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ABSTRACT

Scientific discoveries are increasingly driven by analyzing
large volumes of image data. Many new libraries and
specialized database management systems (DBMSs) have
emerged to support such tasks. It is unclear how well these
systems support real-world image analysis use cases, and
how performant the image analytics tasks implemented on
top of such systems are. In this paper, we present the first
comprehensive evaluation of large-scale image analysis sys-
tems using two real-world scientific image data processing
use cases. We evaluate five representative systems (SciDB,
Myria, Spark, Dask, and TensorFlow) and find that each of
them has shortcomings that complicate implementation or
hurt performance. Such shortcomings lead to new research
opportunities in making large-scale image analysis both ef-
ficient and easy to use.

1. INTRODUCTION
With advances in data collection and storage technolo-

gies, data analysis has become widely accepted as the fourth
paradigm of science [16]. In many scientific fields, an increas-
ing portion of this data are images [21, 22]. Thus, it is cru-
cial for big data systems1 to provide a scalable and efficient
means of storing and analyzing such data, via programming
models that can be easily utilized by domain scientists (e.g.,
astronomers, physicists, biologists, etc).

As an example, the Large Synoptic Survey Telescope
(LSST) is a large-scale international initiative to build a
new telescope for surveying the visible sky [25] with plans
to collect 60PB of images over 10 years. In previous as-
tronomy surveys (e.g., the Sloan Digital Sky Survey [38]),
an expert team of engineers processed the collected images
on dedicated servers. The results were distilled into textual
catalogs for other astronomers to analyze. In contrast, one

1In this paper, we use the term “big data system” to describe
any DBMS or cluster computing library that provides parallel
processing capabilities on large amounts of data.
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of the goals of LSST is to broaden access to the collected
images for astronomers around the globe, enabling them to
run analyses on the images directly. Similarly, in neuro-
science several large collections of imaging data are being
compiled. For example, the UK biobank will release Mag-
netic Resonance Imaging (MRI) data from close to 500k hu-
man brains (more than 200TB of data) for neuroscientists to
analyze [28]. Multiple other initiatives are similarly making
large collections of image data available to researchers [3,
23, 42].

Such use cases emphasize the need for effective systems to
support the management and analysis of image data: sys-
tems that are efficient, scale, and are easy to program with-
out requiring deep systems expertise to deploy and tune.
Surprisingly, there has been limited work from the data
management research community in building systems to
support large-scale image management and analytics. Ras-
daman [34] and SciDB [36] are two well-known DBMSs that
specialize in the storage and processing of multidimensional
array data and are a natural choice for implementing image
analytics. Besides these systems, most other work developed
for storing image data targets predominantly image storage
and retrieval based on keyword or similarity searches [14,
11, 12].

Hence, the key questions we ask in this paper are: How
well do existing big data systems support the management
and analysis requirements of real scientific image processing
workloads? Is it easy to implement large-scale image ana-
lytics using these systems? How efficient are the resulting
applications that are built on top of such systems? Do they
require deep technical expertise to optimize?

We present the first comprehensive study of the issues
mentioned above. Specifically, we picked five big data sys-
tems for parallel data processing: a domain-specific DBMS
for multidimensional array data (SciDB [36]), a general-
purpose cluster computing library with persistence capa-
bilities (Spark [40]), a traditional parallel general-purpose
DBMS (Myria [18, 46]), along with a general-purpose
(Dask [35]) and domain-specific (TensorFlow [2]) parallel-
programming library.

We selected these systems as they (1) have open-source
implementations; (2) can be deployed on commodity hard-
ware; (3) support complex analytics such as linear algebra
and user defined functions; (4) provide Python APIs, which
is important as the language has become immensely popular
in sciences [30]; and (5) with different internal architectures
such that we can evaluate the performance of different im-
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plementation paradigms. We discuss in more detail reasons
for choosing these systems in Section 2.

