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Abstract

Analyzing data representing multifarious trajectories is
central to the many fields in Science and Engineering; for
example, trajectories representing a tennis serve, a gym-
nast’s parallel bar routine, progression/remission of dis-
ease and so on. We present a novel geometric algorithm
for performing statistical analysis of trajectories with dis-
tinct number of samples representing longitudinal (or tem-
poral) data. A key feature of our proposal is that unlike
existing schemes, our model is deployable in regimes where
each participant provides a different number of acquisitions
(trajectories have different number of sample points or tem-
poral span). To achieve this, we develop a novel method
involving the parallel transport of the tangent vectors along
each given trajectory to the starting point of the respec-
tive trajectories and then use the span of the matrix whose
columns consist of these vectors, to construct a linear sub-
space in R™. We then map these linear subspaces (possibly
of distinct dimensions) of R™ on to a single high dimen-
sional hypersphere. This enables computing group statis-
tics over trajectories by instead performing statistics on the
hypersphere (equipped with a simpler geometry). Given a
point on the hypersphere representing a trajectory, we also
provide a “reverse mapping” algorithm to uniquely (under
certain assumptions) reconstruct the subspace that corre-
sponds to this point. Finally, by using existing algorithms
for recursive Fréchet mean and exact principal geodesic
analysis on the hypersphere, we present several experiments
on synthetic and real (vision and medical) data sets show-
ing how group testing on such diversely sampled longitudi-
nal data is possible by analyzing the reconstructed data in
the subspace spanned by the first few principal components.
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1. Introduction

In many fields of science and engineering, one encoun-
ters data in the form of trajectories i.e., a one parameter
family of multi-variate data, where the parameter describ-
ing the family is most commonly time or scale but can be
any other parameter pertinent to the application. In Com-
puter Vision (specifically in sports vision), a common ex-
ample is the actions of an athlete such as the serve of a ten-
nis player, a gymnast’s routine, a golfer’s swing and so on.
In medical applications, analyzing a time course of struc-
tural or functional images to assess progress or remission
of a disease in response to treatment is central to effec-
tive diagnosis. There is abundant literature on longitudi-
nal (time course) data analysis where features of choice are
scalar and/or vector-valued. However, with the advent of
high throughput computing resources, applications are in-
creasingly using sophisticated and rich feature sets such as
manifold-valued features that are capable of capturing much
more information contained in the raw imaging data than,
say, scalar and vector-valued features.

There is a rigorous body of work in vision demonstrat-
ing how leveraging the structure (or geometry) of the data
can yield advantages. For example in medical applications,
papers in the mid-1990s already showed that the analysis
of shapes [21] improved our ability to quantify a disease-
specific signal, not otherwise possible. The interface be-
tween geometry/structure and analysis methods has offered
effective practical tools — for instance, in Medical imag-
ing applications, analysis of diffusion weighted Magnetic
Resonance images where manifold-valued features such as
the diffusion tensors that are symmetric positive definite
(SPD) matrices that capture the diffusional behavior of wa-
ter molecules at each image voxel may be inferred from the
raw diffusion MRI data. Motivated by other applications,
we have extensions of standard statistical machine learn-



ing tools to the unit Hilbert sphere, probability distributions
and other “structured” objects, i.e., where the samples are
drawn from a space which satisfies a manifold characteri-
zation (e.g., covariance matrices). Algorithms for regres-
sion [28], principal components analysis, dictionary learn-
ing and others are readily available. Unfortunately, few
such differential geometry inspired algorithms for image
analysis exist for the longitudinal regime where outside of
[35, 17, 40, 27, 25], the literature remains sparse. All such
methods, however, cannot cope with trajectories of distinct
number of samples within a group or across groups that
are commonly encountered in group-wise longitudinal data
analysis problems. In Computer Vision, several researchers
have exploited manifold valued features such as covariance
descriptors [44, 41, 11, 45, 37], image sets as linear sub-
spaces [43, 8, 31, 22, 39, 33] and many others. Several
of these proposals have dealt with analysis of videos for
gait analysis, action recognition, dynamic textures and so
on. For a comprehensive survey of linear dynamical system
based modeling to analyze videos for a various such tasks,
we refer the reader to [4]. These techniques do not address
the question of statistical group-wise analysis of manifold-
valued trajectories, each with a different number of samples.

