CMIPS model simulations
while the effects of rising VPD and decreasing soil moisture
are not fully considered. Analyses of the near-surface soil
moisture directly from the CMIPS models that already consid-
ered the stomatal effect of elevated CO, still suggest wide-
spread drying in the twenty-first century [14, 101]. In fact, the
drying indicated by near-surface soil moisture changes is more
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severe than that implied by the offline calculated Palmer
Drought Severity Index (PDSI; [19]) for 14 CMIPS models
[101]. This suggests that the surface drying effect from the
GHG-induced warming dominates over any wetting effects
[92] from plant physiological response to elevated CO, levels.
A recent study [5] shows that the drying is less severe in
subsurface soils, which is consistent with a drying caused by
increased surface evaporative demand, as the surface drying
signal takes decades to centuries to propagate downward into
deeper layers. This may be good news for plants that have
deep roots to access subsurface soil water. However, a large
surface drying could still have major adverse impacts on
crops, grasslands, forest fires, and heat waves. It could also
reduce surface evaporation, enhance surface warming, and
trigger a positive feedback loop that reduces land precipitation
as described above [4].

Clearly, there exist large uncertainties in current estimates
of future aridity and drought changes in the twenty-first cen-
tury besides those associated with low [101, 102] and high
[15] emission scenarios. Despite these uncertainties, the dry-
ing effect on land surface of a rising VPD associated with
surface warming appears to dominate over secondary effects
from plants’ response to increasing CO, and changing climate
conditions.

Precipitation Change and Its Impact on Future
Drought

Regional and local precipitation is much more variable
from year to year than temperature. This makes it much
harder to predict future precipitation changes. For a given
region, actual precipitation for a future time (e.g., the
2090s) will be a combination of the GHG-induced change
and the internal-variability-induced anomalies at that loca-
tion, and the latter could still dominate over the GHG-
induced change even by the mid-late twenty-first century
over certain regions [30]. Currently, we cannot predict,
with a time lead of years to decades, future precipitation
anomalies induced by internal variability, e.g., by ENSO
[25] and the Interdecadal Pacific Oscillation (IPO) [21, 33,
42]; thus, the focus is often on the GHG-induced long-term
changes, which can be best represented using the change in
the multi-model ensemble mean (e.g., Fig. 12.10 of [14]).
It should be emphasized that long-term precipitation
changes derived from a single or a few model simulations
(e.g., from a regional model downscaling forced by one or
several global model simulations) may contain substantial
contributions from realization-dependent internal variabil-
ity that should not be interpreted as part of the response to
the GHG forcing. Thus, extra care is needed in constructing
and interpreting GHG-induced climate changes [29].

Under increasing GHGs in the twenty-first century, annual
precipitation amount (Fig. 1a, b) is projected to increase over
most of Eurasia, tropical Africa, and extratropical North
America, but to decrease in the subtropical regions, including
areas around the Mediterranean Sea, southwestern North
America, southern Africa, most of Australia, and parts of
South America. Large inter-model spread exists over many
regions such as Australia and South and Central America,
partly due to large internal variability over these regions
(Fig. 1a, b; [14, 35, 102]). The broad patterns of precipitation
response to future GHG forcing, including the large percent-
age increase (30-50% under a moderate scenario or 6—15%
per 1 K global warming; [14]) over the northern high latitudes
and the inter-tropical convergence zone (ITCZ) and the 5-
25% decrease (or 2—8%/1 K) in subtropical precipitation
(Fig. la, b), are robust among the current and the previous
generations of climate models [14, 63, 102]. The increase in
high-latitude precipitation is mainly due to increased water
vapor content associated with large warming there that in-
creases large-scale precipitation formation, while the increase
in the ITCZ is due to increased moisture convergence during
deep convection associated large increases in low-level spe-
cific humidity [13]. The decrease in subtropical precipitation
largely results from the increased drying effect by the de-
scending motion there due to increased vertical gradient of
specific humidity in a warmer climate, as water vapor content
increases more in the lower levels than in the upper tropo-
sphere [13]. The poleward expansion of the subsidence zone
also contributes to the precipitation decrease around the cur-
rent edges of the subtropical dry zone (Fig. 1a, b; [79]).

