

1 **pH as a primary control in environmental microbiology: 1. Thermodynamic perspective**

2
3 Qusheng Jin and Matthew F. Kirk

4
5 Department of Earth Science, University of Oregon, Eugene, OR 97403, USA.
6 Department of Geology, Kansas State University, Manhattan, KS 66506, USA.

7
8 **Running title:** Thermodynamic analysis of pH control on microbial redox reactions

9
10 **Abstract**

11
12 pH influences the occurrence and distribution of microorganisms. Microbes typically live
13 over a range of 3 to 4 pH units and are described as acidophiles, neutrophiles, and alkaliphiles,
14 depending on the optimal pH for growth. Their growth rates vary with pH along bell- or triangle-
15 shaped curve, which reflects pH limits of cell structure integrity and the interference of pH with
16 cell metabolism. We propose that pH can also affect the thermodynamics and kinetics of
17 microbial respiration, which then help shape the composition and function of microbial
18 communities. Here we use geochemical reaction modeling to examine how environmental pH
19 controls the energy yields of common redox reactions in anoxic environments, including
20 syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results reveal
21 that environmental pH changes the energy yields both directly and indirectly. The direct change
22 applies to the reactions that consume or produce protons whereas the indirect effect, which
23 applies to all redox reactions, comes from the regulation of chemical speciation by pH. The
24 results also show that the energy yields respond strongly to pH variation, which may modulate
25 microbial interactions and help give rise to the pH limits of microbial metabolisms. These results
26 underscore the importance of pH as a control on microbial metabolisms and provide insight into
27 potential impacts of pH variation on the composition and activity of microbial communities. In a
28 companion paper, we continue to explore how the kinetics of microbial metabolisms responds to
29 pH variations, and how these responses control the outcome of microbial interactions, including
30 the activity and membership of microbial consortia.

31
32 **Keywords:** geochemical reaction modeling, available energy, thermodynamic drive, syntrophic
33 oxidation, iron reduction, sulfate reduction, methanogenesis

34
35 **1. Introduction**

36
37 Microorganisms are widespread in natural environments, from hot springs to deep
38 aquifers, and to ocean floors (Chapelle et al., 1995; Edwards et al., 2012; Ward et al., 1998).
39 They drive a series of biogeochemical processes, from redox reactions, to weathering, and to the
40 biogeochemical cycling of carbon and other elements (Falkowski et al., 2008). In return, their
41 metabolisms are controlled by a wide range of environmental variables, including pH,
42 temperature, salinity, nutrient availability, and geographic locations (Amend et al., 2013; Lennon
43 and Jones, 2011). Among these factors, pH emerges as a primary control (Bethke et al., 2011;
44 Chen et al., 2004; Kemmitt et al., 2006; Zhelnina et al., 2015). pH correlates strongly with
45 microbial communities across a wide range of biogeochemical conditions (Thompson et al.,
46 2017). In addition, variations in environmental pH also induce significant responses of metabolic

47 activities of natural communities (Kotsyurbenko et al., 2004; Ye et al., 2012).

48
49 pH shapes microbial metabolisms in different ways. First, it affects the environmental
50 conditions that are relevant to microbial growth and survival. pH describes the chemical activity
51 of the proton, a key player in redox reactions, mineral dissolution and precipitation, surface
52 complexation, and other geochemical reactions (Bethke et al., 2011; Stumm and Morgan, 1996).
53 These reactions determine the salinity and composition of aqueous solutions and control the
54 bioavailability of nutrients and trace elements. In addition, pH also affects the activities of
55 extracellular enzymes, and the reactivity of natural organic matter (Leprince and Quiquampoix,
56 1996; Paul et al., 2006). In this way, pH becomes an indicator of overall environmental settings
57 that shape the composition and activity of microbial communities (Lauber et al., 2009).

58
59 Second, pH may interfere with microbial metabolisms. Most laboratory cultures live
60 within a pH range of 3 to 4 units – that is 3 to 4 orders of magnitude difference in the chemical
61 activity of protons (Rosso et al., 1995). The pH of maximum growth rate is called the optimal
62 growth pH. Based on optimal growth pH, microbes can be separated into three groups:
63 acidophiles grow best at pH less than 5, neutrophiles grow optimally at pH between 5 and 9, and
64 alkaliphiles grow fastest above pH 9 (Baker-Austin and Dopson, 2007; Horikoshi, 1999). Where
65 environmental pH deviates from optimal pH levels, microbial growth rates decrease (Rosso et al.,
66 1995). For a microbe with a pH range spanning 4 pH units, assuming that its optimal pH is near
67 the middle point of the pH range, a deviation of one unit from this pH optimal can reduce its
68 growth rate by about 50% (see Maestrojuan and Boone, 1991; O'Flaherty et al., 1998, and others).
69 In natural environments, decreasing or increasing the environmental pH by one unit can also
70 lower the metabolic activity of microbial communities by up to 50% (Fernández-Calviño and
71 Bååth, 2010; Kotsyurbenko et al., 2004).