Goals. Consider a setting, common across many longi-
tudinal imaging studies or temporal data analysis tasks. We
“track” a participant where at each visit, we acquire a man-
ifold valued measurement (feature). This may be a shape
(a sample on a shape manifold) or a diffusion tensor image
which is a sample from a product space of an SPD mani-
fold (“product” pertains to the number of voxels in an im-
age). Of course, if every subject provided p measurements
each, we can repurpose existing algorithms for this task.
The difficulty is that in general, due to logistic or financial
reasons, the number of samples from each subject are dif-
ferent. When a subject joins the study late (or drops out),
we get left (or right) censored data; in other cases, some
intermediate visits may be missing. Imputation schemes
are limited for manifold-valued data; so a practitioner is
faced with two poor choices: (a) neglect the geometry of
the space and shoehorn off the shelf techniques (problem-
atic, both theoretically and empirically) or (b) only include
participants with a full set of acquisitions (reduced sam-
ple sizes and corresponding decrease in statistical power).
What is needed are frameworks that enable operating on
“incomplete” longitudinal manifold-valued measures where
incomplete refers to the nuisance of different number of
samples/visits (temporal span) for each subject.

Contributions. This paper presents a novel algorithm
to perform statistical analysis on the space of trajectories of
manifold-valued measurements. A trajectory is a “path” on
a Riemannian manifold comprised of a set of longitudinally
acquired samples (points on the manifold). A salient fea-
ture of our technique is that trajectories with different num-

ber of samples are allowed, i.e., the number of points on a
trajectory is not assumed to be a constant across the cohort
(subjects). Our method involves parallel transporting the
tangent vectors along each given trajectory (not necessar-
ily a geodesic on the known data manifold) to the starting
point of the respective given trajectories and then using the
span of the matrix whose columns consist of these vectors,
to construct a linear subspace of distinct dimension in R™.
Then, using a result [13], we propose an algorithm to embed
each linear subspace of distinct dimension (corresponding
to a trajectory) into a single hypersphere. The hypersphere
has a simple geometry which makes it more amenable than
other alternatives [35, 25] to compute statistics. We also
provide a procedure to identify the subspace which corre-
sponds to a given point on the hypersphere. Within various
settings (e.g., on OASIS data, Human Connectome project
data, action recognition), we show the utility of this algo-
rithm. Our results show that manifold-valued longitudinal
datasets with different number of samples per subject can
be easily handled within a flexible and efficient procedure.
Further, our technique does not make the (restrictive) as-
sumption that the given trajectory is a geodesic on the data
manifold. This formulation and its analysis is the main con-
tribution of this work.

2. Our proposed algorithms and analysis

Preliminaries. We first define the space of trajectories
and then present the theory to compute statistics on this
space. We define a trajectory v (see inline figure) to be a
path that consists of a set of p points on a Riemannian man-
ifold M™ of dimension m (inline figure shows p = 3).

Let {%‘}i]\il be a set
of N trajectories on M,
it lines where y; has p; sam-
N ple points (note that this
allows for trajectories
with different number of
sample points). Further, as each trajectory has a ‘time” or-
dering (or an ordering with respect to any other variable),
we can order the data point for ~; as X{,--- X/ . To fa-
cilitate presentation of our theoretical results, we make the
following mild assumptions about the trajectories:
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Assumption. 1) For each trajectory v;, the sequence of
p; data points lie on a continuous curve in M.

2) Without any loss of generality, we assume that X} is
the starting point of v, for all i.

3) {X{ }il lie within a “regular geodesic ball” of ra-
dius 7/(2+/K), K is the sectional curvature (we refer the
readers to [26] for definition of regular geodesic ball).
This assumption ensures that Fréchet mean (FM) [20] of
{X{ }f\il exists and is unique [3].
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4) For each trajectory, two consecutive data points can
be joined by a geodesic, i.e., the Riemannian inverse expo-
nential map [16] between two consecutive data points ex-
ists.

5) We assume p; < m for all i (usually, p; < m).

Grassmanian. We will use Gr(r,m) to denote the
Grassmannian, i.e., the manifold of r < m dimensional
subspaces in R™ and Col(-) gives the column span opera-
tor, i.e., Col(A) returns the linear subspace spanned by the
columns of matrix A.

Definition 1. Given a trajectory ~, ie., a set of p
points, X1,--- X, in M™, we compute TX].M > v =
Logy,(Xjt1), where j = 1,---,p — 1. Log is the in-
verse exponential map (Log exists because of Assumption
4). Thus, we identify v with a point in the product space
TMx - x TMviayw— (Xq,v1,- - vp_1), where TM

(p—1) times

is the tangent bundle of M.

The above identification has the following properties:

Properties. 1. The above identification is well-defined
and is a bijection (this is trivial to show).

