Research 12: Distributed and Parallel Databases

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Automatically Leveraging MapReduce Frameworks for
Data-Intensive Applications

casper.uwplse.org

Maaz Bin Safeer Ahmad
University of Washington
maazsaf@cs.washington.edu

ABSTRACT

MapReduce is a popular programming paradigm for developing
large-scale, data-intensive computation. Many frameworks that
implement this paradigm have recently been developed. To lever-
age these frameworks, however, developers must become familiar
with their APIs and rewrite existing code. We present CASPER, a
new tool that automatically translates sequential Java programs
into the MapReduce paradigm. CAsPER identifies potential code
fragments to rewrite and translates them in two steps: (1) CASPER
uses program synthesis to search for a program summary (i.e., a
functional specification) of each code fragment. The summary is
expressed using a high-level intermediate language resembling the
MapReduce paradigm and verified to be semantically equivalent
to the original using a theorem prover. (2) CASPER generates exe-
cutable code from the summary, using either the Hadoop, Spark, or
Flink API. We evaluated CASPER by automatically converting real-
world, sequential Java benchmarks to MapReduce. The resulting
benchmarks perform up to 48.2x faster compared to the original.

ACM Reference Format:

Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically Leveraging
MapReduce Frameworks for Data-Intensive Applications: casper.uwplse.org.
In SIGMOD’18: 2018 International Conference on Management of Data, June
10-15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3183713.3196891

1 INTRODUCTION

MapReduce [21], a popular paradigm for developing data-intensive
applications, has varied and highly efficient implementations [4, 5, 8,
36]. All these implementations expose an application programming
interface (API) to developers. While the concrete syntax differs
slightly across the different APIs, they all require developers to
organize their computation into map and reduce stages in order to
leverage their optimizations.

While exposing optimization via an API shields application de-
velopers from the complexities of distributed computing, this ap-
proach contains a major drawback: for legacy applications to lever-
age MapReduce frameworks, developers must first understand the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00
https://doi.org/10.1145/3183713.3196891

1205

Alvin Cheung
University of Washington
akcheung@cs.washington.edu

existing code’s function and subsequently re-organize the compu-
tation using mappers and reducers. Similarly, novice programmers,
unfamiliar with the MapReduce paradigm, must first learn the dif-
ferent APIs in order to express their computation accordingly. Both
require a significant expenditure of time and effort. Further, each
code rewrite or algorithm reformulation opens another opportunity
to introduce bugs.

One way to alleviate these issues is to build a compiler that trans-
lates code written in another paradigm (e.g., imperative code) into
MapReduce. Classical compilers, like logical to physical query plan
compilers [29], use pattern matching rules, i.e., the compilers con-
tain a number of rules that recognize different input code patterns
(e.g., a sequential loop over lists) and translate the matched code
fragment into the target (e.g., a single-stage map and reduce). As
in query compilers, designing the rules is challenging: they must
be both correct, i.e., the translated code should have the same se-
mantics as the input, and sufficiently expressive to capture the wide
variety of coding patterns that developers use to express their com-
putations. We are aware of only one such compiler that translates
imperative Java programs into MapReduce [38], and the number of
rules involved in that compiler makes it difficult to maintain and
modify.

This paper describes a new tool, CASPER, that translates sequen-
tial Java code into semantically equivalent MapReduce programs.
Rather than relying on rules to translate different code patterns,
CASPER is inspired by prior work on cost-based query optimiza-
tion [41], which considers compilation to be a dynamic search prob-
lem. However, given that the inputs are general-purpose programs,
the space of possible target programs is much larger than it is for
query optimization. To address this issue, CASPER leverages recent
advances in program synthesis [11, 25] to search for MapReduce
programs into which it can rewrite a given input sequential Java
code fragment. To reduce the search space, CASPER searches over
the space of program summaries, which are expressed using a high-
level intermediate language (IR) that we designed. As we discuss
in §3.1, the IR’s design succinctly expresses computations in the
MapReduce paradigm yet remains sufficiently easy to translate into
the concrete syntax of the target APL

To search for summaries, CAsPER first performs lightweight pro-
gram analysis to generate a description of the space of MapReduce
programs that a given input code fragment might be equivalent to.
The search space is also described using our high-level IR. CASPER
then uses an off-the-shelf program synthesizer to perform the search,
but it is guided by an incremental search algorithm and our domain-
specific cost model to speed the process. A theorem prover is used to
check whether the found program summary is indeed semantically

Research 12: Distributed and Parallel Databases

equivalent to the input. Once proved, the summary is translated
into the concrete syntax of the target MapReduce API. Since the
performance of the translated program often depends on input
data characteristics (e.g., skewness), CASPER generates multiple
semantically equivalent MapReduce programs for a given input
and produces a monitor module that switches among them based
on runtime statistics; the monitor and switcher are automatically
generated during compilation.

Compared to prior approaches, CASPER does not require com-
piler developers to design or maintain any pattern matching rules.
Furthermore, the entire translation process is completely automatic.
We evaluated CASPER using a number of benchmarks and real-
world Java applications and demonstrated both CAspER’s ability to
translate an input program into MapReduce equivalents and the
significant performance improvements that result.

In summary, our paper makes the following contributions:

e We propose a new high-level intermediate representation (IR)
to express the semantics of sequential Java programs in the MapRe-
duce paradigm. The language is succinct to be easily translated into
multiple MapReduce APIs, yet expressive to describe the seman-
tics of many real-world benchmarks written in a general-purpose
language. Furthermore, programs written in our IR can be automat-
ically checked for correctness using a theorem prover (§4.1). The IR,
being a high-level language, also lets us perform various semantic
optimizations using our cost model (§5).

o We describe an efficient search technique for program sum-
maries expressed in the IR without requiring any pattern matching
rules. Our technique is both sound and complete with respect to the
input search space. Unlike classical compilers, which rely on pattern
matching to drive translation, our technique leverages program
synthesis to dynamically search for summaries. Our technique is
novel in that it incrementally searches for summaries based on
cost. It also uses verification failures to systematically prune the
search space and a hierarchy of search grammars to speed the sum-
mary search. This lets us translate benchmarks that have not been
translated in any prior work (§4.1).

o There are often multiple ways to express the same input as
MapReduce programs. Therefore, our technique can generate mul-
tiple semantically equivalent MapReduce versions of the input. It
also automatically inserts code that collects statistics during pro-
gram execution to adaptively switch among the different generated
versions (§5.2).

e We implemented our methodology in CASPER, a tool that con-
verts sequential Java programs into three MapReduce implementa-
tions: Spark, Hadoop, and Flink. We evaluated the feasibility and
effectiveness of CASPER by translating real-world benchmarks from
7 different suites from multiple domains. Across 55 benchmarks,
CAsPER translated 82 of 101 code fragments. The translated bench-
marks performed up to 48.2X faster compared to the original ones
and were competitive even with other distributed implementations,
including manual ones (§7).

2 OVERVIEW

This section describes how we model the MapReduce programming
paradigm and demonstrates by example how CASPER translates
sequential code into MapReduce programs.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1 @Summary (
m = map(reduce(map(mat, Am1); Ar), Ama)
Aml : (i, J» U) - {(i, U)}
4 Ar i (01, V2) = V1 + 0y
Amz i (k, v) = {(k, v/cols)})
o int[] rwm(int[][] mat, int rows, int cols) {
int[] m = new int[rows];
8 for (int i = 0; i < rows; i++) {

9 int sum = 0Q;

10 for (int j = @; j < cols; j++)
1 sum += mat[i][j];

12 m[i] = sum / cols;

)

14 return m;

(a) Input: Sequential Java code

1 RDD rwm(RDD mat, int rows, int cols) {

2 RDD m = mat.mapToPair(e -> new Tuple(e.i, e.v));
m = m.reduceByKey((v1, v2) -> (vl + v2));

4 m = m.mapValues(v -> (v / cols));

5 return m;

cd (b) Output: Apache Spark code

Figure 1: Using CASPER to translate the row-wise mean
benchmark to MapReduce (Spark).

2.1 MapReduce Operators

MapReduce organizes computation using two operators: map and
reduce. The map operator has the following type signature:

map : (mset[t], Am) — mset[(k, V)]

Am T — mset[(k,v)]

Input into map is a multiset (i.e., bag) of type 7 and a unary trans-
former function A,,, which converts a value of type 7 into a multiset
of key-value pairs of types k and v. The map operator then concur-
rently applies A, to every element in the multiset and returns the
union of all multisets generated by A,.

reduce : (mset[(x,v)], 1) — mset[(x, V)]

Ar :(v,v) — v

Input into reduce is a multiset of key-value pairs and a binary
transformer function A,, which combines two values of type v to
produce a final value. The reduce operator first groups all key-value
pairs by key (also known as shuffling) and then uses A, to combine,
in parallel, the bag of values for each key-group into a single value.
The output of reduce is another multiset of key-value pairs, where
each pair holds a unique key. If the transformer function A, is
commutative and associative, then reduce can be further optimized
by concurrently applying A, to pairs of values in a key-group.

CASPER’s goal is to translate a sequential code fragment into a
MapReduce program that is expressed using the map and reduce
operators. The challenges in doing so are: (1) identify the correct
sequence of operators to apply, and (2) implement the correspond-
ing transformer functions. We next discuss how CASPER overcomes
these challenges.

Research 12: Distributed and Parallel Databases

Program Analyzer
JSequ?:nt‘ijal gl Java Coce Static Code ve
ava Code L
El [RETEECH Identifier Boaly
Code Analysis and VCsl
Summary Generator
Grammar Grammar Program Formal
Generator Partitioner Synthesizer Verifier
Lifted Summaries
2 Code Generator
Output = e
MapReduce \;L;‘ <€— | Monitoring i
Code % Module Hadoop Spark Flink

Figure 2: CASPER’s system architecture. Sequential code frag-
ments (green) are translated into MapReduce tasks (orange).

2.2 Translating Imperative Code to MapReduce

CaspER takes in Java code with loop nests that sequentially iterate
over data and translates the code into a semantically equivalent
MapReduce program to be executed by the target framework. To
demonstrate, we show how CASPER translates a real-word bench-
mark from the Phoenix suite [39].

