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Abstract The length-of-stay (LOS) is an important quality metric in health care,

and the use of phase-type (PH) distribution provides a flexible method for modeling

LOS. In this paper, we model the patient flow information collected in a hospital for

patients of distinct diseases, including headache, liveborn infant, alcohol abuse, acute

upper respiratory infection, and secondary cataract. Based on the results obtained

from fitting Coxian PH distributions to the LOS data, the patients can be divided into

different groups. By analyzing each group to find out their common characteristics,

the corresponding readmission rate and other useful information can be evaluated.

Furthermore, a comparison of patterns for each disease is analyzed. We conclude that

it is important to offering better service and avoiding waste of sources, by the analysis

of the relations between groups and readmission. In addition, comparing the patterns

within distinct diseases, a better decision for assigning resources and improving the

insurance policy can be made.

Keywords Phase-type distribution · healthcare quality · length-of-stay · Markov

chains · readmission rate

1 Introduction

The length-of-stay (LOS) is a term to describe the period of a patient staying in hos-

pital from admission to discharge. It has been employed as a proxy for measuring the

utilization of hospitalization. Lots of work on modeling and evaluating LOS has been

conducted. In El-Darzi et al. (1998), the flow of patients through geriatric hospitals

was described in terms of short-stay, medium-stay, and long-stay states, and the ef-

fect of LOS blocks is assessed to assist in understanding bed occupancy. In Xie et al.
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(2005), a Markov model was developed for the LOS of elderly people moving within

and between residential home and nursing home.

In this paper, we will utilize phase-type (PH) distributions to analyze the collected

patient flow information in Banner University Medical Center Tucson - Main Cam-

pus and South Campus. A PH distribution is a probability distribution constructed

by a convolution or mixture of exponential distributions. As a special version of PH

distributions, the “Erlang method of stages” was proposed by Erlang (1917) to model

the time for the analysis of telephone networks. The general theories of PH distribu-

tions were initially established by Neuts (1975), and since then the PH distributions

have been widely used in many applications, such as telecommunications, finance,

queueing theory, insurance risk, survival analysis, reliability theory, drug kinetics (see

Fackrell, 2003), as well as diverse areas of stochastic modeling, e.g., Neuts (1981)

and Asmussen (1992) for queueing theory, Asmussen and Rolski (1992), Asmussen

et al. (1996), Bladt (2005) and Vatamidou et al. (2014) for risk theory, and Ruiz et

al. (2008), Cumani (1982), Liao et al. (2017) in reliability. Neuts (1981) later con-

structed a series of theories for PH distributions and paved the foundation for further

research. Kao (1988) extended the work of Neuts by presenting a procedure for com-

puting the renewal and related functions of PH renewal processes. Based on the prior

work, Asmussen (2008) showed that PH distributions can approximate any distribu-

tion arbitrarily close for nonnegative random variable. For a thorough understanding

of PH distributions, readers are referred to Neuts (1981), O’Cinneide (1990), Fackrell

(2003) and Bodrog et al. (2008).

The application of PH distributions in the healthcare field has been increasing

over time to interpret healthcare systems and improve the efficiency of healthcare

delivery. The survey by Fomundam and Herrmann (2007) showed that the healthcare

processes can be viewed as queueing systems, in which patients arrive, wait for ser-

vice, obtain service, and then depart. Fomundam and Herrmann (2007) summarized

a range of subareas in healthcare as waiting time and utilization analysis, system

design, and appointment systems.

Although the applications of PH distributions vary widely in scope and scale, the

main goal of the research includes resources utilization (staff, facility, bed), patients

(waiting time, service time, departure destination) and cost. McClean and Millard

used a two-term mixed exponential distribution to fit data on LOS in departments of

geriatric medicine (McClean and Millard, 1993). Faddy and McClean (1999) inter-

preted the phases in terms of increased severity of illnesses being treated, and also

analyzed two covariates as the age of patient at admission and the year of admission

against the phases. In Marshall and McClean (2003), the conditional PH distribution

was used for modeling the LOS of a group of elderly patients. Marshall and McClean

(2004) considered the use of Coxian PH distributions for modeling patient LOS for

elderly patients and investigated the classification issue based on the resulting dis-

tribution. They classified the patients into different groups according to their LOS

and identified common characteristics among these groups. The identified character-

istics offer better insights into the overall management and bed allocation. Tang et

al. (2012) demonstrated the application of Coxian PH stochastic regression models

to hospital LOS, and proposed a Reversible Jump Markov chain Monte Carlo algo-

rithm to dynamically select the number of phases. This method allows estimation of
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mean LOS, median and other percentiles. Kim et al. (2012) and Al Hanbali et al.

(2012) both considerd queueing system with the batch Markovian arrival process and

phase-type service time, and corresponding algorithms were developed. In Turgeman

et al. (2015), the Coxian PH distribution was used to fit the LOS data of patients with

congestive heart failure. They also analyzed the connections among patient social,

clinical, and historical characteristics within each group and estimated the associated

readmission risk.