72
73 pH may also affect microbial metabolisms and hence microbial community structures by
74 modulating the thermodynamics and kinetics of redox reactions. Microbial respiration catalyze
75 redox reactions in order to synthesize ATPs. Respiration rates thus depend on thermodynamic
76 drives, the differences between the energy available from redox reactions and the energy
77 conserved by respiration (Jin and Bethke, 2002; 2003). Many redox reactions produce or
78 consume protons, and thus, their free energy yields vary with pH (Bethke et al., 2011). Where
79 the available energies equal or fall below the conserved energies, respiration reactions become
80 thermodynamic unfavorable (Jin and Bethke, 2005; 2007; 2009). In this way, environmental pH
81 helps control the progress of microbial respiration and growth, which in turn shapes the
82 community composition.

83
84 The goal of this study is to illustrate how environmental pH influences the
85 thermodynamics of redox reactions, and how these influences may shape microbial metabolisms
86 and interactions. We focus on syntrophic oxidation, iron reduction, sulfate reduction, and
87 methanogenesis, common microbial redox reactions in anoxic environments (Bethke et al., 2011;
88 Lovley and Chapelle, 1995). We evaluate their thermodynamic responses to environmental pH
89 using geochemical reaction modeling. In a companion paper (Jin and Kirk, in review), we
90 continue to explore how the pH-induced thermodynamic responses affect the kinetics of
91 microbial metabolisms and the outcome of microbial interactions.

93 **2. Methods**

94

95 Microbes catalyze different redox reactions and, accordingly, can be separated into
96 fermenters and respirers (Jin and Roden, 2011). Fermenting microbes degrade natural organic
97 matter to a series of products, including short-chain fatty acids (e.g., acetate, lactate, and
98 propionate), and primary alcohols (e.g., methanol and ethanol) (Schink and Stams, 2013). Some
99 respirers oxidize short-chain fatty acids and primary alcohols to acetate and CO₂, and transfer the
100 released electrons to the reduction of protons to dihydrogen (H₂). Others oxidize the products of
101 organic matter degradation, and transfer the released electrons to the reduction of O₂, ferric
102 minerals, sulfate, bicarbonate, and other electron acceptors.

103

104 Table 1 lists the stoichiometric equations for microbial redox reactions commonly found
105 in anoxic environments. Following standard practice in biochemistry and low-temperature
106 geochemistry, we write these reactions using dominant chemical species at neutral pH. For
107 example, at pH 7, short-chain fatty acids occur mainly as their conjugate bases, and most
108 dissolved inorganic carbon (DIC) appears as bicarbonate (fig 1). In contrast, sulfide occurs in
109 nearly equal proportions as dihydrogen sulfide (H₂S) and monohydrogen sulfide (HS⁻). We
110 choose dihydrogen sulfide, instead of both dihydrogen sulfide and monohydrogen sulfide in
111 writing the equations for sulfate reduction (reaction 14 to 20 in table 1). Following previous
112 practice (Bethke et al., 2011; Jin, 2012), we write reaction equations that transfer 8 electrons, or
113 the consumption of one acetate or four dihydrogen molecules.

114

115 Energy available from a redox reaction, ΔG_A [J·(mol reaction)⁻¹, or J·mol⁻¹], is calculated
116 as the negative of its Gibbs free energy change,

$$\Delta G_A = -\Delta G^\circ - RT \left[\ln \left(\prod_p a_p^{v_p} \right) - \ln \left(\prod_s a_s^{v_s} \right) \right], \quad (1)$$

117 where ΔG° is the standard Gibbs free energy change, a_p and a_s are the activities of products and
118 reactants, respectively, v_p and v_s are the stoichiometric coefficients, R is the gas constant
119 (J·mol⁻¹·K⁻¹), and T is the temperature in kelvin (K). Chemical activity is calculated as the
120 product of activity coefficients (M⁻¹) and molal concentrations of chemical species. The activity
121 coefficients are calculated according to an extended form of the Debye-Hückel equation
122 (Helgeson, 1969). Table 1 lists the available energy calculated under the biochemical standard
123 conditions of pH 7, 25 °C, 1 atm, and chemical activities of unity.

124

125 We compute available energies ΔG_A for a hypothetical solution in contact with goethite.
126 The composition of the solution is consistent with dilute groundwater. The solution has 1 atm
127 pressure and a temperature of 25 °C and contains 10 mM Na⁺, 10 mM Cl⁻, 2.0 mM Ca²⁺, and 3
128 mM dissolved inorganic carbon (DIC). The solution also contains 1 mM sulfate, 10 μM acetate,
129 lactate, propionate, butyrate, methanol, ethanol, and ferrous iron, 1 μM sulfide and methane, and
130 0.1 μM H₂.

131

132 Chemical compounds dissolved in water may react with water molecules, acquire or give
133 up protons and hydroxide, and combine with other molecules and ions. As a result, they appear
134 in different forms or chemical species – a process called chemical speciation. To calculate
135 available energies, we simulate the speciation of dissolved chemical compounds and compute the

136

137 activities of chemical species using the program React of the software package Geochemist's
 138 Workbench version 9.0 (Bethke, 2008). The simulation assumes that chemical speciation is at
 139 thermodynamic equilibrium, and describes these reactions on the basis of the updated LLNL
 140 Thermodynamic Database (Delany and Lundeen, 1990). The simulation also assumes that
 141 goethite dissolution (Goethite + 3H⁺ \rightleftharpoons 2H₂O) is at equilibrium. We added into the
 142 thermodynamic database the entries for natural goethite and ferrihydrite (Bigham et al., 1996;
 143 Lindsay, 1979). The input script and the modeling output are available in the Supplementary
 144 Information.