2. Since the tangent space of an m-dimensional mani-
fold is isomorphic to R™, hence, in the above definition,
TMx- - XTM =2 M x (Rm)@(pfl), where & is the

(p—1) times
direct sum. Notice that since each T'x, M has a different
anchor point (since the base point X varies), one needs to
treat v; and v; as vectors in T X; M and T X; M respec-
tively, but not as vectors in R™.

3. If M is parallelizable [16], the isomorphism in the
property above is a diffeomorphism, e.g., since all Lie
groups [16] are parallelizable, and if M is a Lie group,
the above identification is a diffeomorphism.

4. Ifthe manifold M is translated, let 7y be the translated
7. Then, by the above identification, v; = v, for all j, and
X 1 and X1 will be related by the translation, i.e., the above
identification is translation invariant.

Setting up the space of trajectories. Now, we paral-
lel transport each v; from Tx, M to T'x, M, for all j =
2,---p — 1. With a slight abuse of notation, we denote the
parallel transported vectors by {v;}. Since after the parallel
transport operation, all v;s lie in T'x, M, i.e., lie in the same
vector space (which is isomorphic to R™), we form a ma-
trix V' of dimension m x (p — 1) whose j* column is ¢(v;),
where ¢ : Tx, M — R™ is an isomorphism. Since we will
be working with the matrix V, for the sake of notational
simplicity, we will use v; to denote ¢(v;).

Let V be the column span of V, ie., V = Col(V),
then V € Gr(r,m), where » < (p — 1) is the rank of V.

Hence, using the identification of ~ in Definition 1, we can
identify the space of trajectories with the product space of
M x Gr(r",m), where 7 is the rank of V. Moreover, ob-
serve that 7 may be different for different trajectories +.
In other words, different trajectories correspond to different
dimensional subspaces in R™. We should point out that al-
though 7 can be different for different trajectories ~, they
are all still subspaces in R™, as all the trajectories are on
M (of dimension m).

Remarks about this representation. Note that our rep-
resentation of trajectories is very general and unlike the pre-
vious methods, does not require that each trajectory should
be a geodesic path [25, 35], or consists of an arbitrarily fixed
number of points [40]. Also, when each trajectory has 2
points, our identification is same as in [25, 35] (as a topolog-
ical space, not as a manifold as we use a different metric),
i.e., our formulation is a generalization of [25, 35]. More-
over, by the above identification, we do not require linear
independence of the points on a trajectory. This is a de-
sirable property since, in many medical imaging problems,
where a sequence of scans of a subject are often acquired
longitudinally, the independence assumption is violated. 7o
the best of our knowledge, this is the first paper dealing with
such a general setting for statistical analysis on the space
of trajectories.

Ingredients for setting up a mapping. As each tra-
jectory may end up residing on a product of M and a
Grassmann manifold of distinct dimension (recall that 7
may vary based on trajectory 7y), we now propose a way to
map each V7 (note that the identification of trajectory -y is
(X7,V7) € M x Gr(r7,m)) onto a hypersphere. Given
V7 € Gr(r?,m), the projection matrix, P{} onto V7 is de-
fined by [12]:

e =1
Py =V (VTV) VT (1)
where V is a basis of V7. Note that P{} is a well-defined

identification of V7 as P is independent of the basis of
V7, due to the following Lemma (stated without proof).

Lemma 1. P} is independent of the choice of the basis of
V7 [12].

2.1. Trajectories with distinct number of samples
(temporal span)

Now, we state some properties of Py, (we drop the su-
perscript for simplicity), which will be used in subsequent
sections ([12] includes more details about these properties).
Fact 1) Py is a symmetric positive semi-definite matrix.
Fact 2) Py is an idempotent matrix, i.e., P5 = Py, its
eigen values are either 0 or 1.

Fact 3) The Frobenius norm of Py is y/r where V is an
r-dimensional subspace of R™.

Fact 4) The rank of Py, is r.
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Fact 3 above gives us a way to map P), (after vectoriza-
tion) onto S™*~1 of radius +/r. This is an isometric embed-
ding as was shown in [13]. So, given V7' and V72 (the ma-
trices constructed from the parallel transported tangent vec-
tors corresponding to trajectories 7y; and a2 respectively),
we can map them on S™ ~1 of radius v/r7* and /772 re-
spectively. Now, we can scale PJ' and P)* by /77t and
\/r72 respectively to map them both onto the unit hyper-
sphere, S™’~1 The question we may ask is: Is this an
injective mapping, i.e., given two different subspaces, V7
and V2 with the same starting point, i.e., X{' = X,
can they map onto the same point on S™ =19 If the two
subspaces are not subspaces of each other, the answer is
no. This assumption is satisfied quite commonly in practice
and we will make this assumption here as well. Now, we
will formally state and prove the following theorem which
shows that the above mapping is injective.