In the literature, the PH distributions are mainly applied to analyze the LOS of

patients with elder diseases (see Xie et al., 2005) who usually need long-term care. In

this paper, we apply the PH distributions in a different way by studying five different

types of diseases at the same time to identify the LOS groups within each disease

and then present the changes of patterns from disease to disease. In particular, the

LOS information was collected in Banner University Medical Center Tucson - Main

Campus and South Campus for patients with diseases of headache, liveborn infant,

alcohol abuse, acute upper respiratory infection, and secondary cataract.

Scher et al. (1998) presented the first US-based study describing the prevalence

and characteristics of frequent headache in the general population. The overall preva-

lence of frequent headache was 4.1%. Headaches are commonly seen in neurology

practices and headache subspecialty centers. Since there are various causes of this dis-

ease, it is hard to describe the headaches of all types or to tell clearly the symptoms of

each individual patient. The International Classification of Headache Disorders (IHS,

2013) is a widely recognized classification when the diagnosis is uncertain. In prac-

tice, the situation of headaches is complex, and thus it is necessary and important to

study the LOS in a hospital.

Maisels and Kring (Maisels and Kring, 1998) evaluated the effect of postnatal

age at the time of discharge on the risk of readmission to hospital with specific refer-

ence to readmission for hyperbilirubinemia. Bisquera et al. (2002) and Melnyk et al.

(2006) both investigated low birth weight premature infants. The former advocated

additional research into preventive measures to reduce the incidence of Necrotizing

Enterocolitis (NEC) by showing the impact of NEC on the LOS and hospital charges.

The latter measured parent-infant interaction during the Neonatal Intensive Care Unit

(NICU) and NICU LOS in order to evaluate the efficacy of an educational-behavioral

intervention program that was designed to enhance parent-infant interactions and par-

ent mental health outcomes.

Alcohol abuse is a heterogeneous set of behaviors that include any pattern of ethyl

alcohol intake that causes medical and social complications (Cloninger et al., 1981).

It influences children from both genetic and environmental aspects. In Saitz et al.

(1997), it was observed that having an alcohol-related diagnosis is associated with

more use of intensive care, longer inpatient stays, and higher hospital charges.

Acute respiratory infection is familiar to most people. It may interfere with nor-

mal breathing, affecting either upper respiratory system (sinuses to vocal chords) and

lower respiratory system (vocal chords to lungs). Some research, e.g., Terry et al.

(1995) and Nieman et al. (1990), has been conducted on the effects of some treat-

ments on specific patients group. Eccles (2002) discussed some ideas concerning the

seasonality of acute upper respiratory tract viral infections and put forward their own

hypothesis that it is due to cooling of the nasal airway. In this paper, we will investi-
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gate the acute upper respiratory infection LOS data to better understand and improve

the treatment system.

Secondary cataract formation is the most common postoperative complication

following cataract surgery, and up to 40-50% of all patients need some clinical follow-

up or treatment due to this complication (Lundgren et al., 1992). Much effort has been

taken to prevent the development of secondary cataract on new drugs and experimen-

tal study (e.g., Ismail et al., 1996). Fife and Rappaport (1976) studied the effects of

construction noise on LOS for simple cataract surgery, which may influence the in-

cidence of secondary cataract directly. Kuchle et al. (1997) analyzed the impact of

pseudoexfoliation (PEX) on secondary cataract following cataract extraction. They

concluded that eyes with PEX have a higher frequency of secondary cataract, that is

a common-seen disease but is special as it is related to a previous surgery.

In this paper, the patients are divided into different groups based on the results

obtained from fitting Coxian PH distributions to LOS data of five diseases separately.

Then the analysis of discharge direction and readmission is applied to each disease

and among different diseases. It is obvious that for different diseases, the number

of groups and the probability distributions are not the same. Some disease, such as

“headache”, have data centered around one group, while the “alcohol abuse” has

two peaks at group 2 (less than 4 hours) and group 5 (less than 11 hours). For the

readmission rates, the “liveborn infant” has a large number of not being readmitted

for all groups, which is different from other four diseases. In addition, the “secondary

cataract” has very similar values of three readmission rates, which may convey that

the LOS group makes no difference on readmission in this disease.

The remainder of this paper is organized as follows. In Section 2, we will intro-

duce the properties of Coxian PH distributions after a short review of the exponen-

tial distribution and continuous time Markov chain. Then, we will further address a

method of fitting PH distributions and how to classify LOS groups. Section 3 contains

the fitting results and further analysis of five diseases, and provides the correspond-

ing analysis between LOS group and discharge direction as well as readmission rates.

Finally, Section 4 concludes the paper.

2 Phase-type Distributions

A continuous phase-type distribution is the distribution of the time from the initial

state until absorption in the absorbing state in a Continuous-Time Markov Chain

(CTMC) (Neuts, 1981). In the following, the background of CTMC will be intro-

duced with some basic concepts for PH distributions and models.

