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ABSTRACT

Scientific discoveries are increasingly driven by analyzing
large volumes of image data. Many new libraries and
specialized database management systems (DBMSs) have
emerged to support such tasks. It is unclear how well these
systems support real-world image analysis use cases, and
how performant the image analytics tasks implemented on
top of such systems are. In this paper, we present the first
comprehensive evaluation of large-scale image analysis sys-
tems using two real-world scientific image data processing
use cases. We evaluate five representative systems (SciDB,
Myria, Spark, Dask, and TensorFlow) and find that each of
them has shortcomings that complicate implementation or
hurt performance. Such shortcomings lead to new research
opportunities in making large-scale image analysis both ef-
ficient and easy to use.

1. INTRODUCTION

With advances in data collection and storage technolo-
gies, data analysis has become widely accepted as the fourth
paradigm of science [16]. In many scientific fields, an increas-
ing portion of this data are images [21, 22]. Thus, it is cru-
cial for big data systems' to provide a scalable and efficient
means of storing and analyzing such data, via programming
models that can be easily utilized by domain scientists (e.g.,
astronomers, physicists, biologists, etc).

As an example, the Large Synoptic Survey Telescope
(LSST) is a large-scale international initiative to build a
new telescope for surveying the visible sky [25] with plans
to collect 60PB of images over 10 years. In previous as-
tronomy surveys (e.g., the Sloan Digital Sky Survey [38]),
an expert team of engineers processed the collected images
on dedicated servers. The results were distilled into textual
catalogs for other astronomers to analyze. In contrast, one

'In this paper, we use the term “big data system” to describe
any DBMS or cluster computing library that provides parallel
processing capabilities on large amounts of data.
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of the goals of LSST is to broaden access to the collected
images for astronomers around the globe, enabling them to
run analyses on the images directly. Similarly, in neuro-
science several large collections of imaging data are being
compiled. For example, the UK biobank will release Mag-
netic Resonance Imaging (MRI) data from close to 500k hu-
man brains (more than 200TB of data) for neuroscientists to
analyze [28]. Multiple other initiatives are similarly making
large collections of image data available to researchers [3,
23, 42].

Such use cases emphasize the need for effective systems to
support the management and analysis of image data: sys-
tems that are efficient, scale, and are easy to program with-
out requiring deep systems expertise to deploy and tune.
Surprisingly, there has been limited work from the data
management research community in building systems to
support large-scale image management and analytics. Ras-
daman [34] and SciDB [36] are two well-known DBMSs that
specialize in the storage and processing of multidimensional
array data and are a natural choice for implementing image
analytics. Besides these systems, most other work developed
for storing image data targets predominantly image storage
and retrieval based on keyword or similarity searches [14,
11, 12].

Hence, the key questions we ask in this paper are: How
well do existing big data systems support the management
and analysis requirements of real scientific image processing
workloads? Is it easy to implement large-scale image ana-
lytics using these systems? How efficient are the resulting
applications that are built on top of such systems? Do they
require deep technical expertise to optimize?

We present the first comprehensive study of the issues
mentioned above. Specifically, we picked five big data sys-
tems for parallel data processing: a domain-specific DBMS
for multidimensional array data (SciDB [36]), a general-
purpose cluster computing library with persistence capa-
bilities (Spark [40]), a traditional parallel general-purpose
DBMS (Myria [18, 46]), along with a general-purpose
(Dask [35]) and domain-specific (TensorFlow [2]) parallel-
programming library.

We selected these systems as they (1) have open-source
implementations; (2) can be deployed on commodity hard-
ware; (3) support complex analytics such as linear algebra
and user defined functions; (4) provide Python APIs, which
is important as the language has become immensely popular
in sciences [30]; and (5) with different internal architectures
such that we can evaluate the performance of different im-



plementation paradigms. We discuss in more detail reasons
for choosing these systems in Section 2.

To evaluate these systems, we implement two represen-
tative end-to-end image analytics pipelines from astronomy
and neuroscience. Each pipeline has a reference implemen-
tation in Python provided by domain scientists. We then at-
tempt to re-implement them using the five big data systems
described above and deploy the resulting implementation on
commodity hardware in the Amazon Web Services cloud [5],
to simulate the typical hardware and software setup in scien-
tists’ labs. We evaluate the resulting implementations with
the following goals in mind:

e Investigate if the given system can be used to imple-
ment the pipelines and, if so, how easy is it to do so
(Section 4).

e Measure the execution time of the resulting pipelines
in a cluster deployment (Section 5.1 and Section 5.2).

e Evaluate the system’s ability to scale, both with the
number of machines available in the cluster, and the
size of the input data to process (Section 5.1).

e Assess tuning required by each system to correctly and
efficiently execute each pipeline (Section 5.3).

Our study shows that, despite the difference in domains,
both real-world use cases have important similarities: in-
put data is in the form of multidimensional arrays encoded
in domain-specific file formats (FITS [15], NIfTT [29], etc.);
data processing involves slicing along different dimensions,
aggregations, stencil (a.k.a.multidimensional window) oper-
ations, spatial joins and complex transformations expressed
in Python.

Overall, we find that all systems have important limita-
tions. While performance and scalability results are promis-
ing, there is much room for improvement in usability and
efficiently supporting image analytics at scale.

2. EVALUATED SYSTEMS

In this section we briefly describe the five evaluated sys-
tems and their design choices pertinent to image analytics.
The source code for all of these systems is publicly available.
Dask [1] (v0.13.0) is a general-purpose parallel comput-
ing library implemented entirely in Python. We select Dask
because the use cases we consider are written in Python.
Dask represents parallel computation with task graphs.
Dask supports parallel collections such as Dask.array and
Dask.dataframe. Operations on these collections create a
task graph implicitly. Custom (or existing) code can be
parallelized via Dask.delayed statements, which delay func-
tion evaluations and insert them into a task graph. Indi-
vidual task(s) can be submitted to the Dask scheduler di-
rectly. Submitted tasks return Futures. Further tasks can
be submitted on Futures, sending computation to the worker
where the Future is located. The Dask library includes a
scheduler that dispatches tasks to worker processes across
the cluster. Processes execute these tasks asyncronously.
Dask’s scheduler determines where to execute the delayed
computation, and serializes the required functions and data
to the chosen machine before starting its execution. Dask
uses a cost-model for scheduling and work stealing among
workers. The cost-model considers worker load and user

specified restrictions (e.g., if a task requires a worker with
GPU) and data dependencies of the task. Computed results
remain on the worker where the computation took place and
are brought back to the local process by calling result().
Myria [18, 46] is a relational, shared-nothing DBMS de-
veloped at the University of Washington. Myria uses Post-
greSQL [33] as its node-local storage subsystem and includes
its own query execution layer on top of it. Users write
queries in Myrial., an imperative-declarative hybrid lan-
guage, with SQL-like declarative constructs and imperative
statements such as loops. Myria query plans are represented
as graphs of operators and may include cycles. During ex-
ecution, operators pipeline data without materializing it to
disk. Myria supports Python user-defined functions and a
BLOB data type. The BLOB data type allows users to write
queries that directly manipulate objects like NumPy arrays.
We select Myria as a representative shared nothing parallel
DBMS and also a system that we built. Our goal is to under-
stand how it compares to other systems on image analysis
workloads and what it requires to effectively support such
tasks.

