
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 963–973

Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1089

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 963–973

Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1089

Learning a Neural Semantic Parser from User Feedback

Srinivasan Iyer†�, Ioannis Konstas†, Alvin Cheung†

Jayant Krishnamurthy‡ and Luke Zettlemoyer†‡

†Paul G. Allen School of Computer Science & Engineering, Univ. of Washington, Seattle, WA

{sviyer,ikonstas,akcheung,lsz}@cs.washington.edu

‡Allen Institute for Artificial Intelligence, Seattle, WA

{jayantk,lukez}@allenai.org

Abstract

We present an approach to rapidly and

easily build natural language interfaces to

databases for new domains, whose perfor-

mance improves over time based on user

feedback, and requires minimal interven-

tion. To achieve this, we adapt neural se-

quence models to map utterances directly

to SQL with its full expressivity, bypass-

ing any intermediate meaning representa-

tions. These models are immediately de-

ployed online to solicit feedback from real

users to flag incorrect queries. Finally,

the popularity of SQL facilitates gathering

annotations for incorrect predictions using

the crowd, which is directly used to im-

prove our models. This complete feedback

loop, without intermediate representations

or database specific engineering, opens up

new ways of building high quality seman-

tic parsers. Experiments suggest that this

approach can be deployed quickly for any

new target domain, as we show by learning

a semantic parser for an online academic

database from scratch.

1 Introduction

Existing semantic parsing approaches for building

natural language interfaces to databases (NLIDBs)

either use special-purpose intermediate meaning

representations that lack the full expressivity of

database query languages or require extensive fea-

ture engineering, making it difficult to deploy

them in new domains. We present a robust ap-

proach to quickly and easily learn and deploy se-

mantic parsers from scratch, whose performance

�Work done partly during an internship at the Allen Insti-
tute for Artificial Intelligence.

Most recent papers of Michael I. Jordan

SELECT paper.paperId , paper.year

FROM paper , writes , author

WHERE paper.paperId = writes.paperId

AND writes.authorId = author.authorId

AND author.authorName = "michael i. jordan"

AND paper.year =

(SELECT max(paper.year)

FROM paper , writes , author

WHERE paper.paperId = writes.paperId

AND writes.authorId = author.authorId

AND author.authorName = "michael i. jordan");

I’d like to book a flight from San Diego to Toronto

SELECT DISTINCT f1.flight_id

FROM flight f1, airport_service a1, city c1,

airport_service a2, city c2

WHERE f1.from_airport = a1.airport_code

AND a1.city_code = c1.city_code

AND c1.city_name = 'san diego'

AND f1.to_airport = a2.airport_code

AND a2.city_code = c2.city_code

AND c2.city_name = 'toronto ';

Figure 1: Utterances with corresponding SQL

queries to answer them for two domains, an aca-

demic database and a flight reservation database.

improves over time based on user feedback, and

requires very little expert intervention.

To learn these semantic parsers, we (1) adapt

neural sequence models to map utterances directly

to SQL thereby bypassing intermediate represen-

tations and taking full advantage of SQL’s query-

ing capabilities, (2) immediately deploy the model

online to solicit questions and user feedback on

results to reduce SQL annotation efforts, and (3)

use crowd workers from skilled markets to pro-

vide SQL annotations that can directly be used for

model improvement, in addition to being easier

and cheaper to obtain than logical meaning rep-

resentations. We demonstrate the effectiveness of

the complete approach by successfully learning a

semantic parser for an academic domain by simply

deploying it online for three days.

This type of interactive learning is related to a

number of recent ideas in semantic parsing, in-

963

cluding batch learning of models that directly pro-

duce programs (e.g., regular expressions (Locas-

cio et al., 2016)), learning from paraphrases (of-

ten gathered through crowdsourcing (Wang et al.,

2015)), data augmentation (e.g. based on man-

ually engineered semantic grammars (Jia and

Liang, 2016)) and learning through direct interac-

tion with users (e.g., where a single user teaches

the model new concepts (Wang et al., 2016)).

However, there are unique advantages to our ap-

proach, including showing (1) that non-linguists

can write SQL to encode complex, compositional

computations (see Fig 1 for an example), (2) that

external paraphrase resources and the structure of

facts from the target database itself can be used

for effective data augmentation, and (3) that ac-

tual database users can effectively drive the overall

learning by simply providing feedback about what

the model is currently getting correct.

Our experiments measure the performance of

these learning advances, both in batch on existing

datasets and through a simple online experiment

for the full interactive setting. For the batch evalu-

ation, we use sentences from the benchmark Geo-

Query and ATIS domains, converted to contain

SQL meaning representations. Our neural learn-

ing with data augmentation achieves reasonably

high accuracies, despite the extra complexities of

mapping directly to SQL. We also perform sim-

ulated interactive learning on this data, showing

that with perfect user feedback our full approach

could learn high quality parsers with only 55% of

the data. Finally, we do a small scale online exper-

iment for a new domain, academic paper metadata

search, demonstrating that actual users can pro-

vide useful feedback and our full approach is an

effective method for learning a high quality parser

that continues to improve over time as it is used.