To evaluate these systems, we implement two represen-
tative end-to-end image analytics pipelines from astronomy
and neuroscience. Each pipeline has a reference implemen-
tation in Python provided by domain scientists. We then at-
tempt to re-implement them using the five big data systems
described above and deploy the resulting implementation on
commodity hardware in the Amazon Web Services cloud [5],
to simulate the typical hardware and software setup in scien-
tists’ labs. We evaluate the resulting implementations with
the following goals in mind:

• Investigate if the given system can be used to imple-
ment the pipelines and, if so, how easy is it to do so
(Section 4).

• Measure the execution time of the resulting pipelines
in a cluster deployment (Section 5.1 and Section 5.2).

• Evaluate the system’s ability to scale, both with the
number of machines available in the cluster, and the
size of the input data to process (Section 5.1).

• Assess tuning required by each system to correctly and
efficiently execute each pipeline (Section 5.3).

Our study shows that, despite the difference in domains,
both real-world use cases have important similarities: in-
put data is in the form of multidimensional arrays encoded
in domain-specific file formats (FITS [15], NIfTI [29], etc.);
data processing involves slicing along different dimensions,
aggregations, stencil (a.k.a.multidimensional window) oper-
ations, spatial joins and complex transformations expressed
in Python.

Overall, we find that all systems have important limita-
tions. While performance and scalability results are promis-
ing, there is much room for improvement in usability and
efficiently supporting image analytics at scale.

2. EVALUATED SYSTEMS
In this section we briefly describe the five evaluated sys-

tems and their design choices pertinent to image analytics.
The source code for all of these systems is publicly available.
Dask [1] (v0.13.0) is a general-purpose parallel comput-
ing library implemented entirely in Python. We select Dask
because the use cases we consider are written in Python.
Dask represents parallel computation with task graphs.
Dask supports parallel collections such as Dask.array and
Dask.dataframe. Operations on these collections create a
task graph implicitly. Custom (or existing) code can be
parallelized via Dask.delayed statements, which delay func-
tion evaluations and insert them into a task graph. Indi-
vidual task(s) can be submitted to the Dask scheduler di-
rectly. Submitted tasks return Futures. Further tasks can
be submitted on Futures, sending computation to the worker
where the Future is located. The Dask library includes a
scheduler that dispatches tasks to worker processes across
the cluster. Processes execute these tasks asyncronously.
Dask’s scheduler determines where to execute the delayed
computation, and serializes the required functions and data
to the chosen machine before starting its execution. Dask
uses a cost-model for scheduling and work stealing among
workers. The cost-model considers worker load and user

specified restrictions (e.g., if a task requires a worker with
GPU) and data dependencies of the task. Computed results
remain on the worker where the computation took place and
are brought back to the local process by calling result().
Myria [18, 46] is a relational, shared-nothing DBMS de-
veloped at the University of Washington. Myria uses Post-
greSQL [33] as its node-local storage subsystem and includes
its own query execution layer on top of it. Users write
queries in MyriaL, an imperative-declarative hybrid lan-
guage, with SQL-like declarative constructs and imperative
statements such as loops. Myria query plans are represented
as graphs of operators and may include cycles. During ex-
ecution, operators pipeline data without materializing it to
disk. Myria supports Python user-defined functions and a
BLOB data type. The BLOB data type allows users to write
queries that directly manipulate objects like NumPy arrays.
We select Myria as a representative shared nothing parallel
DBMS and also a system that we built. Our goal is to under-
stand how it compares to other systems on image analysis
workloads and what it requires to effectively support such
tasks.
Spark [47] (v1.6.2) supports a dataflow programming
paradigm. It is up to 100× faster than Hadoop for in-
memory workloads and up to 10× faster for workloads that
persist to disk [40]. We select Spark for its widespread
adoption, its support for a large variety of use cases, the
availability of a Python interface, and to evaluate the suit-
ability of the MapReduce programming paradigm for large-
scale image analytics. Spark’s primary abstraction is a dis-
tributed, fault-tolerant collection of elements called Resilient
Distributed Datasets (RDDs) [47], which are processed in
parallel. RDDs can be created from files in HDFS or by
transforming existing RDDs. RDDs are partitioned and
Spark executes separate tasks for different RDD partitions.
RDDs support two types of operations: transformations and
actions. Transformations create a new dataset from an ex-
isiting one, e.g., map is a transformation that passes each
element through a function and returns a new RDD repre-
senting the results. Actions return a value after running a
computation: e.g., reduce is an action that aggregates all the
elements of the RDD using a function and returns the final
result. All transformations are lazy and are executed only
when an action is called. Besides map and reduce, Spark’s
API supports relational algebra operations as well, such as
distinct, union, join, grouping, etc.
SciDB [10] (v15.12) is a shared-nothing DBMS for storing
and processing multidimensional arrays. SciDB is designed
specifically to support image analytics tasks such as those
we evaluate in this paper, and is an obvious system to in-
clude in the evaluation. In SciDB, data is stored as arrays
divided into chunks distributed across nodes in a cluster.
Users then query the stored data using the Array Query Lan-
guage (AQL) or Array Functional Language (AFL) through
the provided Python interface. SciDB supports user-defined
functions in C++ and, recently, Python (with the latter ex-
ecuted in a separate Python process). In SciDB, query plans
are represented as an operator tree, where operators, includ-
ing user-defined ones, process data iteratively one chunk at
a time.
TensorFlow [2] (v0.11) is a library from Google for nu-
merical computation using dataflow graphs. Although Ten-
sorFlow is typically used for machine learning, it supports a
wide range of functionality to express operations over N-
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1 conn = MyriaConnection(url="...")