Spark [47] (v1.6.2) supports a dataflow programming
paradigm. It is up to 100x faster than Hadoop for in-
memory workloads and up to 10x faster for workloads that
persist to disk [40]. We select Spark for its widespread
adoption, its support for a large variety of use cases, the
availability of a Python interface, and to evaluate the suit-
ability of the MapReduce programming paradigm for large-
scale image analytics. Spark’s primary abstraction is a dis-
tributed, fault-tolerant collection of elements called Resilient
Distributed Datasets (RDDs) [47], which are processed in
parallel. RDDs can be created from files in HDFS or by
transforming existing RDDs. RDDs are partitioned and
Spark executes separate tasks for different RDD partitions.
RDDs support two types of operations: transformations and
actions. Transformations create a new dataset from an ex-
isiting one, e.g., map is a transformation that passes each
element through a function and returns a new RDD repre-
senting the results. Actions return a value after running a
computation: e.g., reduce is an action that aggregates all the
elements of the RDD using a function and returns the final
result. All transformations are lazy and are executed only
when an action is called. Besides map and reduce, Spark’s
API supports relational algebra operations as well, such as
distinct, union, join, grouping, etc.

SciDB [10] (v15.12) is a shared-nothing DBMS for storing
and processing multidimensional arrays. SciDB is designed
specifically to support image analytics tasks such as those
we evaluate in this paper, and is an obvious system to in-
clude in the evaluation. In SciDB, data is stored as arrays
divided into chunks distributed across nodes in a cluster.
Users then query the stored data using the Array Query Lan-
guage (AQL) or Array Functional Language (AFL) through
the provided Python interface. SciDB supports user-defined
functions in C++ and, recently, Python (with the latter ex-
ecuted in a separate Python process). In SciDB, query plans
are represented as an operator tree, where operators, includ-
ing user-defined ones, process data iteratively one chunk at
a time.

TensorFlow [2] (v0.11) is a library from Google for nu-
merical computation using dataflow graphs. Although Ten-
sorFlow is typically used for machine learning, it supports a
wide range of functionality to express operations over N-
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dimensional tensors. Such operations are organized into
dataflow graphs, where nodes represent computations, and
edges are the flow of data expressed using tensors. Tensor-
Flow optimizes these computation graphs and can execute
them locally, in a cluster, on GPUs, or on mobile devices.
We select TensorFlow to evaluate its suitability for large-
scale image analytics given its general popularity.

3. IMAGE ANALYTICS USE CASES

Scientific image data is available in many modalities: X-
ray, MRI, ultrasound, telescope, microscope, satellite, etc.
We select two scientific image analytics use cases from neu-
roscience and astronomy, with real-world utility in two dif-
ferent domains. The choice of these use cases is influenced
by access to domain experts in these fields, availability of
large datasets, and interest from the domain experts in scal-
ing their use cases to larger datasets with big data systems.
Reference implementations for both use cases are provided
by domain experts who are also coauthors on this paper, and
were written for their prior work. Both reference implemen-
tations are in Python and utilize wrapped libraries written
in C/C++. We present the details of the use cases in this
section. Both use cases are subdivided into steps. We use
Step @N and Step ®A to denote steps in the neuroscience
and astronomy use cases respectively.

3.1 Neuroscience

Many sub-fields of neuroscience use image data to make
inferences about the brain [24]. The use case we focus on an-
alyzes Magnetic Resonance Imaging (MRI) data in human
brains. Specifically, we focus on measurements of diffusion
MRI (dMRI), an imaging technology that is sensitive to wa-
ter diffusion in different directions within a human brain.
These measurements are used to estimate large-scale brain
connectivity, and to relate the properties of brain connec-
tions to brain health and cognitive functions [45].

Data: The input data comes from the Human Connec-
tome Project [44]. We use data from the S900 release,
which includes dMRI data from over 900 healthy adult sub-
jects collected between 2012 and 2015. The dataset con-
tains dMRI measurements obtained at a spatial resolution
of 1.25x1.25%1.25 mm?. Measurements were repeated 288
times in each subject, with different diffusion sensitization in
each measurement. The data from each measurement, called
a volume, is stored in a 3D (145x145x174) array of floating
point numbers, with one value per three-dimensional pixel
(a.k.a.voxel). Image data is stored in the standard NIfTI-1
file format used for neuroimaging data. Additional meta-
data about the measurement used during analysis is stored
in text files that accompany each measurement. We use
data from 25 subjects for this use case. Each subject’s data
is ~1.4GB in compressed form, which expands to ~4.2GB
when uncompressed. The total amount of data from 25 sub-
jects is thus approximately 105GB.

Processing Pipeline: The benchmark contains three steps
from a typical dMRI image analysis pipeline for each sub-
ject, as shown in Figure 1.

1. Segmentation: Step @N constructs a 3D mask that
segments each image volume into two parts: the brain
and the background. As the brain comprises around
two-thirds of the image volume, using the mask to fil-
ter out the background will speed up subsequent steps.
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Figure 1: Neuroscience use case: Step @N Segmentation,
Step @N Denoising, and Step @N Model fitting.

Segmentation proceeds in three sub-steps. First, we
select a subset of the volumes where no diffusion sen-
sitization has been applied. These images are used for
segmentation as they have higher signal-to-noise ratio.
Next, we compute a mean image from the selected vol-
umes by averaging the value of each voxel. Finally,
we apply the Otsu segmentation algorithm [31] to the
mean volume to create a mask volume per subject.

. Denoising: Denoising is needed to improve image
quality and accuracy of the analysis results. This step
(Step @1\) can be performed on each volume indepen-
dently. Denoising operates on a 3D sliding window of
voxels using the non-local means algorithm [13] and
uses the mask from Step @N to denoise only parts of
the image volume containing the brain.

. Model fitting: Finally, Step @N computes a physical
model of diffusion. We use the diffusion tensor model
(DTM) to summarize the directional diffusion profile
within a voxel as a 3D Gaussian distribution [6]. Fit-
ting the DTM is done independently for each voxel and
can be parallelized. This step consists of a flatmap op-
eration that takes a volume as input and outputs mul-
tiple voxel blocks. All 288 values for each voxel block
are grouped together before fitting the DTM for each
voxel. Given the 288 values in for each voxel, fitting
the model requires estimating a 3x3 variance/covari-
ance matrix. The model parameters are summarized
as a scalar for each voxel called Fractional Anistropy
(FA) that quantifies diffusivity differences across dif-
ferent directions.