As shown in Figure 1(a), the benchmark takes as input a ma-
trix (mat) and computes, using nested loops, the column vector (m)
containing the mean value of each row in the matrix. Assume the
code is annotated with a program summary that helps with the
translation into MapReduce. The program summary, written using
a high-level intermediate representation (IR), describes how the
output of the code fragment (i.e., m) can be computed using a series
of map and reduce stages from the input data (i.e., mat), as shown
in lines 1 to 5 in Figure 1(a). While the summary is not executable,
translating from that into the concrete syntax of a MapReduce
framework (say, Spark) would be much easier than translating from
the original input code. This is shown in Figure 1(b) where the map
and reduce primitives from our summary are translated into the
corresponding Spark API calls.

Unfortunately, the input code does not have such a summary,
which must therefore be inferred. CAsSPER does this via program
synthesis and verification, as we explain in §3.

2.3 System Architecture

Figure 2 shows CASPER’s overall design. We now discuss the three
primary modules that make up CAsPER’s compilation pipeline.

First, the program analyzer parses the input code into an Abstract
Syntax Tree (AST) and uses static program analysis to identify code
fragments for translation (§6.1). In addition, for each identified
code fragment, it prepares: (1) a search space description encoded
using our high-level IR that lets the synthesizer search for a valid
program summary (§3.1), and (2) verification conditions (VCs) (§3.3)
to automatically ascertain that the induced program summary is
semantically equivalent to the input.

Next, the summary generator synthesizes and verifies program
summaries (§3.4 and §4.1). To speed up the search, it partitions
the search space so that it can be efficiently traversed using our
incremental synthesis algorithm (§4.2).

Once a summary is inferred, the code generator translates it
into executable code. CASPER currently supports three MapReduce

1207

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

PS := VYou. v=MR | Yu. v =MR[v;q4]
MR = map(MR, A,,) | reduce(MR, A,) | join(MR, MR) | data
Am = f:(val) > {Emit}
Ar = f:(valy, valy) - Expr
Emit := emit(Expr, Expr) | if (Expr) emit(Expr, Expr) |
if (Expr) emit(Expr, Expr) else Emit
Expr := Expr op Expr | op Expr | f(Expr, Expr,...) |
n | var | (Expr, Expr)
v € Output Variables via € Variable ID,
op € Operators f € Library Methods

Figure 3: Excerpt of the IR for program summaries (PSs), a
full description of which is provided in Appendix B.

frameworks: Spark, Hadoop, and Flink. Additionally, this compo-
nent also generates code that collects data statistics to adaptively
choose among different implementations during runtime (§5.2).

3 SYNTHESIZING PROGRAM SUMMARIES

As discussed, CasPER discovers a program summary for each code
fragment before translation. Technically, a program summary is a
postcondition [26] of the input code that describes the program state
after the code fragment is executed. In this section, we explain: (1)
the IR CASPER uses to express summaries, (2) how CASPER verifies
a summary’s validity, and (3) the search algorithm CASPER uses to
find valid summaries given a search space description.

3.1 A High-level IR for Program Summaries

One approach to synthesize summaries directly searches in pro-
grams written in the target framework’s APIL This does not scale
well; Spark alone offers over 80 high-level operators, even though
many of them have similar semantics and differ only in their im-
plementation or syntax (e.g., map, flatMap, filter). To speed up
synthesis, we instead search in programs written in a high-level
IR that abstracts away syntactical differences and describes only
the functionality of a few essential operators. The goals of the IR
are: (1) to express summaries that are translatable into the target
API and (2) to let the synthesizer efficiently search for summaries
that are equivalent to the input program. To address these goals,
CaspER’s IR models two MapReduce primitives that are similar to
the map and fold operators in Haskell (see §2.1). In addition, our
IR models the join primitive, which takes as input two multisets
of key-value pairs and returns all pairs of elements with matching
keys. The IR does not currently model the full range of operators
across different MapReduce implementations; however, it already
lets CASPER capture a wide array of computations expressible using
the paradigm and is sufficiently general to be translatable into dif-
ferent MapReduce APIs while keeping the search problem tractable,
as we demonstrate in §7.

Figure 3 shows a subset of CAsPER’s IR, used to express both pro-
gram summaries and the search space. The IR assumes that program
summaries are expressed in the stylized form shown in Figure 3 as
PS, which states that each output variable v (i.e., a variables updated
in the code fragment), must be computed using a sequence of map,
reduce and join operations over the inputs (e.g., the arrays or col-
lections being iterated). While doing so ensures that the summary
is translatable into the target API, the implementations of 1,, and

Research 12: Distributed and Parallel Databases

Ar for the map and reduce operators depend on the code fragment
being translated. We leave these functions to be synthesized and
restrict the body of A, to a sequence of emit statements, where
each emit statement produces a single key-value pair, and the body
of A, is an expression that evaluates to a single value of the re-
quired type. Besides emit, the bodies of A, and A,’s can consist of
conditionals and other operations on tuples, as shown in Figure 3.
The output of the MapReduce expression is an associative array
of key-value pairs; the unique key v;4 for each variable is used to
access the computed value of that variable. Appendix B lists the
full set of types and operators that our IR supports.

3.2 Defining the Search Space

In addition to program summaries, CASPER also uses the IR to
describe the search space of summaries for the synthesizer. It does
so by generating a grammar for each input code fragment, like
the one shown in Figure 3. The synthesizer traverses the grammar
by expanding on each production rule and checks whether any
generated candidate constitutes a valid summary (as explained
in §3.3).

To generate the search space grammar, CASPER analyzes the input
code to extract the following properties and their type information:

(1) Variables in scope at the beginning of the input code

(2) Variables that are modified within the input code

(3) The operators and library methods used

The code analyzer extracts these properties using standard pro-
gram analyses. It computes (1) and (2) using live variable and
dataflow analysis [1], and it computes (3) by scanning functions
that are invoked in the input code. We currently assume that in-
put variables are not aliased to each other and put guards on the
translated code to ensure that is the case.! Appendix D shows the
analysis results for the TPC-H Q6 benchmark, and we discuss the
limitations of our program analyzer module implementation in §6.1.

Given this information, the summary generator builds a search
space grammar that is specialized to the code fragment being trans-
lated. Figure 6 shows sample grammars that are generated for the
code shown in Figure 1(a).? The input code uses addition and di-
vision; hence, the grammar includes addition and division in its
production rules for A, and A,. Furthermore, CASPER also uses
type information of variables to prune invalid production rules in
the grammar. For instance, if the output variable v is of type int,
the final operation in the synthesized MapReduce expression must
evaluate to a value of type int. Since the output type of a reduce
operation is inferred from the type of its input, we can propagate
this information to restrict the type of values the reduce operation
accepts. To make synthesis tractable and the search space finite,
CASPER imposes recursive bounds on the production rules. For in-
stance, it limits the number of MapReduce operations a program
summary can use and the number of emit statements in a single
transformer function. In §4.2, we discuss how CAsPER further spe-
cializes the search space by changing the set of production rules
available in the grammar or specifying different recursive bounds.

Thus, if variable handles v1 and v2 are both inputs into the same code fragment,
CasPER wraps the translated code as: if (v1 != v2) { [Casper translated code]
} else { [original code] }. Computing precise alias information requires more
engineering [43] and does not impact our approach.

ZRefer to Appendix D to see how a grammar can be encoded in our IR.

1208

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

invariant(m,i) = 0<1i<rows A
m = map(reduce(map(mat|0..i], Am1), Ar), Am2)

(a) Outer loop invariant

Initiation (i = 0) — Inov(m, i)
. . Inv(m,i) A (i < rows) —
Continuation Inv(m[i — sum(mat[i])/cols],i + 1)
Termination Inv(m,i) A =(i < rows) — PS(m, i)

(b) Verification conditions to ascertain the correctness of the pro-
gram summary PS given loop invariant Inv

Figure 4: Proof of soundness for the row-wise mean bench-
mark.

3.3 Verifying Program Summaries

To search for a valid summary within the search space, CASPER re-
quires a way to check whether a candidate summary is semantically
equivalent to the input code. It does so using standard techniques
in program verification, namely, by creating verification conditions
based on Hoare logic [26]. Verification conditions are Boolean pred-
icates that, given a program statement S and a postcondition (i.e.,
program summary) P, state what must be true before S is executed
in order for P to be a valid postcondition of S. Verification con-
ditions can be systematically generated for imperative program
statements, including those processed by CAsPER [33, 47]. However,
each loop statement requires an extra loop invariant to construct
an inductive proof. Loop invariants are Boolean predicates that are
true before and after every execution of the loop body regardless
of how many times the loop executes.

The general problem of inferring the strongest loop invariants or
postconditions is undecidable [33, 47]. Unlike prior work, however,
two factors make our problem solvable: first, our summaries are
restricted to only those expressible using the IR described in §3.1,
which lacks many problematic features (e.g., pointers) that a general-
purpose language would have. Moreover, we are interested only
in finding loop invariants that are strong enough to establish the
validity of the synthesized program summaries.

As an example, Figure 4(a) shows an outer loop invariant Inv,
which can be used to prove the validty of the program summary
shown in Figure 1(a). Figure 4(b) shows the verification conditions
CASPER constructs to state what the program summary and invari-
ant must satisfy. We can check that this loop invariant and program
summary are indeed valid based on Hoare logic as follows. First, the
initiation clause asserts that the invariant holds before the loop, i.e.,
when 1 is zero. This is true because the invariant asserts that the
MapReduce expression is true only for the first i rows of the input
matrix. Hence, when 1i is zero, the MapReduce expression is exe-
cuted on an empty dataset, and the output value for each row is 0.
Next, the continuation clause asserts that after one more execution
of the loop body, the i*" index of output vector m should hold the
mean for the i row of the matrix mat. This is true since the value
of i is incremented inside the loop body, which implies that the
mean for the i*" row has been computed. Finally, the termination
condition completes the proof by asserting that if the invariant is
true, and i has reached the end of the matrix, then the program

Research 12: Distributed and Parallel Databases

summary PS must now hold as well. This is true since i now equals
the number of rows in the matrix, and the loop invariant asserts
that m equals the MapReduce expression executed over the entire
matrix, which is the same assertion as our program summary.
CaspER formulates the search problem for finding program sum-
maries by constructing the verification conditions for the given
code fragment and leaving the body of the summary (and any nec-
essary invariants for loops) to be synthesized. For the program
summary and invariants, the search space is expressed using the
same IR as discussed in §3.1. Formally, the synthesis problem is:

A ps, invy,...,inv,. Yo. VC(P,ps,invy,...,invg,0) (1)

In other words, CASPER’s goal is to find a program summary ps and
any required invariants invy, . . ., inv, such that for all possible
program states o, the verification conditions for the input code
fragment P are true. After the synthesizer has identified a candidate
summary and invariants, CASPER sends them and the verification
conditions to a theorem prover (see §4.1), and to the code generator
to generate executable MapReduce code if the program summary
is proven to be correct.

