
Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

casper.uwplse.org

Maaz Bin Safeer Ahmad
University of Washington

maazsaf@cs.washington.edu

Alvin Cheung
University of Washington

akcheung@cs.washington.edu

ABSTRACT

MapReduce is a popular programming paradigm for developing

large-scale, data-intensive computation. Many frameworks that

implement this paradigm have recently been developed. To lever-

age these frameworks, however, developers must become familiar

with their APIs and rewrite existing code. We present Casper, a

new tool that automatically translates sequential Java programs

into the MapReduce paradigm. Casper identifies potential code

fragments to rewrite and translates them in two steps: (1) Casper

uses program synthesis to search for a program summary (i.e., a

functional specification) of each code fragment. The summary is

expressed using a high-level intermediate language resembling the

MapReduce paradigm and verified to be semantically equivalent

to the original using a theorem prover. (2) Casper generates exe-

cutable code from the summary, using either the Hadoop, Spark, or

Flink API. We evaluated Casper by automatically converting real-

world, sequential Java benchmarks to MapReduce. The resulting

benchmarks perform up to 48.2× faster compared to the original.

ACM Reference Format:

Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically Leveraging

MapReduce Frameworks for Data-Intensive Applications: casper.uwplse.org.

In SIGMOD’18: 2018 International Conference on Management of Data, June

10ś15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3183713.3196891

1 INTRODUCTION

MapReduce [21], a popular paradigm for developing data-intensive

applications, has varied and highly efficient implementations [4, 5, 8,

36]. All these implementations expose an application programming

interface (API) to developers. While the concrete syntax differs

slightly across the different APIs, they all require developers to

organize their computation into map and reduce stages in order to

leverage their optimizations.

While exposing optimization via an API shields application de-

velopers from the complexities of distributed computing, this ap-

proach contains a major drawback: for legacy applications to lever-

age MapReduce frameworks, developers must first understand the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10ś15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196891

existing code’s function and subsequently re-organize the compu-

tation using mappers and reducers. Similarly, novice programmers,

unfamiliar with the MapReduce paradigm, must first learn the dif-

ferent APIs in order to express their computation accordingly. Both

require a significant expenditure of time and effort. Further, each

code rewrite or algorithm reformulation opens another opportunity

to introduce bugs.

One way to alleviate these issues is to build a compiler that trans-

lates code written in another paradigm (e.g., imperative code) into

MapReduce. Classical compilers, like logical to physical query plan

compilers [29], use pattern matching rules, i.e., the compilers con-

tain a number of rules that recognize different input code patterns

(e.g., a sequential loop over lists) and translate the matched code

fragment into the target (e.g., a single-stage map and reduce). As

in query compilers, designing the rules is challenging: they must

be both correct, i.e., the translated code should have the same se-

mantics as the input, and sufficiently expressive to capture the wide

variety of coding patterns that developers use to express their com-

putations. We are aware of only one such compiler that translates

imperative Java programs into MapReduce [38], and the number of

rules involved in that compiler makes it difficult to maintain and

modify.

This paper describes a new tool, Casper, that translates sequen-

tial Java code into semantically equivalent MapReduce programs.

Rather than relying on rules to translate different code patterns,

Casper is inspired by prior work on cost-based query optimiza-

tion [41], which considers compilation to be a dynamic search prob-

lem. However, given that the inputs are general-purpose programs,

the space of possible target programs is much larger than it is for

query optimization. To address this issue, Casper leverages recent

advances in program synthesis [11, 25] to search for MapReduce

programs into which it can rewrite a given input sequential Java

code fragment. To reduce the search space, Casper searches over

the space of program summaries, which are expressed using a high-

level intermediate language (IR) that we designed. As we discuss

in ğ3.1, the IR’s design succinctly expresses computations in the

MapReduce paradigm yet remains sufficiently easy to translate into

the concrete syntax of the target API.

To search for summaries, Casper first performs lightweight pro-

gram analysis to generate a description of the space of MapReduce

programs that a given input code fragment might be equivalent to.

The search space is also described using our high-level IR. Casper

then uses an off-the-shelf program synthesizer to perform the search,

but it is guided by an incremental search algorithm and our domain-

specific cost model to speed the process. A theorem prover is used to

check whether the found program summary is indeed semantically

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1205

equivalent to the input. Once proved, the summary is translated

into the concrete syntax of the target MapReduce API. Since the

performance of the translated program often depends on input

data characteristics (e.g., skewness), Casper generates multiple

semantically equivalent MapReduce programs for a given input

and produces a monitor module that switches among them based

on runtime statistics; the monitor and switcher are automatically

generated during compilation.

Compared to prior approaches, Casper does not require com-

piler developers to design or maintain any pattern matching rules.

Furthermore, the entire translation process is completely automatic.

We evaluated Casper using a number of benchmarks and real-

world Java applications and demonstrated both Casper’s ability to

translate an input program into MapReduce equivalents and the

significant performance improvements that result.

In summary, our paper makes the following contributions:

• We propose a new high-level intermediate representation (IR)

to express the semantics of sequential Java programs in the MapRe-

duce paradigm. The language is succinct to be easily translated into

multiple MapReduce APIs, yet expressive to describe the seman-

tics of many real-world benchmarks written in a general-purpose

language. Furthermore, programs written in our IR can be automat-

ically checked for correctness using a theorem prover (ğ4.1). The IR,

being a high-level language, also lets us perform various semantic

optimizations using our cost model (ğ5).

• We describe an efficient search technique for program sum-

maries expressed in the IR without requiring any pattern matching

rules. Our technique is both sound and complete with respect to the

input search space. Unlike classical compilers, which rely on pattern

matching to drive translation, our technique leverages program

synthesis to dynamically search for summaries. Our technique is

novel in that it incrementally searches for summaries based on

cost. It also uses verification failures to systematically prune the

search space and a hierarchy of search grammars to speed the sum-

mary search. This lets us translate benchmarks that have not been

translated in any prior work (ğ4.1).

• There are often multiple ways to express the same input as

MapReduce programs. Therefore, our technique can generate mul-

tiple semantically equivalent MapReduce versions of the input. It

also automatically inserts code that collects statistics during pro-

gram execution to adaptively switch among the different generated

versions (ğ5.2).

• We implemented our methodology in Casper, a tool that con-

verts sequential Java programs into three MapReduce implementa-

tions: Spark, Hadoop, and Flink. We evaluated the feasibility and

effectiveness of Casper by translating real-world benchmarks from

7 different suites from multiple domains. Across 55 benchmarks,

Casper translated 82 of 101 code fragments. The translated bench-

marks performed up to 48.2× faster compared to the original ones

and were competitive even with other distributed implementations,

including manual ones (ğ7).

2 OVERVIEW

This section describes how we model the MapReduce programming

paradigm and demonstrates by example how Casper translates

sequential code into MapReduce programs.

1 @Summary(

2 m =map(r educe(map(mat, λm1), λr), λm2)

3 λm1 : (i, j, v) → {(i, v)}

4 λr : (v1, v2) → v1 + v2

5 λm2 : (k, v) → {(k, v/cols)})

6 int[] rwm(int[][] mat, int rows, int cols) {

7 int[] m = new int[rows];

8 for (int i = 0; i < rows; i++) {

9 int sum = 0;

10 for (int j = 0; j < cols; j++)

11 sum += mat[i][j];

12 m[i] = sum / cols;

13 }

14 return m;

15 }
(a) Input: Sequential Java code

1 RDD rwm(RDD mat, int rows, int cols) {

2 RDD m = mat.mapToPair(e -> new Tuple(e.i, e.v));

3 m = m.reduceByKey((v1, v2) -> (v1 + v2));

4 m = m.mapValues(v -> (v / cols));

5 return m;

6 }
(b) Output: Apache Spark code

Figure 1: Using Casper to translate the row-wise mean

benchmark to MapReduce (Spark).

2.1 MapReduce Operators

MapReduce organizes computation using two operators: map and

reduce. The map operator has the following type signature:

map : (mset[τ], λm) −→ mset[(κ,ν)]

λm : τ −→ mset[(κ,ν)]

Input intomap is a multiset (i.e., bag) of type τ and a unary trans-

former function λm , which converts a value of type τ into a multiset

of key-value pairs of types κ and ν . The map operator then concur-

rently applies λm to every element in the multiset and returns the

union of all multisets generated by λm .

reduce : (mset[(κ,ν)], λr) −→mset[(κ,ν)]

λr : (ν ,ν) −→ ν

Input into reduce is a multiset of key-value pairs and a binary

transformer function λr , which combines two values of type ν to

produce a final value. The reduce operator first groups all key-value

pairs by key (also known as shuffling) and then uses λr to combine,

in parallel, the bag of values for each key-group into a single value.

The output of reduce is another multiset of key-value pairs, where

each pair holds a unique key. If the transformer function λr is

commutative and associative, then reduce can be further optimized

by concurrently applying λr to pairs of values in a key-group.

Casper’s goal is to translate a sequential code fragment into a

MapReduce program that is expressed using themap and reduce

operators. The challenges in doing so are: (1) identify the correct

sequence of operators to apply, and (2) implement the correspond-

ing transformer functions. We next discuss how Casper overcomes

these challenges.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1206

Figure 2:Casper’s systemarchitecture. Sequential code frag-

ments (green) are translated intoMapReduce tasks (orange).

2.2 Translating Imperative Code to MapReduce

Casper takes in Java code with loop nests that sequentially iterate

over data and translates the code into a semantically equivalent

MapReduce program to be executed by the target framework. To

demonstrate, we show how Casper translates a real-word bench-

mark from the Phoenix suite [39].