The reference implementation is written in Python and
Cython using Dipy [17].

3.2 Astronomy

As discussed in Section 1, astronomy surveys are gener-
ating an increasing amount of image data. Our second use
case is an abridged version of the LSST image processing
pipeline [26], which includes analysis routines used by as-
tronomers.
Data: We use data from the High Cadence Transient Sur-
vey [20] for this use case, as data from the LSST survey
is not yet available. A telescope scans the sky through re-
peated wisits to individual, possibly overlapping, locations.
We use up to 24 visits that cover the same area of the sky
in this evaluation. Each visit is divided into 60 images, with
each consisting of an 80MB 2D image (4000x4072 pixels)
with associated metadata. The total amount of data from
all 24 visits is approximately 115GB. The images are en-
coded using the FITS file format [15] with a header and
data block. The data block has three 2D arrays, with each
element containing flux, variance, and mask for every pixel.
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Figure 2: Astronomy use case: Step @A Pre-Processing,
Step @A Patch Creation, Step @A Co-addition, and
Step (4)a Source Detection.

Processing Pipeline Our benchmark contains four steps
from the LSST processing pipeline as shown in Figure 2:

1. Pre-Processing: Step @A pre-processes each im-
age to remove background noise and artifacts caused
by imaging instruments. These operations are imple-
mented as convolutions with different kernels. This
step can be parallelized across images.

. Patch Creation: Step @A re-grids the pre-processed
images of the sky into regions called patches. Each im-
age can be part of 1 to 6 patches requiring a flatmap
operation. As pixels from multiple images can con-
tribute to a single patch, this step groups the images
associated with each patch and creates a new image
object for each patch in each visit.

. Co-addition: Step @A groups the images associated
with the same patch across different visits and stacks
them by summing up the pixel (or flux) values. This
is called co-addition and is performed to improve the
signal to noise ratio of each image. Before summing
up the pixel values, this step performs iterative outlier
removal by computing the mean flux value for each
pixel and setting any pixel that is three standard de-
viations away from the mean to null. Our reference
implementation performs two such cleaning iterations.

. Source Detection: Finally, Step @A detects
sources visible in each co-added image generated from
Step @A by estimating the background and detecting
all pixel clusters with flux values above a given thresh-
old.

The reference implementation is written in Python, and de-
pends on several libraries implemented in C++, utilizing the
LSST stack [25]. While the LSST stack can run on multiple
nodes, the reference is a single node implementation.

4. QUALITATIVE EVALUATION

We evaluate the five big data systems along two dimensions.
In this section, we discuss each system’s ease of use and over-
all implementation complexity. We discuss performance and
required physical tunings in Section 5. A subset of the com-
puter science coauthors implemented each use case on each
system based on the reference implementations provided by
the domain expert coauthors. The team had previous ex-
perience with Myria, Spark, and SciDB but not Dask or
TensorFlow.

4.1 Dask

Implementation: As described in Section 2, users specify
their Dask computation using task graphs. However, unlike
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for id in subjectIds:
datalid].vols = delayed(downloadAndFilter)(id)

for id in subjectIds: # barrier
datalid].numVols = len(datal[id].vols.result())

for id in subjectIds:
means = [delayed(mean)(block) for block in
partitionVoxels(data[id].vols)]
means = delayed(reassemble) (means)
mask = delayed(median_otsu)(means)

Figure 3: Dask code for Step @1\'-

other big data systems with task graphs, users do not need
to use a specific data abstraction (e.g., RDDs, relations, ten-
sors, etc.). They can construct graphs directly with Python
data structures. As an illustration, Figure 3 shows a code
fragment from Step @N of the neuroscience use case. We
first construct a compute graph that downloads and filters
each subject’s data on Line 2. Note the use of delayed to
construct a compute graph by postponing computation, and
specifying that downloadAndFilter is to be called on each
subject separately. At this point, only the compute graph is
built but it has not been submitted, i.e., data has not been
downloaded or filtered. Next, on Line 5 we request that
Dask evaluate the graph via the call to result to compute
the number of volumes in each subject’s dataset. Calling
result submits the graph and forces evaluation. We con-
structed the graph such that downloadAndFilter is called on
individual subjects. Dask will parallelize the computation
across the worker machines and will adjust each machine’s
load dynamically. We then build a new graph to compute
the average image of the volumes by calling mean. We intend
this computation to be parallelized across blocks of voxels,
as indicated by the iterator construct on Line 9. Next, the
individual averaged volumes are reassembled on Line 10, and
calling median_otsu on Line 11 computes the mask. The rest
of the neuroscience use case follows the same programming
paradigm, and we implemented the astronomy use case sim-
ilarly.

Qualitative Assessment: We find that Dask has the sim-
plest installation and deployment. As Dask supports ex-
ternal Python libraries we reuse most of the reference im-
plementation. Our Dask implementation has approximately
120 lines of code (LoC) for the neuroscience use case and
260 LoC for the astronomy one. When implementing com-
pute graphs, however, a developer has to reason about when
to insert barriers to evaluate the constructed graphs. Ad-
ditionally, the developer must manually specify how data
should be partitioned across different machines for each of
the stages to facilitate parallelism (e.g., by image volume or
blocks of voxels, as specified on Line 9 in Figure 3). While
Dask’s Python interface might be familiar to domain scien-
tists, the explicit construction of compute graphs to paral-
lelize computation is non-trivial. Additionally, as the Dask
API supports multiple ways to parallelize code, choosing
among them can impact the correctness and performance
of the resulting implementation. For instance, having to
choose between futures and delayed constructs to create a
task graph implicitly and explicitly make Dask more flexi-
bile but harder to use. Dask is also hard to debug due to
its atypical behavior and instability. For instance, rather
than failing a job after a large enough number of workers
die, Dask respawns the killed processes but queues tasks ex-
ecuted on the killed worker processes to a no-worker queue.
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conn = MyriaConnection(url="...")
MyriaPythonFunction(Denoise, outType).register()
query = MyriaQuery.submit("""
T1 = SCAN(Images);
T2 = SCAN(Mask);
Joined = [SELECT T1.subjId, T1.imgId, T1.img, T2.mask
FROM T1, T2
WHERE T1.subjId = T2.subjIdl;
Denoised = [FROM Joined EMIT
Denoise(T1.img, T1.mask) as
img, T1.subjId, T1.imgId]; """ )

Figure 4: Myria code for Step @N.

The no-worker state implies that tasks are ready to be com-
puted, but no appropriate worker exists. As the running
processes wait for the results from the requeued tasks this
causes a deadlock. We also experienced several stability
issues, some of which prevented us from running the astron-
omy use case initially, but were fixed in a later Dask version.
We still had to stop and rerun the pipelines occasionally as
they would freeze for unknown reasons.