3.4 Search Strategy

CAsPER uses an off-the-shelf program synthesizer, Sketch [42], to
infer program summaries and loop invariants. Sketch takes as in-
put: (1) a set of candidate summaries and invariants encoded as a
grammar (e.g., Figure 3), and (2) the correctness specification for
the summary in the form of verification conditions. It then attempts
to find a program summary (and any invariants needed) using the
provided grammar such that the verification conditions hold true.

The universal quantifier in Eq.1 make the synthesis problem
challenging. Therefore, CASPER uses a two-step process to ensure
that the found summary is valid. First, it leverages Sketch’s bounded
model checking to verify the candidate program summary over a
finite (i.e., “bounded”) subset of all possible program states. For
example, CASPER restricts the maximum size of the input dataset
and the range of values for integer inputs. Finding a solution for
this weakened specification can be done very efficiently by the
synthesizer. Once a candidate program summary can be verified
for the bounded domain, CASPER passes the summary to a theorem
prover to determine its soundness over the entire domain, which is
more expensive computationally. CASPER currently translates the
summary along with an automatically generated proof script to
Dafny [31] for full verification. This two-step verification makes
CASPER’s synthesis algorithm sound, without compromising effi-
ciency.

3.4.1 Synthesis Algorithm. Figure 5 (lines 1 to 8) shows the core
CEGIS [45] algorithm CAsPER’s synthesizer uses. The algorithm is
an iterative interaction between two modules: a candidate program
summary generator and a bounded model checker. The candidate
summary generator takes as input the IR grammar G, the veri-
fication conditions for the input code fragment VC, and a set of
concrete program states ®. To start the process, the synthesizer pop-
ulates ® with a few randomly chosen states, and generates program
summary candidate ps and any needed invariants invy, . .., inv,
from G such that Vo € ® . VC(ps, invy, . . ., inv,, 0) is true. Next,
the bounded model checker verifies whether the candidate program

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1 function synthesize (G, VC):

2 ® = {} // set of random program states

3 while true do

4 ps, invy ., = generateCandidate(G, VC, ®)

5 if ps is null then return null // search space exhausted
6 ¢ = boundedVerify(ps, invi ., VC)

7 if ¢ is null then return (ps, invy.) // summary found
8 else =@ U¢ // counter-example found

10 function findSummary (A, VC):

11 G = generateGrammar (A)

12 I' = generateClasses(G)

13 Q = {3} // summaries that failed verification
14 A = {3} // summaries that passed verification
15 for y €T do

16 while true do

17 c = synthesize(y - Q - A, VO)

18 if ¢ is null and A is null then

19 break // move to next grammar class

20 else if ¢ is null then

21 return A // search complete

22 else if fullVerify(c, VC) then A=AU ¢
23 else Q=QU ¢

24 return null // no solution found

Figure 5: CASPER’s search algorithm.

summary holds over the bounded domain. If it does, the algorithm
returns ps as the solution. Otherwise, the model checker returns a
counter-example state ¢ such that VC(ps, inv, . . ., inv,, ¢) is false.
The algorithm adds ¢ to ® and restarts the program summary gen-
erator. This continues until either a program summary is found that
passes bounded model checking or the search space is exhausted.

A limitation of the CEGIS algorithm is that, while efficient, the
found program summary might be true only for the finite domain
and thus will be rejected by the theorem prover when checking for
validity over the entire domain. In this case, CASPER dynamically
changes the search space grammar to exclude the candidate pro-
gram summary that does not verify and restarts the synthesizer to
generate a new candidate summary using the preceding algorithm.
We discuss this process in detail in §4.1.

4 IMPROVING SUMMARY SEARCH

We now discuss the techniques CASPER uses to make the search for
program summaries more robust and efficient.

4.1 Leveraging Verifier Failures

As mentioned, the program summary that the synthesizer returns
can fail theorem prover validation due to the bounded domain used
during search. For instance, assume we bound the integer inputs
to have a maximum value of 4 in the synthesizer. In this bounded
domain, the expressions v and Math.min(4,v) (where v is an input
integer) are deemed to be equivalent even though they are not equal
in practice. While prior work [17, 28] simply fails to translate such
benchmarks if the theorem prover rejects the candidate summary,
CASPER uses a two-phase verification technique to eliminate such
candidates. This ensures that CASPER’s search is complete with
respect to the search space defined by the grammar.

To achieve completeness, CASPER must first prevent summaries
that failed the theorem prover from being regenerated by the syn-
thesizer. A naive approach would be to restart the synthesizer

Research 12: Distributed and Parallel Databases

Property G G Gs G1 :=map(mat, A,,)
Map/Reduce o o
Sequence m | m-r) m—orom (@.j,v) = 1G]
Emits @@.j,v) = [(@v)]
in A 1 2 2 A =1 (0,),v) = [G,v + D]
Key/Value . . int or @i,j,v) = [+j,v)]
Type mnt int Tuple<int,int> :

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

G2 = reduce(map(mat, Ap,), A,-)

@j,v) = [, v)]
@j,v) = [Gv+D]

G3 = map(reduce(map(mat, A1), A1), Amz)

@i,j,v) = [, v)]
@) = [(v,)]

A =1 s - A Amy =
@)y = 16D, (1] R (OB (R RN D)
(v1,v2) > 1y
(w1,v2) > vy
1,v2) > v+ v,
(v, vy) D vy +4 A 1=
A = (Ully sz) N 1712+ v, (v1,v2) = (1?1- 1,v,.2)
‘ (v) > [(,v), (v, K]
(k,v) > [((w. 1,K),v.2)]
Ama 1= (k,v) - [(k,v/cols)]

(k,v) = if (v >)[(k,v)]

Figure 6: Incremental grammar generation. CASPER generates a hierarchy of grammars to optimize search.

until a new summary is found, assuming that the algorithm im-
plemented by the synthesizer is non-deterministic. However, this
approach is incomplete because the algorithm may never terminate
since it can continually return the same incorrect summary. In-
stead, CAsPER modifies the search space to ensure forward progress.
Recall from §3.4 that the search space for candidate summaries
{c1,..
by the program analyzer and passed to the synthesizer. Thus, to
prevent a candidate ¢y that fails the theorem prover from being
repeatedly generated from grammar G, CASPER simply passes in
a new grammar G — {cs} to the synthesizer. This is implemented
by passing additional constraints to the synthesizer to block a sum-
mary from being regenerated.

., Cn} is specified using an input grammar that is generated

Theorem. CAspPER’s algorithm for inferring program summaries is
sound and complete with respect to the given search space.
A proof sketch for this theorem is provided in Appendix A.
Figure 5 shows how CAsPER infers program summaries and
invariants. CASPER calls the synthesizer to generate a candidate
summary c on line 17 and attempts to verify c by passing it to the
theorem prover on line 22. If verification fails, c is added to Q, the
set of incorrect summaries, and the synthesizer is restarted with a
new grammar G — Q. We explain the full algorithm in §4.3.
In §7.3.2, we provide experimental results that illustrate how our
two-phase verification algorithm effectively finds program sum-
maries even when faced with verification failures.

4.2 Incremental Grammar Generation

Although CasPER’s search algorithm is complete, the space of pos-
sible summaries to consider remains large. To address this, CASPER
incrementally expands the search space for program summaries
to speed up the search. It does this by: (1) adding new production
rules to the grammar, and (2) increasing the number of times that
each product rule is expanded.

The benefits of this approach are twofold. First, since the search
time for a valid summary is proportional to search space size,
CasPER often finds valid summaries quickly, as our experiments
show. Second, since larger grammars are more syntactically ex-
pressive, the found summaries are likely to be more expensive
computationally. Hence, biasing the search towards smaller gram-
mars likely produces program summaries that run more efficiently.
Although this is not sufficient to guarantee optimality of gener-
ated summaries, our experiments show that in practice CASPER
generates efficient solutions (§7.2).

1210

To implement incremental grammar generation, CASPER par-
titions the space of program summaries into different grammar
classes, where each class is defined based on these syntactical fea-
tures: (1) the number of MapReduce operations, (2) the number of
emit statements in each map stage, (3) the size of key-value pairs
emitted in each stage, as inferred from the types of the key and
value, and (4) the length of expressions (e.g., x + y is an expression
of length 2, while x + y + z has a length of 3). All of these features
are implemented by altering production rules in the search space
grammar. A grammar hierarchy is created such that all program
summaries expressible in a grammar class G; are also expressible
in a higher level class, i.e., G; where j > i.

4.3 CasPER’s Search Algorithm for Summaries

Figure 5 shows CAsPER’s algorithm for searching program sum-
maries. The algorithm begins by constructing a grammar G using
the results of program analysis A on the input code. First, CASPER
partitions the grammar G into a hierarchy of grammar classes T
(line 12). Then, it incrementally searches each grammar classy €T,
invoking the synthesizer to find summaries in y (line 17). Each
summary (and invariants) the synthesizer returns is checked by a
theorem prover (line 22); CASPER saves the set of correct program
summaries in A and all summaries that fail verification in Q. Each
synthesized summary (correct or not) is eliminated from the search
space, forcing the synthesizer to generate a new summary each
time, as explained in §4.1. When the grammar y is exhausted, i.e.,
the synthesizer has returned null, CASPER returns the set of correct
summaries A if it is non-empty. Otherwise, no valid solution was
found, and the algorithm proceeds to search the next grammar
class in T. If A is empty after exploring every grammar in T, i.e., no
summary could be found in the entire search space, the algorithm
returns null.

4.4 Row-wise Mean Revisited

We now illustrate how findSummary searches for program sum-
maries using the row-wise mean benchmark discussed in §2.2. Fig-
ure 6 shows three sample (incremental) grammars CASPER gener-
ated as a result of calling generateClasses (Figure 5, line 12) along
with their properties. For example, the first class, G1, consists of
program summaries expressed using a single map or reduce opera-
tor, and the transformer functions A, and A, are restricted to emit
only one integer key-value pair. A few candidates for A,, are shown

Research 12: Distributed and Parallel Databases

in the figure. For instance, the first candidate, (i,j,v) — [(i,)],
maps each matrix entry to its row and column as the output.