2.1 Coxian PH distributions

The exponential distribution Exp(λ ) plays an essential role in PH distributions. Its

Probability Density Function (PDF) is f (x|λ ) = λexp(−λx), x ≥ 0, where λ > 0

is a rate parameter and the corresponding random variable exhibits the “memoryless

property” (Fackrell, 2009). The CTMCs are a class of stochastic processes {X(t)}t≥0
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Fig. 1: State Transition Diagram of a CTMC

with a discrete state space S = {0,1,2, · · · ,m}, in which the time between transitions

follows an exponential distribution (Neuts, 1981). The continuous-time variable t ∈
[0,∞), m ≥ 1 is a finite number, and the states 1, · · · ,m are transient states and state 0

is an absorbing state.

Let the random variable Y denote the time from the initial state until absorption

in the absorbing state. Then, Y is said to have a (continuous) PH distribution (Neuts,

1981), and the phase corresponds to state in the CTMC. One special type of PH

distributions is the Coxian PH distribution (see Fig. 1), which can overcome difficulty

in parameter estimation for the general form of PH distributions by ensuring that the

transient states (or phases) of the model are ordered (Fackrell, 2009; Marshall and

McClean, 2004). As illustrated in Fig. 1, the stochastic process begins from the first

transient state and may either move sequentially or enter the absorbing state 0 directly.

The time spent in state i is exponentially distributed with parameter λi, which is also

interpreted as the average rate moving out of state i. The rate of moving out from

state i to state i+1 is λi,i+1, and the rate to absorbing state 0 is λi0. According to the

balance equations for the Markov chain (Serfozo, 2009), we have λi = λi,i+1+λi0 for

i = 1, · · · ,m−1 and λm = λm0.

For the Coxian PH distribution, the initial state distribution is π = [1,0, · · · ,0]1×m,

and the transition matrix T consists of transition rates for {X(t)}t≥0,

T =

⎡
⎢⎢⎢⎢⎢⎣

−λ1 λ12 0 · · · 0

0 −λ2 λ23 · · · 0
...

...
. . .

...
...

0 0 · · · −λm−1 λm−1,m
0 0 · · · 0 −λm

⎤
⎥⎥⎥⎥⎥⎦

m×m

, q =

⎡
⎢⎢⎢⎢⎢⎣

λ10

λ20

...

λm−1,0

λm,0

⎤
⎥⎥⎥⎥⎥⎦

m×1

where q consists of the rates to the absorbing state. The PDF, cumulative density

function (CDF), mean, and variance of absorbing time Y can be expressed as

f (y) =−TπeTye = qπexp(Ty),

F(y) = P(Y ≤ y) = 1−πexp(Ty)e,

E[Y ] =
∫ ∞

0
y f (y)dy =

∫ ∞

0
yqπexp(Ty)dy =−πT−1e,

Var[Y ] = E[Y 2]−E[Y ]2 = 2πT−2e− (πT−1e)2,

respectively, where e = (1,1, · · · ,1)T
m×1.

The m states may then be used to describe stages of a process which terminates at

some point (Marshall and McClean, 2004). They also pointed out that the Coxian PH
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distributions have been successfully applied to modeling patient LOS in a hospital.

In practice, the LOS data can be divided into different groups based on their various

values. Early in Sorensen (1996), the meaning of groups of LOS was identified as

patient groups requiring similar care levels and similar resource. In analyzing of hos-

pital stay, the E[Y ] is actually the average time spent in hospital from admission to

discharge for a certain type of patients. The Var[Y ] measures how far this set of LOS

data are spread out from E[Y ].

2.2 Fitting method

In Section 2.1, it is already shown that the Coxian PH distributions depend on the

parameters in π and T. Then θ = (π,T) is called the representation of a PH distribu-

tion, which needs to be estimated in statistical fitting. Maximum Likelihood Estima-

tion (MLE) is the most popular method used to fit data and approximate distributions

with PH distributions (Fackrell, 2009). Fackrell also presented a brief overview of

some distribution approximation algorithms and their developments and extensions.

Esparza et al. (2011) studied the detailed information about parameter estimation for

PH distributions using MLE in different cases.

Let Y = [Y1,Y2, · · · ,Yn] be an independent and identically distributed sample from

a population with probability density function f (y;θ1, · · · ,θk). The likelihood func-

tion is defined by

L(θ |y) = L(θ1, · · · ,θk|y1, · · · ,yn) =
n

∏
i=1

f (yi|θ1, · · · ,θk) =
n

∏
i=1

πexp(Tyi)q.

For each sample point y, we use θ̂(y) to denote the MLE of the parameter θ , at which

L(θ |y) attains its maximum. Finding the global maximum of L(θ |y) is equivalent

to finding the maximum of the log-likelihood function lnL(θ |y) = ∑n
i=1 ln( f (yi)),

where f (yi) = πexp(Tyi)q. If the log-likelihood function is differentiable (in θi), we

can find the possible candidates by solving

∂
∂θi

lnL(θ |x) = 0, i = 1, · · · ,k. (1)

The Expectation-Maximization (EM) algorithm has been applied to fit the Cox-

ian PH distributions. Asmussen et al. (1996) developed an extended EM algorithm

to minimize the information divergence (maximize the relative entropy), and it is the

main method implemented in program EMpht1. There are usually two steps in each

iteration of the EM algorithm. Before that, the program first starts with initial val-

ues θ 0 = (π0,T0) which are usually randomly chosen. The two steps are: 1) E-step:

calculating the function h : θ → Eθ k(lnL(θ |y)|y); 2) M-step: The new estimators

are expressed as θ k+1 = argmaxθ h(θ). By iteratively applying these two steps, the

likelihood function is monotonically increasing. The program stops when there is no

significant improvement in likelihood, and the resulting estimated parameters will be

used for further analysis.