As shown in Figure 1(a), the benchmark takes as input a ma-

trix (mat) and computes, using nested loops, the column vector (m)

containing the mean value of each row in the matrix. Assume the

code is annotated with a program summary that helps with the

translation into MapReduce. The program summary, written using

a high-level intermediate representation (IR), describes how the

output of the code fragment (i.e., m) can be computed using a series

of map and reduce stages from the input data (i.e., mat), as shown

in lines 1 to 5 in Figure 1(a). While the summary is not executable,

translating from that into the concrete syntax of a MapReduce

framework (say, Spark) would be much easier than translating from

the original input code. This is shown in Figure 1(b) where the map

and reduce primitives from our summary are translated into the

corresponding Spark API calls.

Unfortunately, the input code does not have such a summary,

which must therefore be inferred. Casper does this via program

synthesis and verification, as we explain in ğ3.

2.3 System Architecture

Figure 2 shows Casper’s overall design. We now discuss the three

primary modules that make up Casper’s compilation pipeline.

First, the program analyzer parses the input code into an Abstract

Syntax Tree (AST) and uses static program analysis to identify code

fragments for translation (ğ6.1). In addition, for each identified

code fragment, it prepares: (1) a search space description encoded

using our high-level IR that lets the synthesizer search for a valid

program summary (ğ3.1), and (2) verification conditions (VCs) (ğ3.3)

to automatically ascertain that the induced program summary is

semantically equivalent to the input.

Next, the summary generator synthesizes and verifies program

summaries (ğ3.4 and ğ4.1). To speed up the search, it partitions

the search space so that it can be efficiently traversed using our

incremental synthesis algorithm (ğ4.2).

Once a summary is inferred, the code generator translates it

into executable code. Casper currently supports three MapReduce

PS := ∀v . v = MR | ∀v . v = MR[vid]

MR := map(MR, λm) | r educe(MR, λr) | join(MR, MR) | data

λm := f : (val) → {Emit }

λr := f : (val1, val2) → Expr

Emit := emit (Expr, Expr) | i f (Expr) emit (Expr, Expr) |

i f (Expr) emit (Expr, Expr) else Emit

Expr := Expr op Expr | op Expr | f (Expr, Expr, ...) |

n | var | (Expr, Expr)

v ∈ Output V ar iables

op ∈ Operators

vid ∈ Var iable ID,

f ∈ Library Methods

Figure 3: Excerpt of the IR for program summaries (PSs), a

full description of which is provided in Appendix B.

frameworks: Spark, Hadoop, and Flink. Additionally, this compo-

nent also generates code that collects data statistics to adaptively

choose among different implementations during runtime (ğ5.2).

3 SYNTHESIZING PROGRAM SUMMARIES

As discussed, Casper discovers a program summary for each code

fragment before translation. Technically, a program summary is a

postcondition [26] of the input code that describes the program state

after the code fragment is executed. In this section, we explain: (1)

the IR Casper uses to express summaries, (2) how Casper verifies

a summary’s validity, and (3) the search algorithm Casper uses to

find valid summaries given a search space description.

3.1 A High-level IR for Program Summaries

One approach to synthesize summaries directly searches in pro-

grams written in the target framework’s API. This does not scale

well; Spark alone offers over 80 high-level operators, even though

many of them have similar semantics and differ only in their im-

plementation or syntax (e.g., map, flatMap, filter). To speed up

synthesis, we instead search in programs written in a high-level

IR that abstracts away syntactical differences and describes only

the functionality of a few essential operators. The goals of the IR

are: (1) to express summaries that are translatable into the target

API, and (2) to let the synthesizer efficiently search for summaries

that are equivalent to the input program. To address these goals,

Casper’s IR models two MapReduce primitives that are similar to

the map and fold operators in Haskell (see ğ2.1). In addition, our

IR models the join primitive, which takes as input two multisets

of key-value pairs and returns all pairs of elements with matching

keys. The IR does not currently model the full range of operators

across different MapReduce implementations; however, it already

lets Casper capture a wide array of computations expressible using

the paradigm and is sufficiently general to be translatable into dif-

ferent MapReduce APIs while keeping the search problem tractable,

as we demonstrate in ğ7.

Figure 3 shows a subset of Casper’s IR, used to express both pro-

gram summaries and the search space. The IR assumes that program

summaries are expressed in the stylized form shown in Figure 3 as

PS, which states that each output variablev (i.e., a variables updated

in the code fragment), must be computed using a sequence ofmap,

reduce and join operations over the inputs (e.g., the arrays or col-

lections being iterated). While doing so ensures that the summary

is translatable into the target API, the implementations of λm and

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1207

λr for themap and reduce operators depend on the code fragment

being translated. We leave these functions to be synthesized and

restrict the body of λm to a sequence of emit statements, where

each emit statement produces a single key-value pair, and the body

of λr is an expression that evaluates to a single value of the re-

quired type. Besides emit , the bodies of λm and λr ’s can consist of

conditionals and other operations on tuples, as shown in Figure 3.

The output of the MapReduce expression is an associative array

of key-value pairs; the unique key vid for each variable is used to

access the computed value of that variable. Appendix B lists the

full set of types and operators that our IR supports.

3.2 Defining the Search Space

In addition to program summaries, Casper also uses the IR to

describe the search space of summaries for the synthesizer. It does

so by generating a grammar for each input code fragment, like

the one shown in Figure 3. The synthesizer traverses the grammar

by expanding on each production rule and checks whether any

generated candidate constitutes a valid summary (as explained

in ğ3.3).

To generate the search space grammar,Casper analyzes the input

code to extract the following properties and their type information:

(1) Variables in scope at the beginning of the input code

(2) Variables that are modified within the input code

(3) The operators and library methods used

The code analyzer extracts these properties using standard pro-

gram analyses. It computes (1) and (2) using live variable and

dataflow analysis [1], and it computes (3) by scanning functions

that are invoked in the input code. We currently assume that in-

put variables are not aliased to each other and put guards on the

translated code to ensure that is the case.1 Appendix D shows the

analysis results for the TPC-H Q6 benchmark, and we discuss the

limitations of our program analyzer module implementation in ğ6.1.

Given this information, the summary generator builds a search

space grammar that is specialized to the code fragment being trans-

lated. Figure 6 shows sample grammars that are generated for the

code shown in Figure 1(a).2 The input code uses addition and di-

vision; hence, the grammar includes addition and division in its

production rules for λm and λr . Furthermore, Casper also uses

type information of variables to prune invalid production rules in

the grammar. For instance, if the output variable v is of type int ,

the final operation in the synthesized MapReduce expression must

evaluate to a value of type int . Since the output type of a reduce

operation is inferred from the type of its input, we can propagate

this information to restrict the type of values the reduce operation

accepts. To make synthesis tractable and the search space finite,

Casper imposes recursive bounds on the production rules. For in-

stance, it limits the number of MapReduce operations a program

summary can use and the number of emit statements in a single

transformer function. In ğ4.2, we discuss how Casper further spe-

cializes the search space by changing the set of production rules

available in the grammar or specifying different recursive bounds.

1Thus, if variable handles v1 and v2 are both inputs into the same code fragment,
Casperwraps the translated code as: if (v1 != v2) { [Casper translated code]

} else { [original code] }. Computing precise alias information requires more
engineering [43] and does not impact our approach.
2Refer to Appendix D to see how a grammar can be encoded in our IR.

invariant(m, i) ≡ 0 ≤ i ≤ rows ∧

m =map(reduce(map(mat[0..i], λm1), λr), λm2)

(a) Outer loop invariant

Initiation (i = 0) → Inv(m, i)

Continuation
Inv(m, i) ∧ (i < rows) →

Inv(m[i 7→ sum(mat[i])/cols], i + 1)

Termination Inv(m, i) ∧ ¬(i < rows) → PS(m, i)

(b) Verification conditions to ascertain the correctness of the pro-

gram summary PS given loop invariant Inv

Figure 4: Proof of soundness for the row-wise mean bench-

mark.

3.3 Verifying Program Summaries

To search for a valid summary within the search space, Casper re-

quires a way to check whether a candidate summary is semantically

equivalent to the input code. It does so using standard techniques

in program verification, namely, by creating verification conditions

based on Hoare logic [26]. Verification conditions are Boolean pred-

icates that, given a program statement S and a postcondition (i.e.,

program summary) P , state what must be true before S is executed

in order for P to be a valid postcondition of S . Verification con-

ditions can be systematically generated for imperative program

statements, including those processed by Casper [33, 47]. However,

each loop statement requires an extra loop invariant to construct

an inductive proof. Loop invariants are Boolean predicates that are

true before and after every execution of the loop body regardless

of how many times the loop executes.

The general problem of inferring the strongest loop invariants or

postconditions is undecidable [33, 47]. Unlike prior work, however,

two factors make our problem solvable: first, our summaries are

restricted to only those expressible using the IR described in ğ3.1,

which lacksmany problematic features (e.g., pointers) that a general-

purpose language would have. Moreover, we are interested only

in finding loop invariants that are strong enough to establish the

validity of the synthesized program summaries.

As an example, Figure 4(a) shows an outer loop invariant Inv ,

which can be used to prove the validty of the program summary

shown in Figure 1(a). Figure 4(b) shows the verification conditions

Casper constructs to state what the program summary and invari-

ant must satisfy. We can check that this loop invariant and program

summary are indeed valid based on Hoare logic as follows. First, the

initiation clause asserts that the invariant holds before the loop, i.e.,

when i is zero. This is true because the invariant asserts that the

MapReduce expression is true only for the first i rows of the input

matrix. Hence, when i is zero, the MapReduce expression is exe-

cuted on an empty dataset, and the output value for each row is 0.