2 Related Work

Although diverse meaning representation lan-

guages have been used with semantic parsers –

such as regular expressions (Kushman and Barzi-

lay, 2013; Locascio et al., 2016), Abstract Mean-

ing Representations (AMR) (Artzi et al., 2015;

Misra and Artzi, 2016), and systems of equations

(Kushman et al., 2014; Roy et al., 2016) – parsers

for querying databases have typically used either

logic programs (Zelle and Mooney, 1996), lambda

calculus (Zettlemoyer and Collins, 2005), or λ-

DCS (Liang et al., 2013) as the meaning represen-

tation language. All three of these languages are

modeled after natural language to simplify pars-

ing. However, none of them is used to query

databases outside of the semantic parsing litera-

ture; therefore, they are understood by few peo-

ple and not supported by standard database imple-

mentations. In contrast, we parse directly to SQL,

which is a popular database query language with

wide usage and support. Learning parsers directly

from SQL queries has the added benefit that we

can potentially hire programmers on skilled-labor

crowd markets to provide labeled examples, such

as UpWork1, which we demonstrate in this work.

A few systems have been developed to di-

rectly generate SQL queries from natural lan-

guage (Popescu et al., 2003; Giordani and Mos-

chitti, 2012; Poon, 2013). However, all of these

systems make strong assumptions on the struc-

ture of queries: they use manually engineered

rules that can only generate a subset of SQL, re-

quire lexical matches between question tokens and

table/column names, or require questions to have

a certain syntactic structure. In contrast, our ap-

proach can generate arbitrary SQL queries, only

uses lexical matching for entity names, and does

not depend on syntactic parsing.

We use a neural sequence-to-sequence model to

directly generate SQL queries from natural lan-

guage questions. This approach builds on recent

work demonstrating that such models are effective

for tasks such as machine translation (Bahdanau

et al., 2015) and natural language generation (Kid-

don et al., 2016). Recently, neural models have

been successfully applied to semantic parsing with

simpler meaning representation languages (Dong

and Lapata, 2016; Jia and Liang, 2016) and short

regular expressions (Locascio et al., 2016). Our

work extends these results to the task of SQL

generation. Finally, Ling et al. (2016) generate

Java/Python code for trading cards given a natural

language description; however, this system suffers

from low overall accuracy.

A final direction of related work studies meth-

ods for reducing the annotation effort required to

train a semantic parser. Semantic parsers have

been trained from various kinds of annotations,

including labeled queries (Zelle and Mooney,

1996; Wong and Mooney, 2007; Zettlemoyer and

Collins, 2005), question/answer pairs (Liang et al.,

2013; Kwiatkowski et al., 2013; Berant et al.,

1
http://www.upwork.com

964

2013), distant supervision (Krishnamurthy and

Mitchell, 2012; Choi et al., 2015), and binary

correct/incorrect feedback signals (Clarke et al.,

2010; Artzi and Zettlemoyer, 2013). Each of these

schemes presents a particular trade-off between

annotation effort and parser accuracy; however, re-

cent work has suggested that labeled queries are

the most effective (Yih et al., 2016). Our approach

trains on fully labeled SQL queries to maximize

accuracy, but uses binary feedback from users to

reduce the number of queries that need to be la-

beled. Annotation effort can also be reduced by

using crowd workers to paraphrase automatically

generated questions (Wang et al., 2015); however,

this approach may not generate the questions that

users actually want to ask the database – an ex-

periment in this paper demonstrated that 48% of

users’ questions in a calendar domain could not be

generated.

3 Feedback-based Learning

Our feedback-based learning approach can be

used to quickly deploy semantic parsers to cre-

ate NLIDBs for any new domain. It is a simple

interactive learning algorithm that deploys a pre-

liminary semantic parser, then iteratively improves

this parser using user feedback and selective query

annotation. A key requirement of this algorithm

is the ability to cheaply and efficiently annotate

queries for chosen user utterances. We address this

requirement by developing a model that directly

outputs SQL queries (Section 4), which can also

be produced by crowd workers.

Our algorithm alternates between stages of

training the model and making predictions to

gather user feedback, with the goal of improv-

ing performance in each successive stage. The

procedure is described in Algorithm 1. Our neu-

ral model N is initially trained on synthetic data

T generated by domain-independent schema tem-

plates (see Section 4), and is then ready to answer

new user questions, n. The results R of execut-

ing the predicted SQL query q are presented to the

user who provides a binary correct/incorrect feed-

back signal. If the user marks the result correct,

the pair (n, q) is added to the training set. If the

user marks the result incorrect, the algorithm asks

a crowd worker to annotate the utterance with the

correct query, q̂, and adds (n, q̂) to the training

set. This procedure can be repeated indefinitely,

ideally increasing parser accuracy and requesting

fewer annotations in each successive stage.