145

146 To investigate the impact of pH, we take the available energies at pH 7 as references, and
 147 compute the changes in the available energies at pH ranging from 1 to 14. We consider changes
 148 in available energies, rather than absolute values, in order to highlight the relative responses of
 149 different microbial redox reactions to pH variations. This approach also simplifies the discussion
 150 of ferric mineral reduction. Different ferric minerals, such as ferrihydrite, goethite, hematite, and
 151 lepidocrocite, have different chemical potentials (Cornell and Schwertmann, 2003), but their
 152 potentials respond in the same fashion to pH, because the reduction of these ferric minerals
 153 consumes the same number of protons per electron. Here we take goethite as an example, but the
 154 results are applicable to ferrihydrite, hematite, and lepidocrocite.

155

156 We use the thermodynamic potential factor F_T to quantify the control of the available
 157 energy on the rate of microbial respiration,

$$158 \quad F_T = 1 - \exp\left(-\frac{f}{\chi RT}\right), \quad (2)$$

159 where f is the thermodynamic drive (J·mol⁻¹), and χ is the average stoichiometric number (Jin
 160 and Bethke, 2007; 2009). The χ value is 8 per reaction for syntrophic oxidation of organic
 161 compounds and the reduction of goethite (reaction 1 to 13 in table 1), 6 per reaction for the
 162 reduction of sulfate (reaction 14 to 20), and 2 per reaction for methanogenesis (reaction 21 and
 163 22) (Jin and Bethke, 2005; Jin and Roden, 2011). The thermodynamic drive is

$$164 \quad f = \Delta G_A - \Delta G_C, \quad (3)$$

165 the difference between the energy ΔG_A available in the environment and the energy ΔG_C
 166 conserved by respiration (Jin and Bethke, 2002; 2003). For microbial iron reduction, sulfate
 167 reduction, and methanogenesis, we calculate the conserved energy,

$$168 \quad \Delta G_C = \nu_p \cdot \Delta G_p, \quad (4)$$

169 as the product of the ATP yield ν_p – the number of ATPs synthesized per reaction – and the
 170 phosphorylation energy ΔG_p – the energy required by ATP synthesis from ADP and phosphate in
 171 the cytoplasm. Based on Jin (2012), we take the ΔG_p value as 45 kJ·(mol ATP)⁻¹, and the ATP
 172 yields ν_p as 1, 0.75, and 0.5 ATPs per 8 electron transfer (or per acetate or 4 H₂) for iron reducers,
 173 sulfate reducers, and methanogens, respectively.

174

175 3. Results

176

177 Respiring microbes harvest energy from a wide range of redox reactions. Here we focus
 178 on the electron donors generated from organic matter degradation, including dihydrogen (H₂),
 179 acetate, lactate, propionate, butyrate, methanol, and ethanol, and consider the common electron

180 acceptors in anoxic environments, such as goethite, sulfate, bicarbonate, and protons (Bethke et
181 al., 2011; Lovley and Chapelle, 1995).

183 **3.1. Available energy**

185 Table 1 lists the energies available from different redox reactions in the assumed
186 freshwater environment. Among the different redox reactions, goethite reduction provides the
187 largest available energies, followed by sulfate reduction, methanogenesis, and syntrophic
188 oxidation of organic compounds. This order in energy yield follows the well-known redox tower
189 in microbiology (Bethke et al., 2011). Under acidic or alkaline conditions, however, the redox
190 tower is not applicable anymore because pH affects the available energies of different redox
191 reactions to different extents, as described in the subsections that follow.

193 **3.1.1. Proton reaction**

195 Most redox reactions in table 1 consume or produce protons. Therefore, pH variations, or
196 in other words, changes in the chemical activity of protons, affect the energy yields of the
197 reactions. The slope L of the change in available energy depends on how many protons
198 participate in the reaction,

$$199 \quad L = RT \ln(10) \cdot \nu_H. \quad (5)$$

200 Here ν_H is the stoichiometric coefficient for protons in the reaction, which is positive where
201 protons are produced.

203 Equation 5 predicts that energy available from syntrophic oxidation reactions increases
204 linearly with pH because syntrophic reactions generate protons (fig 2). For reactions that
205 consume protons, their energies decrease linearly with increasing pH. These reactions include
206 iron reduction, hydrogenotrophic methanogenesis, and sulfate reduction by oxidizing H_2 , acetate,
207 propionate, and methanol (fig 3, 4A to C, and 5A). No proton appears in acetoclastic
208 methanogenesis or sulfate reduction by oxidizing lactate, butyrate, and ethanol. As such, pH
209 variation does not directly influence their energy yields (fig 4D and 5B).

211 **3.1.2. Chemical speciation**

213 We also compute available energies at different pHs using the results of geochemical
214 reaction modeling. Figures 2 to 5 compare the simulation results to those predicted by equation 5.
215 For most microbial redox reactions, the modeling results overlap with the equation predictions
216 only over a limited range around neutral pH. The differences between the two predictions arise
217 from the speciation of dissolved mass, which determines the activities of chemical species and
218 hence the energy available from redox reactions.