4.2 Myria

Implementation: We use MyrialL to implement both
pipelines, with calls to Python UDF/UDAs for all core im-
age processing operations. In the neuroscience use case, we
ingest the input data into the Images relation, with each tu-
ple consisting of subject ID, image ID, and image volume
(a serialized NumPy array stored as a BLOB) attributes.
We execute a query to compute the mask, which we broad-
cast across the cluster. The broadcast table is 0.3% the size
of the Images relation. A second query then computes the
rest starting from a broadcast join between the data and the
mask. Figure 4 shows the code for denoising image volumes.
Line 1 to Line 2 connect to Myria and register the denoise
UDF. Line 3 then executes the query to join the Images
relation with the Mask relation and denoise each image vol-
ume. We implement the astronomy use case similarly using
MyriaL.

Qualitative Assessment: Our Myrial. implementation
leverages the reference Python code, facilitating the imple-
mentation of both use cases. We implement the neuroscience
use case in 75 LoC and the astronomy one in 250. Myrial.’s
combination of declarative query constructs and imperative
statements makes it easy to specify the analysis pipelines.
However, for someone not familiar with SQL-like syntax this
might be a challenge. Overall, implementing the use cases
in Myria was easy but making the implementation efficient
was non-trivial, as we discuss in Section 5.3.

4.3 Spark

Implementation: We use Spark’s Python API to imple-
ment both use cases. Our implementation transforms the
data into Spark’s pair-RDDs, which are parallel collections
of key-value pair records. The key for each RDD is the
identifier for an image fragment, and the value is a NumPy
array with the image data. Our implementation then uses
the predefined Spark operations (map, flatmap, and groupby)
to split and regroup image data following the plan from Fig-
ure 1. To avoid joins, we make the mask, which is a single
image per subject (18MB per subject, 0.3% of the image
RDD) a broadcast variable available on all workers. We
use the Python functions from the reference implementa-
tion to perform the actual computations on the values, pass-
ing them as anonymous functions to Spark’s API. Figure 5

1 modelsRDD = imgRDD

.map(lambda x:denoise(x,mask))
.flatMap(lambda x: repart(x, mask))

i .groupBy(lambda x: (x[@1[@],x[01[11))
5  .map(regroup)

6 .map(fitmodel)

w v

Figure 5: Spark code showing Step @N and Step @N.

1 from scidbpy import connect

2 sdb = connect(’...")

3 data_sdb = sdb.from_array(data)

4 data_filtered = # Filter

5 data_sdb.compress(sdb.from_array(gtab.b@s_mask), axis=3)
6 mean_b@_sdb = data_filtered.mean(index=3) # Mean

Figure 6: SciDB implementation of Step @N.

shows an abridged version of the code for the neuroscience
use case. Line 2 denoises each image volume. Line 3 calls
repart to partition each image volume into voxel groups,
which are then grouped (line 4) and aggregated (line 5).
Line 6 then fits a DTM for each voxel group. We implement
the astronomy use case similarly.

Qualitative Assessment: Spark can execute user-
provided Python code as UDF's and its support for arbitrary
python objects as keys made the implementation straight-
forward, with 114 and 238 LoC for the neuroscience and
astronomy use cases respectively. The functional program-
ming style used by Spark is succinct, but can pose a chal-
lenge if the developer is unfamiliar with functional program-
ming. Spark’s large community of developers and users,
and its extensive documentation are a considerable advan-
tage. Spark supports caching data in memory but does not
store intermediate results by default. Unless data is specifi-
cally cached, a branch in the computation graph may result
in re-computation of intermediate data. In our use cases,
opportunities for data reuse are limited. Nevertheless, we
found that caching the input data for the neuroscience use
case yielded a consistent 7-8% runtime improvement across
input data sizes. Caching did not improve the runtime of
the astronomy use case. As with Myria, the initial imple-
mentation was easy in Spark, but performance tuning was
not always straightforward as we describe in Section 5.3.

44 SciDB

Implementation: SciDB is designed for array analytics
to be implemented in AQL/AFL, or optionally using
SciDB’s Python API. This is illustrated in Figure 6. When
we began this project, SciDB lacked several functions
necessary for the use cases. For example, high-dimensional
convolutions are not implemented in AFQ/AFL, rendering
the reimplementation of some steps impossible. SciDB
recently added a Stream() interface, similar to Hadoop
Streaming. This interface enables the execution of Python
(or other language) UDFs, where each UDF call processes
one array chunk. Using this feature, we implemented both
use cases in their entirety. The SciDB implementation of
the neuroscience and astronomy use cases required 155 LoC
and 715 LoC of Python respectively. In addition, 200 LoC
of AFL were written to rearrange chunks, and another 150
LoC in bash to set up the environment required by the
application.
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Qualitative Assessment: The recent stream() interface
makes it possible to execute legacy Python code, but it re-
quires that data be passed to the Python UDF and returned
from that UDF as a string in TSV format (data ingest re-
quires a CSV format). This means that we need to convert
between TSV and scientific image formats. While this is rel-
atively straightforward for the neuroscience use case, FITS
files used in astronomy have multiple arrays per image and
are more challenging to transform between SciDB arrays
and TSVs for UDFs. This transformation and subsequent
parsing also causes performance issues as we discuss in Sec-
tion 5.3. Setting up SciDB is also difficult as there is no sup-
port for standard cloud deployment tools. The integration
with the LSST software stack for the astronomy use case is
particularly challenging. Specifically, LSST’s software stack
requires dozens of dependent packages to be installed, along
with setting up more than 100 environment variables within
child processes that execute the UDFs. Another limitation
of the stream() interface lies in its input and output ports:
All the input can be read only through the standard in-
put (i.e., stdin) and all the output can only be written to
standard output (i.e., stdout). Therefore, the application
crashes if it calls UDF's that have their own stdout messages.
Overall, SciDB presents significant barriers in implementa-
tion and setup for a domain scientist.

4.5 TensorFlow

Implementation: TensorFlow’s API operates on its own
data structures (representations of multi-dimensional ar-
rays, or tensors) and does not allow any of the standard
external libraries to be used, such as NumPy. Hence, we
had to completely rewrite the use cases. Given their com-
plexity, we only implemented the neuroscience use case. Ad-
ditionally, we implemented a somewhat simplified version
of the final mask generation operation in Step @N. We
rewrote Step @N using convolutions, but without filtering
with the mask as TensorFlow does not support element-wise
data assignment. TensorFlow’s support for distributed com-
putation is currently limited. The developer must manually
map computation and data to each worker as TensorFlow
does not provide automatic static or dynamic work assign-
ment. As the serialized compute graph cannot be larger
than 2GB, we implemented the use case in steps, building a
new compute graph for each step of the use case (as shown
in Figure 1). We distribute the data for each step to the
workers and execute it. We add a global barrier to wait for
all workers to return their results before proceeding. The
master node converts between NumPy arrays and tensors
as needed. Figure 7 shows the code for mean computation
in Step @N. The first loop assigns the input data with
shape sh (Line 8) and the associated code (Line 9) to each
worker. Then, we process the data in batches of size equal
to the number of available workers on Line 19.