Next, the continuation clause asserts that after one more execution

of the loop body, the ith index of output vector m should hold the

mean for the ith row of the matrix mat. This is true since the value

of i is incremented inside the loop body, which implies that the

mean for the ith row has been computed. Finally, the termination

condition completes the proof by asserting that if the invariant is

true, and i has reached the end of the matrix, then the program

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1208

summary PS must now hold as well. This is true since i now equals

the number of rows in the matrix, and the loop invariant asserts

that m equals the MapReduce expression executed over the entire

matrix, which is the same assertion as our program summary.

Casper formulates the search problem for finding program sum-

maries by constructing the verification conditions for the given

code fragment and leaving the body of the summary (and any nec-

essary invariants for loops) to be synthesized. For the program

summary and invariants, the search space is expressed using the

same IR as discussed in ğ3.1. Formally, the synthesis problem is:

∃ ps, inv1, . . . , invn . ∀σ . VC(P ,ps, inv1, . . . , invn ,σ) (1)

In other words, Casper’s goal is to find a program summary ps and

any required invariants inv1, . . . , invn such that for all possible

program states σ , the verification conditions for the input code

fragment P are true. After the synthesizer has identified a candidate

summary and invariants, Casper sends them and the verification

conditions to a theorem prover (see ğ4.1), and to the code generator

to generate executable MapReduce code if the program summary

is proven to be correct.

3.4 Search Strategy

Casper uses an off-the-shelf program synthesizer, Sketch [42], to

infer program summaries and loop invariants. Sketch takes as in-

put: (1) a set of candidate summaries and invariants encoded as a

grammar (e.g., Figure 3), and (2) the correctness specification for

the summary in the form of verification conditions. It then attempts

to find a program summary (and any invariants needed) using the

provided grammar such that the verification conditions hold true.

The universal quantifier in Eq.1 make the synthesis problem

challenging. Therefore, Casper uses a two-step process to ensure

that the found summary is valid. First, it leverages Sketch’s bounded

model checking to verify the candidate program summary over a

finite (i.e., łboundedž) subset of all possible program states. For

example, Casper restricts the maximum size of the input dataset

and the range of values for integer inputs. Finding a solution for

this weakened specification can be done very efficiently by the

synthesizer. Once a candidate program summary can be verified

for the bounded domain, Casper passes the summary to a theorem

prover to determine its soundness over the entire domain, which is

more expensive computationally. Casper currently translates the

summary along with an automatically generated proof script to

Dafny [31] for full verification. This two-step verification makes

Casper’s synthesis algorithm sound, without compromising effi-

ciency.

3.4.1 Synthesis Algorithm. Figure 5 (lines 1 to 8) shows the core

CEGIS [45] algorithm Casper’s synthesizer uses. The algorithm is

an iterative interaction between two modules: a candidate program

summary generator and a bounded model checker. The candidate

summary generator takes as input the IR grammar G, the veri-

fication conditions for the input code fragment VC , and a set of

concrete program states Φ. To start the process, the synthesizer pop-

ulates Φwith a few randomly chosen states, and generates program

summary candidate ps and any needed invariants inv1, . . . , invn
from G such that ∀σ ∈ Φ . VC(ps, inv1, . . . , invn ,σ) is true. Next,

the bounded model checker verifies whether the candidate program

1 function synthesize (G, VC):

2 Φ = {} // set of random program states

3 while true do

4 ps, inv1. .n = generateCandidate(G, VC, Φ)

5 if ps is null then return null // search space exhausted

6 ϕ = boundedVerify(ps, inv1. .n, VC)

7 if ϕ is null then return (ps, inv1. .n) // summary found

8 else Φ = Φ ∪ ϕ // counter-example found

9

10 function findSummary (A, VC):

11 G = generateGrammar(A)

12 Γ = generateClasses(G)

13 Ω = {} // summaries that failed verification

14 ∆ = {} // summaries that passed verification

15 for γ ∈ Γ do

16 while true do

17 c = synthesize(γ - Ω - ∆, VC)

18 if c is null and ∆ is null then

19 break // move to next grammar class

20 else if c is null then

21 return ∆ // search complete

22 else if fullVerify(c, VC) then ∆ = ∆ ∪ c

23 else Ω = Ω ∪ c

24 return null // no solution found

Figure 5: Casper’s search algorithm.

summary holds over the bounded domain. If it does, the algorithm

returns ps as the solution. Otherwise, the model checker returns a

counter-example state ϕ such thatVC(ps, inv1, . . . , invn ,ϕ) is false.

The algorithm adds ϕ to Φ and restarts the program summary gen-

erator. This continues until either a program summary is found that

passes bounded model checking or the search space is exhausted.

A limitation of the CEGIS algorithm is that, while efficient, the

found program summary might be true only for the finite domain

and thus will be rejected by the theorem prover when checking for

validity over the entire domain. In this case, Casper dynamically

changes the search space grammar to exclude the candidate pro-

gram summary that does not verify and restarts the synthesizer to

generate a new candidate summary using the preceding algorithm.

We discuss this process in detail in ğ4.1.

4 IMPROVING SUMMARY SEARCH

We now discuss the techniques Casper uses to make the search for

program summaries more robust and efficient.

4.1 Leveraging Verifier Failures

As mentioned, the program summary that the synthesizer returns

can fail theorem prover validation due to the bounded domain used

during search. For instance, assume we bound the integer inputs

to have a maximum value of 4 in the synthesizer. In this bounded

domain, the expressions v and Math.min(4,v) (where v is an input

integer) are deemed to be equivalent even though they are not equal

in practice. While prior work [17, 28] simply fails to translate such

benchmarks if the theorem prover rejects the candidate summary,

Casper uses a two-phase verification technique to eliminate such

candidates. This ensures that Casper’s search is complete with

respect to the search space defined by the grammar.

To achieve completeness, Casper must first prevent summaries

that failed the theorem prover from being regenerated by the syn-

thesizer. A naive approach would be to restart the synthesizer

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1209

Property G1 G2 G3

Map/Reduce
Sequence

m m→ r m→ r→ m

Emits
in λm

1 2 2

Key/Value
Type

int int
int or

Tuple<int,int>

𝐺𝐺𝐺 ≔𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚, 𝜆𝜆𝑚𝑚
𝜆𝜆𝑚𝑚 ≔ 𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖, 𝑗𝑗𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖, 𝑣𝑣𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑗𝑗, 𝑣𝑣 + 𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖 + 𝑗𝑗, 𝑣𝑣

𝐺𝐺𝐺 ≔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚, 𝜆𝜆𝑚𝑚 , 𝜆𝜆𝑟𝑟
𝜆𝜆𝑚𝑚 ≔ 𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖, 𝑣𝑣𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑗𝑗, 𝑣𝑣 + 𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖, 𝑗𝑗 , 𝑣𝑣, 𝐺
𝜆𝜆𝑟𝑟 ≔ 𝑣𝑣1, 𝑣𝑣2 → 𝑣𝑣1𝑣𝑣1, 𝑣𝑣2 → 𝑣𝑣2 + 4𝑣𝑣1, 𝑣𝑣2 → 𝑣𝑣1 + 𝑣𝑣2

𝐺𝐺𝐺 ≔ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚, 𝜆𝜆𝑚𝑚1 , 𝜆𝜆𝑟𝑟 , 𝜆𝜆𝑚𝑚2
𝜆𝜆𝑚𝑚1 ≔ 𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖, 𝑣𝑣𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖, 𝑣𝑣, 𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑣𝑣 → 𝑖𝑖 + 𝐺, 𝑗𝑗 − 𝑣𝑣 , 𝑖𝑖, 𝑣𝑣
𝜆𝜆𝑟𝑟 ∶= 𝑣𝑣1, 𝑣𝑣2 → 𝑣𝑣1𝑣𝑣1, 𝑣𝑣2 → 𝑣𝑣1 + 𝑣𝑣2𝑣𝑣1, 𝑣𝑣2 → (𝑣𝑣1. 𝐺, 𝑣𝑣2. 𝐺)

𝜆𝜆𝑚𝑚2 ∶=
𝑘𝑘, 𝑣𝑣 → 𝑘𝑘, 𝑣𝑣 , (𝑣𝑣, 𝑘𝑘)𝑘𝑘, 𝑣𝑣 → 𝑣𝑣. 𝐺, 𝑘𝑘 , 𝑣𝑣. 𝐺𝑘𝑘, 𝑣𝑣 → 𝑘𝑘, 𝑣𝑣/𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘, 𝑣𝑣 → 𝑖𝑖𝑖𝑖(𝑣𝑣 > 𝑖𝑖)[(𝑘𝑘, 𝑣𝑣)]

…

…

…

…

…
…

Figure 6: Incremental grammar generation. Casper generates a hierarchy of grammars to optimize search.

until a new summary is found, assuming that the algorithm im-

plemented by the synthesizer is non-deterministic. However, this

approach is incomplete because the algorithm may never terminate

since it can continually return the same incorrect summary. In-

stead, Caspermodifies the search space to ensure forward progress.

Recall from ğ3.4 that the search space for candidate summaries

{c1, . . . , cn } is specified using an input grammar that is generated

by the program analyzer and passed to the synthesizer. Thus, to

prevent a candidate cf that fails the theorem prover from being

repeatedly generated from grammar G, Casper simply passes in

a new grammar G − {cf } to the synthesizer. This is implemented

by passing additional constraints to the synthesizer to block a sum-

mary from being regenerated.

Theorem. Casper’s algorithm for inferring program summaries is

sound and complete with respect to the given search space.

A proof sketch for this theorem is provided in Appendix A.