220 Figure 1 shows, according to the simulation results, how the concentrations of different
221 chemical species change with pH. Specifically, short-chain fatty acids occur in the solution as
222 both acids and their conjugate bases (fig 1A). The relative abundances of the two chemical
223 species depend on acidity constants. Lactate has the smallest logarithmic acidity constant (pK_a)
224 of 3.9, and acetate, propionate, and butyrate have pK_a values of 4.8 to 4.9 (Lide, 2003). Where
225 pH is smaller than the pK_a values, the acids are dominant. At pH greater than the pK_a values, the

226 conjugate bases take over.

227

228 DIC occurs mainly as carbonic acid, bicarbonate, and carbonate (fig 1B). At pH between
229 6 and 10.5, bicarbonate dominates. Carbonic acid and carbonate are the main forms at pH below
230 6 and above 10.5, respectively. Dissolved sulfide also has three main species – dihydrogen
231 sulfide, monohydrogen sulfide, and sulfide (S^{2-}), which appear as the dominant species at pH
232 less than 7, between 7 and 13.5, and above 13.5, respectively (fig 1C). Sulfate occurs mainly as
233 sulfate anion at pH greater than 2.5, and as ferric iron/sulfate-complex at lower pH (fig 1D). We
234 assume that the hypothetical solution is in contact with goethite and as such, ferric iron in the
235 sulfate complex species comes from the dissolution of goethite.

236

237 Ferrous iron occurs as a free cation (Fe^{2+}) and two hydroxide-complexes (fig 1E). The
238 free cation dominates the solution at pH below 9. At pH around 11, ferrous monohydroxide
239 $Fe(OH)^+$ is the main species whereas at pH above 13, ferrous trihydroxide $Fe(OH)_3^-$ becomes
240 dominant.

241

242 3.1.3. Syntrophic oxidation

243

244 Syntrophic oxidation reactions can be separated into two groups, depending on whether
245 bicarbonate is produced (reaction 1 to 6 in table 1). The group that produces bicarbonate includes
246 the oxidations of acetate, lactate, propionate, and methanol. Figure 2A, B, and C show according
247 to the modeling results how the energies available from these reactions respond to pH variations.
248 Below pH 6, available energies remain roughly constant. Above pH 7, the energies increase with
249 pH with the highest rate of increase above pH 10.

250

251 This variation in available energy reflects changes in DIC speciation. Below pH 6,
252 bicarbonate concentration declines with decreasing pH, which works to raise available energies
253 (fig 1B). At the same time, however, decreasing pH works to reduce available energies because
254 the reactions generate protons. The thermodynamic effects of DIC speciation and proton
255 generation cancel each other and, as a result, the available energies remain relatively constant.
256 pH also affects the speciation of acetate, lactate, and propionate (fig 1A), but the concentrations
257 of these chemical species co-vary with pH, and their thermodynamic effects are either balanced
258 by each other (such as in the oxidation of lactate and propionate) or by the speciation of DIC
259 (acetate oxidation).

260

261 Between pH 7 and 10, bicarbonate concentration varies relatively little with pH (fig 1B).
262 As such, the thermodynamic effect of DIC speciation dissipates, and the thermodynamic effect
263 of proton production causes energies to rise with increasing pH. Above pH 10, bicarbonate
264 concentration falls with increasing pH, which further raises the available energies.

265

266 Reactions that do not generate bicarbonate include the oxidations of butyrate and ethanol.
267 Their available energies depend on pH and the speciation of acetate – a product of the two
268 reactions. Below pH 4, acetate concentration falls with decreasing pH (fig 1A). While pH
269 decreases work to lower the available energies, falling acetate concentration works to raise the
270 available energies. The two effects balance each other, and hold the available energies constant.
271 At pH above 5, the available energies depend primarily on pH, and increase linearly with

272 increasing pH.

273

274 3.1.4. Iron reduction

275

276 The available energies of iron reduction respond strongly to changes in pH (fig 3).
277 Between pH 1 and 9, the available energies fall almost linearly with rising pH. The slopes of the
278 fall depend on the number of protons consumed in the reactions, and range from 72 to 91
279 $\text{kJ}\cdot\text{mol}^{-1}$ per pH unit (reaction 7 to 13 in table 1). Speciation of short-chain fatty acids and DIC
280 also responds to pH (fig 1A and B). However, their thermodynamic effects are relatively
281 insignificant compared to the energy variations induced directly by proton consumption.

282 Between pH 9 and 12, the available energies continue to decline with increasing pH but
283 the slopes of the decline are smaller than those between pH 1 and 9. Here, the speciation of
284 ferrous iron starts to take effect – ferrous iron concentration drops with increasing pH, due to the
285 formation of ferrous iron/hydroxide-complexes (fig 1E). The diminished concentration works to
286 raise the available energies, which counteracts the thermodynamic effect of proton consumption.
287 Ultimately, above pH 12, the speciation effect becomes dominant, leading to the rising available
288 energies with increasing pH.

289

290 3.1.5. Sulfate reduction

291

292 The response of sulfate reduction to pH varies between reactions. For hydrogenotrophic
293 sulfate reduction (reaction 14 in table 1), available energy declines at varying rates with
294 increasing pH (fig 4A). The energy change reflects proton consumption by the reaction but other
295 factors also contribute. For example, at pH less than 2, the sulfate ion is a secondary species of
296 dissolved sulfate, and its concentration rises with increasing pH (fig 1D), which partially
297 counteracts the thermodynamic effect of proton consumption and slows down the decline in the
298 available energy. At pH greater than 7, dihydrogen sulfide concentration starts to fall with
299 increasing pH (fig 1C), which also slows down the energy decline.