1 http://home.math.au.dk/asmus/pspapers.html
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2.3 LOS groups

As shown in Sections 2.1 and 2.2, the transition rates λi, j and λi0, i, j = 1, · · · ,m can

be obtained from the estimated T. In this paper, Akaike Information Criterion (AIC)

was used to decide the most appropriate number of states (Equation (2)) by taking

into consideration the number of parameters k.

AIC = 2k−2max
θ

lnL(θ |y). (2)

Let Pi, i = 1, · · · ,m denote the probability of transferring from state i to absorbing

state 0. Then Pi can be calculated by integrating the corresponding density functions.

For example, P1 is the probability from state 1 to state 0. According to the balance

equation λ1 = λ12+λ10, the time spent in state 1 follows exp(λ12+λ10). But the time

contributes to two directions, one transferring to state 2 with rate λ12 and another one

for being absorbed to state 0 with rate λ10. Then, the proportion of being absorbed to

state 0 from state 1 directly is λ10
λ10+λ12

. Similarly, all Pi can be obtained by the formula

in Equations (3).

P1 =
∫ ∞

0
λ10 exp−(λ12+λ10)t dt =

λ10

λ10 +λ12
,

P2 =
∫ ∞

0
λ20 exp−(λ23+λ20)t dt

∫ ∞

0
λ12 exp−(λ12+λ10)t dt

=
λ12

λ10 +λ12
× λ20

λ20 +λ23
,

Pm =
λ12

λ10 +λ12
× λ23

λ20 +λ23
×·· ·× λm−1,m

λm−1,0 +λm−1,m
.

(3)

In data processing (Section 3.1), the LOS data is sorted in an ascending order to

determine the LOS groups. Fig. 2 shows the framework of the corresponding analysis

between LOS group and the discharge directions as well as readmission rate groups.

The first group has the shortest LOS, and the mth one has the longest LOS. In Section

3.2, analytic results for the five diseases will be presented separately.

Hospitalization

    LOS Group

    LOS Group

           LOS Group

        LOS Group

Readmission 
Group 1

Readmission 
Group 2

Discharge Direction

           L

  L

    L

    

Fig. 2: State Transition Diagram of a LOS



8 W. Gu et al.

3 Fitting PH distributions to LOS Data

3.1 Data processing

The methods and models in Section 2 are applied to the patient flow data collected

from 2013 through 2016 in Banner University Medical Center Tucson - Main Campus

and South Campus. The ICD-10 codes2 for the five diseases and their corresponding

approximate conversions from “2018 ICD-10-CM CMS General Equivalence Map-

pings” are shown in Table 1. The size of records and the number of patients for each

disease are also listed. These diseases are common ailments with distinct character-

istics and treatment patterns.

Table 1: Disease Types

ICD-10 Approximate conversion # of records # of patients

R51 Headache 12,866 5,170

Z38.00 Single liveborn infant, delivered vaginally 1,546 1,443

F10.10 Alcohol abuse 1,906 522

J06.9 Acute upper respiratory infection 4,639 2,174

H26.499 Other secondary cataract, unspecified eye 359 185

The transition records include the information about patience ID, record ID, diag-

nosis, admission time, bed ID, department, discharge time, and discharge destination.

In one transition record of a patient, the time interval between the admission time and

the discharge time is treated as one LOS data point. In order to unify the unit of time

interval and ensure the sensitivity of fitting results, the time unit is set as minute.

The records unrelated to the disease studied in each case are filtered out during

data processing. For example, for the disease “liveborn infant”, patients are readmit-

ted with common pediatric diseases. For other diseases, the situation is similar. The

readmitted records in the case of “headache” all contain diagnoses similar or related

to “headache”, such as “dizziness and giddiness” or “fever”. The filtering follows the

2018 ICD-10-CM Coding Rules3. By these rules, the readmitted records are guaran-

teed to be with the same type of diseases. For the patients who have readmission

records, the difference between the previous discharge time and the next admission

time is the readmission interval. The readmission rate is simply the proportion of

readmission records. We use six months of Time to Next Admission (TTNA) as a

threshold to identify Long Time Readmission Rate (LTRR) and Short Time Readmis-

sion Rate (STRR). Similarly, the No Readmission Rate (NRR) is the proportion of

not being readmitted. Considering the three readmission rates, their changing trends

will directly show the inherent difference in LOS groups and diseases. Since one

patient can be readmitted again and thus has several different transition records, the

LOS groups actually are groups of records. For example, a patient can be in group 1

for his first record and be in group 2 for another one.

2 http://www.icd10data.com/ICD10CM/Codes
3 http://www.icd10data.com/
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Fig. 3: (a) Fitted PH distribution vs. Input Distribution of R51 (b) Partial Enlarged

Detail of R51

For the discharge destinations, which usually contain more than 20 places, we

classify them into six main groups, including home, hospital, medical center, health

facility, other unspecific facilities, and nursing home.