Theorem 1. Let V' and V72 be two linear subspaces on
R™. Without any loss of generality, assume v < r72. As-
sume V7 is not a subspace of V2. Then, the above map-
ping is injective.

Proof. Let us assume that the mapping is not injective, i.e.,
vec(P)")/v/rn = vec(P}*)/v/r72. Then, P}' = cPJ?,

o
ry2

ing V' = Col(U), where USUT = eig(P}") and U is the
first r7* columns of U. Now since, P}}' = c¢P)?, their eigen
decompositions are the same, i.e., V7! is a subspace of V72
(which is a contradiction to the assumption). O

We will now present the forward mapping algorithm in
Alg.-1 to map a trajectory vy onto the product space of M
and the unit hypersphere.

where ¢ = Observe that, given P}', the correspond-

Algorithm 1: Algorithm to map a trajectory onto the M x
2
|m 71.

Input: ~y consists of p points on M (M is of dimension m)
Output: (X1,87) € M x gm?-1

Let the starting point of v be X71;

2 Compute tangent vector v; from X; to X;41,5=1,---p—1;

3 Parallel transport all the vectors to T'x, M and column stack them

-

to form a matrix V of dimension m x (p — 1);

4 Orthonormalize V using the Gram-Schmidt orthonormalization to
get V, let the rank of V be r7 ;

5 Compute the projection matrix P‘Z using Eq. 1. ;

6 Compute s = vec(P)/v/r7.

In Fig. 1, we give a pictorial description of our proposed
framework. Equipped with the algorithm to map from the
space of trajectories to M X S™*~1, we will now conduct
statistical analysis on the product space, which has a sim-
pler geometry (relative to the space of trajectories). We will
first define a Gaussian distribution on the hypersphere, S™.
It is well-known in differential geometry that S™ is a homo-
geneous space and can be identified with O(n + 1)/0(n)

Figure 1: The pictorial description of the framework to map trajectories
with different number of sample points.

where O(n) is the compact Lie group of orthogonal matri-
ces [23]. Now, we will briefly give the geometry of a homo-
geneous space N. For a good reference on homogeneous
spaces, we refer the reader to [23].

2.2. Defining distributions on a homogeneous space

In this section, we will briefly summarize the results
from [10] relating to rigorously defining a Gaussian distri-
bution on a homogeneous space and then specialize it to S™
(which is identified with a homogeneous space). First, we
will summarize the differential geometry of a homogeneous
space \V, which is needed as background material.

Let (V, g) be a Riemannian manifold with a Riemannian
metric g. Let d be the metric induced by the Riemannian
metric g. Let G be the set of all isometries of NV, i.e., given
g € G, dg.X,9Y) =dX,Y), forall X,Y € N. Let
O € N and let H = Stab(O) = {h € G|h.O = O} (Stab
is abbreviation for Stabilizer). We say G acts transitively
on N, iff given X, Y € N, there exists a g € G such that
Y =¢9.X.

Definition 2. Let N be a Riemannian manifold. Let G =
I(N) act transitively on N and H = Stab(O), O € N
(called the “origin” of N) is a subgroup of G. Then, N is
a homogeneous space and can be identified with the quo-
tient space G /H under the diffeomorphic mapping gH —
g.0,9 € G [23].

From the definition of a homogeneous space, we know
that the Riemannian metric g at X is invariant under the
group operation X — g.X, hence the volume element dv
is also preserved.

The Gaussian distribution on a homogeneous space:
Let M € N denote the location parameter and o > 0 be
the scale parameter. Now, we will define the Gaussian dis-
tribution function on a homogeneous space A/ with respect
to an appropriately defined probability measure dv [36] as:

2
fx (M, o) = b exp(_%;m
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Theorem 2. The normalization factor in Eq. 2 i.e.,
Z(M,0) = [ fx (M,0)dv(X) is a constant and is in-
dependent of M, i.e., the function in Eq. 2 is a valid proba-
bility density function (see [10] for a proof).

Algorithm to reconstruct a trajectory: With a Gaus-
sian distribution on homogeneous space (and in turn on
Sm2_1) defined as above, we now give an algorithm to re-
construct trajectory from a given sample in M X gm’-1
(Note that under the condition in Theorem I this is a well-
defined mapping). We will assume that M is a matrix Lie
group. This means that M is a group and is a smooth man-
ifold such that the group operations (multiplication and in-
verses) are smooth maps. Let e be the identity element of
Lie group M. The tangent space at e, i.e., T, M is called
the Lie algebra m corresponding to M. Let U, V' € m, then
the left-invariant metric, g on m is defined as g(U,V) =
trace(UTV), i.e., m is equipped with an Euclidean met-
ric. Moreover, given U € m, one can parallel transport
Ufrommto TxMbym > U — XU € TxM. The
Riemannian exponential map is defined as Expy(U) =
XExp(X~!U), where U € TxM and Exp is the matrix
exponential. The Riemannian inverse exponential map is
defined as Logy(Y) = XLog(X~'Y), where Log is the
matrix logarithm. We refer the reader to [23] for a good
reference on Lie groups.