300 For sulfate reduction by the oxidation of acetate, propionate, and methanol (reaction 15,
301 17, and 19), energy variations separate into two phases (fig 4B and C). Below pH 7, available
302 energies largely fall with increasing pH, reflecting proton consumption and bicarbonate
303 production by the reactions. Above pH 7, available energies rise with increasing pH, because the
304 thermodynamic effect of proton consumption is counteracted by those of the speciation of DIC
305 and sulfide. As pH increases, bicarbonate and dihydrogen sulfide concentrations diminish (fig 1B
306 and C).

307 For sulfate reductions by the oxidation of lactate, butyrate, and ethanol (reaction 16, 18,
308 and 20), equation 5 predicts that pH variations have no impact on the available energies, because
309 no protons participate in the reactions. But the modeling results show that the available energies
310 do respond considerably to pH changes (fig 4D). These responses reflect variation with pH in the
311 speciation of acetate, bicarbonate, sulfate, and sulfide (fig 1). Between pH 1 and 7, an increase in
312 pH raises the concentrations of acetate and bicarbonate, thereby lowering the available energies.
313 In contrast, above pH 7, an increase in pH lowers the concentrations of bicarbonate and
314 dihydrogen sulfide, which raises the available energies.

318

319 **3.1.6. Methanogenesis**

320

321 Hydrogenotrophic and acetoclastic methanogenesis respond differently to pH variation
 322 (fig 5). Hydrogenotrophic pathway consumes proton and bicarbonate (reaction 21 in table 1).
 323 Below pH 6, its available energy remains largely unchanged because the thermodynamic effects
 324 of proton consumption and DIC speciation counteract each other (see fig 1B). Above pH 6,
 325 increases in pH cause available energy to decline because of proton consumption by the reaction.
 326 Above pH 9, the slope of the decrease becomes steeper because pH increases also lower the
 327 concentration of bicarbonate.

328

329 For acetoclastic methanogenesis (reaction 22), equation 5 predicts no response in the
 330 available energy with pH. However, the simulation results show that this prediction only applies
 331 between pH 7 and 9. Above pH 9, pH increases raise the available energy by lowering
 332 bicarbonate concentrations. Below pH 7, a decrease in pH also decreases bicarbonate
 333 concentration and hence raises available energy. Below pH 4, however, acetate concentration
 334 begins to decrease with decreasing pH, which counteracts the thermodynamic effect of
 335 decreasing bicarbonate concentration. Hence, the available energy varies little below pH 4.

336

337 **3.2. Thermodynamic drive**

338

339 Microbes conserve a part of the energy available in the environment by making ATP, and
 340 spend the other part to drive respiration reactions. By changing the energy available in the
 341 environment, pH also changes the thermodynamic drive, which in turn changes the rate of
 342 respiration (eqs 2 and 3).

343

344 For the purpose of this analysis, we focus on syntrophic oxidation of butyrate, and
 345 acetotrophic and hydrogenotrophic iron reduction, sulfate reduction, and methanogenesis, and
 346 compute how their thermodynamic drives respond to pH in the assumed environment. Butyrate is
 347 a key product of organic matter degradation, and acetate and H₂ are major end-products of
 348 organic matter fermentation and common electron donors in subsurface environments
 349 (Monokova, 1975; Molongoski and Klug, 1980; Lovley and Klug, 1982).

350

351 **3.2.1. Environmental conditions**

352

353 Like energy availability, microbial energy conservation also depends on environmental
 354 conditions. For example, the amount of energy conserved by syntrophs depends on hydrogen
 355 partial pressures of the environment. Jin (2007) constructed a kinetic model for syntrophic
 356 butyrate oxidation. This model considers reverse electron transfer, a key step in the pathway of
 357 syntrophic oxidation (Schink, 1992), and describes the energy conserved by microbes, ΔG_c
 358 [$\text{J} \cdot (\text{mol butyrate})^{-1}$], as a function of molal concentration of dissolved dihydrogen m_{H_2} ,

$$359 \quad \Delta G_c = -3.55 \times 10^4 - RT \cdot \ln(m_{\text{H}_2}). \quad (6)$$

360 According to this model, the conserved energy equals 15.8 kJ·mol⁻¹ at 1 nM H₂ and decreases
 361 with increasing H₂ concentration. In the assumed environment, the conserved energy takes a
 362 value of 4.5 kJ·(mol butyrate)⁻¹. At H₂ concentration of more than 0.6 μM, the conserved energy

363 decreases to 0.

364

365 pH also affects microbial energy conservation. Respiring microbes conserve energy by
366 translocating protons across their cytoplasmic membrane to create proton motive force. Proton
367 motive force includes electrical potential difference and the gradient in proton activity across the
368 membrane. Changes in environmental pH directly affect the proton gradient as well as the
369 electrical potential difference across the membrane (Sprott et al., 1985). In addition, microbes
370 also respond to pH changes by changing the number of protons translocated across the
371 membrane (Steigmiller et al., 2008).