1 Procedure LEARN(schema)

2 T ← initial data(schema)

3 while true do

4 T ← T ∪ paraphrase(T)

5 N ← train model(T)

6 for n ∈ new utterances do

7 q ← predict(N , n)

8 R ← execute(q)

9 f ← feedback(R)

10 if f = correct then

11 T ← T ∪ (n, q)
12 else if f = wrong then

13 q̂ ← annotate(n)

14 T ← T ∪ (n, q̂)

15 end

16 end

17 end

18 end

Algorithm 1: Feedback-based learning.

4 Semantic Parsing to SQL

We use a neural sequence-to-sequence model

for mapping natural language questions directly

to SQL queries and this allows us to scale

our feedback-based learning approach, by easily

crowdsourcing labels when necessary. We further

present two data augmentation techniques which

use content from the database schema and exter-

nal paraphrase resources.

4.1 Model

We use an encoder-decoder model with global

attention, similar to Luong et al. (2015), where

the anonymized utterance (see Section 4.2) is

encoded using a bidirectional LSTM network,

then decoded to directly predict SQL query to-

kens. Fixed pre-trained word embeddings from

word2vec (Mikolov et al., 2013) are concatenated

to the embeddings that are learned for source to-

kens from the training data. The decoder predicts

a conditional probability distribution over possi-

ble values for the next SQL token given the pre-

vious tokens using a combination of the previous

SQL token embedding, attention over the hidden

states of the encoder network, and an attention sig-

nal from the previous time step.

Formally, if qi represents an embedding for the

965

ith SQL token qi, the decoder distribution is

p(qi|q1, . . . , qi−1) ∝ exp (W tanh(Ŵ[hi : ci]))

where hi represents the hidden state output of the

decoder LSTM at the ith timestep, ci represents

the context vector generated using an attention

weighted sum of encoder hidden states based on

hi, and, W and Ŵ are linear transformations. If

sj is the hidden representation generated by the en-

coder for the jth word in the utterance (k words

long), then the context vectors are defined to be:

ci =
k∑

j=1

αi,j · sj

The attention weights αi,j are computed using an

inner product between the decoder hidden state for

the current timestep hi, and the hidden representa-

tion of the jth source token sj:

αi,j =
exp(hi

TFsj)∑k
j=1

exp(hi
TFsj)

where F is a linear transformation. The decoder

LSTM cell f computes the next hidden state hi,

and cell state, mi, based on the previous hidden

and cell states, hi−1,mi−1, the embeddings of the

previous SQL token qi−1 and the context vector

of the previous timestep, ci−1

hi,mi = f(hi−1,mi−1,qi−1, ci−1)

We apply dropout on non-recurrent connections

for regularization, as suggested by Pham et al.

(2014). Beam search is used for decoding the SQL

queries after learning.

4.2 Entity Anonymization

We handle entities in the utterances and SQL by

replacing them with their types, using incremental

numbering to model multiple entities of the same

type (e.g., CITY NAME 1). During training, when

the SQL is available, we infer the type from the

associated column name; for example, Boston is

a city in city.city name = ’Boston’. To rec-

ognize entities in the utterances at test time, we

build a search engine on all entities from the target

database. For every span of words (starting with a

high span size and progressively reducing it), we

query the search engine using a TF-IDF scheme

to retrieve the entity that most closely matches the

span, then replace the span with the entity’s type.

We store these mappings and apply them to the

generated SQL to fill in the entity names. TF-IDF

matching allows some flexibility in matching en-

tity names in utterances, for example, a user could

say Donald Knuth instead of Donald E. Knuth.

4.3 Data Augmentation

We present two data augmentation strategies that

either (1) provide the initial training data to start

the interactive learning, before more labeled ex-

amples become available, or (2) use external para-

phrase resources to improve generalization.

Schema Templates To bootstrap the model to

answer simple questions initially, we defined 22

language/SQL templates that are schema-agnostic,

so they can be applied to any database. These tem-

plates contain slots whose values are populated

given a database schema. An example template

is shown in Figure 2a. The <ENT> types repre-

sent tables in the database schema, <ENT>.<COL>

represents a column in the particular table and

<ENT>.<COL>.<TYPE> represents the type associ-

ated with the particular column. A template is

instantiated by first choosing the entities and at-

tributes. Next, join conditions, i.e., JOIN FROM and

JOIN WHERE clauses, are generated from the tables

on the shortest path between the chosen tables in

the database schema graph, which connects tables

(graph nodes) using foreign key constraints. Fig-

ure 2b shows an instantiation of a template using

the path author - writes - paper - paperdataset -

dataset. SQL queries generated in this manner are

guaranteed to be executable on the target database.