Qualitative Assessment: TensorFlow requires a complete
rewrite of the use cases, which we find to be both difficult
and time-consuming. TensorFlow also requires that users
manually specify data distribution across machines and it
automates only a small part of the cluster initialization pro-
cedure with Bazel [7]. The 2GB limit on graph size further
complicates the implementation of use cases as we described
above. In its current form, unless there is a specific rea-
son, e.g., a specific algorithm only available in the Tensor-
Flow library, or need to utilize GPUs or Android devices,

# steps contains the predefined mapping
# from data to workernodes

3 pl_inputs = []

19
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work = []

5 # The first for loop defines the graph
; for i_worker in range(len(steps[0])):

with tf.device(steps[@][i_worker]):
pl_inputs.append(tf.placeholder(shape=sh))
work. append(tf.reduce_mean(pl_inputs[-1]))
mean_data = []
# Iterate over the predefined steps
for i in range(len(steps))
this_zs = zs[ixlen(steps[@]):
ixlen(steps[@]) + len(steps[il)]
# Define the input to be fed into the graph
zip_d = zip(pl_inputs[:len(steps[i])],
[part_arrs[z] for z in this_zs])
# Executes the actual computation - incl. barrier
mean_data += run(work[:len(steps[i])], zip_d)

Figure 7: TensorFlow code fragment showing compute graph
construction and execution.

the amount of effort required to re-write the computation
in Tensorflow is high enough to render it not worthwhile.
However, TensorFlow is under active development so this
might change in future versions.

5. QUANTITATIVE EVALUATION

We evaluate the performance of the implemented use cases
and the system tunings necessary for successful and efficient
execution. All experiments are performed on the AWS cloud
using the r3.2xlarge instance type, with 8 vCPU,? 61GB of
memory, and 160GB SSD storage.

5.1 End-to-End Performance

We first evaluate the performance of running the two use
cases end-to-end. For each use case, we start the execution
with data stored in Amazon S3. We execute all the steps
and leave the final output in worker memories. We ask two
questions: How does the performance compare across the
systems? How well do the systems scale as we increase the
size of the input data or the cluster? To answer these ques-
tions, we first fix the cluster size at 16 nodes and vary the
input data size. For the neuroscience use case we vary the
number of subjects from 1 to 25. For the astronomy use
case, we vary the number of visits from 2 to 24. The largest
input data sizes are then 105GB and 115GB, respectively
as shown in Figure 8a and Figure 8b. The tables also show
the sizes of the largest intermediate relations for the two
use cases, which are 210GB and 288GB, respectively. In the
second experiment, we use the largest input data size for
each use case and vary the cluster size from 16 to 64 nodes
to measure speedup.

Figure 8c and Figure 8f show the results as we vary the
input data size. We implement the neuroscience use case
in all five systems and the astronomy use case in all but
TensorFlow.

For the neuroscience use case (Figure 8c), while Dask,
Myria and Spark achieve comparable performance, SciDB
and TensorFlow are much slower. It is not surprising that
Dask, Spark, and Myria have similar runtimes as all three
execute the same Python code from the reference imple-
mentation but wrapped in UDFs (or directly in the case of
Dask). Interestingly, the fact that Spark and Myria incur

2with Intel Xeon E5-2670 v2 (Ivy Bridge) processors.
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Subjects 1 2 4 8 12 25
SciDB 1 1.01 1.01 1.01 1.00 1.00
Spark 1 086 0.68 0.63 0.60 0.59
Myria 1 077 064 0.60 0.61 0.58
Dask 1 060 045 0.36 0.33 0.32
TensorFlow 1 095 0.90 0.88 0.89 0.89
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Visits 2 4 8 12 24
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Dask 1 075 062 059 -~
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Figure 8: Overall performance: results for end-to-end experiments for Neuroscience and Astronomy use cases.

the extra overhead of passing the data to and from external
Python processes for each UDF invocation does not visibly
affect performance. Dask is a little slower in the case of a sin-
gle subject because the data is downloaded on a single node
first before being spread across the cluster through work
stealing as discussed in Section 5.2. SciDB is slower primar-
ily due to data reformatting at the input and output of each
UDF and also at the beginning of the pipeline: (1) SciDB’s
data ingest requires the source data to be in CSV format,
and in both use cases, we needed to convert the original for-
mats to CSV before executing the pipeline. We discuss data
ingest in more detail when we present Figure 9. (2) When
passing data from SciDB to the UDF's through the stream()
interface, the data gets flattened into a long 1-dimensional
array and we need to reformat it into the multidimensional
NumPy array required by the function. (3) The results re-
turned from each UDF are arrays of strings, one per parallel
UDF invocation and need to be parsed and merged to form
voxel batches from image volumes. Additionally, we process
one subject at a time in SciDB instead of merging data from
all subjects into a single array as combining multiple sub-
jects incurs more overhead. For example, when we combine
two subjects into one array, the execution time doubled (not
shown in the figure), relative to processing one subject at a
time. TensorFlow is the slowest to execute the neuroscience
end-to-end pipeline. We attribute this to several architec-
tural restrictions. (1) All data needs to be downloaded and
parsed on the master node and then dispatched to the work-
ers, as opposed to being downloaded and processed directly
by the workers as in the other systems. (2) Due to Tensor-
Flow’s limitation on the computation graph size (2GB), we
construct multiple graphs for each step and put the results
together on the master node. This adds significant overhead
at each step and prevents TensorFlow from pipelining the
computation. We further analyze per-step performance in
the next section.
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For the astronomy use case (Figure 8f), SciDB is an order
of magnitude slower than the other engines. In Step (3)a,
we need to add patches from all visits. This means that
we have to process all visits as a single array, leading to
large overheads due to parsing and combining the output of
the UDF in Step @A. We also implemented Step @A in
AQL in SciDB, which performed as fast as Spark, Myria and
Dask, i.e., ~ 10x faster than the stream() implementation.
As we were unable to implement the rest of the use case in
AQL/AFL, we use the stream() timing in Figure 8.

In the astronomy use case, Dask does better with the
smaller datasets but is unable to execute the largest data
set to completion as it runs out of memory on 16 nodes.
We discuss out of memory issues in Section 5.3. In terms of
runtime, data for the astronomy use case is packaged into in-
dividual files for each image rather than a single compressed
file per subject as in the neuroscience use case, which results
in finer-grained and more even data distribution.

Figure 8e and Figure 8h show the runtimes per subject
and visit, respectively, i.e., the ratios of each pipeline run-
time to that obtained for one subject or visit. As the data
size increases, these ratios drop for all systems with the ex-
ception of SciDB in the neuroscience use case. The drop-
ping ratios indicate that the systems become more efficient
as they amortize start-up costs. Dask’s efficiency increase
is most pronounced, indicating that it had the largest start-
up overhead. In the neuroscience use case, SciDB shows a
constant ratio. This is due to the neuroscience use case im-
plementation in SciDB where the cluster processes a single
subject at a time.