Figure 5 shows how Casper infers program summaries and

invariants. Casper calls the synthesizer to generate a candidate

summary c on line 17 and attempts to verify c by passing it to the

theorem prover on line 22. If verification fails, c is added to Ω, the

set of incorrect summaries, and the synthesizer is restarted with a

new grammar G − Ω. We explain the full algorithm in ğ4.3.

In ğ7.3.2, we provide experimental results that illustrate how our

two-phase verification algorithm effectively finds program sum-

maries even when faced with verification failures.

4.2 Incremental Grammar Generation

Although Casper’s search algorithm is complete, the space of pos-

sible summaries to consider remains large. To address this, Casper

incrementally expands the search space for program summaries

to speed up the search. It does this by: (1) adding new production

rules to the grammar, and (2) increasing the number of times that

each product rule is expanded.

The benefits of this approach are twofold. First, since the search

time for a valid summary is proportional to search space size,

Casper often finds valid summaries quickly, as our experiments

show. Second, since larger grammars are more syntactically ex-

pressive, the found summaries are likely to be more expensive

computationally. Hence, biasing the search towards smaller gram-

mars likely produces program summaries that run more efficiently.

Although this is not sufficient to guarantee optimality of gener-

ated summaries, our experiments show that in practice Casper

generates efficient solutions (ğ7.2).

To implement incremental grammar generation, Casper par-

titions the space of program summaries into different grammar

classes, where each class is defined based on these syntactical fea-

tures: (1) the number of MapReduce operations, (2) the number of

emit statements in eachmap stage, (3) the size of key-value pairs

emitted in each stage, as inferred from the types of the key and

value, and (4) the length of expressions (e.g., x + y is an expression

of length 2, while x + y + z has a length of 3). All of these features

are implemented by altering production rules in the search space

grammar. A grammar hierarchy is created such that all program

summaries expressible in a grammar class Gi are also expressible

in a higher level class, i.e., G j where j > i .

4.3 Casper’s Search Algorithm for Summaries

Figure 5 shows Casper’s algorithm for searching program sum-

maries. The algorithm begins by constructing a grammar G using

the results of program analysis A on the input code. First, Casper

partitions the grammar G into a hierarchy of grammar classes Γ

(line 12). Then, it incrementally searches each grammar class γ ∈ Γ,

invoking the synthesizer to find summaries in γ (line 17). Each

summary (and invariants) the synthesizer returns is checked by a

theorem prover (line 22); Casper saves the set of correct program

summaries in ∆ and all summaries that fail verification in Ω. Each

synthesized summary (correct or not) is eliminated from the search

space, forcing the synthesizer to generate a new summary each

time, as explained in ğ4.1. When the grammar γ is exhausted, i.e.,

the synthesizer has returned null, Casper returns the set of correct

summaries ∆ if it is non-empty. Otherwise, no valid solution was

found, and the algorithm proceeds to search the next grammar

class in Γ. If ∆ is empty after exploring every grammar in Γ, i.e., no

summary could be found in the entire search space, the algorithm

returns null.

4.4 Row-wise Mean Revisited

We now illustrate how findSummary searches for program sum-

maries using the row-wise mean benchmark discussed in ğ2.2. Fig-

ure 6 shows three sample (incremental) grammars Casper gener-

ated as a result of calling generateClasses (Figure 5, line 12) along

with their properties. For example, the first class, G1, consists of

program summaries expressed using a singlemap or reduce opera-

tor, and the transformer functions λm and λr are restricted to emit

only one integer key-value pair. A few candidates for λm are shown

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1210

in the figure. For instance, the first candidate, (i, j,v) → [(i, j)],

maps each matrix entry to its row and column as the output.

If findSummary fails to find a valid summary inG1 for the bench-

mark, it advances to the next grammar class, G2. G2 expands upon

G1 by including summaries that consist of twomap or reduce op-

erators, and each λm can emit up to 2 key-value pairs. The search

next moves toG3, whereG3 expands uponG2 with summaries that

include up to threemap or reduce operators, and the transformers

can emit either integers or tuples. As shown in Figure 1(a), a valid

summary is finally found inG3 and added to ∆. Search continues in

G3 for other valid summaries in the same grammar class. The search

terminates after all valid summaries in G3, i.e., those returned by

the synthesizer and fully verified, are found. This includes the one

shown in Figure 1(a).

5 FINDING EFFICIENT TRANSLATIONS

There often exist many semantically equivalent MapReduce imple-

mentations for a given sequential code fragment, with significant

performance differences. Many frameworks come with optimizers

that perform low-level optimizations (e.g., fusing multiple map op-

erators). However, performing semantic transformations is often

difficult. For instance, at least three different implementations of

the StringMatch benchmark exist in MapReduce, and they differ in

the type of key-value pairs themap stage emits (see ğ7.4). Although

it is difficult for a low-level optimizer to discover these equiva-

lences by syntax analysis, Casper can perform such optimization

because it searches for a high-level program summary expressed

using the IR. We now discuss Casper’s use of a cost model and

runtime monitoring module for this purpose.

5.1 Cost Model

Casper uses a cost model to evaluate different semantically equiva-

lent program summaries that are found for a code fragment. Because

Casper aims to translate data-intensive applications, its cost model

estimates data transfer costs as opposed to compute costs.

Each synthesized program summary is a sequence ofmap, reduce

and join operations. The semantics of these operations are known,

but the transformer functions that they use (λm and λr) are syn-

thesized and determine the operation’s cost. We define the cost

functions of the map, reduce and join operations below:

costm (λm ,N ,Wm) =Wm ∗ N ∗

|λm |∑

i=1

sizeO f (emiti) ∗ pi (2)

costr (λr ,N ,Wr) =Wr ∗ N ∗ sizeO f (λr) ∗ ϵ(λr) (3)

costj (N1,N2,Wj) =Wj ∗ N1 ∗ N2 ∗ sizeO f (emitj) ∗ pj (4)

The function costm estimates the amount of data generated in

the map stage. For each emit statement in λm , the size of the key-

value pair emitted is multiplied by the probability that the emit

statement will execute (pi). The values are then summed to get the

expected size of the output record. The total amount of data emitted

during the map stage equals to the product of expected record size

and the number of times λm is executed (N). The cost function for

a reduce stage, costr , is defined similarly, except that λr produces

only a single value and the cost is adjusted based on whether λr

is commutative and associative. The function ϵ returns 1 if these

properties hold; otherwise, it returnsWcsд . The cost function for

join operations, costj , is defined over: the number of elements in the

two input datasets (N1 and N2), the selectivity of the join predicate

(pj), and the size of the output record. Wm , Wr and Wj are the

weights assigned to the map, reduce and join operations.Wcsд is

the penalty for a non-commutative associative reduction. In our

experiments, we used the values 1, 2, 2 and 50 for these weights,

respectively based on our empirical studies.

To estimate the cost of a program summary, we simply sum the

cost of each individual operation. The first operator in the pipeline

takes symbolic variables N0..i as the number of records. For each

subsequent stage, we use the number of key-value pairs generated

by the current stage, expressed as a function over N0..i :

costmr ([(op1, λ1), (op2, λ2), . . .],N0..i) = costop1(λ1,N ,W) +

costmr ([(op2, λ2), . . .], count(λ1,N0..i))

The function count returns the number of key-value pairs generated

by a given stage. For map stages, this equals
∑ |emits |
i=1 pi ; for reduce

stages, it equals the number of unique key values on which the

reducer was executed; for joins, it equals N1 ∗ N2 ∗ pj .

5.2 Dynamic Cost Estimation

The cost model computes the cost of a program summary as a

function of input data size N . We use this cost model to compare

the synthesized summaries both statically and dynamically. First,

calling findSummary returns a list of verified summaries that were

found. Casper then uses the cost model to prune summaries when a

less costly one exists in the list. Not all summaries can be compared

that way, however, since they could depend on the value distribution

of the input data or how frequently a conditional evaluates to true,

as shown in the candidates for grammar G3’s λm1 in Figure 6.

In such cases, Casper generates code for all remaining sum-

maries that have been validated, and it uses a runtime monitoring

module to evaluate their costs dynamically when the generated

program executes. As the program executes, the runtime module

samples values from the input dataset (Casper currently uses first-k

values sampling, although different sampling method may be used).

It then uses the samples to estimate the probabilities of conditionals

by counting the number of data elements in the sample for which

the conditional will evaluate to true. Similarly, it counts the number

of unique data values that are emitted as keys. These estimates

are inserted into Eqn 2 and Eqn 3 for each program summary to

get comparable cost values. Finally, the summary with the low-

est cost is executed at runtime. Hence, if the generated program

is executed over different data distributions, it will run different

implementations, as illustrated in ğ7.4.

6 IMPLEMENTATION

We implemented Casper using the Polyglot framework [37] to

parse Java code into an abstract syntax tree (AST). Casper traverses

the program AST to identify candidate code fragments, performs

program analysis, and generates target code. We now describe the

Java features supported by our compiler front-end. We also discuss

how Casper identifies code fragments for translation and generates

executable code from the verified program summary.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1211

6.1 Supported Language Features

To translate a code fragment, Casper must first successfully gener-

ate verification conditions for that fragment (as explained in ğ3.3).

Casper can currently do this for basic Java statements, conditionals,

functions, user-defined types, and loops.

Basic Types. Casper supports all basic Java arithmetic, logical,

and bit-wise operators. It can also process reads and writes into

primitive arrays and common Java Collection interfaces, such as

java.util.{List, Set,Map}. Casper can be extended to support

other data structures, such as Stack or Queue.

User-defined Types. Casper traverses the program AST to find

declarations of all types that were used in the code fragment being

translated. It then dynamically translates and adds these types to

the IR as structs, as shown in Appendix B.