We fitted a Coxian PH distribution to the LOS data using the EMpht program

with maximum of 1000 iterations. The resulting maximum log-likelihood values,

minimum AIC for the five diseases, and the number of LOS groups are presented

in Table 2.

Table 2: Log-likelihood and Groups

Disease Maximum lnL(θ |y) # of Groups Minimum AIC

R51 -30178.05476 7 60382.10952

Z38.00 -13721.43258 3 27452.86516

F10.10 -14277.45685 7 28580.91370

J06.9 -30293.34526 7 60612.69052

H26.499 -2074.26930 4 4162.53859

3.2 Results

3.2.1 Headache

Fig. 3 illustrates the fitting of the PH distribution to the input LOS data of “headache”.

The solid line and dashed line are the CDF of input LOS data and the fitted PH

distribution, respectively. The fitted distribution follows closely to the input one even

in the partially enlarged plot (Fig. 3(b)), indicating that the fitting is adequate.

Table 3 presents the estimated parameters, the probability, the sample size, and

the maximum LOS of each state. The first column is the rates from transient states to

absorbing state. The next column is the proportion of each state. We want to empha-

size that the transient states are not same with the LOS groups, since the probability



10 W. Gu et al.

Table 3: Results of PH Distributions Fitting of R51

Transition rate Probability Group Maximum LOS # of records

λ10 0.000176 P1 0.015084 G1 39 195

λ20 0.000178 P2 0.013597 G2 55 172

λ30 0.005626 P3 0.382946 G3 220 4,917

λ40 0.016944 P4 0.440500 G4 518 5,673

λ50 0.001652 P5 0.079340 G5 1,129 1,025

λ60 0.000182 P6 0.062366 G6 17,085 802

λ70 0.000045 P7 0.006168 G7 92,450 81

from one transient state to the absorbing state can be 0, which means that the cor-

responding LOS group does not exist. Group Gi corresponds to the ith LOS group.

Finally, the maximum LOS and the size of data points for each state are listed. The

patients with headache may be regarded as belonging to seven LOS groups: 0-39

minutes, 40-55 minutes, 56-220 minutes, 221-518 minutes, 519-1129 minutes (less

than 1 day), 1130-17085 minutes (1-12 days) and 17085-92450 minutes (12-65 days).

Additionally, the expected value of the fitted distribution is 779.82 minutes (average

LOS is approximately 13 hours), which is the same as the sample mean of the input

LOS data. But for the standard deviation, the fitted one has 3275.6 that is large than

the input one (3227.11).

The transition through groups cannot reveal the severity of patients, but does in-

fluence the discharge directions and readmission rate. In Table 4, the amount and

proportion of each discharge direction are shown with respect to the corresponding

group number. In general, most of the patients go back home after treatment. But

for those long LOS patients (groups 6 and 7), there are a large number of patients

being transferred to other unnamed facilities. Therefore, for patients with headache

staying in hospital for more than 17085 minutes (approximately 12 days), it seems

difficult for them to recover at home. For the first two groups, with LOS less than

1 hour, none of the patients discharge to other hospitals, health facility or nursing

home. These groups of patients may be in good health and their headache may result

from getting a cold or other indispositions.

Table 4: Discharge destination of R51

Group Home Hospital Medical center Health facility Other Nursing home

G1 187 95.90% 0 0.00% 1 0.51% 0 0.00% 7 3.59% 0 0.00%

G2 168 97.67% 0 0.00% 1 0.58% 0 0.00% 3 1.74% 0 0.00%

G3 4,737 96.36% 9 0.18% 50 1.02% 60 1.22% 49 1.00% 11 0.22%

G4 5,388 94.99% 25 0.44% 85 1.50% 105 1.85% 59 1.04% 10 0.18%

G5 864 84.38% 11 1.07% 51 4.98% 53 5.18% 35 3.42% 10 0.98%

G6 604 75.50% 18 2.25% 35 4.38% 36 4.50% 98 12.25% 9 1.13%

G7 44 55.00% 2 2.50% 2 2.50% 0 0.00% 30 37.50% 2 2.50%

In Table 5, the LTRR, STRR and NRR are listed for all 7 groups. Other informa-

tion, such as the number of TTNA being longer than 6 months or not is also included.

Fig. 4 illustrates the variation trend of three rates with groups. The STRR is the high-
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Table 5: Readmission Rate of R51

Group TTNA >180 TTNA>0 LTRR STRR NRR

G1 38 135 19.49% 49.74% 30.77%

G2 28 99 16.28% 41.28% 42.44%

G3 708 2,698 14.40% 40.47% 45.13%

G4 947 3,350 16.69% 42.36% 40.95%

G5 140 678 13.66% 52.49% 33.85%

G6 149 516 18.58% 45.76% 35.66%

G7 12 48 14.81% 44.44% 40.74%

est for most groups and occupies about half of all rates, while LTRR is relatively

stable and always has low values. For the NRR, it is close to STRR in group 2, 3 and

4. For group 3, the NRR is the highest rate and has its own largest value.

1 2 3 4 5 6 7
0

10

20
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40

50

60

70
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90

100

group
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te

 (
%

)

LTRR
STRR
NRR

Fig. 4: Readmission Rates vs. Group of R51

3.2.2 Single liveborn infant, delivered vaginally

The fitted PH distribution with 3 states and the distribution of the input data are

presented in Fig. 5. Since their general trends change in the same way, the fitting is

also adequate.