Clearly, the decrease in precipitation amount over the sub-
tropical land will lead to drier conditions there. However, be-
sides these amount changes, precipitation frequency (Fig. le),
mainly of light-moderate precipitation events (Fig. 1f), is
projected to decrease over most of the globe except the high
latitudes and the Pacific ITCZ, while the opposite change
patterns are predicted for the number of dry days (Fig. 1d)
[28, 63, 90, 94]. On the other hand, heavy precipitation is
projected to increase greatly by 30-80% over most of the
globe except the subtropics (Fig. 1c, g; [90]), which could lead
to slightly increased runoff ratios over many low-latitude land
areas (Fig. 3d; [101]). These additional changes in precipita-
tion characteristics likely have contributed to the much wider
drying in surface soil moisture than the areas with decreasing
precipitation (Fig. 2a, b), although the increased evaporative
demand under warmer temperatures is likely to be the domi-
nant cause of this widespread surface drying [101]. These
projected precipitation changes could also lead to more flash
floods [23, 47] and flash droughts [66, 67, 105]. However,
these effects from the precipitation frequency and intensi-
ty changes are usually not included in offline drought
calculations, including the calculated Palmer Drought
Severity Index (PDSI) [15, 19, 20, 101, 102].
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Fig.1 Multi-model simulated precipitation changes. a Percentage change
in annual precipitation amount from 1970-1999 to 2070-2099 simulated
by 23 CMIP3 models under the moderate SRES A 1B scenario. b Same as
a but for 40 CMIPS models under the low-moderate RCP4.5 scenario.
The contours of 1, 2, and 3 mm/day for the 1970—1999 mean precipitation
outline the current subtropical dry zone in the models. See http://cmip-
pemdillnl.gov/ for a list of the CMIP models. (Modified from [102]). ¢
Globally and land-averaged mean histograms of daily precipitation (for
P>1 mm/day, with a bin size of 1 mm/day) for a present (19762005,
blue lines) and a future (2070-2099, red lines) 30-year period under the
RCP8.5 scenario, with the histograms derived by combining all days
together at each grid box first and then averaging the histograms

Increased water vapor can largely explain the increases
in heavy precipitation as it greatly increases the moisture
convergence during a convective storm, while the de-
creases in light to moderate precipitation require other
mechanisms [28]. One possible explanation is that on av-
erage surface evaporation may take a bit longer to replen-
ish the moisture depleted by each future rainstorm, which
depletes > 7% more moisture from the atmosphere per one-
degree warming while surface evaporation increases by
only about 2%/K, which constrains the global-mean pre-
cipitation amount change. This could lead to longer dry
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spatially for each model and then over 25 CMIPS5 models. The
percentage change of the frequency from the present to future periods is
shown by the black lines (dashed for land and solid for global) on the
right-hand y-axis. The small insert is a blowout for the percentage
frequency change for the intensity below 20 mm/day. d—g The 25
CMIP5 model-averaged percentage change (in percentage of the 1976—
2005 mean) from 1976-2005 to 20702099 under the RCP8.5 scenario in
the frequency of d dry days (with P<0.1 mm/day), e all types of
precipitation (with P>1 mm/day), f light-moderate precipitation (1 <P
<20 mm/day), and g heavy precipitation (P>20 mm/day). Stippling
indicates at least 80% of the models agree on the sign of change in a, b
and d-g

spells and lower mean relative humidity (RH) and in-
creased convective inhibition (CIN, i.e., the negative buoy-
ancy) in a future warmer climate, all of which were con-
firmed by cloud-permitting simulations of future climates
over the USA [28, 77]. The lower humidity and increased
CIN could prevent some of the rain events from happening,
especially for light-moderate precipitation events since
they depend more on RH and atmospheric stability, thus
leading to more dry spells and overall fewer rainy events at
most mid-low latitude regions. More discussions on these
issues can be found in Dai et al. [28].
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Fig. 2 Multi-model mean long-
term percentage changes from
1970-1999 to 2070-2099 (under
a low-moderate RCP4.5 scenario)
over land in annual a precipita-
tion, b soil moisture content in the
top 10 cm layer, ¢ surface evapo-
transpiration, and d total runoff
from 31 to 33 CMIP5 models.