On the language side, an English name of each en-

tity is plugged into the template to generate an ut-

terance for the query.

Paraphrasing The second data augmentation

strategy uses the Paraphrase Database (PPDB)

(Ganitkevitch et al., 2013) to automatically gener-

ate paraphrases of training utterances. Such meth-

ods have been recently used to improve perfor-

mance for parsing to logical forms (Chen et al.,

2016). PPDB contains over 220 million para-

phrase pairs divided into 6 sets (small to XXXL)

based on precision of the paraphrases. We use the

one-one and one-many paraphrases from the large

version of PPDB. To paraphrase a training utter-

ance, we pick a random word in the utterance that

is not a stop word or entity and replace it with a

random paraphrase. We perform paraphrase ex-

pansion on all examples labeled during learning,

as well as the initial seed examples from schema

templates.

966

Get all <ENT1>.<NAME> having
<ENT2>.<COL1>.<NAME> as <ENT2>.<COL1>.<TYPE>

SELECT <ENT1>.<DEF> FROM JOIN_FROM(<ENT1>, <ENT2>)
WHERE JOIN_WHERE(<ENT1>, <ENT2>) AND
 <ENT2>.<COL1> = <ENT2>.<COL1>.<TYPE>

(a) Schema template

SELECT author.authorId
FROM author , writes , paper , paperDataset , dataset
WHERE author.authorId = writes.authorId
 AND writes.paperId = paper.paperId
 AND paper.paperId = paperDataset.paperId
 AND paperDataset.datasetId = dataset.datasetId
 AND dataset.datasetName = DATASET_TYPE

Get all author having dataset as DATASET_TYPE

(b) Generated utterance-SQL pair

Figure 2: (a) Example schema template consist-

ing of a question and SQL query with slots to be

filled with database entities, columns, and values;

(b) Entity-anonymized training example generated

by applying the template to an academic database.

5 Benchmark Experiments

Our first set of experiments demonstrates that our

semantic parsing model has comparable accuracy

to previous work, despite the increased difficulty

of directly producing SQL. We demonstrate this

result by running our model on two benchmark

datasets for semantic parsing, GEO880 and ATIS.

5.1 Data sets

GEO880 is a collection of 880 utterances issued

to a database of US geographical facts (Geobase),

originally in Prolog format. Popescu et al. (2003)

created a relational database schema for Geobase

together with SQL queries for a subset of 700 ut-

terances. To compare against prior work on the

full corpus, we annotated the remaining utterances

and used the standard 600/280 training/test split

(Zettlemoyer and Collins, 2005).

ATIS is a collection of 5,418 utterances to a

flight booking system, accompanied by a rela-

tional database and SQL queries to answer the

questions. We use 4,473 utterances for training,

497 for development and 448 for test, follow-

ing Kwiatkowski et al. (2011). The original SQL

queries were very inefficient to execute due to the

use of IN clauses, so we converted them to joins

(Ramakrishnan and Gehrke, 2003) while verifying

that the output of the queries was unchanged.

Table 1 shows characteristics of both data sets.

GEO880 has shorter queries but is more compo-

sitional: almost 40% of the SQL queries have at

Geo880 ATIS SCHOLAR

Avg. NL length 7.56 10.97 6.69
NL vocab size 151 808 303

Avg. SQL length 16.06 67.01 28.85
SQL vocab size 89 605 163
% Subqueries > 1 39.8 12.42 2.58
Tables 1.19 5.88 3.33

Table 1: Utterance and SQL query statistics for

each dataset. Vocabulary sizes are counted after

entity anonymization.

least one nested subquery. ATIS has the longest

utterances and queries, with an average utterance

length of 11 words and an average SQL query

length of 67 tokens. They also operate on approx-

imately 6 tables per query on average. We will

release our processed versions of both datasets.

5.2 Experimental Methodology

We follow a standard train/dev/test methodology

for our experiments. The training set is augmented

using schema templates and 3 paraphrases per

training example, as described in Section 4. Ut-

terances were anonymized by replacing them with

their corresponding types and all words that occur

only once were replaced by UNK symbols. The

development set is used for hyperparameter tun-

ing and early stopping. For GEO880, we use cross

validation on the training set to tune hyperparam-

eters. We used a minibatch size of 100 and used

Adam (Kingma and Ba, 2015) with a learning rate

of 0.001 for 70 epochs for all our experiments. We

used a beam size of 5 for decoding. We report test

set accuracy of our SQL query predictions by exe-

cuting them on the target database and comparing

the result with the true result.