372

373 Currently, no model is available to quantitatively predict how conserved energy changes
374 with pH. Thus the impact of pH on conserved energies cannot be evaluated as rigorously as we
375 have done for energy availability. For this reason, we follow the current practice, and calculate
376 the conserved energy of syntrophic butyrate oxidizers according to equation 6. For iron reducers,
377 sulfate reducers, and methanogens, we calculate the conserved energies using equation 4.

379 3.2.2. Thermodynamic control

380

381 Figure 6 shows how thermodynamic drives respond to changes in pH. By fixing
382 conserved energies, variations in thermodynamic drives follow the same patterns of the energies
383 available in the environment. In the assumed environment, the thermodynamic drive of butyrate
384 syntrophic oxidation is $14.3 \text{ kJ}\cdot\text{mol}^{-1}$ at pH 7 and decreases with decreasing pH. Below pH 5.7,
385 the drive becomes negative, and thus butyrate syntrophic oxidation becomes thermodynamically
386 unfavorable. Hydrogenotrophic and acetotrophic iron reducers have a thermodynamic drive of
387 125 and $111 \text{ kJ}\cdot\text{mol}^{-1}$, respectively, at pH 7. Their thermodynamic drives decrease with
388 increasing pH and become negative above pH 8.3.

389

390 In the assumed environment, hydrogenotrophic and acetotrophic sulfate reducers have
391 positive thermodynamic drives over the pH range of 1 to 14. Acetoclastic methanogen also has
392 positive thermodynamic drives over the entire pH range but its thermodynamic drive is close to 0
393 around pH 7. On the other hand, hydrogenotrophic methanogens have a relatively large drive at
394 low pH. Above pH 6, the thermodynamic drive begins to decrease and becomes negative above
395 10.9.

396

397 Figure 7 shows how the thermodynamic potential factors F_T vary with pH. The
398 thermodynamic potential factor quantifies the significance of thermodynamic limitation on
399 respiration rate. This factor approaches unity where available energy is much larger than
400 conserved energy. In this case, thermodynamic control is considered insignificant; respiration
401 rate is relatively large, and varies little with the thermodynamic drive. However, where available
402 energy approaches conserved energy, the thermodynamic drive and hence the thermodynamic
403 potential factor approach zero. Under this condition, respiration rate increases linearly with the
404 thermodynamic drive, and the thermodynamic control is significant. Where the thermodynamic
405 drive is negative, microbial respiration reaction is thermodynamically unfavorable. Here,
406 respiration reaction ceases and the thermodynamic potential factor is set to 0.

407

408 In the assumed environment, the thermodynamic factors of different microbial respiration

409 reactions respond differently to pH. For syntrophic butyrate oxidation, the thermodynamic factor
410 is positive above pH 5.7 and increases nonlinearly with pH. At pH above 9.8, the thermodynamic
411 factor increases to over 0.9.

412
413 The thermodynamic factors of hydrogenotrophic and acetotrophic iron reduction remain
414 close to unity below pH 7.8. Above pH 7.8, increases in pH decrease sharply the thermodynamic
415 factors for both reactions. At a pH of 8.3, the factors decrease to 0.

416
417 The thermodynamic factor of hydrogenotrophic sulfate reduction stays close to unity at
418 pH less than 5.0. Above pH 5.0, increases in pH gradually decrease the thermodynamic factor to
419 a value of 0.48 at pH 14. The thermodynamic factor of acetotrophic sulfate reduction remains
420 relatively large over the entire pH range, with a minimum of 0.88 at pH 8.3.

421
422 The thermodynamic factor of hydrogenotrophic methanogenesis stay close to unity below
423 pH 9.7. Above that level, the thermodynamic factor decreases sharply to 0 at pH 10.9. The
424 thermodynamic factor of acetoclastic methanogenesis is positive across the entire pH range with
425 a minimum of 0.92 at pH 8.1. Taking together the variations of the thermodynamic potential
426 factors, we see that pH variations are capable of modifying the thermodynamic states of
427 respiration reactions between favorable and unfavorable, and regulating the progress of the
428 reactions, from relatively fast pace to complete rest.

429
430 **4. Discussion**
431
432 We used geochemical reaction modeling and analyzed the thermodynamic and kinetic
433 responses of microbial redox reactions to environmental pH. The results illustrate how pH can
434 act as a key controlling parameter on microbial activities and interactions.

435
436 **4.1. Thermodynamic response**
437
438 We first analyzed how the thermodynamics of microbial redox reactions respond to pH
439 variations. Bethke et al. (2011) analyzed how the energy available from acetotrophic and
440 hydrogenotrophic iron reduction, sulfate reduction, and methanogenesis respond to variation in
441 pH between 4 and 10. We expand their analyses by varying pH from 1 to 14 and by including
442 additional microbial redox reactions involved in the degradation of natural organic matter. These
443 reactions include the oxidation of short-chain fatty acids and primary alcohols by proton
444 reduction, iron reduction, and sulfate reduction. Our analyses confirm the previous conclusion
445 that changes in environmental pH directly alter energy available from redox reactions that
446 produce or consume protons, and the significances of the changes depend on the numbers of
447 protons produced or consumed (Bethke et al., 2011).