Precip Change (%), RCP4.5, 33 Models, CMIP5
%t o 2 =

’s S. Moisture Change (%) 2070 99 minus 1970 99, 31 Models

The stippling indicates at least
80% of the models agree on the
sign of change. The change pat-
terns are similar to those shown
by Collins et al. [14]. (Adapted
from [23]). e-h Same as a—d but
for e self-calibrated PDSI with
Penman—Monteith PET (sc
PDSI _pm), f PET calculated
using the Penman—Monteith

equation, g precipitation P vs.
PET ratio (x 100), and h runoff

vs. P ratio or runoff ratio (x 100) 25 20 15 - 5 0 5 10 15 20 25
estimated using data from 14 SC_| PDSI _pm Change, RCP4.5, 14 CMIP5 Mfgels 5 PET Ghange (%), 2070 99 minus 1979_99 14 Models
CMIP5 models [12 for h]. For e e | g T . R T? %
reference, a PDSI value below —1 2 c’ 2]
is considered drought and below 7 - .;,i * ] &
—3 is considered severe to ex- § P -1
treme drought for current climate. ":"i’f}'f_:; 1 2
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Changes in PET and ET and Effects of Plant’s
Physiological Response

For agricultural and hydrological droughts, precipitation
(P) changes are only one of the key factors. Another
factor is the increasing atmospheric demand for moisture,
as reflected by the ubiquitous increases in PET under
rising temperatures (Fig. 2f; [34, 39, 80, 101, 102]). As
recognized by Palmer [71], for agricultural drought, it is
the PET, not the actual evapotranspiration (ET), that mat-
ters for the calculation of the PDSI [19, 71] and other
[48, 99] drought indices. This is because it is the differ-
ence between the water supply (mainly through precipi-
tation) and demand (measured by PET) that determines

120 180 —-180

.
10 15 20 25 -10 -8

the aridity or dryness over a region, while the actual ET
is often limited by the availability of water and thus it is
tightly coupled to precipitation over many land areas, so
that P-ET would not change much over time. This close
coupling between P and ET is reflected by their similar
change patterns under rising GHGs (Fig. 2a, c; [14, 23,
63]). The ET change patterns are in sharp contrast to the
ubiquitous increases in PET (Fig. 2f) over global land,
which are induced primarily by increased VPD under
rising surface air temperatures and relatively stable rela-
tive humidity [80, 101, 102]. The combined effect of the
P and PET changes lead to widespread drying in near-
surface soil moisture (Fig. 2c) as well as in offline cal-
culated PDSI (Fig. 2e; [15, 18, 20, 101, 102]).
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For hydrological drought [75], change in the lower tail of the
probability density function (PDF) of total runoff [23] is a better
measure, which also suggests increased drought frequency in the
twenty-first century over many land areas (Fig. 3c), albeit with
smaller magnitudes and slightly less widespread than those im-
plied by near-surface soil moisture or PDSI (Fig. 3a, b; [101]).
This is in sharp contrast to the rising total runoff over many of the
mid-high latitude land areas and South and East Asia (Fig. 2d). A
flattening of the PDFs for both the soil moisture and runoff
contributes to the increased drought frequency, besides the effect
of a reduction in the mean (only over the subtropics for runoft;
Fig. 2d; [101]). It should be emphasized that drought events are
determined by the left tail of the PDF of an aridity measure (e.g.,

P, soil moisture or runoff); thus, their projected change patterns
(Fig. 3a—c) often differ greatly from their mean changes (Fig. 2).
In particular, the runoff-based drought frequency (Fig. 3¢) shows
widespread increases even over areas with increased total runoff
(Fig. 2d).

The increases in drought frequencies lead to upward trends
in the percentage of global land areas under drought condi-
tions during the twenty-first century for all types of drought
based on PDSI, top 10 cm soil moisture, or total runoff, with
the trend being largest based on the near-surface soil moisture
and smallest based on the runoff (Fig. 3d—f). Annual P-ET is a
good approximation of runoff as water storage changes are
relatively small compared with the P or ET flux, and analyses

Dry area changes averaged over global land

Change of sc_PDSI_pm frequency (bottom 10 percentiles)

60°N|
30°Nf
EQ
30°SH
60°S . N . N R R R R
180° 120°W 60°W 0]°I . 60°E 120°E
-24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24
Change of soil moisture frequency (bottom 10 percentrles)
60°N|
30°N|
EQ |
30°SH
os i i i -t -r n i i
180° 120°W 60°W 0° 60°E 120°E
1 I -
-24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24
Change of runoff frequency (bottom 10 percentiles)
60°N} ~."/ -
30°N}
EQ |
30°StH
- c Z ) &
180° 120°W  60°W 0° 60°E 120°E