It is concluded in Maisels and Kring (1998) that newborn infants discharged at

any time < 72 hours have significantly high risk for readmission to hospital. Both

the newborn infants delivered vaginally and delivered by cesarean were considered.

In this paper, we focus on the ones delivered vaginally and give more detailed LOS

grouping with reference to readmission risk. In Table 6, the fitted rates λ20,λ30,λ40,λ50

are almost 0. This means that the probabilities of departure from states 2,3,4, and 5

to the absorbing state (discharge) are all 0. In other words, patients who are in state 2

always stay in the hospital until state 6 and finally to absorbing state. Thus, the three

groups of LOS are 0-425 minutes (less than 1 day), 425-6384 minutes (less than 5

days) and 6385-106933 minutes (5-75 days). The LOS mean is about 5371.76 min-

utes (average LOS is 4 days) for both the fitted and observed distributions, and the
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Fig. 5: (a) Fitted PH distribution vs. Input Distribution of Z38.00 (b) Partial

Enlarged Detail of Z38.00

sample standard deviation is 12205.69, that is smaller than the standard deviation of

the fitted distribution (12440.01).

Table 6: Results of PH Distributions Fitting of Z38.00

Transition rate Probability Group Maximum LOS # of records

λ10 0.019206 P1 0.069759 G1 425 107

λ20 0.000000 P2 0.000000

λ30 0.000000 P3 0.000000

λ40 0.000000 P4 0.000000

λ50 0.000000 P5 0.000000

λ60 0.104980 P6 0.834163 G2 6,384 1,290

λ70 0.002081 P7 0.096078 G3 106,933 149

Table 7 presents the distribution of all four destinations. The proportions of going

back home are all higher than 80% and there are very few other discharge directions.

In addition, those who stay in hospital from 1-5 days seem to have the best recovery

since there is an almost 100% of going home rate. This “disease” is different from

others since no bacteria or virus causes damages physically or psychologically. Live-

born infants have a strong ability to grow up healthily as long as they are well fed and

taken care of.

Table 7: Discharge Destination of Z38.00

Group Home Hospital Medical center Other

G1 99 92.52% 0 0.00% 6 5.61% 2 1.87%

G2 1,272 98.60% 0 0.00% 0 0.00% 18 1.40%

G3 131 87.92% 1 0.67% 0 0.00% 17 11.41%

Table 8 shows that the NRR values for all groups are extremely high compared

with other diseases, indicating that most of liveborn infants and their mothers recover
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Table 8: Readmission Rate of Z38.00

Group TTNA >180 TTNA>0 LTRR STRR NRR

G1 9 21 8.41% 11.21% 80.37%

G2 40 79 3.10% 3.02% 93.88%

G3 7 15 4.70% 5.37% 89.93%

very well after discharging from hospital. Fig. 6 shows the changing readmission

rates as the group varies. The NRR is the highest and has more than 80% for the three

groups, while the LTRR and STRR are relatively low and similar. Besides, the three

rates are quite stable, showing that the LOS does not influence much on the structure

of readmission rates.
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Fig. 6: Readmission Rates vs. Group of Z38.00

3.2.3 Alcohol abuse

Fig. 7 shows the closeness of the fitted distribution to the input data. The points from

the fitted distribution fall approximately along with the observed distribution line.

The LOS data can be classified into 7 groups where group 5 with 369-652 min-

utes (7-11 hours) of staying takes the largest proportion, group 6 comes the second as

653-1418 minutes (about half of one day) (see Table 9). But there is no obvious con-

centration in one specific group, which means that the LOS data of “alcohol abuse”

has a low kurtosis and most patients have LOS within one day. Moreover, patients

with LOS longer than 1 day are all in group 7, with LOS from 1-44 days. The mean

of LOS is 1116 minutes (average LOS is about 19 hours), the sample standard devi-

ation 3462 is larger than the fitted standard deviation 3084.

In Table 10, the rate of discharging to home is relatively high for first 6 groups

but much smaller for group 7. For the longest LOS (the 7th) group, the ratios of

going to other hospital, medical center, nursing home or other unspecific facilities are

higher compared with those in other groups. Only groups 5 and 7 have a few patients

transferred to other hospitals. Interestingly, only group 1 does not have patients going

to other hospital, medical center, health facility and nursing home.
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Fig. 7: (a) Fitted PH distribution vs. Input Distribution of F10.10 (b) Partial