448
449 Our simulation results also resonate with the previous studies that emphasize the indirect
450 thermodynamic role of pH – pH affects chemical energies in the environment indirectly by
451 affecting chemical speciation and thereby the concentrations of chemical species involved in
452 microbial redox reactions (Dolfing et al., 2010; Hedrich et al., 2011; Johnson et al., 2012; Shock
453 et al., 2010; Windman et al., 2007). We often write stoichiometric reaction equations and
454 compute their Gibbs free energy changes using the main chemical species at pH 7 (table 1 and eq

455 1). By doing so, we implicitly account for the speciation effect at pH 7.

456
457 But chemical speciation depends on pH, which impacts chemical reactions and their
458 energies in two ways. First, chemical species participating in protonation and deprotonation have
459 different concentrations at different pHs. As a result, the main chemical species of pH 7 may
460 give way to alternative forms at other pHs. Second, the stoichiometries of proton consumption
461 and production are not fixed, but vary with pH. At a given pH, proton consumption and
462 production depend on the relative significances of acids and their conjugate bases. In response to
463 pH variations, the concentrations of acids and their conjugate bases also change (fig 1), so do the
464 stoichiometries of proton reactions. Consequently, for reactions that include proton consumption
465 and production, the direct pH effect is not set but varies in magnitude with pH.

466
467 The indirect thermodynamic impact of pH is most notable for sulfate reduction by the
468 oxidation of lactate, butyrate, and ethanol, and for acetoclastic methanogenesis (reaction 16, 18,
469 20, and 22 in table 1). At pH 7, no proton would be produced or consumed by these reactions,
470 and the available energies are not affected directly by pH. But according to the simulation results,
471 their available energies vary significantly with the pH of the environment (fig 4D and 5B). We
472 account for the variations using pH-dependent chemical speciation – these reactions involve
473 bicarbonate, sulfide, and other chemical species, whose concentrations vary significantly with
474 pH.

475
476 Figures 2 to 5 compare the direct and the total thermodynamic impacts of pH (the dashed
477 and solid lines, respectively). The differences between the two lines highlight the indirect energy
478 contribution by chemical speciation. Two patterns arise from these figures.

479
480 First, microbial thermodynamic responses are not uniform. The available energies of
481 syntrophic oxidation reactions increase with increasing pH. For hydrogenotrophic sulfate
482 reduction and methanogenesis, their available energies decrease with increasing pH. For other
483 microbial redox reactions, in response to pH increases, available energies first decrease and then,
484 after reaching minimum values, begin to increase.

485
486 These heterogeneous responses arise in part from the indirect speciation impact of pH.
487 The speciation impact is not consistent throughout the entire pH range of 1 to 14. For example,
488 for redox reactions that produce bicarbonate, energy available always increases as pH moves
489 away from 7, regardless of whether pH is increasing or decreasing. As a second example, the
490 speciation of ferrous iron only affects notably the available energy of iron reduction at pH above
491 9. At lower pHs, the speciation impact is negligible.

492
493 Second, microbial iron reduction stands out from the other reactions in its strong response
494 to pH. Energy available from the reduction of iron oxides and hydroxides depends significantly
495 on pH. This sensitivity reflects consumption of relatively large numbers of protons, from 12.7 to
496 16 protons per reaction (8 electron transfer). As a result, a one-unit change in pH can lead to a
497 change of 72 to 91 $\text{kJ}\cdot(\text{mol reaction})^{-1}$ in the available energy. In comparison, thermodynamic
498 responses are relatively modest for other microbial redox reactions – a one-unit change in pH can
499 lead to up to 20 $\text{kJ}\cdot(\text{mol reaction})^{-1}$ of change in the available energies of these reactions.

501 **4.2. Kinetic response**

502

503 Microbial thermodynamic responses to pH lead to a cascade of metabolic effects,
504 including the thermodynamic drives of respiration. We took butyrate syntrophic oxidation, and
505 acetotrophic and hydrogenotrophic iron reduction, sulfate reduction, and methanogenesis as
506 examples, and analyzed how environmental pH controls the thermodynamic drives and hence the
507 rates of these reactions in the assumed freshwater environment.

508

509 Like the energies available in the environment, the thermodynamic drives of different
510 microbial respiration reactions respond differently to the changes in pH. Specifically, a pH
511 increase from 1 to 14 raises the thermodynamic drive of syntrophic butyrate oxidation from
512 negative to positive and hence moves the reaction from thermodynamically unfavorable to
513 favorable. On the other hand, increasing pH changes iron reduction and hydrogenotrophic
514 methanogenesis from thermodynamically favorable to unfavorable. pH variation can also push
515 hydrogenotrophic sulfate reduction and acetoclastic methanogenesis close to thermodynamic
516 equilibrium but these two reactions always remain thermodynamically favorable in the assumed
517 environment across the pH range considered.

518

519 It should be made clear that our thermodynamic drive calculations are specific for the
520 assumed environment. In an environment of different geochemical conditions, thermodynamic
521 drives may be different, and hence pH variations may modify respiration rates to different
522 extents. For example, if we raise methane concentration in the hypothetical solution to 1 mM, we
523 would decrease the thermodynamic drive of acetoclastic methanogenesis. At pH between 5.7 and
524 10.6, the thermodynamic drive becomes negative, and methanogenesis stops (fig 6D and 7D).
525 But the patterns in the responses of the thermodynamic drive should be similar, regardless of the
526 concentration of methane or other chemical compounds. As shown in figure 6D, the
527 thermodynamic drive always increases as pH moves away from 7. Where pH increases above
528 10.6 or decreases below 5.7, the thermodynamic drive becomes positive.