-24 -20 -16 -12 -8 -4 !]) I l 8 12 16 20 24
Fig. 3 Left: multi-model ensemble averaged changes of drought
frequency (defined as the percentage of the time in drought conditions,
not percentage changes) from 1970-1999 to 2070-2099 under the RCP
4.5 scenario, with drought events being defined locally as months below
the 10th percentile of the 1970-1999 period based on monthly anomalies
of a sc PDSI pm, b normalized soil moisture (SM) in the top 10 cm
layer, and ¢ normalized runoff (R) in individual model runs. The
monthly anomalies of SM and R were normalized using the standard
deviation over the 1970-1999 period. The stippling indicates at least
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80% of the models agreeing on the sign of change. Right: multi-model
ensemble mean time series of the drought areas (in percentage of the total
land area between 60° S and 75° N) with the drought defined locally with
monthly anomalies of sc PDSI pm (red), normalized monthly SM (blue)
and R (green) below the 10th (dashed) or 20th (solid) percentile of the
1970-1999 period for d global land, e for warm season from May to
September over Northern Hemisphere land, and f for warm season from
November to March over Southern Hemisphere land. (Adapted from
[101])



Curr Clim Change Rep

based on P-ET also showed reduced drying trends over land
compared with PDSI-based estimates [92]. The drying in sub-
surface soil moisture is also smaller than near the surface by
the late twenty-first century [5]. This is expected because sur-
face signals (e.g., the diurnal cycle) penetrate downward with
exponentially dampened amplitudes (see Fig. 4.2 of [44]).
Over decades to centuries, a land surface that loses water to
the atmosphere associated with the surface drying will even-
tually lead to drier subsurface layers. However, current land
surface models do not simulate well many subsurface process-
es (e.g., soil layer depth, vertical water exchange, groundwa-
ter, and permafrost layers). This makes the model-projected
change in subsurface water content less reliable than that in
the surface layer.

Recently, Milly and Dunne [64], Swann et al. [92], and
Bonlfils et al. [6] suggested that increased water use efficiency
by plants under higher CO, levels through a reduction of stoma-
tal conductance may significantly reduce the drying effect of
rising temperatures and VPD, especially for offline calculated
drought indices that do not take this effect into account.
However, as stated above, the analyses using the precipitation,
soil moisture, and runoff data directly from the CMIP5 models
[101, 102] already included this effect in most of the models, and
they still show widespread drying in near-surface soil moisture
(Fig. 2b) and moderate increases in drought frequency based on
runoff PDFs (Fig. 3c; [101]).

To further quantify this effect, we compared the changes in
precipitation, top 10 cm soil moisture, and runoff in three exper-
iments with 1% per year CO, increases from seven CMIP5
models (listed in Table S4 of [92]): (a) 1% per year CO, increase
from pre-industrial level for both radiative processes and the
carbon cycle (including photosynthesis); (b) same as (a) but the
CO, increase is seen only in the carbon cycle, and it is fixed to
the pre-industrial level for the radiative processes; and (c) same as
(a) but the CO, increase is seen only by the radiative processes,
and it is fixed in the carbon cycle. Similar to Swann et al. [92], we
found that the radiative effect of increasing CO, dominates over
plants’ physiological response for precipitation, soil moisture,
and runoff (Fig. 4), even though the latter does induce moderate
wetting over Australia, Africa, South Asia, southern South
America, and southwestern North America (Fig. 4¢), which leads
to slightly reduced drying in near-surface soil moisture over these
regions in the case with both effects included (Fig. 4d) compared
with the case with the radiative effect only (Fig. 4f). However,
such an effect is overwhelmed by the large surface drying effect
associated with rising air temperatures and VPD caused by the
radiative effect of increasing CO,, leading to similar surface dry-
ing patterns for the cases with (Fig. 4d) and without (Fig. 4f) the
physiological effect. Thus, we conclude that the effect of plants’
physiological response to increasing CO, is small compared with
its radiative effect, leading to similar drying patterns in near-
surface soil moisture in climate model simulations with or with-
out the physiological response.