Now, using the Gaussian distribution defined on Lie
groups in [19], and the Gaussian distribution on a ho-
mogeneous space (defined earlier), we can get a sample
on M x S™ =1 when M is a Lie group. We are now
ready to develop an algorithm to obtain v from a point on

M x 8™ -1,

Algorithm 2: Algorithm to recover a trajectory corresponding to
a point in M X sm?-1,

Input: (X,s7) € M x S™”~1 where M is a Lie group and s
is a vectorized projection matrix

Output: ~y consists of  points on M

Arrange sY inam X m matrix Y ;

2 Compute the rank of Y, let the rank be » — 1 ;

-

3 Perform eigen decomposition of Y, i.e., vevT = Y, then, assign
V to be the first » — 1 columns of V. Note that in order for Y to be
the projection matrix of V (using Eq. 1), we assume that each
column of V, i.e., v; lies on m, so that the metric is the Euclidean
inner product;

4 Use X v; € TXj M to construct X1 1 from X; (using the

parallel transport of v; from T M to TX]. M),j=1,---r—1;

Return y consisting of X1, X2, -- X,

n

We should point out that Alg.-2 assumes that the input
is a vectorized projection matrix. But, any point on hyper-
sphere may not be a vectorization of a projection matrix.
We now give a projection algorithm which takes an arbi-
trary point on S™’~1 and returns its closest point on gm’-1
that has a preimage on Gr(.,m). Note that, Alg.-2 can be

applied to this closest point. Algorithm 3 is a projec-

Algorithm 3: The projection algorithm.

Input: s € Sm2*1

Output: s7 € S =1 which is an input of Alg.-2
Arrange sinam X m matrix Y ;

Compute the rank of Y, let the rank be 7 ;

N

Perform the eigen decomposition of Y, i.e., YN/EVT =Y, then,

w

assign V' to be the first r columns of vV,
Compute P = vvT,
Vectorize P and divide by /7 to get s7.

[N

tion algorithm from a square matrix to its closest symmetric
positive semi-definite idempotent matrix. One can prove
that this algorithm returns the closest projection matrix by
an argument similar to Theorem 2 in [42]. Now, we will
give expressions for the Riemannian exponential (denoted
by Exp) and inverse exponential (denoted by Log) maps
which will be required throughout the rest of the paper.
Given x,y € S”, the geodesic distance between x and y,
denoted by d(x,y) = arccos(x'y). The exponential map
at x is given by Exp, (v) = cos(||v||)x+sin(||v||) £, where
v € T, S™. The inverse exponential map between x and y
as Log, (y) = ﬁ(y —xcos(f)), where 0 = d(x,y).

MLE of M: Given {x;}¥, <C S" the
Fréchet mean (FM) [20], p is defined as pu =
arg min,  gn Zfil d*(z,x;). The existence and unique-
ness of FM is guaranteed if the samples lie within a “regular
geodesic ball” of radius 7/2 [3] (we refer the readers to
[26] for definition of regular geodesic ball). We will now
state (proof is in the supplementary section) that maximum
likelihood estimator (MLE) of M defined above is the FM.

Lemma 2. Given, {x;}Y, C S" iid. samples drawn
from the Gaussian distribution whose support is within a
geodesic ball of radius < 7/2, the MLE of M (defined in
Eq. 2) is the FM of {x; }}¥,.

Note that, although Alg.-2 assumes M to be a Lie group,
it is also applicable to other special manifolds, e.g., space of
symmetric positive definite matrices (SPD) and the hyper-
sphere. The reason for assuming the Lie group structure is
two fold (i) On a Lie group, the tangent space at e, i.e., m or
the Lie algebra is equipped with Euclidean metric, hence us-
ing X X7 to get projection matrix is meaningful on m. (ii)
After getting tangent vectors on m, we can do simple matrix
multiplication to transport v; into T'x ;M in the Alg.-2.