If findSummary fails to find a valid summary in Gy for the bench-
mark, it advances to the next grammar class, Go. G2 expands upon
Gj by including summaries that consist of two map or reduce op-
erators, and each A, can emit up to 2 key-value pairs. The search
next moves to G3, where G3 expands upon Gz with summaries that
include up to three map or reduce operators, and the transformers
can emit either integers or tuples. As shown in Figure 1(a), a valid
summary is finally found in G3 and added to A. Search continues in
G35 for other valid summaries in the same grammar class. The search
terminates after all valid summaries in Gs, i.e., those returned by
the synthesizer and fully verified, are found. This includes the one
shown in Figure 1(a).

5 FINDING EFFICIENT TRANSLATIONS

There often exist many semantically equivalent MapReduce imple-
mentations for a given sequential code fragment, with significant
performance differences. Many frameworks come with optimizers
that perform low-level optimizations (e.g., fusing multiple map op-
erators). However, performing semantic transformations is often
difficult. For instance, at least three different implementations of
the StringMatch benchmark exist in MapReduce, and they differ in
the type of key-value pairs the map stage emits (see §7.4). Although
it is difficult for a low-level optimizer to discover these equiva-
lences by syntax analysis, CASPER can perform such optimization
because it searches for a high-level program summary expressed
using the IR. We now discuss CASPER’s use of a cost model and
runtime monitoring module for this purpose.

5.1 Cost Model

CASPER uses a cost model to evaluate different semantically equiva-
lent program summaries that are found for a code fragment. Because
CASPER aims to translate data-intensive applications, its cost model
estimates data transfer costs as opposed to compute costs.

Each synthesized program summary is a sequence of map, reduce
and join operations. The semantics of these operations are known,
but the transformer functions that they use (1, and 1,) are syn-
thesized and determine the operation’s cost. We define the cost
functions of the map, reduce and join operations below:

[Am]
costm(Am, N, W) = Wy, = N = Z sizeOf(emit;) «p; (2)

i=1
®)
©)

The function cost,, estimates the amount of data generated in
the map stage. For each emit statement in A, the size of the key-
value pair emitted is multiplied by the probability that the emit
statement will execute (p;). The values are then summed to get the
expected size of the output record. The total amount of data emitted
during the map stage equals to the product of expected record size
and the number of times A, is executed (N). The cost function for
a reduce stage, costy, is defined similarly, except that A, produces
only a single value and the cost is adjusted based on whether A,

costr(Ar, N,Wy) = Wy % N x sizeOf(A,) = €(A,)

costj(N1, N2, Wj) = Wj Nq * N * sizeO f(emitj) * p;

1211

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

is commutative and associative. The function € returns 1 if these
properties hold; otherwise, it returns Wesg4. The cost function for
join operations, costj, is defined over: the number of elements in the
two input datasets (N7 and Ny), the selectivity of the join predicate
(pj), and the size of the output record. Wy,, W, and W; are the
weights assigned to the map, reduce and join operations. W4 is
the penalty for a non-commutative associative reduction. In our
experiments, we used the values 1, 2, 2 and 50 for these weights,
respectively based on our empirical studies.

To estimate the cost of a program summary, we simply sum the
cost of each individual operation. The first operator in the pipeline
takes symbolic variables Ny ; as the number of records. For each
subsequent stage, we use the number of key-value pairs generated
by the current stage, expressed as a function over Np_ ;:

costmr([(0p1, A1), (0p2, A2), .. .], No..i) = costop1(A1, N, W) +
costmr([(0p2, A2), . . .], count(A1, Ny..i))

The function count returns the number of key-value pairs generated
by a given stage. For map stages, this equals Zli’f”sl pi; for reduce
stages, it equals the number of unique key values on which the

reducer was executed; for joins, it equals N1 * No * p;.

5.2 Dynamic Cost Estimation

The cost model computes the cost of a program summary as a
function of input data size N. We use this cost model to compare
the synthesized summaries both statically and dynamically. First,
calling findSummary returns a list of verified summaries that were
found. CaspER then uses the cost model to prune summaries when a
less costly one exists in the list. Not all summaries can be compared
that way, however, since they could depend on the value distribution
of the input data or how frequently a conditional evaluates to true,
as shown in the candidates for grammar G3’s A1 in Figure 6.

In such cases, CASPER generates code for all remaining sum-
maries that have been validated, and it uses a runtime monitoring
module to evaluate their costs dynamically when the generated
program executes. As the program executes, the runtime module
samples values from the input dataset (CASPER currently uses first-k
values sampling, although different sampling method may be used).
It then uses the samples to estimate the probabilities of conditionals
by counting the number of data elements in the sample for which
the conditional will evaluate to true. Similarly, it counts the number
of unique data values that are emitted as keys. These estimates
are inserted into Eqn 2 and Eqn 3 for each program summary to
get comparable cost values. Finally, the summary with the low-
est cost is executed at runtime. Hence, if the generated program
is executed over different data distributions, it will run different
implementations, as illustrated in §7.4.

6 IMPLEMENTATION

We implemented CAsPER using the Polyglot framework [37] to
parse Java code into an abstract syntax tree (AST). CASPER traverses
the program AST to identify candidate code fragments, performs
program analysis, and generates target code. We now describe the
Java features supported by our compiler front-end. We also discuss
how CaspER identifies code fragments for translation and generates
executable code from the verified program summary.

Research 12: Distributed and Parallel Databases

6.1 Supported Language Features

To translate a code fragment, CAsPER must first successfully gener-
ate verification conditions for that fragment (as explained in §3.3).
CasPER can currently do this for basic Java statements, conditionals,
functions, user-defined types, and loops.

Basic Types. CASPER supports all basic Java arithmetic, logical,
and bit-wise operators. It can also process reads and writes into
primitive arrays and common Java Collection interfaces, such as
java.util.{List, Set,Map}. CAsPER can be extended to support
other data structures, such as Stack or Queue.

User-defined Types. CASPER traverses the program AST to find
declarations of all types that were used in the code fragment being
translated. It then dynamically translates and adds these types to
the IR as structs, as shown in Appendix B.

Loops. CasPERr computes VCs for different types of loops (for,
while, do), including those with loop-carried dependencies [1],
after applying classical transformations [1] to convert loops into
the while(true){...} format.

Methods. CaspER handles methods by inlining their bodies. Poly-
morphic methods can be supported similarly by inlining different
versions with conditionals that check the type of the host object at
runtime. Recursive methods and methods with side-effects are not
currently supported because they are unlikely to gain any speedup
by being translated to MapReduce.

External Library Methods. CASPER supports common library meth-
ods from standard Java libraries (e.g., java.lang.Math methods)
by modeling their semantics explicitly using the IR. Users can simi-
larly provide models for other methods that CASPER currently does
not support. 3

6.2 Code Fragment Identification

CaAsPER traverses the input AST to identify code fragments that are
amenable for translation by searching for loops that iterate one or
more data structures (e.g., a list or an array). We target loops since
they are most likely to benefit from translation to MapReduce. We
have kept our loop selection criteria lenient to avoid false negatives.

6.3 Code Generation

Once an identified code fragment is translated, CASPER replaces
the original code fragment with the translated MapReduce code.
It also generates “glue” code to merge the generated code into the
rest of the program. This includes creating a SparkContext (or an
ExecutionEnvironment for Flink), converting data into RDDs (or
Flink’s DataSets), broadcasting required variables, etc. Since some
API calls (such as Spark’s reduceByKey) are not defined for non-
commutative associative transformer functions, CASPER uses these
API calls only if the generated code is indeed commutative and
associative (otherwise, CASPER uses safe, albiet less efficient, trans-
formations, such as groupByKey). Finally, CASPER also generates
code for sampling input data and dynamic switching, as discussed
in §5.2. Appendix C presents a subset of code-generation rules for
the Spark APL

3We provide examples of library function and type models in Appendix B.

1212

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Suite # Translated | Mean Speedup | Max Speedup
Phoenix 7/11 14.8x 32x
Ariths 11/11 12.6x 18.1x
Stats 18/ 19 18.2x 28.9x
Bigd 6/8 21.5x 32.2x
Fiji 23/35 18.1x 24.3x
TPC-H 10/ 10 31.8x 48.2x
Iterative 7117 18.4x 28.8x

Table 1: Number of code fragments translated by CAsSPER
and their mean and max speedups compared to sequential
implementations.

7 EVALUATION

In this section, we present a comprehensive evaluation of CASPER on
a number of dimensions, including its ability to: (1) handle diverse
and realistic workloads, (2) find efficient translations, (3) compile
efficiently, and (4) extend to support other IRs and cost-models in
the future. All experiments were conducted on an AWS cluster of
10 m3.2xlarge instances (1 master node, 9 core nodes), where each
node contains an Intel Xeon 2.5 GHz processor with 8 vCPUs, 30 GB
of memory, and 160 GB of SSD storage. We used the latest versions
of all frameworks available on AWS: Spark 2.3.0, Hadoop 2.8.3, and
Flink 1.4.0. The data files for all experiments were stored on HDFS.

7.1 Feasibility Analysis

We first assess CASPER’s ability to handle a variety of data-processing
applications. Specifically, we determine whether: (1) CASPER can
generate verification conditions for a syntactically diverse set of
programs, (2) our IR can express summaries for a broad range of
data-processing workloads, and (3) CASPER’s ability to find such
summaries. To this end, we used CASPER to optimize a set of 55
diverse benchmarks from real-world applications that contained a
total of 101 translatable code fragments.

Basic Applications. For benchmarking, we assembled a set of
small applications from prior work and online repositories. These
applications, summarized below, contain a diverse set of code pat-
terns commonly found in data-processing workloads (e.g., aggrega-
tions, selections, grouping, etc), as follows:

e Big) [44] consists of several data analysis tasks such as senti-
ment analysis, database operations (e.g., selection and projection),
and Wikipedia log processing. Since BigA generates code from input-
output examples rather than from an actual implementation, we
recruited computer science graduate students in our department to
implement a representative subset of the benchmarks from their
textual descriptions. This resulted in 211 lines of code across 7 files.

e Statsis a set of benchmarks CASPER automatically extracted
from an online repository for the statistical analysis of data [32].
Examples include Covariance, Standard Error and Hadamard Product.
The repository contains 1162 lines of code across 12 Java files,
mostly consisting of vector and matrix operations.

o Ariths is a set of simple mathematical functions and aggrega-
tions collected from prior work [14, 19, 23, 40]. Examples include
Min, Max, Delta, and Conditional Sum. The suite contains 245 lines
of code than span 11 files.

Across the 3 suites, CASPER identified 38 code fragments, of
which 35 were successfully translated. One code-fragment that

Research 12: Distributed and Parallel Databases

CaspER failed to translate used a variable-sized kernel to convolve
a matrix; two others required broadcasting data values to many
reducers during the map stage, but such mappers are currently
inexpressible in our IR due to the absence of loops.