2 MyriaPythonFunction(Denoise, outType).register()

3 query = MyriaQuery.submit("""

4 T1 = SCAN(Images);

5 T2 = SCAN(Mask);

6 Joined = [SELECT T1.subjId, T1.imgId, T1.img, T2.mask

7 FROM T1, T2

8 WHERE T1.subjId = T2.subjId];

9 Denoised = [FROM Joined EMIT

10 Denoise(T1.img, T1.mask) as

11 img, T1.subjId, T1.imgId]; """ )

Figure 4: Myria code for Step 2 N.

The no-worker state implies that tasks are ready to be com-
puted, but no appropriate worker exists. As the running
processes wait for the results from the requeued tasks this
causes a deadlock. We also experienced several stability
issues, some of which prevented us from running the astron-
omy use case initially, but were fixed in a later Dask version.
We still had to stop and rerun the pipelines occasionally as
they would freeze for unknown reasons.

4.2 Myria
Implementation: We use MyriaL to implement both
pipelines, with calls to Python UDF/UDAs for all core im-
age processing operations. In the neuroscience use case, we
ingest the input data into the Images relation, with each tu-
ple consisting of subject ID, image ID, and image volume
(a serialized NumPy array stored as a BLOB) attributes.
We execute a query to compute the mask, which we broad-
cast across the cluster. The broadcast table is 0.3% the size
of the Images relation. A second query then computes the
rest starting from a broadcast join between the data and the
mask. Figure 4 shows the code for denoising image volumes.
Line 1 to Line 2 connect to Myria and register the denoise
UDF. Line 3 then executes the query to join the Images

relation with the Mask relation and denoise each image vol-
ume. We implement the astronomy use case similarly using
MyriaL.
Qualitative Assessment: Our MyriaL implementation
leverages the reference Python code, facilitating the imple-
mentation of both use cases. We implement the neuroscience
use case in 75 LoC and the astronomy one in 250. MyriaL’s
combination of declarative query constructs and imperative
statements makes it easy to specify the analysis pipelines.
However, for someone not familiar with SQL-like syntax this
might be a challenge. Overall, implementing the use cases
in Myria was easy but making the implementation efficient
was non-trivial, as we discuss in Section 5.3.

4.3 Spark
Implementation: We use Spark’s Python API to imple-
ment both use cases. Our implementation transforms the
data into Spark’s pair-RDDs, which are parallel collections
of key-value pair records. The key for each RDD is the
identifier for an image fragment, and the value is a NumPy
array with the image data. Our implementation then uses
the predefined Spark operations (map, flatmap, and groupby)
to split and regroup image data following the plan from Fig-
ure 1. To avoid joins, we make the mask, which is a single
image per subject (18MB per subject, 0.3% of the image
RDD) a broadcast variable available on all workers. We
use the Python functions from the reference implementa-
tion to perform the actual computations on the values, pass-
ing them as anonymous functions to Spark’s API. Figure 5

1 modelsRDD = imgRDD

2 .map(lambda x:denoise(x,mask))

3 .flatMap(lambda x: repart(x, mask))

4 .groupBy(lambda x: (x[0][0],x[0][1]))

5 .map(regroup)

6 .map(fitmodel)

Figure 5: Spark code showing Step 2 N and Step 3 N.