Enlarged Detail of F10.10

Table 9: Results of PH Distributions Fitting of F10.10

Transition rate Probability Group Maximum LOS # of records

λ10 0.000145 P1 0.017339 G1 41 33

λ20 0.001821 P2 0.191542 G2 230 363

λ30 0.001691 P3 0.127270 G3 334 243

λ40 0.000570 P4 0.040171 G4 368 75

λ50 0.003126 P5 0.301121 G5 652 576

λ60 0.008565 P6 0.242093 G6 1,418 462

λ70 0.000130 P7 0.080464 G7 62,985 154

Table 10: Discharge Destination of F10.10

Group Home& home visit Hospital Medical center Health facility Other Nursing home

G1 32 96.97% 0 0.00% 0 0.00% 0 0.00% 1 3.03% 0 0.00%

G2 320 90.91% 0 0.00% 4 1.14% 23 6.53% 1 0.28% 4 1.14%

G3 212 87.24% 0 0.00% 6 2.47% 17 7.00% 1 0.41% 7 2.88%

G4 64 85.33% 0 0.00% 1 1.33% 6 8.00% 4 5.33% 0 0.00%

G5 517 89.76% 3 0.52% 3 0.52% 34 5.90% 10 1.74% 9 1.56%

G6 406 87.88% 0 0.00% 7 1.52% 33 7.14% 8 1.73% 8 1.73%

G7 95 61.69% 2 1.30% 10 6.49% 12 7.79% 30 19.48% 5 3.25%

Table 11: Readmission Rate of F10.10

Group TTNA >180 TTNA>0 LTRR STRR NRR

G1 3 29 9.09% 78.79% 12.12%

G2 36 237 9.92% 55.37% 34.71%

G3 26 159 10.70% 54.73% 34.57%

G4 3 51 4.00% 64.00% 32.00%

G5 69 394 11.98% 56.42% 31.60%

G6 62 341 13.42% 60.39% 26.19%

G7 18 104 11.69% 55.84% 32.47%

The trend is similar to the one of R51, the “ headache”. The STRR is also the

highest one and even larger than that in Section 3.2.1. The LTRR is very low and

stable for all groups. We can suppose that for those alcoholics, it is common for them
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to come to hospital again and again since they are addicted to alcohol. Besides, for

patients in group 1, who stay for less than one hour, the STRR is larger and NRR is

much smaller than those of other groups. It seems that a quick treatment and hasty

leaving will not help the patients get rid of the abuse totally (Table 11, Fig. 8).
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Fig. 8: Readmission Rate vs. Group of F10.10

3.2.4 Acute upper respiratory infection, unspecified

Fig. 9 shows both the fitted distribution and the observed distribution. Two function

lines overlap, showing the adequacy of the fitting.

In Table 12, the group 3, as the largest group, accounts for 56.98% of the patients.

It has the LOS from 41-217 minutes, approximately 1-4 hours. The second largest

groups are groups 4 and 5, which have a range of 4-12 hours. Further more, the

sample mean and the expected value of the fitted distribution are both 618.87 minutes

(average LOS is about 11 hours). The standard deviations of the two distributions are

3289.72 and 3113.30, respectively.
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Most patients discharge from hospital within 12 hours. For those who stay in

hospital longer than 12 hours, groups 6 and 7 in Table 13, there is a lower proportion

of going back home. Especially for group 7, only 68.63% can return home while

23.53% go to other facilities and 5.88% to nursing home. The longest LOS can be

related with people having bad physical condition since they do not have a strong

recovery ability (needing more treatments) and cannot take care of themselves.

Table 12: Results of PH Distributions Fitting of J06.9

Transition rate Probability Group Maximum LOS # of records

λ10 0.000098 P1 0.008724 G1 23 39

λ20 0.000515 P2 0.027552 G2 41 125

λ30 0.020370 P3 0.569752 G3 217 2,641

λ40 0.013621 P4 0.184537 G4 319 860

λ50 0.006278 P5 0.150469 G5 744 699

λ60 0.000218 P6 0.048088 G6 11,075 224

λ70 0.000057 P7 0.010877 G7 105,311 51

Additionally, in Table 14 and Fig. 10, the NRR for shorter LOS groups, group 1-4,

is larger than the other two rates. The STRR increases with group number becoming

larger. This may due to the severity of disease, the longer the LOS is, the severer the

infection the patient had. Another phenomenon worth to notice is that group 6 has the

lowest NRR, which means that almost all patients in this group need to be readmitted

to hospital. But there are very few of patients discharge to nursing home. Our guess

is that patients in group 6 have a very bad infection but their physical conditions are

still good. However, the group 7 contains some elder patients not only got caught with

severe infection but also had a bad health condition, and there is a high probability

that some of them may pass away only by this common disease. That is why the NRR

is even higher than that of group 5 and group 6.