Traditional Data-Processing Benchmarks. Next, we used CASPER
to translate a set of well-known, data-processing benchmarks that
resemble real-world workloads:

e We manually implemented Q1, Q6, Q15 and Q17 from the TPC-
Hbenchmark using sequential Java and used CASPER to translate
the Java implementations to MapReduce. The selected queries cover
many SQL features, such as aggregations, joins and nested queries.

e Phoenix [39] is a collection of standard MapReduce problems—
such as 3D Histogram, Linear Regression, KMeans, etc.—used in
prior work [38]. Since the original sequential implementations
were written in C, we used the sequential Java translations of the
benchmarks from prior work in our experiments. The suite consists
of 440 lines of code across 7 files.

e [terative represents two popular iterative algorithms that we
manually implemented into sequential versions: PageRank and Lo-
gistic Regression Based Classification.

CaspER successfully translated all 4 TPC-H queries and both
iterative algorithms. It successfully translated 7 of 11 from the
Phoenix suite. Three of the 4 failures were due to the IR’s lack of
support for loops inside transformer functions. One benchmark
failed to synthesize within 90 minutes, causing CASPER to time out.

Real-World Applications. Fiji [24] is a popular distribution of the
Image] [27] library for scientific image analysis. We ran CASPER
on the source code of four Fiji packages (aka plugins). NL Means
is a plugin for denoising images via the non-local-means algo-
rithm [13] with optimizations [20]. Red To Magenta transforms
images by changing red pixels to magenta. Temporal Median is a
probabilistic filter for extracting foreground objects from a sequence
of images. Trails averages pixel intensities over a time window in an
image sequence. These packages, authored by different developers,
contain 1411 lines of code that span 5 files. Of the 35 candidate
code fragments identified across all 4 packages, CASPER success-
fully optimized 23. Three of the failures were caused by the use of
unsupported types or methods from the Image] library since we
did not model them using the IR, and the search timed out for the
remaining 9.

Table 1 summarizes the results of our feasibility analysis. Of the
101 individual code fragments identified by the compiler across
all benchmarks, CAsPER translated 82. We manually inspected all
code files to ensure that CASPER’s code fragment identifier missed
no translatable code fragments. Overall, the benchmarks form a
syntactically diverse set of applications.*

Because MOLD is not publicly available, we obtained the gen-
erated code from the MOLD authors for the benchmarks used in
its evaluation [38]. Of the 7 Phoenix benchmarks, MOLD could
not translate 2 (PCA and KMeans). Another 2 (Histogram and Ma-
trix Multiplication) generated semantically correct translations that
worked well for multi-core execution but failed to execute on the
cluster because they ran out of memory. For the remaining 3 bench-
marks (Word Count, String Match and Linear Regression), MOLD

4We summarize the syntactic features of the code fragments in Appendix E.1.

1213

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

MOLD (Spark) W Manual (Spark) M Casper (Spark)
Casper (Flink) B Casper (Hadoop)
40x
30x
o
p=}
nel
3 20x
Q.
w
- I I I I
String Word Linear Wikipedia Anscombe
Match Count Regression Hlstogram PageCount Transform

(a) CAsPER achieves speedup competitive with manual translations

600
W Casper 600 MW Casper

& 450 M SparksQl 3 450 M SparkTut
GEJ [

£ 300 £ 300

c c

> =}

& 150 & 150

. JJII

Q1 Q6 Q15 Q17
(b) TPC-H benchmarks

. N

LogisticR PageRank

(c) Iterative algorithms

Figure 7: A runtime comparison of CASPER-generated imple-
mentations against reference implementations.

generated working implementations. In contrast, CASPER translated
4 of the 7 Phoenix benchmarks. For PCA and KMeans, CASPER trans-
lated and successfully executed a subset of all the loops found, while
translation failed for the other loops and the Matrix Multiplication
benchmark for reasons explained above.

7.2 Performance of the Translated Benchmarks

CAsPER helps an application leverage the optimization and paral-
lelization provided by MapReduce implementations by translating
their code. Therefore, in this section, we examine the quality of the
translations CAsPER produced by comparing their performance to
that of reference distributed implementations.

We used CASPER to translate summaries for these benchmarks
to three popular implementations of the MapReduce programming
model: Hadoop, Spark, and Flink. The translated Spark implemen-
tations, along with their original sequential implementations, were
executed on three synthetic datasets of sizes 25GB, 50GB, and 75GB.
Overall, the Spark implementations CASPER generated are 15.6X
faster on average than their sequential counterparts, with a max
improvement of up to 48.2x. Table 1 shows the mean and max
speedup observed for each benchmark suite using Spark on a 75GB
dataset. We also executed the Hadoop and Flink implementations
generated by CAsPER for a subset of 10 benchmarks, some of which
are shown in Figure 7(a). The average speedups observed (over
the 10 benchmarks) by these implementations are 6.4X and 10.8X%,
respectively. These results show that CASPER can effectively im-
prove the performance of applications by an order of magnitude
by retargeting critical code fragments for execution on MapReduce
frameworks.

Research 12: Distributed and Parallel Databases

Figure 7(a) plots the speedup achieved by the MOLD-generated
implementations for String Match, Word Count, and Linear Regres-
sion. The Spark translations MOLD generated for these benchmarks
performed 12.3x faster on average than the sequential versions.
The solutions generated by CasPER for String Match and Linear
Regression were faster than those generated by MOLD by 1.44X
and 2.34x, respectively. For String Match, CAspER found an efficient
encoding to reduce the amount of data emitted in the map stage
(see §7.4), whereas MOLD emitted a key-value pair for every word
in the dataset. Furthermore, MOLD used separate MapReduce oper-
ations to compute the result for each keyword; CAsPER computed
the result for all keywords in the same set of operations. For Linear
Regression, MOLD discovered the same overall algorithm as CASPER
except its implementation zipped the input RDD with its index as
a pre-processing step, almost doubling the size of input data and
hence the amount of time spent in data transfers.

For the Ariths, Stats, BigA, and Fiji benchmarks, we recruited
Spark developers through UpWork.com to manually rewrite the
benchmarks since reference distributed implementations were not
available.’ Figure 7(a) compares the performance of (a subset of)
CasPER-generated implementations to handwritten benchmark im-
plementations over the 75GB dataset. Results show that the CASPER-
generated implementations perform competitively, even with those
manually written by developers. In fact, of the 42 hand-translated
benchmark implementations, 24 used the same high-level algo-
rithm as the one generated by CASPER, and most of the remaining
ones differ by using framework-specific methods instead of an ex-
plicit map/reduce (e.g., using Spark’s built-in filter, sum, and count
methods). However, these variations did not cause a noticeable per-
formance difference. One interesting case was the 3D Histogram
benchmark, where the developer exploited knowledge about the
data to improve runtime performance. Specifically, the developer
recognized that since RGB values always range between 0-255, the
histogram data structure would never exceed 768 values. Therefore,
the developer used Spark’s more efficient aggregate operator to
implement the solution. CASPER, not knowing that pixel RGB values
are bounded, assumed that the number of keys could grow to be
arbitrarily large and that using the aggregate operator could cause
out-of-memory errors, hence it generated a single stage map and
reduce instead.

For PageRank and Logistical Regression, we compared CASPER
against the implementations found in the Spark Tutorials [46] (see
Figure 7(c)). The reference PageRank implementation was 1.3x
faster than the one CASPER generated on a dataset of about 2.25 bil-
lion graph edges and running 10 iterations. This is because CASPER
currently does not generate any cache() statements, nor does it
co-partition data. Deciding when to cache can lead to further per-
formance gains. Prior work [12] suggested heuristics for inserting
such statements into Spark algorithms that could be integrated
into CASPER’s code generator to improve performance for itera-
tive workloads. For Logistical Regression, we found no noticeable
difference in performance.

For TPC-H queries, we compared the performance of Spark
code generated by CAsPER against SparkSQL’s implementation.
Figure 7(b) plots the results of this experiment. For Q1, Q6 and

5 Appendix E.2 describes the hiring criteria.

1214

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Source Mean Mean Mean # | Mean TP
Time (s) LOC Op Failures
Phoenix 944 13.8 (13.1) 2.3(2.1) 0.35
Ariths 223 9.4(76) | 1.6(1.2) 4
Stats 351 7.6 (5.8) 1.8 (1.8) 0.6
Bigh 112 13.6 (10) | 1.8(2.0) 04
Fiji 1294 72(74) | 1.4(16) 0.1
TPC-H 476 5.9 (n/a) | 7.25 (n/a) 0
Iterative 788 3.3(3.7) 4.5 (3.5) 2

Table 2: Summary of CASPER’s compilation performance.
Values for the reference implementations are shown in
parentheses.

Q15, CasPER implementations executed 2X, 1.8X and 2.8X faster,
respectively, than SparkSQL on a scale factor of 100. For Q1 and
Q6, we attribute this to the extra data shuffling performed by the
SparkSQL query plan. In Q15, SparkSQL’s query plan scanned the
lineitem relation twice, whereas CASPER’s implementation did so
only once, resulting in worse runtime performance. For Q17, Spark-
SQL executed 1.7X faster because it performed better scheduling of
the query operators than the CASPER-generated implementation. In
sum, results show that the CAsPER-generated implementations the
TPC-H benchmarks have comparable performance to those imple-
mented directly using the MapReduce frameworks. Yet, developers
need not learn different MapReduce APIs by using CASPER.

7.3 Compilation Performance

We next evaluate CASPER’s compilation performance. We discuss
the time taken by CASPER to compile the benchmarks, the effective-
ness of CASPER’s two-phase verification strategy, the quality of the
generated code, and incremental grammar generation.

7.3.1 Compile Time. On average, CASPER took 11.4 minutes to
compile a single code fragment. However, the median compile time
for a single benchmark was only 2.1 minutes: for some benchmarks,
the synthesizer discovered a low-cost solution during the first few
grammar classes, letting CASPER terminate search early. Table 2
shows the mean compilation time for a single benchmark by suite.

7.3.2 Two-Phase Verification. In our experiments, the candi-
date summary generator produced at least one incorrect solution
for 13 out of the 101 successfully translated code-fragments. The
synthesizer proposed a total of 76 incorrect summaries across all
benchmarks. Table 2 lists the average number of times the theo-
rem prover rejected a solution for each benchmark suite. As an
example, the Delta benchmark computes the difference between
the largest and smallest values in the dataset. It incurred 7 rounds
of interaction with the theorem prover before the candidate gen-
erator found a correct solution due to errors from bounded model
checking (discussed in §4.1).