Now, we will show that both these properties are satisfied
for the manifold of SPD matrices (with the G L-invariant
metric) [24] and the hypersphere (with the arc-length met-
ric). Let M be a space of m x m SPD matrices, we
can define G L-invariant metric, gx on this manifold as
gx (U, V) = trace (X 'UX~'V), where U,V € Tx M.
So, if X is the identity matrix, clearly, gx is the Euclidean
inner product, hence the property (i) above is satisfied.
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Moreover, as the m x m invertible matrix (as a general lin-
ear group, GL(m)) acts on M, the parallel transport is just
a group operation. Hence, Alg.-2 is applicable to the SPD-
manifold with a G L-invariant metric.

Let us consider the hypersphere S™. Any vector v &
R" can be projected onto 7 S™ by the following operation
v — v — (vtx)x. Moreover, the parallel transport on S™ is
in an analytic form, hence we can apply Alg.-2 on S™. As a
side note, we would like to point out that equipped with the
Log-Euclidean metric, the SPD manifold has a Lie group
structure as shown in [5] and S°, S! and S® are the only
hyperspheres which are Lie groups.

In the experiments, we have assumed M to be either
a hypersphere or an SPD-manifold. We will use the in-
cremental/recursive FM computation algorithm proposed in
[38] to compute FM of samples on S™”~1 and on the SPD-
manifold, we will use the recursive algorithm for FM com-
putation proposed in [24]. Later, we will perform principal
geodesic analysis (PGA) on the space of trajectories by us-
ing exact-PGA on sm’-1, presented in [9]. Both of these
methods are extremely efficient and the consistency of the
incremental/recursive FM estimator was proved in [38, 24].

3. Experiments

In this section, we demonstrate the application of the
framework to answer three important questions that arise
in neuroimaging and vision applications. (1) Can principal
geodesics (PGs) offer efficient representations in detecting
group differences in longitudinal neuroimaging studies? (2)
How robust is our framework to missing temporal data or
temporal data with varying number of time points? (3) Do
principal geodesics offer features that are independent of the
temporal spans of videos? Before we dive into the experi-
ments to evaluate these questions, we present experiments
using synthetic data computing the Fréchet mean estimation
of trajectories.

FM computation of trajectories for synthetic data:
We randomly generate geodesics on S2. We show the mean
trajectory for these synthetic experiments in Fig. 2. We
compared the results with [25], and as expected since all
the trajectories are geodesic paths, our proposed method
yields similar mean trajectory as that from the method in
[25]. This serves as a sanity check showing that for simu-
lated data, our results are consistent with an existing method
from the literature.

Efficient representation: We use OASIS data [2] to
demonstrate that using our framework, we can use PG to
detect class/group structure. OASIS data [2] contains MR
scans of demented, non-demented and “converted” patients.
Patients who are labelled as “converted” are those who pro-
gressed from non-demented to demented during the study.
This dataset contains at least two MR brain scans of 150
subjects, aged between 60 to 96 years old. For each pa-

tient, scans are separated by at least one year. The dataset
includes patients of both sexes. In order to avoid gender ef-
fects, we use MR scans of female patients from 2-5 visits,
which results in a dataset containing MR scans of 11 sub-
jects with dementia (denoted by the letter ‘D’) and 12 sub-
jects without dementia (denoted by ‘ND’) and 7 subjects of
“converted” (denoted by the letter ‘C’) group. We first com-
pute an atlas (using the method in [6]) from the MR scans
of patients without dementia. After rigidly registering each
MR scans to the atlas, we only consider intensity values in
a prespecified region of interest (ROI), namely the corpus
callosum (CC) that is known to be effected most by the dis-
ease process, from each image. Then, using the Scrodinger
distance transform (SDT) [15] applied to the ROI, we map
the CC shape to point on S?332, For each subject, we have
2-5 time points, i.e., the trajectories constitue varying # of
time points.

Figure 2: Trajectories are shown in black and the mean trajectories (us-
ing proposed method and method in [25]) are shown in green and blue
respectively. The results from both methods are similar suggesting that
our representation is reasonable.

We performed Principal geodesic analysis (PGA) to
evaluate classification accuracy and group differences on
the OASIS data. We take the first 10 principal geodesics
(PGs) and perform reconstruction of the data. On the re-
constructed data, we perform a pairwise group testing as
follows. We first choose two classes and compute the dis-
tance between the two mean trajectories (mean trajectory
from each class). Then, we randomly permute the class la-
bels 10000 times. We then count the fraction of the times
the distance between two group means computed with these
random permutations is larger than the distance on the data
with with correct permutation (class labels). This gives an
approximation of the p-value which is reported in Table
la. Note that a smaller value signifies that there is indeed
a class structure preserved in the reconstructed data. We
can see from the table that our framework preserves better
class structure in the reconstructed data using the first 10
PGs since, the p-value is significantly smaller than that of
[25]. Next, we will perform a pairwise leave-one-out clas-
sification with the PGs to see if our framework indeed gives
better classification accuracy.