Figure 8d and Figure 8g show the runtimes for all sys-
tems as we increase the cluster size and process the largest
(>100GB) datasets. All systems show near linear speedup
for both use cases. Myria achieves almost perfect linear
speedup for both cases (5395s, 2863s, and 1406s for 16, 32
and 64 nodes, respectively). Linear speedup can imply poor



single instance performance. To ensure that this is not the
case, we tune single instance performance for Myria by in-
creasing the number of workers until each node has high
resource utilization (average CPU utilization > 90%). Dask
has better performance when data completely fits in mem-
ory, as in the neuroscience use case. For the astronomy use
case, Dask runs out of memory on 16 nodes. For 32 nodes,
the number of workers had to be reduced to one per node
to allow Dask to finish processing. This results in lowered
parallelism and higher runtime. In the 64 node experiment
there was enough memory and every step could be pipelined
for both Myria and Dask, resulting in faster runtimes. Spark
divides each task into stages and does not start shuffling
data until the previous map stage is complete. As the tu-
ples are large in size, (~14MB for neuroscience and ~80 MB
for astronomy), the lack of overlap between shuffle and map
stages results in Spark’s slightly slower timings. This is a
known limitation for Spark [39], and makes it slower than
Dask and Myria for some of the steps in the context of im-
age analytics as the shuffle cost for the larger image tuples
is significant. Note that we tuned each of the systems to
achieve the timings reported above. We discuss the impact
of these tunings in Section 5.3.

5.2 Individual Step Performance

Next we focus on individual steps and examine perfor-
mance across systems. Due to space restrictions we focus
on the neuroscience pipeline.

Data Ingest: Input data for both use cases is staged in
Amazon S3. For the neuroscience use case, image data
is presented as a single NIfTI file per subject which con-
tains compressed image volumes. For the neuroscience use
case, the reference implementation works on all of the im-
age volumes associated with the subject concurrently. To
parallelize the implementation within each subject, we split
data for each subject into separate image volumes repre-
sented by NumPy arrays, which can be processed in paral-
lel. Therefore, NIfT1 files need to be preprocessed for Spark
and Myria, de-compressed and saved as serialized NumPy
Arrays. SciDB requires NIfTT files to be converted into CSV
format. TensorFlow requires images to be in NumPy ar-
ray format for conversion to Tensors. Pre-processing times
are included in data ingest times, which are shown in Fig-
ure 9. As the figure shows, data ingest times vary greatly
across systems (note the log scale on the Y-axis). Spark
and Myria download pre-processed data in parallel on each
of the workers from S3. Myria is given a CSV list of images
in S3 as part of the load statement, and Spark is given the
S3 bucket name. Even though Myria’s data ingest writes
files to disk, it is faster than Spark, which loads the data
into memory. This is because Spark enumerates the files in
the S3 bucket on master before downloading them in par-
allel and meta-data querying in S3 is known to be a slow
operation. For Dask, we manually specify the number of
subjects to download per node, as otherwise Dask’s sched-
uler assigns a random number of subjects to each node which
lead to memory exhaustion or excessive data shuffle between
processing steps. Thus, Dask’s data ingest time looks like a
step function: when the number of subjects is fewer than the
number of nodes (16), each node downloads one subject con-
currently. With more than 16 subjects, some nodes down-
load two subjects. For the TensorFlow implementation, all
data is downloaded to the master node and partitions are
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sent to each worker node. This is slower than the paral-
lel ingest available in other systems. For SciDB, we report
two sets of timings in Figure 9. SciDB-1 shows the time to
ingest NumPy arrays with the from_array() interface, and
SciDB-2 shows the time to convert NIfTI to CSV and in-
gest using the aio_input library. Because aio_input() reads
in multiple files and parses them in parallel while SciDB’s
native Python API (i.e., scidb-py) processes input data in
a serial manner, data ingest with the latter is an order of
magnitude faster than the former and is on par with parallel
ingest on Spark and Myria. Nevertheless, the NIfTI-to-CSV
conversion overhead for SciDB is larger than the NIfTI-to-
NumPy overhead for Spark and Myria, which makes SciDB
ingest slower than Spark and Myria.

Segmentation (filtering): Segmentation is the first step
in the neuroscience use case (i.e., Step (Dn). We discuss
the performance of two operations in this step: filtering the
data to select a subset of the image volumes, and computing
an average image volume for each subject. Figure 11a and
Figure 11b show the runtimes for these two operations as we
vary the input data size on the 16-node cluster. Myria and
Dask are the fastest on the data filtering step. Myria pushes
the selection to PostgreSQL, which efficiently scans the data
and returns the matching records (without indices) on the
Images relation. Dask is fast on this operation as all data is
in memory and the operation is a simple filter. Spark is an
order of magnitude slower than Dask, even though data is in
memory for both systems. This is because the filter criteria
is specified as an anonymous function in Spark, and data and
function have to be passed from Java to the external Python
process and back. SciDB is slower than other systems be-
cause the internal chunks are not aligned with the selection
predicate. In addition to scanning chunks, SciDB must also
extract subsets of these chunks and construct new chunks
in the resulting arrays. In TensorFlow, the data (tensors)
takes the form of 4D arrays. For each subject, the 4D array
represents the 288 3D data volumes. The selection is on the
volume ID, which is the fourth dimension of the input data.
However, TensorFlow only supports filtering along the first
dimension. We thus need to flatten the 4D array, apply the
selection, and reshape the array back into a 4D structure.
As reshaping is expensive compared with filtering, Tensor-
Flow is orders of magnitude slower than the other engines
on this step.

Segmentation (mean): Figure 11b shows the result for
the mean image volume computations. SciDB is the fastest
for mean computation on the small datasets as it is designed
to process arrays in parallel at the granularity of chunks.
In contrast, Myria and Spark group data by subject, which
leads to low cluster utilization for small numbers of subjects.
The three systems have similar performance at larger scales.
Dask is slower than the other three engines, especially for
small datasets, due to startup and work stealing overheads.
TensorFlow is very slow as the mean has to be computed
in seperate graphs due to graph size limitations with data
being sent to the master after each graph computation.
Denoising: Figure 1lc shows the runtime for denoising
(Step @N) For this step, the bulk of the processing hap-
pens in the user-defined denoising function. Dask, Myria,
Spark, and SciDB all run the same code from the reference
implementation on similarly partitioned data, which leads
to similar overall performance. As in the case of the end-
to-end pipeline, Dask’s higher start-up overhead results in
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Figure 10: Variance in execution time, as-
tronomy use case, Myria.