7.3.3 Generated Code Quality. In addition to measuring the
runtime performance of CASPER-generated implementations, we
manually inspected the code generated by CasPER and compared
it to the reference implementations for two code quality metrics:
lines of code (LOC) and the number of MapReduce operations used.
Table 2 shows the results of our analysis. Implementations gener-
ated by CASPER were comparable and did not use more MapReduce
operations or LOC than were necessary to implement a given task.

Research 12: Distributed and Parallel Databases

With Incr. Without Incr.
Benchmark

Grammar Grammar
WordCount 2 827
StringMatch 24 416
Linear Regression 1 94
3D Histogram 5 118
YelpKids 1 286
Wikipedia PageCount 1 568
Covariance 5 11
Hadamard Product 1 484
Database Select 1 397
Anscombe Transform 2 78

Table 3: With incremental grammar generation, CASPER pro-
duces far less redundant summaries.

Note that the LOC pertain to individual code fragments, not entire
benchmarks.

7.3.4 Incremental Grammar Generation. We also measured the
effectiveness of incremental grammar generation in optimizing
search. To measure its impact on compilation time, we used CASPER
to translate benchmarks without incremental grammar generation
and compared the results. The synthesizer was allowed to run for
90 minutes, after which it was manually killed. The results of this
experiment are summarized in Table 3. Exhaustively searching the
entire search space produced hundreds of more expensive solutions.
The cost of searching, verifying, and sorting all these superfluous
solutions dramatically increased overall synthesis time. In fact,
CAsPER timed out for every benchmark in that set (which represents
a slowdown by at least one order of magnitude).

7.4 Dynamic Tuning

The final set of experiments evaluated the runtime monitor module
and whether the dynamic cost model could select the correct imple-
mentations. As explained in §5.2, the performance of some solutions
depends on the distribution of the input data. Therefore, we used
CASPER to generate different implementations for the StringMatch
benchmark (Figure 8(a)). Figure 8(d) shows three (out of 400+) cor-
rect candidate solutions, with their respective costs based on the
formula described in §5.1 and the following values for data-type
sizes: 40 bytes for String, 10 bytes for Boolean and 28 bytes for a
tuple of Boolean Objects. Solution (a) can be disqualified at compile
time because it will have a higher cost than solution (b) for all
possible data distributions. However, the cost of solutions (b) and
(c) cannot be statically compared due to the unknowns p; and p»
(the respective probabilities that the conditionals will evaluate to
true and a key-value pair will be emitted). The values of p; and p
depend on the input data, i.e., how often the keywords appear in
the text, and thus can be determined only dynamically at run-time.

CaspeR handles this by generating a runtime monitor in the
output code. The monitor samples the input data (first 5000 values)
in each execution to estimate values for unknown variables in the
cost formulas. The estimated values are then plugged back into
the original cost functions (Eqn 2 and 3), and the solution with the
lowest cost is then executed.

We executed solutions (b) and (c) on three 75GB datasets with dif-
ferent amounts of skew: one with no matching words (i.e., (c) emits
nothing), one with 50% matching words (i.e., (c) emits a key-value

1215

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

pair for half of the words in the dataset), and one with 95% matching
words (i.e., (c) emits a key-value pair for 95% of the words in the
dataset). Figure 8(c) shows the dynamically computed final cost of
solution (c) using p; and p; estimates calculated using sampling.
Figure 8(b) shows the actual performance of the two solutions. For
datasets with very high skew, it is beneficial to use solution (b) due
to the smaller size of its key-value pair emit. Otherwise, solution (c)
performs better. CASPER, with the help of the dynamic input from
the runtime monitor, makes this inference and selects the correct
solution for all three datasets.

Dynamic cost estimation is particularly impactful in workloads
with multiple join operations. The size of each relation participat-
ing in the join in addition to the selectivity of the join predicate
dictate the most cost-efficient join ordering. To demonstrate this,
we translated a simple query based on the TPC-H schema that im-
plements a 3-way join between the part, supplier, and partsupplier
relations. Query parameters are the name of the supplier and the
customer_id, and outputs are the customer’s name, email address,
and the sum of discount savings across all sales between the two
parties. We executed this query over two parameter configurations:
one where the cardinality of join(sales, supplier) was much greater
than join(sales, customer) and one where it was much smaller. On
compilation, CASPER generated two semantically equivalent imple-
mentations for the query with different join orderings; which one
to use depends on the cardinality of the input data. Upon execu-
tion, the CASPER runtime estimated the cost of each join ordering
and executed the faster solution for both configurations, showing
the effectiveness of our dynamic tuning approach. We discuss the
accuracy of the cost-functions we used in Appendix E.3

7.5 System Extensibility

The translation techniques CASPER uses are not coupled to our
IR or the target frameworks used. To demonstrate CASPER’s ex-
tensibility, we implemented the Fold-IR in prior work [22] in our
system. Adding the fold construct to our IR required just 5 lines
of code. An additional 43 lines of code were required to implement
compilation of the fold operator to Dafny for verification of synthe-
sized summaries. Since operations such as min, max, set.insert
and list.append were already available in our IR, hence no extra
work was needed. We did not implement any incremental grammar
exploration for Fold-IR and used a constant bound to restrict the
maximum size of summary expressions. With this minimal amount
of work, we synthesized summaries expressed in Fold-IR for all
benchmarks in the Ariths set. We believe it should be easy to extend
CaAsPER’s code generator to output the same code as in the original
work.

We also explored using WeldIR [35] to express summaries. Al-
though WeldIR is an excellent abstraction for data-processing work-
loads, we believe it is not suited for synthesis because it is too
low-level. However, since both our IR and Fold-IR are conceptually
subsets of WeldIR, summaries expressed using them can be trans-
lated to Weld through simple rewrite rules. To demonstrate, we
successfully translated the summary for TPC-H Q6 expressed in
our IR to Weld and used the Weld compiler to produce vectorized,
multi-threaded code.

Research 12: Distributed and Parallel Databases

500

Solution (b)

I
<]
=]

keyl_found = false
key2_found = false
for word in text:
if word == keyl:
key1_found = true;
if word == key2:
key2_found = true;

Runtime (s)
w
8

N
=}
S

100

(a) Sequential code for StringMatch

(b) Performance of solutions over

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

=Solution (c)

Dataset Cost of | Optimal
Soln (¢) | Solution
0% match 0 (c)
50% match 75N (c)
95% match 142.5N (b)

0 0.5
Match Probability (pi+p2)

(c) Dynamic selection of optimal algorithm

datasets with different levels of skew

Solution

Static Cost

output = reduceByKey(map(text, Am), Ay)

a | Am:(word) — {(keyl, word = keyl), (key2, word = key2)}

Am 2% (40 +10) * N
Ar:2%2%50% N

Ar (v, v2) 201 Vo0 Total : 300N
output = reduce(map(text, Am), Ay) Am:1%28% N

b | Am :(word) — {(word = keyl, word = key2)} Ar:2%28%x N
Ar (b1, 12) = (1[0] Vv £2[0], #[1] v 2[1]) Total : 84N

output = reduceByKey(map(text, Am), A,)

Ar (v, o) > U1 V vy

¢ | Am:(word) — {if (word = keyl) : (keyl, true), if (word = key2) : (key2, true)}

Am t(p1+p2) %50« N
Ar i (p1+p2)=2%50% N
Total : 150(p; + p2)

(d) Candidate solutions and their statically computed costs

Figure 8: StringMatch benchmark: CAsPER dynamically selects the optimal implementation for execution at runtime.

8 RELATED WORK

Implementations of MapReduce. MapReduce [21] is a popular pro-
gramming model that has been implemented by various systems [6—
8]. These systems provide their own high-level DSLs that developers
must use to express their computation. In contrast, CASPER works
with native Java programs and infers rewrites automatically.

Source-to-Source Compilers. Many efforts translate programs from
low-level languages into high-level DSLs. MOLD [38], a source-
to-source compiler, relies on syntax-directed rules to convert na-
tive Java programs to Apache Spark. Unlike MOLD, CASPER trans-
lates based on program semantics and eliminates the need for
rewrite rules, which are difficult to devise and brittle to code pat-
tern changes. Many source-to-source compilers have been built
similarly for other domains [34]. Unlike prior approaches in auto-
matic parallelization [3, 10], CASPER targets data parallel processing
frameworks and translates only code fragments that are expressible
in the IR for program summaries.

Synthesizing Efficient Implementations. Prior work used synthe-
sis to generate efficient implementations and optimize programs.
[44] synthesizes MapReduce solutions from user-provided input
and output examples. QBS [15-17] and STNG [28] both use synthe-
sis to convert low-level languages to specialized high-level DSLs
for database applications and stencil computations, respectively.
CASPER takes inspiration from prior approaches by applying ver-
ified lifting to construct compilers. Unlike prior work, however,
CASPER: (1) addresses the problem of verifier failures and designs
a grammar hierarchy to prune away non-performant summaries,
(2) has a dynamic cost model and runtime monitoring module for
adaptively choosing from different implementations at runtime.

1216

Query Optimizers and IRs. Modern frameworks usually ship with
sophisticated query optimizers [2, 9, 18, 29, 30] for generating ef-
ficient execution plans. However, these tools make users express
their queries in the provided APIs. Our objective is orthogonal,
i.e., to find the best way to express program semantics using the
APIs provided by these tools. We essentially enable these tools to
optimize code not written in their APL Furthermore, unlike our IR,
most IRs meant to capture data-processing workloads [22, 35] are
not designed with synthesis in mind. This makes it difficult both to
find and verify programs expressed in them.

9 CONCLUSION

We presented CASPER, a new compiler that identifies and converts
sequential Java code fragments into MapReduce frameworks. Rather
than defining pattern-matching rules to search for convertible code
fragments, CASPER instead automatically discovers high-level sum-
maries of each input code fragment using program synthesis and
retargets the found summary to the framework’s APIL. Our experi-
ments show that CASPER can convert a wide variety of benchmarks
from both prior work and real-world applications and can generate
code for three different MapReduce frameworks. The generated
code performs up to 48.2x faster compared to the original imple-
mentation, and is competitive with translations done manually by
developers.

10 ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation through
grants IIS-1546083, 1IS-1651489, OAC-1739419, and CNS-1563788;
DARPA award FA8750-16-2-0032; DOE award DE-SC0016260; the
Intel-NSF CAPA center, and gifts from Adobe, Amazon, and Google.