We use a linear SVM classifier on the PGs and report
sensitivity (denoted by ‘sn’), specificity (denoted by ‘sp’)
and classification accuracy (denoted by ‘ac’) in Table 2. It

177



[ Class names | Our Method [ [25] | ‘ ‘ Our Method ‘ 5] ‘

chVgSi\]J)D g‘ggg 82; RZ statistics 0.64 037
Dvs ND 0.051 0.46 p-value 0.032 0.087

(a) Comparison of approximated p- (b) Comparison of regression results

values.
Table 1: Statistical analysis on OASIS data.

is clear from the table that we achieve a better classification
accuracy than [25].

Robustness to data with varying time points: In this
section, we will demonstrate the performance of our frame-
work to do statistical analysis on temporal data with vary-
ing time points or on temporal data with missing entries.
OASIS data already included varying # of time points. In
this section, we also use data from the Human Connec-
tome project (HCP) to extract trajectories with missing time
points. Before going into the details, we briefly describe the
HCP data and how we extract the trajectories.

Class ‘ Our Method [25] ‘ All sub-
names | sn [ sp [ac(%) | sn | sp [ac(%) | jects in the
Cvs.D | 0.86 | 091 | 88.89 | 0.86 | 0.82 | 83.33 .
Cvs.ND | 0.86 | 1.00 | 9473 | 071 | 0.83 | 7895 |main ~ HCP
Dvs.ND | 091 | 0.92 | 91.31 | 0.91 | 083 | 8696 |cohort were

scanned on a
dedicated 3
Tesla (3T) scanner. We analyzed the high-quality curated
diffusion MR imaging (d{MRI) data made publicly available
on over 840 healthy adults from the WU-Minn consortium
[46]. We obtained diffusion tensor images (DTI) from
the dMRI data by non-linear fitting of the tensors to the
diffusion weighted (b = 1000 s/mm?) images. These DTI
images were spatially normalized using DTI-TK [48], a
non-linear diffeomorphic registration and template esti-
mation pipeline, that can directly operate on the diffusion
tensors using a log-Euclidean framework. Seventeen major
white matter pathways were obtained by registering the
publicly available IIT white matter atlas [47] to the HCP
template using the ANTS software [6]. We analyzed DTI
data from the fornix and the cingulum bundle.

Now, from this data, we build the trajectories as follows.
We first divide ages of the subjects into the following bins:
[22,25], [26,29], [30,33] and [34,.). Next, we sample 20
subjects from each bin, for all bins. The average of these
20 gives us a virtual subject who is tracked across the bins.
This is a single trajectory sample with each point on the
trajectory belonging to a product space of 228, 3 x 3 SPD
matrices. We replicate this process 500 times to get 500
virtual subjects who are tracked across all bins. Then, we
randomly choose 2-4 bins for each subject to simulate a
situation where we have missing entries corresponding to
some time points. For a pictorial depiction of the trajectory
generation for the connectome data, see Fig. 3.

One of the major tools to do statistical analysis is to
perform regression between a set of independent and de-

Table 2: Classification on OASIS data.

pendent variables. Now, we will analyze performance of a
regressor in the situation where the data has varying time
points or has missing entries. We will compare the perfor-
mance between our formulation and the formulation pro-
posed in [25] on both OASIS and HCP data.

For OASIS data, an important question to ask is: Is there
any relationship between the structure of corpus callosum
and age?. Recently, in [7], the authors have shown that
there is indeed a relationship. Motivated by this result, here
we ask the following question: Is there any relationship
between the changes in the structure of the corpus callo-
sum and age? Further, for different patients, we measured
the changes on varying number of time points. We use the
manifold-valued kernel regression (MVKR) technique pro-
posed in [7] as the non-linear regressor. In order to eval-
uate the performance, we chose the R? statistic on Rie-
mannian manifolds as defined in [18] as a measure. An
R? statistic value close to 1 implies better regression per-
formance. The comparative results are reported in Table
1b which clearly suggest that the regressor gives better R>
statistic using our framework. Moreover, as the regression
relationship is complex, so the approximation of a trajec-
tory by a geodesic is a probable reason behind the poor R?
statistics value given by [25]. Now, we perform a ¢-test with
1000 independent runs to check the statistical significance
of the regression result. We reject the null hypothesis “Hg =
mean of the unexplained variance is not less than the mean
of the data variance” with a significance level of 0.05. From
the ¢-test result we can see that our results are statistically
significant.