5.3 Results

Tables 2 and 3 show test accuracies based on de-

notations for our model on GEO880 and ATIS re-

spectively, compared with previous work.2 To our

knowledge, this is the first result on directly pars-

ing to SQL to achieve comparable performance

to prior work without using any database-specific

feature engineering. Popescu et al. (2003) and

Giordani and Moschitti (2012) also directly pro-

duce SQL queries but on a subset of 700 examples

from GEO880. The former only works on seman-

tically tractable utterances where words can be un-

2Note that 2.8% of GEO880 and 5% ATIS gold test set
SQL queries (before any processing) produced empty results.

967

System Acc.

Ours (SQL) 82.5

Popescu et al. (2003) (SQL) 77.5∗

Giordani and Moschitti (2012) (SQL) 87.2∗

Dong and Lapata (2016) 84.6�†

Jia and Liang (2016) 89.3�

Liang et al. (2013) 91.1�

Table 2: Accuracy of SQL query results on the

Geo880 corpus; ∗ use Geo700; � convert to logi-

cal forms instead of SQL; † measure accuracy in

terms of obtaining the correct logical form, other

systems, including ours, use denotations.

System Acc.

Ours (SQL) 79.24

GUSP (Poon, 2013) (SQL) 74.8

GUSP++ (Poon, 2013) (SQL) 83.5

Zettlemoyer and Collins (2007) 84.6�†

Dong and Lapata (2016) 84.2�†

Jia and Liang (2016) 83.3�

Wang et al. (2014) 91.3�†

Table 3: Accuracy of SQL query results on ATIS;
� convert to logical forms instead of SQL; † mea-

sure accuracy in terms of obtaining the correct log-

ical form, other systems, including ours, use deno-

tations.

ambiguously mapped to schema elements, while

the latter uses a reranking approach that also lim-

its the complexity of SQL queries that can be han-

dled. GUSP (Poon, 2013) creates an intermediate

representation that is then deterministically con-

verted to SQL to obtain an accuracy of 74.8% on

ATIS, which is boosted to 83.5% using manually

introduced disambiguation rules. However, it re-

quires a lot of SQL specific engineering (for ex-

ample, special nodes for argmax) and is hard to

extend to more complex SQL queries.

On both datasets, our SQL model achieves rea-

sonably high accuracies approaching that of the

best non-SQL results. Most relevant to this work

are the neural sequence based approaches of Dong

and Lapata (2016) and Jia and Liang (2016). We

note that Jia and Liang (2016) use a data recombi-

nation technique that boosts accuracy from 85.0 on

GEO880 and 76.3 on ATIS; this technique is also

compatible with our model and we hope to experi-

System GEO880 ATIS

Ours 84.8 86.2

- paraphrases 81.8 84.3

- templates 84.7 85.7

Table 4: Addition of paraphrases to the training set

helps performance, but template based data aug-

mentation does not significantly help in the fully

supervised setting. Accuracies are reported on the

standard dev set for ATIS and on the training set,

using cross-validation, for Geo880.

ment with this in future work. Our results demon-

strate that these models are powerful enough to di-

rectly produce SQL queries. Thus, our methods

enable us to utilize the full expressivity of the SQL

language without any extensions that certain log-

ical representations require to answer more com-

plex queries. More importantly, it can be imme-

diately deployed for users in new domains, with a

large programming community available for anno-

tation, and thus, fits effectively into a framework

for interactive learning.

We perform ablation studies on the develop-

ment sets (see Table 4) and find that paraphras-

ing using PPDB consistently helps boost perfor-

mance. However, unlike in the interactive ex-

periments (Section 6), data augmentation using

schema templates does not improve performance

in the fully supervised setting.

6 Interactive Learning Experiments

In this section, we learn a semantic parser for an

academic domain from scratch by deploying an

online system using our interactive learning algo-

rithm (Section 3). After three train-deploy cycles,

the system correctly answered 63.51% of user’s

questions. To our knowledge, this is the first effort

to learn a semantic parser using a live system, and

is enabled by our models that can directly parse

language to SQL without manual intervention.

6.1 User Interface

We developed a web interface for accepting nat-

ural language questions to an academic database

from users, using our model to generate a SQL

query, and displaying the results after execution.

Several example utterances are also displayed to

help users understand the domain. Together with

the results of the generated SQL query, users are

prompted to provide feedback which is used for

968

interactive learning. Screenshots of our interface

are included in our Supplementary Materials.

Collecting accurate user feedback on predicted

queries is a key challenge in the interactive learn-

ing setting for two reasons. First, the system’s re-

sults can be incorrect due to poor entity identifi-

cation or incompleteness in the database, neither

of which are under the semantic parser’s control.

Second, it can be difficult for users to determine if

the presented results are in fact correct. This de-

termination is especially challenging if the system

responds with the correct type of result, for exam-

ple, if the user requests “papers at ACL 2016” and

the system responds with all ACL papers.

We address this challenge by providing users

with two assists for understanding the system’s

behavior, and allowing users to provide more

granular feedback than simply correct/incorrect.