Research 12: Distributed and Parallel Databases

REFERENCES

(1]

[2

=

[11]

[12]

[13]

[14

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23

[24]
[25]

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Alexander Alexandrov, Asterios Katsifodimos, Georgi Krastev, and Volker Markl.
2016. Implicit Parallelism Through Deep Language Embedding. SIGMOD Rec. 45,
1 (June 2016), 51-58.

Saman P. Amarasinghe, Jennifer-Ann M. Anderson, Monica S. Lam, and Chau-
Wen Tseng. 1995. An Overview of the SUIF Compiler for Scalable Parallel
Machines. In PPSC. 662-667.

Apache Flink 2018. https://flink.apache.org/. (2018). Accessed on: 2018-04-09.
Apache Hadoop 2018. http://hadoop.apache.org. (2018). Accessed on: 2018-04-09.
Apache Hive 2018. http://hive.apache.org. (2018). Accessed on: 2018-04-09.
Apache Pig 2018. https://pig.apache.org/. (2018). Accessed on: 2018-04-09.
Apache Spark 2018. https://spark.apache.org. (2018). Accessed on: 2018-04-09.
Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD
’15). ACM, New York, NY, USA, 1383-1394.

William Blume, Rudolf Eigenmann, Jay Hoeflinger, David A. Padua, Paul Petersen,
Lawrence Rauchwerger, and Peng Tu. 1994. Automatic Detection of Parallelism:
A grand challenge for high performance computing. IEEE P&DT 2, 3 (1994),
37-47.

Rastislav Bodik and Barbara Jobstmann. 2013. Algorithmic program synthesis:
introduction. International Journal on Software Tools for Technology Transfer 15
(2013), 397-411.

Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.
SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13
(Sept. 2016), 1425-1436.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2005. A Non-Local
Algorithm for Image Denoising. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR "05). IEEE Computer
Society, Washington, DC, USA, 60-65.

Yu-Fang Chen, Lei Song, and Zhilin Wu. 2016. The Commutativity Problem of the
MapReduce Framework: A Transducer-based Approach. CoRR abs/1605.01497
(2016).

Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden, and An-
drew C. Myers. 2014. Using Program Analysis to Improve Database Applications.
IEEE Data Eng. Bull. 37, 1 (2014), 48-59.

Alvin Cheung and Armando Solar-Lezama. 2016. Computer-Assisted Query
Formulation. Foundations and Trends in Programming Languages 3, 1 (2016),
1-94.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
Database-backed Applications with Query Synthesis. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’13). ACM, New York, NY, USA, 3-14.

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Cetintemel,
and Stanley B. Zdonik. 2014. Tupleware: Redefining Modern Analytics. CoRR
abs/1406.6667 (2014).

Przemyslaw Daca, Thomas A. Henzinger, and Andrey Kupriyanov. 2016. Array
Folds Logic. CoRR abs/1603.06850 (2016).

Jerome Darbon, Alexandre Cunha, Tony F. Chan, Stanley Osher, and Grant J.
Jensen. 2008. Fast nonlocal filtering applied to electron cryomicroscopy.. In ISBL
IEEE, 1331-1334.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107-113.

K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and S. Su-
darshan. 2016. Extracting Equivalent SQL from Imperative Code in Database
Applications. In Proceedings of the 2016 International Conference on Management
of Data (SIGMOD °16). ACM, New York, NY, USA, 1781-1796.

Grigory Fedyukovich, Maaz Bin Safeer Ahmad, and Rastislav Bodik. 2017. Gradual
Synthesis for Static Parallelization of Single-pass Array-processing Programs.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 572-585.
Fiji: Image] 2018. https://github.com/fiji. (2018). Accessed on: 2018-04-09.
Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the 12th
International ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP °10). ACM, New York, NY, USA, 13-24.

C. A.R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (Oct. 1969), 576-580.

Image] 2018. https://imagej.net/Welcome. (2018). Accessed on: 2018-04-09.
Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016.
Verified Lifting of Stencil Computations. SIGPLAN Not. 51, 6 (June 2016), 711-726.

1217

[29

[30

[31

(32

[33

[34

[35

[36

[37

[38

[39

[40

]

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, and Henrik Miihe.
2012. HyPer: Adapting Columnar Main-Memory Data Management for Transac-
tional AND Query Processing. IEEE Data Eng. Bull. 35, 1 (2012), 46-51.

Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building
Efficient Query Engines in a High-level Language. Proc. VLDB Endow. 7, 10 (June
2014), 853-864.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’10). Springer-Verlag,
Berlin, Heidelberg, 348-370.
MagPie Analysis Repository 2018.
(2018). Accessed on: 2018-04-09.
John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. 2006. Verifi-
cation Condition Generation via Theorem Proving. In Proceedings of the 13th
International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’06). Springer-Verlag, Berlin, Heidelberg, 362-376.

Cedric Nugteren and Henk Corporaal. 2012. Introducing 'Bones’: A Parallelizing
Source-to-source Compiler Based on Algorithmic Skeletons. In Proceedings of
the 5th Annual Workshop on General Purpose Processing with Graphics Processing
Units (GPGPU-5). ACM, New York, NY, USA, 1-10.

Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, and Matei Zaharia. 2017. Weld:
A Common Runtime for High Performance Data Analytics. (January 2017).
Spiros Papadimitriou and Jimeng Sun. 2008. DisCo: Distributed Co-clustering
with Map-Reduce: A Case Study Towards Petabyte-Scale End-to-End Mining.
In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
(ICDM °08). IEEE Computer Society, Washington, DC, USA, 512-521.

Polyglot 2018. http://www.cs.cornell.edu/Projects/polyglot/. (2018). Accessed
on: 2018-04-09.

Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan. 2014. Trans-
lating Imperative Code to MapReduce. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages & Applica-
tions (OOPSLA ’14). ACM, New York, NY, USA, 909-927.

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-
tos Kozyrakis. 2007. Evaluating MapReduce for Multi-core and Multiprocessor
Systems. In Proceedings of the 2007 IEEE 13th International Symposium on High Per-
formance Computer Architecture (HPCA °07). IEEE Computer Society, Washington,
DC, USA, 13-24.

Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. 2015. Parallelizing
User-defined Aggregations Using Symbolic Execution. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP °15). ACM, New York, NY, USA,
153-167.

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management
of Data (SIGMOD °79). ACM, New York, NY, USA, 23-34.

Sketch 2018. https://people.csail.mit.edu/asolar/. (2018). Accessed on: 2018-04-09.
Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found.
Trends Program. Lang. 2, 1 (April 2015), 1-69.

Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis.
SIGPLAN Not. 51, 6 (June 2016), 326-340.

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation.
Berkeley, CA, USA. Advisor(s) Bodik, Rastislav.

Spark GitHub Repository 2018. https://github.com/apache/spark/tree/master/
examples/src/main/scala/org/apache/spark/examples. (2018). Accessed on: 2018-
01-20.

Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, Cambridge, MA, USA.

https://github.com/thisMagpie/Analysis.

Research 12: Distributed and Parallel Databases

A PROOF SKETCH FOR SOUNDNESS AND
COMPLETENESS

Here, we first formalize the definitions of soundness and complete-
ness, and then we present a proof sketch to show that CASPER’s
synthesis algorithm for program summaries has these properties.
We use terms and acronyms defined in the paper without explaining
them again here.

Definition 1. (Soundness of Search) An algorithm for generating
program summaries is sound if and only if, for all program sum-
mary ps and loop invariants invy, . . ., inv, generated by the algo-
rithm, the verification conditions hold over all possible program
states after we execute the input code fragment P. In other words,
Vo.VC(P,ps,invy,...,invy,, o).

Definition 2. (Completeness of Search) An algorithm for generating
program summaries is complete if and only if when there exists
ps,invy, ..., inv, € G, then Vo. VC(P,ps,invy, ..., inv,, 0)) —
(A # 0). Here, G is the search space traversed, P is the input code
fragment, VC is the set of verification conditions, and A is the set
of sound summaries found by the algorithm. In other words, the
algorithm will never fail to find a correct program summary as long
as one exists in the search space.

Proof of Soundness. The soundness guarantee for CASPER’s
synthesis algorithm is derived from the soundness guarantees
offered by Hoare-style verification conditions. The proof is con-
structed using a loop-invariant, namely, a statement that is true
immediately before and after each loop execution. Hoare logic dic-
tates that in order to prove correctness of a given postcondition (i.e.,
program summary) for a given loop, we must prove the following
holds over all possible program states:

(1) The invariant is true before the loop.

(2) Each iteration of the loop maintains the invariant.

(3) Once the loop has terminated, the invariant implies the post-
condition.

This is essentially an inductive proof. The first two constraints
prevent CAsPER from finding a loop invariant strong enough to im-
ply an incorrect program summary. Our correctness guarantee is, of
course, subject to the correct implementation of our VC generation
module and of the theorem prover we use (Dafny). Establishing that
the summary is a correct postcondition is sufficient to establish that
it is a correct translation. This is so because summaries in our IR
must describe the final value of all output variables (i.e., variables
that were modified) as a function over the inputs (see Figure 3).

Proof of Completeness. To understand that CAsPER’s algorithm
is complete with respect to the search space, we first show that
that the algorithm always terminates. Recall that we use recursive
bounds to finitize the number of solutions expressible by our IR’s
grammar. As explained in §4.1, we prevent the same solution from
being regenerated, thus ensuring forward progress in search. These
two facts imply that our algorithm always terminates. There are
only two possible exit points for the while(true) loop in our algo-
rithm: line 24 and line 21 of Figure 5. The first is only reached once
the entire search space has been exhausted. The second implies that
a solution is successfully returned as A is not empty. It is important

1218

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

to note that our search algorithm is complete only for verifiably
correct summaries. If a correct summary exists in the search space
but cannot be proven correct using the available automated theo-
rem prover, it will not be returned. Therefore, the completeness of
the algorithm is modulo the completeness of the theorem prover.

B INTERMEDIATE REPRESENTATION
SPECIFICATION
Here, we list the full set of types available in our IR and provide

examples to demonstrate how they may be used to express models
for library methods and types.