All data /@(@/@ Recall that
in the HCP
Subsampled 22-25 yrs
bt OO0 D2629 e dat.a, we have
© ° 3033 yrs trajectories
Subsampled >34 . ..
o ) @ ® Missing with  missing
o o]

entries. For this
@0

data, it is mean-
Figure 3: Trajectory generation for the connectome ingful to ask
data (each bubble shows the number of samples). how the behav-
ioral measure of a person relates to the changes in the brain
scans, i.e., on the virtual subject, as we track the changes of
brain scans, can we predict the behavioral scores. We have
two such scores namely, ProcSpeed_Unadj (denoted by
‘pU’) and ListSort_Unadj (denoted by ‘1U’). These
scores measure processing speed of subjects in sorting
a list of items. As before, we perform kernel regression
(MVKR) and compute the R? statistic. The comparative
results are reported in Table 3. The results indicate a good
R? statistic value using our method and an unsatisfactory
performance by the method in [25]. As before, we also
perform a ¢-test on 1000 independent runs to check how
statistically significant is the R? statistic value. We choose
the null hypothesis as in the case of OASIS data and reject

Subsampled
set 500
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Figure 4: Summarization of the Gymnastics data (five gymnastic activities) using Left: Our method, Middle: [30] and Right: [25]. Note the clear class

separation obtained by our method.

with significance level 0.05. Moreover, in contrast to the
baseline, our method yields statistically significant results.
We suspect that this is because in the HCP data, trajectories
are “complicated”, i.e., deviate from a geodesic; so, using
a geodesic-based formulation may not be appropriate for
regression on this data.

Length (of time) invariant representation: In com-
puter vision, a common type of temporal data analysis is
in calculating statistical summaries of video data. In this
section, we deal with videos of gymnastic routines from
2012 London Olympics [1]. Moreover, this data is of vary-
ing temporal span, so it would be interesting to statisti-
cally summarize this data. Each video is of dimension of
640 x 360 and the frame rate is 30 fps. We collected videos
of 5 Gymnastic activities, where each activity is performed
by 8 gymnasts. We sampled this video using 1/3 fps.

Behavjoral Our Method [ [25] ‘ From each
Scores R statistics | p-value | R statistics | p-value | frame we
pU 0.78 0.017 0.02 . ’

U 0.75 0.021 0.16 075 | extracted HOG

features [14],
using the fol-
lowing parameter values: Blocksize = 2, Cellsize = 16,
Blockoverlap = 4, Number of Bins = 9. We normalize
the HOG features to map it to S'7%3. We construct the
trajectory from each gymnast’s video by taking each frame
as a point on the trajectory. Due to the varying time span of
the videos, we get trajectories of varying number of time
points. A sample trajectory from each act is shown in Fig.

Table 3: Regression results on HCP data.

Figure 5: Sample trajectories and corresponding legends used in Fig. 4.

We report results of groupwise statistical summarization
of the Gymnastics routines from several gymnasts across
the world. The summarization is depicted in the form of a
biplot showing ability of a method employed to group gym-
nasts within groups. In this experiment, we performed PGA
on the trajectories representing gymnast routines, using our
formulation. We summarize the data, in R? by taking the
component along the first two PGs. In addition to a compar-
ison with [25], we also compared results from using space-
time features. We first used Harris3D detector [30] to ex-
tract spatio-temporal interest point from each video. Then
from each interest point, we calculate HOG and HOF fea-
tures [32]. We use the implementation available on-line [29]
with standard parameter settings. Then, we use kernel-PCA
[34] (with a Gaussian kernel) on the feature vector to get the
first two PCs. The comparison is depicted in Fig. 4, where,
we can see that our formulation yields the best summary in
terms of preserving better structure within the same activity.

4. Conclusions

We presented a novel geometric framework and algo-
rithms for computing statistics on the space of trajectories
representing longitudinal data. The salient features of our
algorithm are: (i) it can seamlessly cope with trajectories of
distinct temporal spans and (ii) the framework maps each
trajectory of varying # of time points represented by a lin-
ear subspace of R™ on to a single finite dimensional hyper-
sphere. Since, the geometry of the hypersphere is simple
and yields analytic expressions for most geometric quan-
tities of interest here, it gives our algorithm an edge over
the competition. Finally, unlike most existing methods for
trajectory modeling, our method does not require that all
the sample points of a trajectory lie on a geodesic. We
presented experiments demonstrating how group testing on
longitudinal data with different number of time samples is
possible by analyzing the reconstructed data in the subspace
spanned by the first few PGs. We also presented experi-
ments demonstrating robustness of our framework to miss-
ing time points. Finally, we performed a statistical summa-
rization of temporal data of varying time spans and com-
pared the performance with the state-of-the-art.
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