The first assist is type highlighting, which high-

lights entities identified in the utterance, for ex-

ample, “paper by Michael I. Jordan (AUTHOR)

in ICRA (VENUE) in 2016 (YEAR).” This as-

sist is especially helpful because the academic

database contains noisy keyword and dataset ta-

bles that were automatically extracted from the pa-

pers. The second assist is utterance paraphras-

ing, which shows the user another utterance that

maps to the same SQL query. For example, for the

above query, the system may show “what papers

does Michael I. Jordan (AUTHOR) have in ICRA

(VENUE) in 2016 (YEAR).” This assist only ap-

pears if a matching query (after entity anonymiza-

tion) exists in the model’s training set.

Using these assists and the predicted results,

users are asked to select from five feedback op-

tions: Correct, Wrong Types, Incomplete Result,

Wrong Result and Can’t Tell. The Correct and

Wrong Result options represent scenarios when

the user is satisfied with the result, or the result

is identifiably wrong, respectively. Wrong Types

indicates incorrect entity identification, which can

be determined from type highlighting. Incomplete

Result indicates that the query is correct but the

result is not; this outcome can occur because the

database is incomplete. Can’t Tell indicates that

the user is unsure about the feedback to provide.

6.2 Three-Stage Online Experiment

In this experiment, using our developed user in-

terface, we use Algorithm 1 to learn a semantic

parser from scratch. The experiment had three

stages; in each stage, we recruited 10 new users

(computer science graduate students) and asked

them to issue at least 10 utterances each to the

system and to provide feedback on the results.

We considered results marked as either Correct

or Incomplete Result as correct queries for learn-

ing. The remaining incorrect utterances were sent

to a crowd worker for annotation and were used

to retrain the system for the next stage. The

crowd worker had prior experience in writing SQL

queries and was hired from Upwork after complet-

ing a short SQL test. The worker was also given

access to the database to be able to execute the

queries and ensure that they are correct. For the

first stage, the system was trained using 640 ex-

amples generated using templates, that were aug-

mented to 1746 examples using paraphrasing (see

Section 4.3). The complexity of the utterances is-

sued in each of the three phases were compara-

ble, in that, the average length of the correct SQL

query for the utterances, and the number of tables

required to be queried, were similar.

Table 5 shows the percent of utterances judged

by users as either Correct or Incomplete Result

in each stage. In the first stage, we do not have

any labeled examples, and the model is trained us-

ing only synthetically generated data from schema

templates and paraphrases (see Section 4.3). De-

spite the lack of real examples, the system cor-

rectly answers 25% of questions. The system’s ac-

curacy increases and annotation effort decreases in

each successive stage as additional utterances are

contributed and incorrect utterances are labeled.

This result demonstrates that we can successfully

build semantic parsers for new domains by us-

ing neural models to generate SQL with crowd-

sourced annotations driven by user feedback.

We analyzed the feedback signals provided by

the users in the final stage of the experiment to

measure the quality of feedback. We found that

22.3% of the generated queries did not execute

(and hence were incorrect). 6.1% of correctly gen-

erated queries were marked wrong by users (see

Table 6). This erroneous feedback results in re-

dundant annotation of already correct examples.

The main cause of this erroneous feedback was in-

complete data for aggregation queries, where users

chose Wrong instead of Incomplete. 6.3% of in-

correct queries were erroneously deemed correct

by users. It is important that this fraction be low,

as these queries become incorrectly-labeled exam-

969

Stage 1 Stage 2 Stage 3

Accuracy (%) 25 53.7 63.5

Table 5: Percentage of utterances marked as Cor-

rect or Incomplete by users, in each stage of our

online experiment.

Feedback Error Rate (%)

Correct SQL 6.1

Incorrect SQL 6.3

Table 6: Error rates of user feedback when the

SQL is correct and incorrect. The Correct and

Incomplete results options are erroneous if the

SQL query is correct, and vice versa for incorrect

queries.

ples in the training set that may contribute to the

deterioration of model accuracy over time. This

quality of feedback is already sufficient for our

neural models to improve with usage, and creating

better interfaces to make feedback more accurate

is an important task for future work.

6.3 SCHOLAR dataset

We release a new semantic parsing dataset for aca-

demic database search using the utterances gath-

ered in the user study. We augment these la-

beled utterances with additional utterances labeled

by crowd workers. (Note that these additional

utterances were not used in the online experi-

ment). The final dataset comprises 816 natural

language utterances labeled with SQL, divided

into a 600/216 train/test split. We also provide a

database on which to execute these queries con-

taining academic papers with their authors, cita-

tions, journals, keywords and datasets used. Ta-

ble 1 shows statistics of this dataset. Our parser

achieves an accuracy of 67% on this train/test split

in the fully supervised setting. In comparison, a

nearest neighbor strategy that uses the cosine simi-

larity metric using a TF-IDF representation for the

utterances yields an accuracy of 52.75%.