slightly worse performance for smaller data sizes, but similar
performance for larger datasets. SciDB’s stream() interface
performs slightly worse than Myria, Spark, and Dask. For
every call to the UDF we have to convert between string
streams and the UDF’s expected formats, this known over-
head for SciDB is small for this step as more time is spent
in computation compared to other steps. The TensorFlow
implementation cannot use the binary mask to reduce the
computation for each data volume. This is because Tensor-
Flow’s operations can only be applied to whole tensors and
cannot be masked. This limitation and compute graph-size
limitations contribute to slower performance of TensorFlow.
Model fitting: Figure 11d shows the runtime for the final
step in the neuroscience pipeline. There are two important
difference between denoising and model fitting. First, model
fitting is less computationally intensive compared to denois-
ing, Second, it offers a larger degree of data parallelism. For
denoising, parallelism is limited to an image volume per sub-
ject (288 image volumes per subject). This is because all of
the pixels from a single image volume are required to denoise
an image volume. For model fitting, each voxel in each image
can be processed independently, leading to 145 x 175 x 145
potential data partitions per subject that can be processes
in parallel. We implement model fitting on voxel batches
rather than individual voxels to balance the cost of schedul-
ing and benefits of parallelism. We use similar voxel batch
sizes for all systems to ensure fair comparison (~500 parti-
tions per subject). A higher degree of parallelism (more par-
titions) and smaller partition sizes (leading to smaller data
shuffling times) for this step reduce Myria’s pipelining ad-
vantage and make Spark faster. Dask is slower in this step as
larger numbers of parallel computations lead to aggressive
shuffling and job stealing, which dominate the processing
time. We suspect that this is due to Dask’s inaccurate esti-
mate of the amount of data that needs to be shuffled among
workers. This results in almost constant time for model
fitting as the number of subjects increases. SciDB is the
slowest. As the stream() interface does not support UDAs
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Figure 11: Individual step performance for Neuroscience use case (log scale
on the y-axis). Experiments run on 16 nodes.

(only UDFs), the splitting and aggregation of the denoised
images into voxel batches has to be done in AFL, which
necessiates parsing the output from the previous step (i.e.,
denoising) from a stream of strings into SciDB arrays with
the correct chunking schema, aggregating, and splitting into
voxel batches. Finally, TensorFlow shows good performance
on this step. Unlike denoising, which processe entire image
volumes, model fitting executes on voxel batches, which can
be filtered before the computation is performed. This and
TensorFlow’s efficient linear algebra implementation lead to
a faster performance on this step compared to the other
steps.

5.3 System Tuning

Finally, we evaluate the five systems on the complexity of

the tuning required to achieve high performance.
Degree of Parallelism: This key parameter depends on
three factors: (1) the number of machines in the cluster;
(2) the number of workers that execute on each machine;
and (3) the size of the data partitions that can be allocated
to workers. We evaluated the impact of the cluster size
in Section 5.1. Here, we evaluate the impact of (2) and (3).

For Myria, given a 16-node cluster, the degree of par-
allelism is entirely determined by the number of workers
per node. As in traditional parallel DBMSs, Myria hash-
partitions data across all workers by default. Figure 12
shows runtimes for different numbers of workers for the neu-
roscience use case. A larger number of workers yields a
higher degree of parallelism but workers also compete for
physical resources. For both use cases (astronomy not shown
due to space constraints), four workers per node yields the
best results. Changing the number of workers requires
reshuffling or reingesting the data, which makes tuning this
setting tedious and time-consuming.

Spark creates data partitions, which correspond to tasks,
and each worker can execute as many tasks in parallel as
available cores. The number of workers per node thus does
not impact the degree of parallelism, as long as the number
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Figure 12: 25 subjects, 16 nodes.

of cores remains the same. The number of data partitions
determines the number of tasks that can be scheduled, and
the number of cores can be restricted in Spark to increase the
memory available per core on each node. As Spark did not
run out of memory for either use case we choose to utilize all
the cores for the Spark implementation. We further discuss
memory management later in this section.

Figure 13 shows the query runtimes for different numbers
of input data partitions on Spark. On a 16-node cluster, the
decrease in runtime was dramatic between 1 and 16 parti-
tions, as an increasingly large fraction of the cluster became
utilized. The runtime continues to improve until 128 data
partitions, which is the total number of slots in the cluster
(i.e., 16 nodes x 8 cores). Increasing the number of parti-
tions from 16 to 97 resulted in 50% improvement. Further
increases did not improve performance. Interestingly, if the
number of data partitions is unspecified, Spark creates a
partition for each HDFS block. The degree of parallelism
then depends on the HDF'S block size setting.

Dask allows specifying the number of workers per node
and threads per worker. Through manual tuning, we find 8
to be the optimal number of workers per node when mem-
ory is abundant, as shown in Figure 14. Running multiple
threads per process cause data corruption as the UDFs in
Python are not all thread safe, so we use a single thread per
process. Dask’s work stealing automatically load balances
across the machines, and work-stealing does not require any
tuning.

In TensorFlow, we execute one process per machine. All
steps include data conversions, which have to be performed
on the master. These data conversions are the bottleneck,
limiting opportunities for additional tuning. For all steps,
we must partition the data such that graphs assigned to
workers are below 2GB in size. Additionally, for the denois-
ing step memory is the bottleneck requiring the assignment
of only one image volume at a time per physical machine.
The model fitting step can be parallelized at the granularity
of individual voxels and we find that TensorFlow performs
best with 128 partitions on a 16-worker configuration. In
general, we observe that TensorFlow tends to perform bet-
ter with smaller chunk sizes.

The SciDB documentation recommends [37] running one
instance per 1-2 CPU cores. The chunk size, however, is
more difficult to tune: we do not find a strong correlation
between the overall performance and common system con-
figurations. We tune the chunk size for each operation by
running the application with the same data but using dif-
ferent chunk sizes. For instance, in Step @A we find that
a chunk size of [1000 x 1000] leads to the best performance.
A chunk size of [500 x 500], for example, is 3x slower; while
chunk sizes of [1500 x 1500] and [2000 x 2000] are 22% and
55% slower, respectively.

100
Number of Partitions, Spark
Figure 13: Single subject, 16 nodes.
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Memory Management: Image analytics workloads are
memory intensive. Additionally, data allocation can be
skewed across compute nodes. For example, the astronomy
pipeline grows the data by 2.5x on average during process-
ing, but some workers experience data growth of 6x due
to skew. As a result, systems can easily run out of mem-
ory. Big data systems use different approaches to trade off
query execution time with memory consumption. We eval-
uate some of these trade-offs in this section. In particular,
we compare the performance of pipelined and materialized
query execution. With pipelined execution, data flows di-
rectly from one operator to the next without going to disk
and without synchronization barrier. Materialized query ex-
ecution in contrast writes the output of each operation to
disk and the next operation starts by reading input data
from disk. For materialized query execution, we compare
materializing intermediate results and processing subsets of
the input data at a time. Figure 10 shows the results for
the Myria system on the astronomy use case. As the fig-
ure shows, when data is small compared with the available
memory, the fastest way to execute the query is to pipeline
intermediate results from one operator to the next. This
approach is 8-11% faster in this experiment than material-
ization, and 15-23% faster than executing multiple queries.
As the ratio of data-to-memory grows, pipelining may cause
a query to fail with an out-of-memory error. Intermediate
result materialization then becomes the fastest query execu-
tion method. With even more data, the system must cut the
data analysis into even smaller pieces for execution without
failure.