Issues in Estimating and Interpreting
Historical Drought Changes

Estimating and interpreting recent drying trends over global
land is challenging, not only because of the large internal
variability in recent records of precipitation and other related
fields, but also because large uncertainties exist in available
datasets for precipitation, solar radiation, surface humidity,
and wind speed that are needed to estimate PET and related
drought indices [27, 96]. By synthesizing the changes in avail-
able records of precipitation, streamflow, and calculated PDSI,
Dai and colleagues concluded that large drying trends have
occurred since the 1950s over many low-latitude land areas,
including most Africa, South and East Asia, southern Europe,
castern Australia, and many parts of the Americas [18-20, 26,
27]. However, a large part of these regional drying trends are
likely due to the multi-decadal oscillations in Pacific and
Atlantic SSTs, rather than GHG-induced global warming
[27, 31, 54], and the drying trend is detectable only for the
global mean, not at the regional level yet [20]. In contrast,
Sheffield et al. [86] found much smaller drying trends over
global land based on their calculated PDSI only. Further anal-
yses [27, 96] suggest that the use of unreliable precipitation
data after the mid-1990s and radiation data with large spurious
trends by Sheffield et al. [86] likely contributed to their small-
er drying trends. In any case, historical changes in land pre-
cipitation (and thus drought indices) are still dominated by
internal climate variability [30, 32] and thus they should not
be interpreted as and compared with model-simulated re-
sponse to GHG forcing, as the two types of change have
different spatial and temporal characteristics.

The Apparent Inconsistency
with Paleoclimate Records

The model projected surface drying in the twenty-first century
under increasing GHGs appears to be inconsistent with the
notion that past cold climates are often characterized with
dry or arid land, as reflected by sparse or treeless vegetation
[45, 73] and a dusty atmosphere that led to elevated dust
concentrations in polar ice core records [72] and increased
dust deposition at many land sites [68]. However, the reduc-
tion in vegetation cover could be due to colder temperatures
and reduced precipitation and CO, during glacial periods [74,
82], not necessarily due to increased aridity (i.c., drier soils).
As stated by Muhs [68], the increased dust concentration may
result from a number of factors, including increased source
areas, greater aridity, less vegetation [74], lower soil moisture,
stronger winds [61], a decreased intensity of the hydrologic
cycle (thus less washout), and greater production of dust-sized
particles from expanded ice sheets and glaciers. Analyses of
numerical simulations of the last glacial maximum (LGM)
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Fig. 4 Multi-model averaged percentage change in annual a—c
precipitation, d—f top 10 cm soil moisture content, and g—i total runoff
from year 61-80 (mean CO, =~ 560 ppm) to year 121-140 (mean
CO, = 1031 ppm) from three different experiments: a, d, g with a 1%
per year CO, increase seen by both radiative and physiological processes,
b, e, h same as a, d, g but with atmospheric CO, fixed to the pre-industrial
level in radiative processes, and ¢, f, i same as a, d, g but with fixed CO,

climate [82] suggest wetter top soils and less arid land by most
common measures during the LGM than in the pre-industrial
climate. Another modeling study [39] of the aridity changes
from year 850 to 2080 showed that the P/PET ratio over global
land decreases (i.c., becomes drier) during the warm periods
but increases during the little ice age of 1550—1850 and other
cold periods. Thus, increased aridity and a drier land surface
may not be among the factors that contributed to the higher
dust concentration in the previous cold climates. Therefore,
one should not equal a dusty atmosphere with a dry land
surface during glacial times, as pointed out previously (e.g.,
[61, 82)).

Another potential difference between the climate changes
of the twenty-first century and those of past periods is that the
paleoclimates are often averaged conditions over hundreds to
millions of years, which may be best represented by the equi-
librium climate response to increased GHGs, while the
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in the carbon cycle (including photosynthesis). Dotted areas indicate at
least five of the seven models agree on the sign of change. The following
seven CMIP5 models had these simulations and were included in this
analysis, and the plots are the ensemble average over them: bee-csml-1,
CanESM2, CESM1-BGC, GFDL-ESM2M, HadGEM2-ES, IPSL-
CMS5A-LR, and NorESM1-ME

twenty-first century climate is still a transient response to in-
creasing GHGs. Some studies (e.g., [11]) suggest that the me-
ridional SST gradient was different from today’s climate dur-
ing the warm early Pliocene Epoch about 3—5 million years
ago, and this may be responsible for the wetter subtropics
during the early Pliocene. This raises the question: Is the
projected subtropical drying by the late twenty-first century
only a transient response to increasing GHGs that may go
away as the climate system approaches a new equilibrium?
To address this question, we recently integrated a fully
coupled climate model (namely the CESM1 from NCAR)
for 500 years after an instantaneous doubling or quadrupling
of the pre-industrial CO, level and then examined the change
patterns in surface temperature and precipitation over time.
The results [55] show that the surface warming patterns and
the associated precipitation changes (including the subtropical
drying) do not vary much over this 500-year period, over
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which most of the expected equilibrium warming are already
realized near the end of the simulation. This finding seems to
suggest that the warming patterns and the associated precipi-
tation changes of the twenty-first century are likely to be sim-
ilar to those when the system reaches a new equilibrium. Thus,
the difference between the transient and equilibrium change
patterns is likely to be small and cannot explain the wetter
subtropics during the early Pliocene.