1 from scidbpy import connect

2 sdb = connect(’...’)

3 data_sdb = sdb.from_array(data)

4 data_filtered = # Filter

5 data_sdb.compress(sdb.from_array(gtab.b0s_mask), axis=3)

6 mean_b0_sdb = data_filtered.mean(index=3) # Mean

Figure 6: SciDB implementation of Step 1 N.

shows an abridged version of the code for the neuroscience
use case. Line 2 denoises each image volume. Line 3 calls
repart to partition each image volume into voxel groups,
which are then grouped (line 4) and aggregated (line 5).
Line 6 then fits a DTM for each voxel group. We implement
the astronomy use case similarly.
Qualitative Assessment: Spark can execute user-
provided Python code as UDFs and its support for arbitrary
python objects as keys made the implementation straight-
forward, with 114 and 238 LoC for the neuroscience and
astronomy use cases respectively. The functional program-
ming style used by Spark is succinct, but can pose a chal-
lenge if the developer is unfamiliar with functional program-
ming. Spark’s large community of developers and users,
and its extensive documentation are a considerable advan-
tage. Spark supports caching data in memory but does not
store intermediate results by default. Unless data is specifi-
cally cached, a branch in the computation graph may result
in re-computation of intermediate data. In our use cases,
opportunities for data reuse are limited. Nevertheless, we
found that caching the input data for the neuroscience use
case yielded a consistent 7-8% runtime improvement across
input data sizes. Caching did not improve the runtime of
the astronomy use case. As with Myria, the initial imple-
mentation was easy in Spark, but performance tuning was
not always straightforward as we describe in Section 5.3.

4.4 SciDB
Implementation: SciDB is designed for array analytics
to be implemented in AQL/AFL, or optionally using
SciDB’s Python API. This is illustrated in Figure 6. When
we began this project, SciDB lacked several functions
necessary for the use cases. For example, high-dimensional
convolutions are not implemented in AFQ/AFL, rendering
the reimplementation of some steps impossible. SciDB
recently added a Stream() interface, similar to Hadoop
Streaming. This interface enables the execution of Python
(or other language) UDFs, where each UDF call processes
one array chunk. Using this feature, we implemented both
use cases in their entirety. The SciDB implementation of
the neuroscience and astronomy use cases required 155 LoC
and 715 LoC of Python respectively. In addition, 200 LoC
of AFL were written to rearrange chunks, and another 150
LoC in bash to set up the environment required by the
application.
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Qualitative Assessment: The recent stream() interface
makes it possible to execute legacy Python code, but it re-
quires that data be passed to the Python UDF and returned
from that UDF as a string in TSV format (data ingest re-
quires a CSV format). This means that we need to convert
between TSV and scientific image formats. While this is rel-
atively straightforward for the neuroscience use case, FITS
files used in astronomy have multiple arrays per image and
are more challenging to transform between SciDB arrays
and TSVs for UDFs. This transformation and subsequent
parsing also causes performance issues as we discuss in Sec-
tion 5.3. Setting up SciDB is also difficult as there is no sup-
port for standard cloud deployment tools. The integration
with the LSST software stack for the astronomy use case is
particularly challenging. Specifically, LSST’s software stack
requires dozens of dependent packages to be installed, along
with setting up more than 100 environment variables within
child processes that execute the UDFs. Another limitation
of the stream() interface lies in its input and output ports:
All the input can be read only through the standard in-
put (i.e., stdin) and all the output can only be written to
standard output (i.e., stdout). Therefore, the application
crashes if it calls UDFs that have their own stdout messages.
Overall, SciDB presents significant barriers in implementa-
tion and setup for a domain scientist.