Loops. Casper computes VCs for different types of loops (for,

while, do), including those with loop-carried dependencies [1],

after applying classical transformations [1] to convert loops into

the while(true){...} format.

Methods. Casper handles methods by inlining their bodies. Poly-

morphic methods can be supported similarly by inlining different

versions with conditionals that check the type of the host object at

runtime. Recursive methods and methods with side-effects are not

currently supported because they are unlikely to gain any speedup

by being translated to MapReduce.

External LibraryMethods. Casper supports common librarymeth-

ods from standard Java libraries (e.g., java.lang.Math methods)

by modeling their semantics explicitly using the IR. Users can simi-

larly provide models for other methods that Casper currently does

not support. 3

6.2 Code Fragment Identification

Casper traverses the input AST to identify code fragments that are

amenable for translation by searching for loops that iterate one or

more data structures (e.g., a list or an array). We target loops since

they are most likely to benefit from translation to MapReduce. We

have kept our loop selection criteria lenient to avoid false negatives.

6.3 Code Generation

Once an identified code fragment is translated, Casper replaces

the original code fragment with the translated MapReduce code.

It also generates łgluež code to merge the generated code into the

rest of the program. This includes creating a SparkContext (or an

ExecutionEnvironment for Flink), converting data into RDDs (or

Flink’s DataSets), broadcasting required variables, etc. Since some

API calls (such as Spark’s reduceByKey) are not defined for non-

commutative associative transformer functions, Casper uses these

API calls only if the generated code is indeed commutative and

associative (otherwise, Casper uses safe, albiet less efficient, trans-

formations, such as groupByKey). Finally, Casper also generates

code for sampling input data and dynamic switching, as discussed

in ğ5.2. Appendix C presents a subset of code-generation rules for

the Spark API.

3We provide examples of library function and type models in Appendix B.

Suite # Translated Mean Speedup Max Speedup

Phoenix 7 / 11 14.8x 32x

Ariths 11 / 11 12.6x 18.1x

Stats 18 / 19 18.2x 28.9x

Bigλ 6 / 8 21.5x 32.2x

Fiji 23 / 35 18.1x 24.3x

TPC-H 10 / 10 31.8x 48.2x

Iterative 7 / 7 18.4x 28.8x

Table 1: Number of code fragments translated by Casper

and their mean and max speedups compared to sequential

implementations.

7 EVALUATION

In this section, we present a comprehensive evaluation of Casper on

a number of dimensions, including its ability to: (1) handle diverse

and realistic workloads, (2) find efficient translations, (3) compile

efficiently, and (4) extend to support other IRs and cost-models in

the future. All experiments were conducted on an AWS cluster of

10 m3.2xlarge instances (1 master node, 9 core nodes), where each

node contains an Intel Xeon 2.5 GHz processor with 8 vCPUs, 30 GB

of memory, and 160 GB of SSD storage. We used the latest versions

of all frameworks available on AWS: Spark 2.3.0, Hadoop 2.8.3, and

Flink 1.4.0. The data files for all experiments were stored on HDFS.

7.1 Feasibility Analysis

Wefirst assessCasper’s ability to handle a variety of data-processing

applications. Specifically, we determine whether: (1) Casper can

generate verification conditions for a syntactically diverse set of

programs, (2) our IR can express summaries for a broad range of

data-processing workloads, and (3) Casper’s ability to find such

summaries. To this end, we used Casper to optimize a set of 55

diverse benchmarks from real-world applications that contained a

total of 101 translatable code fragments.

Basic Applications. For benchmarking, we assembled a set of

small applications from prior work and online repositories. These

applications, summarized below, contain a diverse set of code pat-

terns commonly found in data-processing workloads (e.g., aggrega-

tions, selections, grouping, etc), as follows:

• Bigλ [44] consists of several data analysis tasks such as senti-

ment analysis, database operations (e.g., selection and projection),

andWikipedia log processing. Since Bigλ generates code from input-

output examples rather than from an actual implementation, we

recruited computer science graduate students in our department to

implement a representative subset of the benchmarks from their

textual descriptions. This resulted in 211 lines of code across 7 files.

• Stats is a set of benchmarks Casper automatically extracted

from an online repository for the statistical analysis of data [32].

Examples include Covariance, Standard Error andHadamard Product.

The repository contains 1162 lines of code across 12 Java files,

mostly consisting of vector and matrix operations.

• Ariths is a set of simple mathematical functions and aggrega-

tions collected from prior work [14, 19, 23, 40]. Examples include

Min, Max, Delta, and Conditional Sum. The suite contains 245 lines

of code than span 11 files.

Across the 3 suites, Casper identified 38 code fragments, of

which 35 were successfully translated. One code-fragment that

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1212

Casper failed to translate used a variable-sized kernel to convolve

a matrix; two others required broadcasting data values to many

reducers during the map stage, but such mappers are currently

inexpressible in our IR due to the absence of loops.

Traditional Data-Processing Benchmarks. Next, we used Casper

to translate a set of well-known, data-processing benchmarks that

resemble real-world workloads:

• Wemanually implemented Q1, Q6, Q15 and Q17 from the TPC-

H benchmark using sequential Java and used Casper to translate

the Java implementations to MapReduce. The selected queries cover

many SQL features, such as aggregations, joins and nested queries.

• Phoenix [39] is a collection of standard MapReduce problemsÐ

such as 3D Histogram, Linear Regression, KMeans, etc.Ðused in

prior work [38]. Since the original sequential implementations

were written in C, we used the sequential Java translations of the

benchmarks from prior work in our experiments. The suite consists

of 440 lines of code across 7 files.

• Iterative represents two popular iterative algorithms that we

manually implemented into sequential versions: PageRank and Lo-

gistic Regression Based Classification.

Casper successfully translated all 4 TPC-H queries and both

iterative algorithms. It successfully translated 7 of 11 from the

Phoenix suite. Three of the 4 failures were due to the IR’s lack of

support for loops inside transformer functions. One benchmark

failed to synthesize within 90 minutes, causing Casper to time out.

Real-World Applications. Fiji [24] is a popular distribution of the

ImageJ [27] library for scientific image analysis. We ran Casper

on the source code of four Fiji packages (aka plugins). NL Means

is a plugin for denoising images via the non-local-means algo-

rithm [13] with optimizations [20]. Red To Magenta transforms

images by changing red pixels to magenta. Temporal Median is a

probabilistic filter for extracting foreground objects from a sequence

of images. Trails averages pixel intensities over a time window in an

image sequence. These packages, authored by different developers,

contain 1411 lines of code that span 5 files. Of the 35 candidate

code fragments identified across all 4 packages, Casper success-

fully optimized 23. Three of the failures were caused by the use of

unsupported types or methods from the ImageJ library since we

did not model them using the IR, and the search timed out for the

remaining 9.

Table 1 summarizes the results of our feasibility analysis. Of the

101 individual code fragments identified by the compiler across

all benchmarks, Casper translated 82. We manually inspected all

code files to ensure that Casper’s code fragment identifier missed

no translatable code fragments. Overall, the benchmarks form a

syntactically diverse set of applications.4

Because MOLD is not publicly available, we obtained the gen-

erated code from the MOLD authors for the benchmarks used in

its evaluation [38]. Of the 7 Phoenix benchmarks, MOLD could

not translate 2 (PCA and KMeans). Another 2 (Histogram and Ma-

trix Multiplication) generated semantically correct translations that

worked well for multi-core execution but failed to execute on the

cluster because they ran out of memory. For the remaining 3 bench-

marks (Word Count, String Match and Linear Regression), MOLD

4We summarize the syntactic features of the code fragments in Appendix E.1.

0x

10x

20x

30x

40x

String

Match

Word

Count

Linear

Regression

3D

Histogram

Wikipedia

PageCount

Anscombe

Transform

S
p

e
e

d
u

p

MOLD (Spark) Manual (Spark) Casper (Spark)

Casper (Flink) Casper (Hadoop)

(a) Casper achieves speedup competitive with manual translations

0

150

300

450

600

Q1 Q6 Q15 Q17

R
u

n
ti

m
e

 (
s)

Casper

SparkSQL

(b) TPC-H benchmarks

0

150

300

450

600

LogisticR PageRank

R
u

n
ti

m
e

 (
s)

Casper

SparkTut

(c) Iterative algorithms

Figure 7: A runtime comparison of Casper-generated imple-

mentations against reference implementations.

generated working implementations. In contrast, Casper translated

4 of the 7 Phoenix benchmarks. For PCA and KMeans, Casper trans-

lated and successfully executed a subset of all the loops found, while

translation failed for the other loops and the Matrix Multiplication

benchmark for reasons explained above.

7.2 Performance of the Translated Benchmarks

Casper helps an application leverage the optimization and paral-

lelization provided by MapReduce implementations by translating

their code. Therefore, in this section, we examine the quality of the

translations Casper produced by comparing their performance to

that of reference distributed implementations.

We used Casper to translate summaries for these benchmarks

to three popular implementations of the MapReduce programming

model: Hadoop, Spark, and Flink. The translated Spark implemen-

tations, along with their original sequential implementations, were

executed on three synthetic datasets of sizes 25GB, 50GB, and 75GB.

Overall, the Spark implementations Casper generated are 15.6×

faster on average than their sequential counterparts, with a max

improvement of up to 48.2×. Table 1 shows the mean and max

speedup observed for each benchmark suite using Spark on a 75GB

dataset. We also executed the Hadoop and Flink implementations

generated by Casper for a subset of 10 benchmarks, some of which

are shown in Figure 7(a). The average speedups observed (over

the 10 benchmarks) by these implementations are 6.4× and 10.8×,

respectively. These results show that Casper can effectively im-

prove the performance of applications by an order of magnitude

by retargeting critical code fragments for execution on MapReduce

frameworks.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1213

Figure 7(a) plots the speedup achieved by the MOLD-generated

implementations for String Match,Word Count, and Linear Regres-

sion. The Spark translations MOLD generated for these benchmarks

performed 12.3× faster on average than the sequential versions.