In contrast to Myria, Spark automatically spills interme-
diate results to disk to avoid out-of-memory failures. Ad-
ditionally, Spark can partition data into smaller fragments
than the number of available nodes, and will process only as
many fragments as there are available slots. Both techniques
help to avoid out-of-memory failures with Spark. However,
the lack of pipelined execution causes Spark to be slower
than Myria when memory is plentiful (see also Figure 8g).

Dask supports spilling to disk, but the current implemen-
tation of this feature is not multi-process safe and thus not
suitable for our use cases. To prevent running out of memory
in Dask, we increased the memory-to-CPU ratio by reduc-
ing the number of workers on each node. For the 32-node
cluster, we reduced the number of workers to one worker
per node in the astronomy use case. On a 16-node cluster
reducing the number of workers to one did not help and the
use case could not run to completion. This was due to skew
rather than insufficient memory: 2 workers in the astronomy
use case ran out of memory and caused cascading failures.

6. SUMMARY AND FUTURE WORK

In this section, we summarize the lessons learned from three
perspectives: system developers, users, and researchers:



Developers. Engine developers can improve both the ar-
chitecture and implementation of their systems based on our
observations, some of which are already known, but their im-
portance is re-emphasized by this study. Most importantly,
we find that all evaluated systems would benefit from auto-
matically adjusting the degree of parallelism and gracefully
spilling to disk, even when individual data partitions do not
fit in memory to avoid all sources of out-of-memory failures.

Image analytics differs from other analytics in three re-
spects: the large size of individual records (i.e., image frag-
ments with metadata), heavy use of UDFs to execute com-
plex, domain-specific operations, and the multidimensional
nature of the data. Some systems, such as SciDB, have
only limited support for UDFs/UDAs in languages other
than C++. As we showed in Section 5, this significantly af-
fects performance and ease of use. In contrast, only SciDB
reasons about multidimensional array data. In all other sys-
tems, users must manually split images into fragments along
different dimensions in preparation for their analysis, which
is non-trivial.

Finally, most systems are optimized for large numbers of
small records rather than small numbers of large records.
Myria, for example, processes tuples in large batches by de-
fault. We had to change that default to reduce the number
of tuples per batch and prevent out of memory failures.

We next discuss specific recommendations for each of the
evaluated systems for running image analytical workloads.
Dask would further benefit from (1) a simpler API: e.g., re-
duce the number of ways to construct the compute graph (2)
better debuggability as noted in Section 4.1; and (3) spilling
to disk for multi-process workloads as noted in Section 5.3.
Myria would benefit from (1) automatically tuning the
number of workers per machine and making it easier to
change the number of workers as noted in Section 5.3; (2)
adding support for local combiners before shuffles for user-
defined aggregations: this would lead to fewer memory issues
in case of skew. We were able to materialize intermediate
results and split queries into multiple ones to achieve the
same result, but it required better understanding of Myria
and more effort.

Spark would benefit from (1) overlapping the shuffle phase
with the map phase to increase performance when memory
is sufficient and (2) making parallel data ingest from S3 more
efficient.

SciDB would benefit from (1) binary data format support
for the aio_input() interface; (2) support for more than
TSV and stdin-stdout for the stream() interface; (3) more
efficient methods for concatenating arrays; (4) support for
advanced control over the child process such as setting en-
vironment variables; (5) simplified procedure for multi-node
deployment; and (6) support for UDAs in the stream inter-
face.

TensorFlow would benefit from (1) removing the restric-
tion on graph size; (2) better tooling for cluster management
and scheduling; (3) distributed data ingest; and (4) support
for external libraries.

Users. For domain scientists wanting to utilize big data sys-
tems there are several considerations: (1) Re-write or re-use:
can the computation be expressed in native SQL or AQL? If
the computation is simple this may be the most performant
solution. If not, systems such as Dask, Spark, and Myria
can efficiently execute legacy Python (or other) scripts with
minimal additional code provided by the user. (2) Data par-
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titioning: turning a serial computation into a parallel one
may pose the biggest challenge to domain users. A refer-
ence implementation may or may not indicate how compu-
tation can be parallelized. Understanding data dependency
and the synchronization points in underlying computation
is crucial to ensuing correctness and performance in a big
data system.

Researchers. Our study raises a number of research
questions. Image processing involves complex analytics,
which include iterations and linear algebra operations
that must be efficiently supported in big data systems.
However, users typically have legacy code that performs
sophisticated and difficult to rewrite operations. Therefore,
they need the ability to call existing libraries. They also
need an easy mechanism to parallelize the computation:
they should be able to reason about multidimensional array
data directly rather than manually creating and processing
collections of image fragments. It should be easy to mix and
match UDF/UDA computations and pre-defined (e.g., rela-
tional) operations on complex data such as image fragments.

Our study also re-iterates the general need to efficiently
support pipelines with UDF/UDAs both during query ex-
ecution and query optimization. Image analytics implies
large tuples and larger tuples put pressure on memory man-
agement techniques, systems’ ability to shuffle data effi-
ciently, and efficient methods to pass large records back
and forth between core computation and UDFs/UDAs. This
provides another research opportunity. Finally, making big
data systems usable for scientists requires systems to be self
tuning, which is already an active research area [19].

7. RELATED WORK

Traditionally, image processing research has focused on ef-
fective indexing and querying of multi-media content [14, 11,
12]. Typical DBMS benchmarks (e.g., [43]) focus on business
intelligence computations over structured data. The Gen-
Base benchmark [41] takes this forward to focus on complex
analytics, but does not examine image data. Several recent
papers [32, 27, 8, 39] evaluate the performance of Big Data
systems, but the workload does not include image analysis.
While prior work on raw files and scientific formats [4, 9] fo-
cuses on techniques for working with them directly, it does
not offer mechanisms to work with them in big data systems
like the ones evaluated in this paper.

8. CONCLUSION

We presented the first comprehensive study of large-scale
image analytics on big data systems. We surveyed the
different paradigms of large-scale data processing platforms
using two real-world use cases from domain sciences. While
we could execute the use cases on these systems, our
analysis shows that leveraging the benefits of all systems
requires deep technical expertise. For these systems to
better support image analytics in domain sciences, they
need to simultaneously provide comprehensive support
for multidimensional data and high performance for
UDFs/UDAs written in popular languages (e.g., Python).
Additionally, they need to completely automate data and
compute distribution across a cluster and memory man-
agement to eliminate all possible sources of out-of-memory
failures. Overall, we argue that current systems provide



good support for image analytics, but they also open new
opportunities for further improvement and future research.
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