Primitive Data Types
Scalars bool, int, float, string, char, ...
Structures class(id:Type, id2:Type2, ..)
List list(Type)
Array array(dimensions, Type)
Functions name(argl:Typel, ...) : Type -> Body
Conditionals if cond then e; else e
Synthesis Construct | choose(e;, ez, , en)

Built-in operations
Arithmetic | +, —, %, /, %, ...
Bitwise <<, >> &, ..
Relational <, >, <>,
Logical &&, ||, ==,!=
List len, append, get, equals, concat, slice
Array select, store

To provide support for a datatype found in a Library, users must
define the type of the object using our IR and annotate it with the
fully qualified name, as follows:

@java.awt.Point
class Point(x:int, y:int)

Similarly, users may also provide support for library methods,
for instance the following defines a model for the absolute value
function:

@java.lang.Math.abs
abs(val: int) : int ->
if val < @ then val * -1 else val

Using the core IR described above, we implemented in CASPER the
map, reduce and join primitives used to synthesize summaries. We
have also implemented commonly used methods from Java standard
libraries such as java.util.Math,String,Date and other essen-
tial data-types, along with methods that were needed to translate
the Fiji plugins.

The choose operator in the IR is a special construct that enables
us to express a search space using the IR. The parameters to choose
are one or more expressions of matching types. The synthesizer is
then free to select any expression from the list of choices in order
to satisfy the correctness specification.

Research 12: Distributed and Parallel Databases

C CODE GENERATION RULES

To generate target DSL code from the synthesized program sum-
mary, we implemented in CASPER a set of translation rules that map
the operators in our IR to the concrete syntax of the target DSL.
Here, we list a subset of such code-generation rules for the Spark
RDD APL

TR[map(l, Ap, : T — list(Pair))] = 1.flatMapToPair([A,]);
TR[map(l, Ay, : T - list(U))] = 1.flatMap([Am]);
TR[map(l, Ap, : T — Pair)] = 1l.mapToPair([A,]);
TR[map(l, A;, : T - U)] = 1l.map([An]D;
TR(reduce(l : list(Pair), A,)] = 1l.reduceByKey([[A,]);
TR[reduce(l : list(U), A-)] = 1l.reduce([A,]);
TR[Am(e) = ep] = (e -> [ep])
TR[e1 +e] = [erll +[ez2]l

The translation function TR takes as input an expression in
our IR language and maps it to an equivalent expression in Spark.
Since Spark provides multiple variations for the operators defined
in our IR, such as map, we can select the appropriate variation
by looking at the type information of the A,, function used by
map. For example, if A, returns a list of Pairs, we translate to
JavaRDD. flatMapToPair. If it instead returns a list of a non-Pair
type, we use the more general rule that translates map to
JavaRDD. flatMap. Translation for the other expressions proceeds
similarly.

D PROGRAM ANALYZER OUTPUTS

Here, we use TPC-H Query 6 to illustrate the outputs computed by
CASPER’s program analyzer. Since the queries are originally in SQL,
we have manually translated them to Java as follows:

1 double query6(List<LineItem> lineitem){}

2 List<LineItem> lineitem = new ArrayList<LineItem>();
3 Date dt1 = Util.df.parse("1993-01-01");

4 Date dt2 = Util.df.parse("1994-01-01");

0;

lineitem) {

double revenue

6 for (LinelItem 1 :
if (

8 1.1_shipdate.

1.1_shipdate.

1.1 _discount

after(dt1) &&
before(dt2) &&
>= 0.05 &&

<= 0.07 &&

< 24

11 1.1_discount
1.1 _quantity

revenue += (1l.l_extendedprice x 1.1 _discount);

15 3

16 return revenue;

7}

First, CASPER’s program analyzer normalizes the loop starting on
Line 6 into an equivalent while(true){. .} loop, and then tra-
verses the loop to identify the set of input/output variables and
operators used:

1219

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Program Analaysis Results

Inputs Vars 1: list(LineItem), dt1: Date, dt2: Date
Output Vars | revenue: double

Constants [(24, int), (0.05, double), (0.07, double)]
Operators +, - % 2, <, <

Methods Date.before, Date.after

With this information, CASPER generates verification conditions
like those shown in Figure 4(b) for the row-wise mean benchmark.
Next, the program analyzer defines a search space within which
CASPER searches for summaries and the needed loop-invariant.
Since the full search space description is too large to show, we only
show a small snippet below:

generator doubleExpr(val:LinelItem, depth:int) : double ->
if depth = @ then
choose(
val.l_quantity,
val.l_extendedprice,
val.l_discount,
0.05,
0.07,
24
)
else
choose(
doubleExpr(val, @),
doubleExpr(val, depth-1) + doubleExpr(val, depth-1),
doubleExpr(val, depth-1) * doubleExpr(val, depth-1),
doubleExpr(val, depth-1) / doubleExpr(val, depth-1)
)

The doubleExpr is the part of the grammar used to construct
expressions that evaluate to double. The generator keyword indi-
cates that this is a special type of function, one that can select a
different value from the choose operators on each invocation. The
depth parameter controls how large the generated expression is
allowed to grow. The choose construct is used to present a set of
possible productions to the synthesizer. This grammar is tailored
specifically to our implementation of TPC-H Query 6.

E SUPPLEMENTARY EXPERIMENTS
E.1 Benchmark Details

The benchmarks CAsPER extracted form a diverse and challeng-
ing problem set. As shown in the table below, they vary across
programming style as well as the structure of their solutions.

Benchmark Properties | # Extracted | # Translated
Conditionals 26 19
User Defined Types 14 10
Nested Loops 40 22
Multiple Datasets 22 18
Multidim. Dataset 38 23

Research 12: Distributed and Parallel Databases

E.2 Developer Selection Criteria

To get reference Spark implementations for non-SQL benchmarks,
we hired developers through the online freelancing platform Up-
Work.com. While hiring, we ensured all candidates met the follow-
ing basic criteria:
(1) At least an undergraduate or equivalent degree in computer
science.
(2) Minimum 500 hours of work logged at the platform.
(3) Minimum 4 star rating for previous projects (scale of 5).
(4) A portfolio of at least one or more successfully completed
contracts using Spark.
Finally, applicants were required to answer three test questions
regarding Spark API internals to bid on our contract.

E.3 Evaluating Cost Model Heuristics

We present here some experiments that measure whether CASPER’s
cost model model can effectively identify efficient solutions during
the search process.

Program | Emitted (MB) | Shuffled (MB) | Runtime (s)
WC1 105k 30 254
WC 2 105k 58k 2627
SM 1 16 0.7 189
SM 2 90k 0.7 362

Table 4: The correlation of data shuffle and execution. (WC
= WordCount, SM = StringMatch).

As discussed in §5.1, CASPER uses a data-centric cost model. The
cost model is based on the hypothesis that the amount of data gen-
erated and shuffled during the execution of a MapReduce program
determines how fast the program executes. For our first experiment,
we measured the correlation between the amount of data shuffled
and the runtime of a benchmark to check the validity of the hy-
pothesis. To do so, we compared the performance of two different
Spark WordCount implementations: one that aggregates data lo-
cally before shuffling (WC 1) using combiners [21], and one that
does not (WC 2). Although both implementations processed the
same amount of input data, the former implementation significantly
outperformed the latter, as the latter incurred the expensive over-
head of moving data across the network to the nodes responsible for
processing it. Table 4 shows the amount of data shuffled along with
the corresponding runtimes for both implementations using the
75GB dataset. As shown, the implementation that used combiners
to reduce data shuffling was almost an order of magnitude faster.

Next, we verified the second part of our hypotheses by mea-
suring the correlation of the amount of data generated and the
runtime of a benchmark. To do so, we compared two solutions for
the StringMatch benchmark (sequential code shown in Figure 8(a)).
The benchmark determines whether certain keywords exist in a
large body of text. Both solutions use combiners to locally aggre-
gate data before shuffling. However, one solution emits a key-value
pair only when a matching word is found (SM 1), whereas the other
always emits either (key, true) or (key, false) (SM 2). Since
the data is locally aggregated, each node in the cluster only gen-
erates 2 records for shuffling (one for each keyword) regardless of
how many records were emitted during the map phase. As shown

1220

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Wikipedia PageCount Database Select

Casper =Manual

T 1

10

45x 45x

Casper =Manual

/

10

35x 35x

25x 25x

15x 15x

5x

30 50 70 100 30 50 70 100

3D Histogram Fiji: Red To Magenta

Cora =—Manual

-

10

20x 20x

Casper —Manual

16x 16x

12x 12x
8x 8x

4x
100

4x

10 30 50 70 30 50 70 100

Figure 9: The top 2 benchmarks with the most performance
along with the bottom 2. The x-axis plots the size of input
data, while the y-axis plots the runtime speedup over se-
quential implementations.

in Table 4, the implementation that minimized the amount of data
emitted in the map-phase executed almost twice as fast.

In sum, the two experiments confirm that the heuristics used
in our cost model are accurate indicators of runtime performance
for MapReduce applications. We also demonstrated the need for a
data-centric cost model; solutions that minimize data costs execute
significantly faster than those that do not.

E.4 Evaluating Scalability of Generated
Implementations

To observe how implementations generated by CASPER scale, we ex-
ecuted our benchmarks on different amounts of data and measured
the resulting speedups. As shown in Figure 9, the CASPER-generated
Spark implementations exhibited good data parallelism and showed
a steady increase in speedups across all translated benchmarks as
the input data size increased, until the cluster reached maximum
utilization.

	Abstract
	1 Introduction
	2 Overview
	2.1 MapReduce Operators
	2.2 Translating Imperative Code to MapReduce
	2.3 System Architecture

	3 Synthesizing Program Summaries
	3.1 A High-level IR for Program Summaries
	3.2 Defining the Search Space
	3.3 Verifying Program Summaries
	3.4 Search Strategy

	4 Improving Summary Search
	4.1 Leveraging Verifier Failures
	4.2 Incremental Grammar Generation
	4.3 Casper's Search Algorithm for Summaries
	4.4 Row-wise Mean Revisited

	5 Finding Efficient Translations
	5.1 Cost Model
	5.2 Dynamic Cost Estimation

	6 Implementation
	6.1 Supported Language Features
	6.2 Code Fragment Identification
	6.3 Code Generation

	7 Evaluation
	7.1 Feasibility Analysis
	7.2 Performance of the Translated Benchmarks
	7.3 Compilation Performance
	7.4 Dynamic Tuning
	7.5 System Extensibility

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Proof Sketch For Soundness and Completeness
	B Intermediate Representation Specification
	C Code Generation Rules
	D Program Analyzer Outputs
	E Supplementary Experiments
	E.1 Benchmark Details
	E.2 Developer Selection Criteria
	E.3 Evaluating Cost Model Heuristics
	E.4 Evaluating Scalability of Generated Implementations