The solutions generated by Casper for String Match and Linear

Regression were faster than those generated by MOLD by 1.44×

and 2.34×, respectively. For String Match, Casper found an efficient

encoding to reduce the amount of data emitted in the map stage

(see ğ7.4), whereas MOLD emitted a key-value pair for every word

in the dataset. Furthermore, MOLD used separate MapReduce oper-

ations to compute the result for each keyword; Casper computed

the result for all keywords in the same set of operations. For Linear

Regression, MOLD discovered the same overall algorithm as Casper

except its implementation zipped the input RDD with its index as

a pre-processing step, almost doubling the size of input data and

hence the amount of time spent in data transfers.

For the Ariths, Stats, Bigλ, and Fiji benchmarks, we recruited

Spark developers through UpWork.com to manually rewrite the

benchmarks since reference distributed implementations were not

available.5 Figure 7(a) compares the performance of (a subset of)

Casper-generated implementations to handwritten benchmark im-

plementations over the 75GB dataset. Results show that the Casper-

generated implementations perform competitively, even with those

manually written by developers. In fact, of the 42 hand-translated

benchmark implementations, 24 used the same high-level algo-

rithm as the one generated by Casper, and most of the remaining

ones differ by using framework-specific methods instead of an ex-

plicit map/reduce (e.g., using Spark’s built-in filter, sum, and count

methods). However, these variations did not cause a noticeable per-

formance difference. One interesting case was the 3D Histogram

benchmark, where the developer exploited knowledge about the

data to improve runtime performance. Specifically, the developer

recognized that since RGB values always range between 0-255, the

histogram data structure would never exceed 768 values. Therefore,

the developer used Spark’s more efficient aддreдate operator to

implement the solution. Casper, not knowing that pixel RGB values

are bounded, assumed that the number of keys could grow to be

arbitrarily large and that using the aggregate operator could cause

out-of-memory errors, hence it generated a single stage map and

reduce instead.

For PageRank and Logistical Regression, we compared Casper

against the implementations found in the Spark Tutorials [46] (see

Figure 7(c)). The reference PageRank implementation was 1.3×

faster than the one Casper generated on a dataset of about 2.25 bil-

lion graph edges and running 10 iterations. This is because Casper

currently does not generate any cache() statements, nor does it

co-partition data. Deciding when to cache can lead to further per-

formance gains. Prior work [12] suggested heuristics for inserting

such statements into Spark algorithms that could be integrated

into Casper’s code generator to improve performance for itera-

tive workloads. For Logistical Regression, we found no noticeable

difference in performance.

For TPC-H queries, we compared the performance of Spark

code generated by Casper against SparkSQL’s implementation.

Figure 7(b) plots the results of this experiment. For Q1, Q6 and

5Appendix E.2 describes the hiring criteria.

Source
Mean

Time (s)

Mean

LOC

Mean #

Op

Mean TP

Failures

Phoenix 944 13.8 (13.1) 2.3 (2.1) 0.35

Ariths 223 9.4 (7.6) 1.6 (1.2) 4

Stats 351 7.6 (5.8) 1.8 (1.8) 0.6

Bigλ 112 13.6 (10) 1.8 (2.0) 0.4

Fiji 1294 7.2 (7.4) 1.4 (1.6) 0.1

TPC-H 476 5.9 (n/a) 7.25 (n/a) 0

Iterative 788 3.3 (3.7) 4.5 (3.5) 2

Table 2: Summary of Casper’s compilation performance.

Values for the reference implementations are shown in

parentheses.

Q15, Casper implementations executed 2×, 1.8× and 2.8× faster,

respectively, than SparkSQL on a scale factor of 100. For Q1 and

Q6, we attribute this to the extra data shuffling performed by the

SparkSQL query plan. In Q15, SparkSQL’s query plan scanned the

lineitem relation twice, whereas Casper’s implementation did so

only once, resulting in worse runtime performance. For Q17, Spark-

SQL executed 1.7× faster because it performed better scheduling of

the query operators than the Casper-generated implementation. In

sum, results show that the Casper-generated implementations the

TPC-H benchmarks have comparable performance to those imple-

mented directly using the MapReduce frameworks. Yet, developers

need not learn different MapReduce APIs by using Casper.

7.3 Compilation Performance

We next evaluate Casper’s compilation performance. We discuss

the time taken by Casper to compile the benchmarks, the effective-

ness of Casper’s two-phase verification strategy, the quality of the

generated code, and incremental grammar generation.

7.3.1 Compile Time. On average, Casper took 11.4 minutes to

compile a single code fragment. However, the median compile time

for a single benchmark was only 2.1 minutes: for some benchmarks,

the synthesizer discovered a low-cost solution during the first few

grammar classes, letting Casper terminate search early. Table 2

shows the mean compilation time for a single benchmark by suite.

7.3.2 Two-Phase Verification. In our experiments, the candi-

date summary generator produced at least one incorrect solution

for 13 out of the 101 successfully translated code-fragments. The

synthesizer proposed a total of 76 incorrect summaries across all

benchmarks. Table 2 lists the average number of times the theo-

rem prover rejected a solution for each benchmark suite. As an

example, the Delta benchmark computes the difference between

the largest and smallest values in the dataset. It incurred 7 rounds

of interaction with the theorem prover before the candidate gen-

erator found a correct solution due to errors from bounded model

checking (discussed in ğ4.1).

7.3.3 Generated Code Quality. In addition to measuring the

runtime performance of Casper-generated implementations, we

manually inspected the code generated by Casper and compared

it to the reference implementations for two code quality metrics:

lines of code (LOC) and the number of MapReduce operations used.

Table 2 shows the results of our analysis. Implementations gener-

ated by Casper were comparable and did not use more MapReduce

operations or LOC than were necessary to implement a given task.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1214

Benchmark
With Incr.

Grammar

Without Incr.

Grammar

WordCount 2 827

StringMatch 24 416

Linear Regression 1 94

3D Histogram 5 118

YelpKids 1 286

Wikipedia PageCount 1 568

Covariance 5 11

Hadamard Product 1 484

Database Select 1 397

Anscombe Transform 2 78

Table 3:With incremental grammar generation,Casperpro-

duces far less redundant summaries.

Note that the LOC pertain to individual code fragments, not entire

benchmarks.

7.3.4 Incremental Grammar Generation. We also measured the

effectiveness of incremental grammar generation in optimizing

search. To measure its impact on compilation time, we used Casper

to translate benchmarks without incremental grammar generation

and compared the results. The synthesizer was allowed to run for

90 minutes, after which it was manually killed. The results of this

experiment are summarized in Table 3. Exhaustively searching the

entire search space produced hundreds of more expensive solutions.

The cost of searching, verifying, and sorting all these superfluous

solutions dramatically increased overall synthesis time. In fact,

Casper timed out for every benchmark in that set (which represents

a slowdown by at least one order of magnitude).

7.4 Dynamic Tuning

The final set of experiments evaluated the runtime monitor module

and whether the dynamic cost model could select the correct imple-

mentations. As explained in ğ5.2, the performance of some solutions

depends on the distribution of the input data. Therefore, we used

Casper to generate different implementations for the StringMatch

benchmark (Figure 8(a)). Figure 8(d) shows three (out of 400+) cor-

rect candidate solutions, with their respective costs based on the

formula described in ğ5.1 and the following values for data-type

sizes: 40 bytes for String, 10 bytes for Boolean and 28 bytes for a

tuple of Boolean Objects. Solution (a) can be disqualified at compile

time because it will have a higher cost than solution (b) for all

possible data distributions. However, the cost of solutions (b) and

(c) cannot be statically compared due to the unknowns p1 and p2
(the respective probabilities that the conditionals will evaluate to

true and a key-value pair will be emitted). The values of p1 and p2
depend on the input data, i.e., how often the keywords appear in

the text, and thus can be determined only dynamically at run-time.

Casper handles this by generating a runtime monitor in the

output code. The monitor samples the input data (first 5000 values)

in each execution to estimate values for unknown variables in the

cost formulas. The estimated values are then plugged back into

the original cost functions (Eqn 2 and 3), and the solution with the

lowest cost is then executed.

We executed solutions (b) and (c) on three 75GB datasets with dif-

ferent amounts of skew: one with no matching words (i.e., (c) emits

nothing), one with 50% matching words (i.e., (c) emits a key-value

pair for half of the words in the dataset), and one with 95%matching

words (i.e., (c) emits a key-value pair for 95% of the words in the

dataset). Figure 8(c) shows the dynamically computed final cost of

solution (c) using p1 and p2 estimates calculated using sampling.

Figure 8(b) shows the actual performance of the two solutions. For

datasets with very high skew, it is beneficial to use solution (b) due

to the smaller size of its key-value pair emit. Otherwise, solution (c)

performs better. Casper, with the help of the dynamic input from

the runtime monitor, makes this inference and selects the correct

solution for all three datasets.