Table 13: Discharge Destination of J06.9

Group Home& home visit Hospital Medical center Health facility Other Nursing home

G1 38 97.44% 0 0.00% 0 0.00% 1 2.56% 0 0.00% 0 0.00%

G2 121 96.80% 0 0.00% 0 0.00% 1 0.80% 3 2.40% 0 0.00%

G3 2,601 98.49% 3 0.11% 16 0.61% 15 0.57% 5 0.19% 1 0.04%

G4 827 96.16% 2 0.23% 17 1.98% 10 1.16% 2 0.23% 2 0.23%

G5 651 93.13% 6 0.86% 22 3.15% 12 1.72% 5 0.72% 3 0.43%

G6 193 86.16% 1 0.45% 4 1.79% 7 3.13% 17 7.59% 2 0.89%

G7 35 68.63% 0 0.00% 1 1.96% 0 0.00% 12 23.53% 3 5.88%

3.2.5 Other secondary cataract, unspecified eye

Figure 11 illustrates the fitted distribution and the observed distribution overlap, in-

dicating the adequacy of the fitting.
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Table 14: Readmission Rate of J06.9

Group TTNA >180 TTNA>0 LTRR STRR NRR

G1 10 19 25.64% 23.08% 51.28%

G2 15 55 12.00% 32.00% 56.00%

G3 367 1,201 13.90% 31.58% 54.52%

G4 148 488 17.21% 39.53% 43.26%

G5 113 478 16.17% 52.22% 31.62%

G6 48 161 21.43% 50.45% 28.13%

G7 8 32 15.69% 47.06% 37.25%
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Fig. 10: Readmission Rate vs. Group of J06.9

Similar to “liveborn infant” in Section 3.2.2, the rates of being absorbed from

first three states, λ10,λ20,λ30, are almost 0 (see Table 15). And in state 4, there is

only one record of admission with a stay of 15 minutes. It is reasonable to treat it

as an outlier. Therefore, after admission, patients always stay in the hospital longer

until state 5 and then choose to stay or discharge. Hence, the final model consists

of groups 2, 3 and 4. Among these three groups, group 2 has the LOS from 0-257

minutes (within 5 hours), group 3 has the LOS 258-625 minutes (within 11 hours)

and group 4 has the LOS 626-7460 minutes (no more than 6 days). Additionally,

group 2 takes the largest proportion as 90.84% among the three groups. The mean of

the LOS for observed data and fitted distribution are 203.94 minutes (average LOS is

around 4 hours), while the sample standard deviation is 559.34 and the fitted standard

deviation is 563.80.

In Table 16, the returning home rates for the three groups are very close to 100%.

The variation of discharging destination is also very limited. It may due to that the

“secondary cataract” itself is not a severe disease and does not need any complex

treatment.

For the readmission rates in Table 17 and Fig. 12, the LTRR for three groups are

similar. The STRR increases and the NRR decreases with the group number becom-

ing larger. For short LOS, STRR occupies more than half. But for long LOS, NRR

becomes the largest rate.
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Fig. 11: (a) Fitted PH distribution vs. Input Distribution of H26.499 (b) Partial

Enlarged Detail of H26.499

Table 15: Results of PH Distributions Fitting of H26.499

Transition rate Probability Group Maximum LOS # of records

λ10 0.000000 P1 0.000000

λ20 0.000000 P2 0.000000

λ30 0.000000 P3 0.000000

λ40 0.000002 P4 0.000028 G1 15 1

λ50 0.063863 P5 0.908426 G2 257 325

λ60 0.002725 P6 0.059956 G3 625 22

λ70 0.000476 P7 0.031590 G4 7,460 11

Table 16: Discharge Destination of H26.499

Group Home Health facility Other Medical center

G2 323 99.38% 0 0.00% 2 0.62% 0 0.00%

G3 20 90.91% 1 4.55% 0 0.00% 1 4.55%

G4 9 81.82% 1 9.09% 0 0.00% 1 9.09%

Table 17: Readmission Rate of H26.499

Group TTNA >180 TTNA>0 LTRR STRR NRR

G2 45 152 13.85% 32.92% 53.23%

G3 4 12 18.18% 36.36% 45.45%

G4 2 7 18.18% 45.45% 36.36%

4 Conclusions

This paper investigates the patient flow data collected in Banner University Medical

Center Tucson - Main Campus and South Campus. Based on the numerical experi-

ments, the PH distributions can approximate very well as a first step in the analysis

of the LOS. Besides clustering of patients by their LOS information, this paper also

presents a direct view of the diversity of patterns from disease to disease. Addition-

ally, by fitting a Coxian PH distribution to patients’ LOS data, we can identify the

LOS groups with discharge directions and readmission rates.
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Fig. 12: Readmission Rate vs. Group of H26.499

From the results, the number of LOS groups and the data distribution within

groups vary from disease to disease. Some of these diseases have data centered

around one group, e.g., “headache” has most patients in groups 3 and 4, while some

have data distributed in another way, e.g., the “alcohol abuse” has two peak at group

2 and group 5 separately. For the readmission rates, in general, the LTRR is stable for

the five diseases. But for STRR and NRR, the observations are different. For exam-

ple, the “liveborn infant” is quite different from others with a large number of NRR

for all groups. For the disease “secondary cataract”, all three readmission rates of

three groups have similar values, and this may convey that the LOS group makes no

difference on readmission for this disease.

Each LOS group is a collection of patients sharing same characteristics. The anal-

ysis of the relations between group and readmission will offer better service to a new

patient and avoid sources wasting by reviewing patients’ previous medical records. In

addition, comparing the readmission structure among distinct diseases and describ-

ing the inherent differences in patterns can help make better decision in assigning

resources as well as improving the insurance policy.
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