Summary and Concluding Remarks

In this short review, we discussed some of the key issues in
quantifying aridity and drought changes associated with
GHG-induced global warming, with a focus on precipitation
and evapotranspiration changes. Aridity of a region is tradi-
tionally measured by the annual P/PET ratio, which suggests
increased aridity over most land areas by the end of twenty-
first century (Fig. 3¢). Normalized precipitation, soil moisture
content, and runoff (or streamflow) are often used to quantify,
respectively, meteorological, agricultural, and hydrological
drought based on the lower tail of their PDFs (not their mean
values). Annual precipitation amount are projected to increase
over most land areas except the subtropical regions, where it
decreases under rising GHGs which would lead to drier con-
ditions there. Besides the amount changes, the frequency of
light to moderate precipitation events is also projected to de-
crease over most of the globe except the high latitudes
(Fig. 1c, f), and this leads to more dry spells (Fig. 1d) and thus
likely also drier land conditions. Most of the precipitation
amount increases outside the subtropics comes from increased
heavy precipitation (due to increased water vapor), which may
contribute to slight increases in runoff ratio over many low-
latitude areas.

For surface aridity (or dryness), agricultural and hydrolog-
ical droughts, changes in surface evaporative demand for
moisture, often measured by PET, are also very important.
Rising air temperatures with small changes in relative humid-
ity lead to large increases in VPD, which in turn leads to
ubiquitous increases in PET (Fig. 3b) over global land under
increasing GHGs. Combined with increased dry days
(Fig. 1d) and a flattening in the PDFs of soil moisture and
runoff [101], the PET increases lead to large increases in ag-
ricultural drought events over most land as measured by the
lower tail of the PDFs of the top-layer soil moisture and PDSI,
while hydrological drought events increase at a more moder-
ate rate (Fig. 3; [101]) as the mean runoff does not show
widespread decreases as in surface soil moisture (Fig. 2).

Partly because of the flattening of the PDF for runoff, soil
moisture, and PDSI [101], the change patterns in the mean of
these and other (e.g., P-E) hydroclimate variables discussed in
Milly and Dune [64], Swann et al. [92], Bonfils et al. [6], and
other previous studies may not be representative of the change

patterns for drought frequency, which is determined by the
lower tail of their PDFs. This basic difference has been
overlooked, which may have contributed to some of the con-
fusions in the literature regarding future drought changes.
Also, the term “drying” is often used to describe a decreasing
trend in mean precipitation, soil moisture, runoff, or P-E; thus,
such a drying pattern only reflects the change in the mean,
which may differ greatly from that for drought (which is a
change in extremes), as shown by the mean runoff and hydro-
logical drought case (Fig. 2d vs. Fig. 3c).

Plant’s physiological response to increased CO, levels,
including the reduction in stomatal conductance, is likely
to be only secondary compared with the dominant radia-
tive effect of increasing CO,. As a result, the surface
drying patterns are similar in climate change simulations
with or without the plant’s physiological response to ele-
vated CO,. This suggests that the effects of rising temper-
atures and VPD dominate over the effect of stomatal con-
ductance reduction under increasing CO, for calculating
PET and related drought indices. Furthermore, potential
changes in aerodynamic and canopy resistances (e.g.,
due to elevated CO2 levels) that affect evapotranspiration
are already included in most CMIP5 models, which still
show widespread drying in topsoil layers.

Recent modeling results [82] suggest that the land surface
was indeed wetter during the last glacial maximum than the
pre-industrial climate, which is consistent with the model-
projected drying under increasing GHGs. Thus, the dusty at-
mosphere during cold glacial periods may not necessarily im-
ply drier continents; instead, it could result from many other
factors, such as stronger winds [61] and more dust sources as
the land is covered with less vegetation [74, 82] during the
cold climate [68].
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