Dynamic cost estimation is particularly impactful in workloads

with multiple join operations. The size of each relation participat-

ing in the join in addition to the selectivity of the join predicate

dictate the most cost-efficient join ordering. To demonstrate this,

we translated a simple query based on the TPC-H schema that im-

plements a 3-way join between the part, supplier, and partsupplier

relations. Query parameters are the name of the supplier and the

customer_id, and outputs are the customer’s name, email address,

and the sum of discount savings across all sales between the two

parties. We executed this query over two parameter configurations:

one where the cardinality of join(sales, supplier) was much greater

than join(sales, customer) and one where it was much smaller. On

compilation, Casper generated two semantically equivalent imple-

mentations for the query with different join orderings; which one

to use depends on the cardinality of the input data. Upon execu-

tion, the Casper runtime estimated the cost of each join ordering

and executed the faster solution for both configurations, showing

the effectiveness of our dynamic tuning approach. We discuss the

accuracy of the cost-functions we used in Appendix E.3

7.5 System Extensibility

The translation techniques Casper uses are not coupled to our

IR or the target frameworks used. To demonstrate Casper’s ex-

tensibility, we implemented the Fold-IR in prior work [22] in our

system. Adding the fold construct to our IR required just 5 lines

of code. An additional 43 lines of code were required to implement

compilation of the fold operator to Dafny for verification of synthe-

sized summaries. Since operations such as min, max, set.insert

and list.append were already available in our IR, hence no extra

work was needed. We did not implement any incremental grammar

exploration for Fold-IR and used a constant bound to restrict the

maximum size of summary expressions. With this minimal amount

of work, we synthesized summaries expressed in Fold-IR for all

benchmarks in the Ariths set. We believe it should be easy to extend

Casper’s code generator to output the same code as in the original

work.

We also explored using WeldIR [35] to express summaries. Al-

thoughWeldIR is an excellent abstraction for data-processing work-

loads, we believe it is not suited for synthesis because it is too

low-level. However, since both our IR and Fold-IR are conceptually

subsets of WeldIR, summaries expressed using them can be trans-

lated to Weld through simple rewrite rules. To demonstrate, we

successfully translated the summary for TPC-H Q6 expressed in

our IR to Weld and used the Weld compiler to produce vectorized,

multi-threaded code.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1215

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[2] Alexander Alexandrov, Asterios Katsifodimos, Georgi Krastev, and Volker Markl.
2016. Implicit Parallelism Through Deep Language Embedding. SIGMOD Rec. 45,
1 (June 2016), 51ś58.

[3] Saman P. Amarasinghe, Jennifer-Ann M. Anderson, Monica S. Lam, and Chau-
Wen Tseng. 1995. An Overview of the SUIF Compiler for Scalable Parallel
Machines. In PPSC. 662ś667.

[4] Apache Flink 2018. https://flink.apache.org/. (2018). Accessed on: 2018-04-09.
[5] Apache Hadoop 2018. http://hadoop.apache.org. (2018). Accessed on: 2018-04-09.
[6] Apache Hive 2018. http://hive.apache.org. (2018). Accessed on: 2018-04-09.
[7] Apache Pig 2018. https://pig.apache.org/. (2018). Accessed on: 2018-04-09.
[8] Apache Spark 2018. https://spark.apache.org. (2018). Accessed on: 2018-04-09.
[9] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD
’15). ACM, New York, NY, USA, 1383ś1394.

[10] William Blume, Rudolf Eigenmann, Jay Hoeflinger, David A. Padua, Paul Petersen,
Lawrence Rauchwerger, and Peng Tu. 1994. Automatic Detection of Parallelism:
A grand challenge for high performance computing. IEEE P&DT 2, 3 (1994),
37ś47.

[11] Rastislav Bodík and Barbara Jobstmann. 2013. Algorithmic program synthesis:
introduction. International Journal on Software Tools for Technology Transfer 15
(2013), 397ś411.

[12] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.
SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13
(Sept. 2016), 1425ś1436.

[13] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2005. A Non-Local
Algorithm for Image Denoising. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR ’05). IEEE Computer
Society, Washington, DC, USA, 60ś65.

[14] Yu-Fang Chen, Lei Song, and ZhilinWu. 2016. The Commutativity Problem of the
MapReduce Framework: A Transducer-based Approach. CoRR abs/1605.01497
(2016).

[15] Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden, and An-
drew C. Myers. 2014. Using Program Analysis to Improve Database Applications.
IEEE Data Eng. Bull. 37, 1 (2014), 48ś59.

[16] Alvin Cheung and Armando Solar-Lezama. 2016. Computer-Assisted Query
Formulation. Foundations and Trends in Programming Languages 3, 1 (2016),
1ś94.

[17] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
Database-backed Applications with Query Synthesis. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’13). ACM, New York, NY, USA, 3ś14.

[18] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Çetintemel,
and Stanley B. Zdonik. 2014. Tupleware: Redefining Modern Analytics. CoRR
abs/1406.6667 (2014).

[19] Przemyslaw Daca, Thomas A. Henzinger, and Andrey Kupriyanov. 2016. Array
Folds Logic. CoRR abs/1603.06850 (2016).

[20] Jerome Darbon, Alexandre Cunha, Tony F. Chan, Stanley Osher, and Grant J.
Jensen. 2008. Fast nonlocal filtering applied to electron cryomicroscopy.. In ISBI.
IEEE, 1331ś1334.

[21] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107ś113.

[22] K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and S. Su-
darshan. 2016. Extracting Equivalent SQL from Imperative Code in Database
Applications. In Proceedings of the 2016 International Conference on Management
of Data (SIGMOD ’16). ACM, New York, NY, USA, 1781ś1796.

[23] Grigory Fedyukovich,Maaz Bin Safeer Ahmad, and Rastislav Bodik. 2017. Gradual
Synthesis for Static Parallelization of Single-pass Array-processing Programs.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 572ś585.

[24] Fiji: ImageJ 2018. https://github.com/fiji. (2018). Accessed on: 2018-04-09.
[25] Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the 12th

International ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP ’10). ACM, New York, NY, USA, 13ś24.

[26] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (Oct. 1969), 576ś580.

[27] ImageJ 2018. https://imagej.net/Welcome. (2018). Accessed on: 2018-04-09.
[28] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016.

Verified Lifting of Stencil Computations. SIGPLANNot. 51, 6 (June 2016), 711ś726.

[29] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, and Henrik Mühe.
2012. HyPer: Adapting Columnar Main-Memory Data Management for Transac-
tional AND Query Processing. IEEE Data Eng. Bull. 35, 1 (2012), 46ś51.

[30] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building
Efficient Query Engines in a High-level Language. Proc. VLDB Endow. 7, 10 (June
2014), 853ś864.

[31] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’10). Springer-Verlag,
Berlin, Heidelberg, 348ś370.

[32] MagPie Analysis Repository 2018. https://github.com/thisMagpie/Analysis.
(2018). Accessed on: 2018-04-09.

[33] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. 2006. Verifi-
cation Condition Generation via Theorem Proving. In Proceedings of the 13th
International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’06). Springer-Verlag, Berlin, Heidelberg, 362ś376.

[34] Cedric Nugteren and Henk Corporaal. 2012. Introducing ’Bones’: A Parallelizing
Source-to-source Compiler Based on Algorithmic Skeletons. In Proceedings of
the 5th Annual Workshop on General Purpose Processing with Graphics Processing
Units (GPGPU-5). ACM, New York, NY, USA, 1ś10.

[35] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, and Matei Zaharia. 2017. Weld:
A Common Runtime for High Performance Data Analytics. (January 2017).

[36] Spiros Papadimitriou and Jimeng Sun. 2008. DisCo: Distributed Co-clustering
with Map-Reduce: A Case Study Towards Petabyte-Scale End-to-End Mining.
In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
(ICDM ’08). IEEE Computer Society, Washington, DC, USA, 512ś521.

[37] Polyglot 2018. http://www.cs.cornell.edu/Projects/polyglot/. (2018). Accessed
on: 2018-04-09.

[38] Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan. 2014. Trans-
lating Imperative Code to MapReduce. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages & Applica-
tions (OOPSLA ’14). ACM, New York, NY, USA, 909ś927.

[39] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-
tos Kozyrakis. 2007. Evaluating MapReduce for Multi-core and Multiprocessor
Systems. In Proceedings of the 2007 IEEE 13th International Symposium on High Per-
formance Computer Architecture (HPCA ’07). IEEE Computer Society, Washington,
DC, USA, 13ś24.

[40] Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. 2015. Parallelizing
User-defined Aggregations Using Symbolic Execution. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,
153ś167.

[41] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’79). ACM, New York, NY, USA, 23ś34.

[42] Sketch 2018. https://people.csail.mit.edu/asolar/. (2018). Accessed on: 2018-04-09.
[43] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found.

Trends Program. Lang. 2, 1 (April 2015), 1ś69.
[44] Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis.

SIGPLAN Not. 51, 6 (June 2016), 326ś340.
[45] Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.

Berkeley, CA, USA. Advisor(s) Bodik, Rastislav.
[46] Spark GitHub Repository 2018. https://github.com/apache/spark/tree/master/

examples/src/main/scala/org/apache/spark/examples. (2018). Accessed on: 2018-
01-20.

[47] Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, Cambridge, MA, USA.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1217

A PROOF SKETCH FOR SOUNDNESS AND
COMPLETENESS

Here, we first formalize the definitions of soundness and complete-

ness, and then we present a proof sketch to show that Casper’s

synthesis algorithm for program summaries has these properties.

We use terms and acronyms defined in the paper without explaining

them again here.

Definition 1. (Soundness of Search) An algorithm for generating

program summaries is sound if and only if, for all program sum-

mary ps and loop invariants inv1, . . . , invn generated by the algo-

rithm, the verification conditions hold over all possible program

states after we execute the input code fragment P . In other words,

∀σ . VC(P ,ps, inv1, . . . , invn ,σ).