We found that 15% of the predicted queries did

not execute, predominantly owing to (1) access-

ing table columns without joining with those ta-

bles, and (2) generating incorrect types that could

not be deanonymized using the utterance. The

main types of errors in the remaining well-formed

queries that produced incorrect results were (1)

portions of the utterance (such as ‘top’ and ‘cited

by both’) were ignored, and (2) some types from

the utterance were not transferred to the SQL

query.

2 4 6 8 10 12
Stages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

tio
n

Co
rre

ct

Simulated Interactive Learning on Geo880

Ours
Without templates
Without paraphrasing

2 4 6 8 10 12
Stages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac
tio

n
Co

rre
ct

Simulated Interactive Learning on ATIS

Ours
Without templates
Without paraphrasing

Figure 3: Accuracy as a function of batch num-

ber in simulated interactive learning experiments

on Geo880 (top) and ATIS (bottom).

6.4 Simulated Interactive Experiments

We conducted additional simulated interactive

learning experiments using GEO880 and ATIS to

better understand the behavior of our train-deploy

feedback loop, the effects of our data augmen-

tation approaches, and the annotation effort re-

quired. We randomly divide each training set into

K batches and present these batches sequentially

to our interactive learning algorithm. Correctness

feedback is provided by comparing the result of

the predicted query to the gold query, i.e., we as-

sume that users are able to perfectly distinguish

correct results from incorrect ones.

Figure 3 shows accuracies on GEO880 and

ATIS respectively of each batch when the model

is trained on all previous batches. As in the live

experiment, accuracy improves with successive

batches. Data augmentation using templates helps

in the initial stages of GEO880, but its advantage

970

Batch Size 150 100 50

% Wrong 70.2 60.4 54.3

Table 7: Percentage of examples that required an-

notation (i.e., where the model initially made an

incorrect prediction) on GEO880 vs. batch size.

is reduced as more labeled data is obtained. Tem-

plates did not improve accuracy on ATIS, possibly

because most ATIS queries involve two entities,

i.e., a source city and a destination city, whereas

our templates only generate questions with a sin-

gle entity type. Nevertheless, templates are impor-

tant in a live system to motivate users to interact

with it in early stages. As observed before, para-

phrasing improves performance at all stages.

Table 7 shows the percent of examples that

require annotation using various batch sizes for

GEO880. Smaller batch sizes reduce annota-

tion effort, with a batch size of 50 requiring only

54.3% of the examples to be annotated. This re-

sult demonstrates that more frequent deployments

of improved models leads to fewer mistakes.

7 Conclusion

We describe an approach to rapidly train a seman-

tic parser as a NLIDB that iteratively improves

parser accuracy over time while requiring mini-

mal intervention. Our approach uses an attention-

based neural sequence-to-sequence model, with

data augmentation from the target database and

paraphrasing, to parse utterances to SQL. This

model is deployed in an online system, where user

feedback on its predictions is used to select utter-

ances to send for crowd worker annotation.

We find that the semantic parsing model is

comparable in performance to previous systems

that either map from utterances to logical forms,

or generate SQL, on two benchmark datasets,

GEO880 and ATIS. We further demonstrate the

effectiveness of our online system by learning a

semantic parser from scratch for an academic do-

main. A key advantage of our approach is that it

is not language-specific, and can easily be ported

to other commonly used query languages, such as

SPARQL or ElasticSearch. Finally, we also re-

lease a new dataset of utterances and SQL queries

for an academic domain.

Acknowledgments

The research was supported in part by DARPA,

under the DEFT program through the AFRL

(FA8750-13-2-0019), the ARO (W911NF-16-1-

0121), the NSF (IIS-1252835, IIS-1562364, IIS-

1546083, IIS-1651489, CNS-1563788), the DOE

(DE-SC0016260), an Allen Distinguished Investi-

gator Award, and gifts from NVIDIA, Adobe, and

Google. The authors thank Rik Koncel-Kedziorski

and the anonymous reviewers for their helpful

comments.

References

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1699–
1710. https://doi.org/10.18653/v1/D15-1198.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Asso-
ciation for Computational Linguistics 1(1):49–62.
http://aclweb.org/anthology/Q13-1005.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings
of the 2015 International Conference on Learn-
ing Representations. CBLS, San Diego, California.
http://arxiv.org/abs/1409.0473.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Free-
base from question-answer pairs. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1533–1544.
http://aclweb.org/anthology/D13-1160.

Bo Chen, Le Sun, Xianpei Han, and Bo An. 2016.
Sentence rewriting for semantic parsing. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 766–777.
http://www.aclweb.org/anthology/P16-1073.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettle-
moyer. 2015. Scalable semantic parsing with par-
tial ontologies. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 1311–1320. https://doi.org/10.3115/v1/P15-
1127.