4.5 TensorFlow
Implementation: TensorFlow’s API operates on its own
data structures (representations of multi-dimensional ar-
rays, or tensors) and does not allow any of the standard
external libraries to be used, such as NumPy. Hence, we
had to completely rewrite the use cases. Given their com-
plexity, we only implemented the neuroscience use case. Ad-
ditionally, we implemented a somewhat simplified version
of the final mask generation operation in Step 1 N. We

rewrote Step 2 N using convolutions, but without filtering
with the mask as TensorFlow does not support element-wise
data assignment. TensorFlow’s support for distributed com-
putation is currently limited. The developer must manually
map computation and data to each worker as TensorFlow
does not provide automatic static or dynamic work assign-
ment. As the serialized compute graph cannot be larger
than 2GB, we implemented the use case in steps, building a
new compute graph for each step of the use case (as shown
in Figure 1). We distribute the data for each step to the
workers and execute it. We add a global barrier to wait for
all workers to return their results before proceeding. The
master node converts between NumPy arrays and tensors
as needed. Figure 7 shows the code for mean computation
in Step 1 N. The first loop assigns the input data with
shape sh (Line 8) and the associated code (Line 9) to each
worker. Then, we process the data in batches of size equal
to the number of available workers on Line 19.
Qualitative Assessment: TensorFlow requires a complete
rewrite of the use cases, which we find to be both difficult
and time-consuming. TensorFlow also requires that users
manually specify data distribution across machines and it
automates only a small part of the cluster initialization pro-
cedure with Bazel [7]. The 2GB limit on graph size further
complicates the implementation of use cases as we described
above. In its current form, unless there is a specific rea-
son, e.g., a specific algorithm only available in the Tensor-
Flow library, or need to utilize GPUs or Android devices,

1 # steps contains the predefined mapping

2 # from data to workernodes

3 pl_inputs = []

4 work = []

5 # The first for loop defines the graph

6 for i_worker in range(len(steps[0])):

7 with tf.device(steps[0][i_worker]):

8 pl_inputs.append(tf.placeholder(shape=sh))

9 work.append(tf.reduce_mean(pl_inputs[-1]))

10 mean_data = []

11 # Iterate over the predefined steps

12 for i in range(len(steps)):

13 this_zs = zs[i*len(steps[0]):

14 i*len(steps[0]) + len(steps[i])]

15 # Define the input to be fed into the graph

16 zip_d = zip(pl_inputs[:len(steps[i])],

17 [part_arrs[z] for z in this_zs])

18 # Executes the actual computation - incl. barrier

19 mean_data += run(work[:len(steps[i])], zip_d)

Figure 7: TensorFlow code fragment showing compute graph
construction and execution.

the amount of effort required to re-write the computation
in Tensorflow is high enough to render it not worthwhile.
However, TensorFlow is under active development so this
might change in future versions.

5. QUANTITATIVE EVALUATION
We evaluate the performance of the implemented use cases

and the system tunings necessary for successful and efficient
execution. All experiments are performed on the AWS cloud
using the r3.2xlarge instance type, with 8 vCPU,2 61GB of
memory, and 160GB SSD storage.

5.1 End-to-End Performance
We first evaluate the performance of running the two use

cases end-to-end. For each use case, we start the execution
with data stored in Amazon S3. We execute all the steps
and leave the final output in worker memories. We ask two
questions: How does the performance compare across the
systems? How well do the systems scale as we increase the
size of the input data or the cluster? To answer these ques-
tions, we first fix the cluster size at 16 nodes and vary the
input data size. For the neuroscience use case we vary the
number of subjects from 1 to 25. For the astronomy use
case, we vary the number of visits from 2 to 24. The largest
input data sizes are then 105GB and 115GB, respectively
as shown in Figure 8a and Figure 8b. The tables also show
the sizes of the largest intermediate relations for the two
use cases, which are 210GB and 288GB, respectively. In the
second experiment, we use the largest input data size for
each use case and vary the cluster size from 16 to 64 nodes
to measure speedup.