Definition 2. (Completeness of Search) An algorithm for generating

program summaries is complete if and only if when there exists

ps, inv1, . . . , invn ∈ G, then ∀σ . VC(P ,ps, inv1, . . . , invn ,σ)) →

(∆ , ∅). Here, G is the search space traversed, P is the input code

fragment, VC is the set of verification conditions, and ∆ is the set

of sound summaries found by the algorithm. In other words, the

algorithm will never fail to find a correct program summary as long

as one exists in the search space.

Proof of Soundness. The soundness guarantee for Casper’s

synthesis algorithm is derived from the soundness guarantees

offered by Hoare-style verification conditions. The proof is con-

structed using a loop-invariant, namely, a statement that is true

immediately before and after each loop execution. Hoare logic dic-

tates that in order to prove correctness of a given postcondition (i.e.,

program summary) for a given loop, we must prove the following

holds over all possible program states:

(1) The invariant is true before the loop.

(2) Each iteration of the loop maintains the invariant.

(3) Once the loop has terminated, the invariant implies the post-

condition.

This is essentially an inductive proof. The first two constraints

prevent Casper from finding a loop invariant strong enough to im-

ply an incorrect program summary. Our correctness guarantee is, of

course, subject to the correct implementation of our VC generation

module and of the theorem prover we use (Dafny). Establishing that

the summary is a correct postcondition is sufficient to establish that

it is a correct translation. This is so because summaries in our IR

must describe the final value of all output variables (i.e., variables

that were modified) as a function over the inputs (see Figure 3).

Proof of Completeness. To understand that Casper’s algorithm

is complete with respect to the search space, we first show that

that the algorithm always terminates. Recall that we use recursive

bounds to finitize the number of solutions expressible by our IR’s

grammar. As explained in ğ4.1, we prevent the same solution from

being regenerated, thus ensuring forward progress in search. These

two facts imply that our algorithm always terminates. There are

only two possible exit points for the while(true) loop in our algo-

rithm: line 24 and line 21 of Figure 5. The first is only reached once

the entire search space has been exhausted. The second implies that

a solution is successfully returned as ∆ is not empty. It is important

to note that our search algorithm is complete only for verifiably

correct summaries. If a correct summary exists in the search space

but cannot be proven correct using the available automated theo-

rem prover, it will not be returned. Therefore, the completeness of

the algorithm is modulo the completeness of the theorem prover.

B INTERMEDIATE REPRESENTATION
SPECIFICATION

Here, we list the full set of types available in our IR and provide

examples to demonstrate how they may be used to express models

for library methods and types.

Primitive Data Types

Scalars bool, int, float, string, char, ...

Structures class(id:Type, id2:Type2, ..)

List list(Type)

Array array(dimensions, Type)

Functions name(arg1:Type1, ...) : Type -> Body

Conditionals if cond then e1 else e2
Synthesis Construct choose(e1, e2, ... , en)

Built-in operations

Arithmetic +, −, ∗, /, %, ...

Bitwise <<, >>, &, ...

Relational <, >, ≤, ≥, ...

Logical &&, ∥, ==, ! =

List len, append, get, equals, concat, slice

Array select, store

To provide support for a datatype found in a Library, users must

define the type of the object using our IR and annotate it with the

fully qualified name, as follows:

@java.awt.Point

class Point(x:int, y:int)

Similarly, users may also provide support for library methods,

for instance the following defines a model for the absolute value

function:

@java.lang.Math.abs

abs(val: int) : int ->

if val < 0 then val * -1 else val

Using the core IR described above, we implemented inCasper the

map, reduce and join primitives used to synthesize summaries. We

have also implemented commonly usedmethods from Java standard

libraries such as java.util.Math,String,Date and other essen-

tial data-types, along with methods that were needed to translate

the Fiji plugins.

The choose operator in the IR is a special construct that enables

us to express a search space using the IR. The parameters to choose

are one or more expressions of matching types. The synthesizer is

then free to select any expression from the list of choices in order

to satisfy the correctness specification.

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1218

C CODE GENERATION RULES

To generate target DSL code from the synthesized program sum-

mary, we implemented in Casper a set of translation rules that map

the operators in our IR to the concrete syntax of the target DSL.

Here, we list a subset of such code-generation rules for the Spark

RDD API.

TR⟦map(l, λm : T → l ist (Pair))⟧ = l.flatMapToPair(⟦λm⟧);

TR⟦map(l, λm : T → l ist (U))⟧ = l.flatMap(⟦λm⟧);

TR⟦map(l, λm : T → Pair)⟧ = l.mapToPair(⟦λm⟧);

TR⟦map(l, λm : T → U)⟧ = l.map(⟦λm⟧);

TR⟦reduce(l : l ist (Pair), λr)⟧ = l.reduceByKey(⟦λr ⟧);

TR⟦reduce(l : l ist (U), λr)⟧ = l.reduce(⟦λr ⟧);

TR⟦λm (e) → eb⟧ = (e -> ⟦eb⟧)

TR⟦e1 + e2⟧ = ⟦e1⟧ + ⟦e2⟧

The translation function TR takes as input an expression in

our IR language and maps it to an equivalent expression in Spark.

Since Spark provides multiple variations for the operators defined

in our IR, such as map, we can select the appropriate variation

by looking at the type information of the λm function used by

map. For example, if λm returns a list of Pairs, we translate to

JavaRDD.flatMapToPair. If it instead returns a list of a non-Pair

type, we use the more general rule that translatesmap to

JavaRDD.flatMap. Translation for the other expressions proceeds

similarly.

D PROGRAM ANALYZER OUTPUTS

Here, we use TPC-H Query 6 to illustrate the outputs computed by

Casper’s program analyzer. Since the queries are originally in SQL,

we have manually translated them to Java as follows:

1 double query6(List<LineItem> lineitem){}

2 List<LineItem> lineitem = new ArrayList<LineItem>();

3 Date dt1 = Util.df.parse("1993-01-01");

4 Date dt2 = Util.df.parse("1994-01-01");

5 double revenue = 0;

6 for (LineItem l : lineitem) {

7 if (

8 l.l_shipdate.after(dt1) &&

9 l.l_shipdate.before(dt2) &&

10 l.l_discount >= 0.05 &&

11 l.l_discount <= 0.07 &&

12 l.l_quantity < 24

13)

14 revenue += (l.l_extendedprice * l.l_discount);

15 }

16 return revenue;

17 }

First, Casper’s program analyzer normalizes the loop starting on

Line 6 into an equivalent while(true){..} loop, and then tra-

verses the loop to identify the set of input/output variables and

operators used:

Program Analaysis Results

Inputs Vars l: list(LineItem), dt1: Date, dt2: Date

Output Vars revenue: double

Constants [(24, int), (0.05, double), (0.07, double)]

Operators +, −, ∗, ≥, ≤, <

Methods Date.before, Date.after

With this information, Casper generates verification conditions

like those shown in Figure 4(b) for the row-wise mean benchmark.

Next, the program analyzer defines a search space within which

Casper searches for summaries and the needed loop-invariant.

Since the full search space description is too large to show, we only

show a small snippet below:

generator doubleExpr(val:LineItem, depth:int) : double ->

if depth = 0 then

choose(

val.l_quantity,

val.l_extendedprice,

val.l_discount,

0.05,

0.07,

24

)

else

choose(

doubleExpr(val, 0),

doubleExpr(val, depth-1) + doubleExpr(val, depth-1),

doubleExpr(val, depth-1) * doubleExpr(val, depth-1),

doubleExpr(val, depth-1) / doubleExpr(val, depth-1)

)

The doubleExpr is the part of the grammar used to construct

expressions that evaluate to double. The generator keyword indi-

cates that this is a special type of function, one that can select a

different value from the choose operators on each invocation. The

depth parameter controls how large the generated expression is

allowed to grow. The choose construct is used to present a set of

possible productions to the synthesizer. This grammar is tailored

specifically to our implementation of TPC-H Query 6.

E SUPPLEMENTARY EXPERIMENTS

E.1 Benchmark Details

The benchmarks Casper extracted form a diverse and challeng-

ing problem set. As shown in the table below, they vary across

programming style as well as the structure of their solutions.

Benchmark Properties # Extracted # Translated

Conditionals 26 19

User Defined Types 14 10

Nested Loops 40 22

Multiple Datasets 22 18

Multidim. Dataset 38 23

Research 12: Distributed and Parallel Databases SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1219

	Abstract
	1 Introduction
	2 Overview
	2.1 MapReduce Operators
	2.2 Translating Imperative Code to MapReduce
	2.3 System Architecture

	3 Synthesizing Program Summaries
	3.1 A High-level IR for Program Summaries
	3.2 Defining the Search Space
	3.3 Verifying Program Summaries
	3.4 Search Strategy

	4 Improving Summary Search
	4.1 Leveraging Verifier Failures
	4.2 Incremental Grammar Generation
	4.3 Casper's Search Algorithm for Summaries
	4.4 Row-wise Mean Revisited

	5 Finding Efficient Translations
	5.1 Cost Model
	5.2 Dynamic Cost Estimation

	6 Implementation
	6.1 Supported Language Features
	6.2 Code Fragment Identification
	6.3 Code Generation

	7 Evaluation
	7.1 Feasibility Analysis
	7.2 Performance of the Translated Benchmarks
	7.3 Compilation Performance
	7.4 Dynamic Tuning
	7.5 System Extensibility

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Proof Sketch For Soundness and Completeness
	B Intermediate Representation Specification
	C Code Generation Rules
	D Program Analyzer Outputs
	E Supplementary Experiments
	E.1 Benchmark Details
	E.2 Developer Selection Criteria
	E.3 Evaluating Cost Model Heuristics
	E.4 Evaluating Scalability of Generated Implementations