971

James Clarke, Dan Goldwasser, Ming-Wei Chang,
and Dan Roth. 2010. Driving semantic pars-
ing from the world’s response. In Proceed-
ings of the Fourteenth Conference on Compu-
tational Natural Language Learning. Associa-
tion for Computational Linguistics, pages 18–27.
http://aclweb.org/anthology/W10-2903.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 33–43.
https://doi.org/10.18653/v1/P16-1004.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of the 2013 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies. Association for
Computational Linguistics, pages 758–764.
http://aclweb.org/anthology/N13-1092.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to SQL queries with gener-
ative parsers discriminatively reranked. In Pro-
ceedings of COLING 2012: Posters. The COL-
ING 2012 Organizing Committee, pages 401–410.
http://aclweb.org/anthology/C12-2040.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 12–22.
https://doi.org/10.18653/v1/P16-1002.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with
neural checklist models. In Proceedings of
the 2016 Conference on Empirical Methods
in Natural Language Processing. Association
for Computational Linguistics, pages 329–339.
http://aclweb.org/anthology/D16-1032.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning. Associ-
ation for Computational Linguistics, pages 754–765.
http://aclweb.org/anthology/D12-1069.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automat-
ically solve algebra word problems. In Pro-
ceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Baltimore, Maryland, pages 271–281.
http://www.aclweb.org/anthology/P14-1026.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Seattle, Washington, USA, pages
1545–1556. http://www.aclweb.org/anthology/D13-
1161.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic pars-
ing. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, pages
1512–1523. http://aclweb.org/anthology/D11-1140.

Percy Liang, I. Michael Jordan, and Dan Klein.
2013. Learning dependency-based compositional
semantics. Computational Linguistics 39(2).
https://doi.org/10.1162/COLI a 00127.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Moritz Karl Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 599–
609. https://doi.org/10.18653/v1/P16-1057.

Nicholas Locascio, Karthik Narasimhan, Eduardo
De Leon, Nate Kushman, and Regina Barzi-
lay. 2016. Neural generation of regular expres-
sions from natural language with minimal do-
main knowledge. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1918–1923.
https://aclweb.org/anthology/D16-1197.

Thang Luong, Hieu Pham, and D. Christopher Man-
ning. 2015. Effective approaches to attention-
based neural machine translation. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1412–1421.
https://doi.org/10.18653/v1/D15-1166.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Kumar Dipendra Misra and Yoav Artzi. 2016. Neu-
ral shift-reduce CCG semantic parsing. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association

972

for Computational Linguistics, pages 1775–1786.
http://aclweb.org/anthology/D16-1183.

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour.
2014. Dropout improves recurrent neural net-
works for handwriting recognition. In 2014
14th International Conference on Frontiers
in Handwriting Recognition. pages 285–290.
https://doi.org/10.1109/ICFHR.2014.55.

Hoifung Poon. 2013. Grounded unsupervised se-
mantic parsing. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 933–943.
http://aclweb.org/anthology/P13-1092.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces.
ACM, pages 149–157.

Raghu Ramakrishnan and Johannes Gehrke. 2003.
Database Management Systems. McGraw-Hill,
Inc., New York, NY, USA, 3 edition.

Subhro Roy, Shyam Upadhyay, and Dan Roth.
2016. Equation parsing : Mapping sen-
tences to grounded equations. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1088–1097.
http://aclweb.org/anthology/D16-1117.

Adrienne Wang, Tom Kwiatkowski, and Luke Zettle-
moyer. 2014. Morpho-syntactic lexical generaliza-
tion for CCG semantic parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1284–1295.
https://doi.org/10.3115/v1/D14-1135.

I. Sida Wang, Percy Liang, and D. Christopher Man-
ning. 2016. Learning language games through
interaction. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 2368–2378.
https://doi.org/10.18653/v1/P16-1224.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1332–1342.
https://doi.org/10.3115/v1/P15-1129.

Wah Yuk Wong and Raymond Mooney. 2007. Gener-
ation by inverting a semantic parser that uses sta-
tistical machine translation. In Human Language
Technologies 2007: The Conference of the North

American Chapter of the Association for Compu-
tational Linguistics; Proceedings of the Main Con-
ference. Association for Computational Linguistics,
pages 172–179. http://aclweb.org/anthology/N07-
1022.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base ques-
tion answering. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 201–206.
https://doi.org/10.18653/v1/P16-2033.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for
parsing to logical form. In Proceedings of
the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL). http://aclweb.org/anthology/D07-1071.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: struc-
tured classification with probabilistic categorial
grammars. In UAI ’05, Proceedings of the 21st Con-
ference in Uncertainty in Artificial Intelligence.

973

	Learning a Neural Semantic Parser from User Feedback