Figure 8c and Figure 8f show the results as we vary the
input data size. We implement the neuroscience use case
in all five systems and the astronomy use case in all but
TensorFlow.

For the neuroscience use case (Figure 8c), while Dask,
Myria and Spark achieve comparable performance, SciDB
and TensorFlow are much slower. It is not surprising that
Dask, Spark, and Myria have similar runtimes as all three
execute the same Python code from the reference imple-
mentation but wrapped in UDFs (or directly in the case of
Dask). Interestingly, the fact that Spark and Myria incur

2with Intel Xeon E5-2670 v2 (Ivy Bridge) processors.
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single instance performance. To ensure that this is not the
case, we tune single instance performance for Myria by in-
creasing the number of workers until each node has high
resource utilization (average CPU utilization > 90%). Dask
has better performance when data completely fits in mem-
ory, as in the neuroscience use case. For the astronomy use
case, Dask runs out of memory on 16 nodes. For 32 nodes,
the number of workers had to be reduced to one per node
to allow Dask to finish processing. This results in lowered
parallelism and higher runtime. In the 64 node experiment
there was enough memory and every step could be pipelined
for both Myria and Dask, resulting in faster runtimes. Spark
divides each task into stages and does not start shuffling
data until the previous map stage is complete. As the tu-
ples are large in size, (∼14MB for neuroscience and ∼80 MB
for astronomy), the lack of overlap between shuffle and map
stages results in Spark’s slightly slower timings. This is a
known limitation for Spark [39], and makes it slower than
Dask and Myria for some of the steps in the context of im-
age analytics as the shuffle cost for the larger image tuples
is significant. Note that we tuned each of the systems to
achieve the timings reported above. We discuss the impact
of these tunings in Section 5.3.

5.2 Individual Step Performance
Next we focus on individual steps and examine perfor-

mance across systems. Due to space restrictions we focus
on the neuroscience pipeline.
Data Ingest: Input data for both use cases is staged in
Amazon S3. For the neuroscience use case, image data
is presented as a single NIfTI file per subject which con-
tains compressed image volumes. For the neuroscience use
case, the reference implementation works on all of the im-
age volumes associated with the subject concurrently. To
parallelize the implementation within each subject, we split
data for each subject into separate image volumes repre-
sented by NumPy arrays, which can be processed in paral-
lel. Therefore, NIfTI files need to be preprocessed for Spark
and Myria, de-compressed and saved as serialized NumPy
Arrays. SciDB requires NIfTI files to be converted into CSV
format. TensorFlow requires images to be in NumPy ar-
ray format for conversion to Tensors. Pre-processing times
are included in data ingest times, which are shown in Fig-
ure 9. As the figure shows, data ingest times vary greatly
across systems (note the log scale on the Y-axis). Spark
and Myria download pre-processed data in parallel on each
of the workers from S3. Myria is given a CSV list of images
in S3 as part of the load statement, and Spark is given the
S3 bucket name. Even though Myria’s data ingest writes
files to disk, it is faster than Spark, which loads the data
into memory. This is because Spark enumerates the files in
the S3 bucket on master before downloading them in par-
allel and meta-data querying in S3 is known to be a slow
operation. For Dask, we manually specify the number of
subjects to download per node, as otherwise Dask’s sched-
uler assigns a random number of subjects to each node which
lead to memory exhaustion or excessive data shuffle between
processing steps. Thus, Dask’s data ingest time looks like a
step function: when the number of subjects is fewer than the
number of nodes (16), each node downloads one subject con-
currently. With more than 16 subjects, some nodes down-
load two subjects. For the TensorFlow implementation, all
data is downloaded to the master node and partitions are

sent to each worker node. This is slower than the paral-
lel ingest available in other systems. For SciDB, we report
two sets of timings in Figure 9. SciDB-1 shows the time to
ingest NumPy arrays with the from array() interface, and
SciDB-2 shows the time to convert NIfTI to CSV and in-
gest using the aio input library. Because aio input() reads
in multiple files and parses them in parallel while SciDB’s
native Python API (i.e., scidb-py) processes input data in
a serial manner, data ingest with the latter is an order of
magnitude faster than the former and is on par with parallel
ingest on Spark and Myria. Nevertheless, the NIfTI-to-CSV
conversion overhead for SciDB is larger than the NIfTI-to-
NumPy overhead for Spark and Myria, which makes SciDB
ingest slower than Spark and Myria.
Segmentation (filtering): Segmentation is the first step
in the neuroscience use case (i.e., Step 1 N). We discuss
the performance of two operations in this step: filtering the
data to select a subset of the image volumes, and computing
an average image volume for each subject. Figure 11a and
Figure 11b show the runtimes for these two operations as we
vary the input data size on the 16-node cluster. Myria and
Dask are the fastest on the data filtering step. Myria pushes
the selection to PostgreSQL, which efficiently scans the data
and returns the matching records (without indices) on the
Images relation. Dask is fast on this operation as all data is
in memory and the operation is a simple filter. Spark is an
order of magnitude slower than Dask, even though data is in
memory for both systems. This is because the filter criteria
is specified as an anonymous function in Spark, and data and
function have to be passed from Java to the external Python
process and back. SciDB is slower than other systems be-
cause the internal chunks are not aligned with the selection
predicate. In addition to scanning chunks, SciDB must also
extract subsets of these chunks and construct new chunks
in the resulting arrays. In TensorFlow, the data (tensors)
takes the form of 4D arrays. For each subject, the 4D array
represents the 288 3D data volumes. The selection is on the
volume ID, which is the fourth dimension of the input data.
However, TensorFlow only supports filtering along the first
dimension. We thus need to flatten the 4D array, apply the
selection, and reshape the array back into a 4D structure.
As reshaping is expensive compared with filtering, Tensor-
Flow is orders of magnitude slower than the other engines
on this step.
Segmentation (mean): Figure 11b shows the result for
the mean image volume computations. SciDB is the fastest
for mean computation on the small datasets as it is designed
to process arrays in parallel at the granularity of chunks.
In contrast, Myria and Spark group data by subject, which
leads to low cluster utilization for small numbers of subjects.
The three systems have similar performance at larger scales.
Dask is slower than the other three engines, especially for
small datasets, due to startup and work stealing overheads.
TensorFlow is very slow as the mean has to be computed
in seperate graphs due to graph size limitations with data
being sent to the master after each graph computation.
Denoising: Figure 11c shows the runtime for denoising
(Step 2 N). For this step, the bulk of the processing hap-
pens in the user-defined denoising function. Dask, Myria,
Spark, and SciDB all run the same code from the reference
implementation on similarly partitioned data, which leads
to similar overall performance. As in the case of the end-
to-end pipeline, Dask’s higher start-up overhead results in
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Developers. Engine developers can improve both the ar-
chitecture and implementation of their systems based on our
observations, some of which are already known, but their im-
portance is re-emphasized by this study. Most importantly,
we find that all evaluated systems would benefit from auto-
matically adjusting the degree of parallelism and gracefully
spilling to disk, even when individual data partitions do not
fit in memory to avoid all sources of out-of-memory failures.

Image analytics differs from other analytics in three re-
spects: the large size of individual records (i.e., image frag-
ments with metadata), heavy use of UDFs to execute com-
plex, domain-specific operations, and the multidimensional
nature of the data. Some systems, such as SciDB, have
only limited support for UDFs/UDAs in languages other
than C++. As we showed in Section 5, this significantly af-
fects performance and ease of use. In contrast, only SciDB
reasons about multidimensional array data. In all other sys-
tems, users must manually split images into fragments along
different dimensions in preparation for their analysis, which
is non-trivial.

Finally, most systems are optimized for large numbers of
small records rather than small numbers of large records.
Myria, for example, processes tuples in large batches by de-
fault. We had to change that default to reduce the number
of tuples per batch and prevent out of memory failures.

We next discuss specific recommendations for each of the
evaluated systems for running image analytical workloads.
Dask would further benefit from (1) a simpler API: e.g., re-
duce the number of ways to construct the compute graph (2)
better debuggability as noted in Section 4.1; and (3) spilling
to disk for multi-process workloads as noted in Section 5.3.
Myria would benefit from (1) automatically tuning the
number of workers per machine and making it easier to
change the number of workers as noted in Section 5.3; (2)
adding support for local combiners before shuffles for user-
defined aggregations: this would lead to fewer memory issues
in case of skew. We were able to materialize intermediate
results and split queries into multiple ones to achieve the
same result, but it required better understanding of Myria
and more effort.
Spark would benefit from (1) overlapping the shuffle phase
with the map phase to increase performance when memory
is sufficient and (2) making parallel data ingest from S3 more
efficient.
SciDB would benefit from (1) binary data format support
for the aio input() interface; (2) support for more than
TSV and stdin-stdout for the stream() interface; (3) more
efficient methods for concatenating arrays; (4) support for
advanced control over the child process such as setting en-
vironment variables; (5) simplified procedure for multi-node
deployment; and (6) support for UDAs in the stream inter-
face.
TensorFlow would benefit from (1) removing the restric-
tion on graph size; (2) better tooling for cluster management
and scheduling; (3) distributed data ingest; and (4) support
for external libraries.
Users. For domain scientists wanting to utilize big data sys-
tems there are several considerations: (1) Re-write or re-use:
can the computation be expressed in native SQL or AQL? If
the computation is simple this may be the most performant
solution. If not, systems such as Dask, Spark, and Myria
can efficiently execute legacy Python (or other) scripts with
minimal additional code provided by the user. (2) Data par-

titioning: turning a serial computation into a parallel one
may pose the biggest challenge to domain users. A refer-
ence implementation may or may not indicate how compu-
tation can be parallelized. Understanding data dependency
and the synchronization points in underlying computation
is crucial to ensuing correctness and performance in a big
data system.
Researchers. Our study raises a number of research
questions. Image processing involves complex analytics,
which include iterations and linear algebra operations
that must be efficiently supported in big data systems.
However, users typically have legacy code that performs
sophisticated and difficult to rewrite operations. Therefore,
they need the ability to call existing libraries. They also
need an easy mechanism to parallelize the computation:
they should be able to reason about multidimensional array
data directly rather than manually creating and processing
collections of image fragments. It should be easy to mix and
match UDF/UDA computations and pre-defined (e.g., rela-
tional) operations on complex data such as image fragments.

Our study also re-iterates the general need to efficiently
support pipelines with UDF/UDAs both during query ex-
ecution and query optimization. Image analytics implies
large tuples and larger tuples put pressure on memory man-
agement techniques, systems’ ability to shuffle data effi-
ciently, and efficient methods to pass large records back
and forth between core computation and UDFs/UDAs. This
provides another research opportunity. Finally, making big
data systems usable for scientists requires systems to be self
tuning, which is already an active research area [19].

7. RELATED WORK
Traditionally, image processing research has focused on ef-

fective indexing and querying of multi-media content [14, 11,
12]. Typical DBMS benchmarks (e.g., [43]) focus on business
intelligence computations over structured data. The Gen-
Base benchmark [41] takes this forward to focus on complex
analytics, but does not examine image data. Several recent
papers [32, 27, 8, 39] evaluate the performance of Big Data
systems, but the workload does not include image analysis.
While prior work on raw files and scientific formats [4, 9] fo-
cuses on techniques for working with them directly, it does
not offer mechanisms to work with them in big data systems
like the ones evaluated in this paper.

8. CONCLUSION
We presented the first comprehensive study of large-scale

image analytics on big data systems. We surveyed the
different paradigms of large-scale data processing platforms
using two real-world use cases from domain sciences. While
we could execute the use cases on these systems, our
analysis shows that leveraging the benefits of all systems
requires deep technical expertise. For these systems to
better support image analytics in domain sciences, they
need to simultaneously provide comprehensive support
for multidimensional data and high performance for
UDFs/UDAs written in popular languages (e.g., Python).
Additionally, they need to completely automate data and
compute distribution across a cluster and memory man-
agement to eliminate all possible sources of out-of-memory
failures. Overall, we argue that current systems provide
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good support for image analytics, but they also open new
opportunities for further improvement and future research.
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