529

530 **4.3. Microbial pH response**

531

532 The pH limits of microbial metabolisms are a classical physiological parameter. Previous
533 studies have attributed these pH limits to different physiological mechanisms, including cellular
534 structures and metabolisms. First, both acidophiles and alkaliphiles need to employ unique
535 surface structures to develop acid or alkaline tolerance. For example, the cell walls of
536 alkaliphiles have acidic polymers, which may protect cells from hydroxide ions (Horikoshi,
537 1999). Acidophiles, such as the members of *Ferroplasma*, mix caldarchaetidylglycerol tetraether
538 lipids into their membranes to make a barrier to protons in the environment (Golyshina and
539 Timmis, 2005).

540

541 Acidic or alkaline conditions also present a challenge to cell metabolism. For both
542 acidophiles and alkaliphiles, cytoplasmic pH is often closer to neutral pH than the environments
543 (Lowe et al., 1993). Maintaining a pH gradient across the membrane consumes energy (Booth,
544 1985). In addition, under acidic conditions, conjugate acids become significant in the
545 environment, and diffuse through the cell membrane, which destabilizes the membrane and
546 dissipates proton motive force (Russell, 1992). Very low or high pH levels also interfere with

547 solute transport across the membrane and energy conservation by respiration (Krulwich et al.,
548 1998; Matin, 1990).

549
550 Our thermodynamic analyses show that environmental pH affects the thermodynamics of
551 microbial redox reactions, and determines whether microbial respiration reactions are
552 thermodynamically favorable or not. Therefore, in addition to microbial physiology, the pH
553 limits may arise, at least in part, from the response of reaction thermodynamics to pH.

554
555 For example, reaction thermodynamics sets the lower pH limit for syntrophic butyrate
556 oxidizers. In the assumed environment, syntrophic butyrate oxidation becomes
557 thermodynamically unfavorable and thus stops at pH below 5.7. In laboratory experiments, both
558 butyrate and acetate have relatively large concentrations (Dwyer et al., 1988; Schmidt and
559 Ahring, 1993). We repeat the calculation by taking their concentrations as 5 mM, and setting H₂
560 partial pressures at 10⁻⁴ atm (or dissolved H₂ at 77 nM), and find that butyrate oxidation would
561 stop at pH less than 6.3.

562
563 The predicted pH limits are consistent with previous laboratory observations. For
564 example, *S. wolfei* is one of the first isolates that can grow syntrophically on butyrate, and it can
565 grow at pH above 6.5 (Wu et al., 2007). Its close relatives, including *S. bryantii*, also have pH
566 limit above 6.0 (Zhang et al., 2004, 2005).

567
568 As a second example, the thermodynamics of iron reduction sets the upper limit for
569 microbes reducing ferric oxides and oxyhydroxides. In the assumed environment, at pH above
570 8.3, both hydrogenotrophic and acetotrophic reduction of goethite become thermodynamically
571 unfavorable. In laboratory reactors, H₂, acetate, and ferrous iron often have concentrations orders
572 magnitude above the concentrations in the assumed environment. If we take acetate
573 concentration at 5 mM, H₂ partial pressure at 10⁻² atm, and ferrous iron at 1 mM, the reduction
574 of goethite would remain thermodynamically favorable only at pH less than 8.0.

575
576 The upper pH limit for iron reduction depends on ferric minerals (Postma and Jakobsen,
577 1996). For example, if we choose natural ferrihydrite as an electron acceptor, the reduction of
578 ferrihydrite becomes thermodynamically unfavorable at pH 8.6. This upper limit is consistent
579 with the value determined using laboratory experiments. Straub et al. (1998) reported that by
580 reducing ferrihydrite, two *Geobacter* strains grow optimally at pH around 7, and can grow at pH
581 up to 7.5.

582 583 4.4. Implications for environmental microbiology

584
585 By promoting or inhibiting microbial redox reactions, environmental pH is capable of
586 shaping the interactions between microbial groups. For example, previous studies of microbial
587 syntropy have emphasized the importance of H₂ levels of the environment – a key parameter
588 that dictates the thermodynamics and occurrence of syntrophic degradation (Schink, 1997). The
589 above results show that like H₂ levels, pH can change the thermodynamic status and rates of
590 syntrophic oxidation of short-chain fatty acids and primary alcohols, and hence determine the
591 occurrence and significance of these processes in the environment.

593 By promoting or inhibiting microbial respiration, environmental pH is also capable of
594 shaping microbial community composition. Microbial iron reduction and sulfate reduction, for
595 example, occur widely in subsurface environments and competing against each other for the
596 common electron donors of H₂ and acetate. The current paradigm describing their interactions
597 follows the tragedy of commons and assumes that iron reducers hold either thermodynamic or
598 kinetic advantage and as a result, always win the competition against sulfate reducers (Bethke et
599 al., 2008; Chapelle and Lovley, 1992).

600

601 Our modeling results show that the competitive advantage of iron reducers is pH
602 dependent. Specifically, the thermodynamic drive of microbial iron reduction responds
603 significantly to pH. In the assumed environment, that response lowers iron reduction rates from
604 maximum values to 0 over a narrow pH range of 1 unit. In comparison, sulfate reduction
605 responds relatively modestly to pH and stays thermodynamically favorable over the entire pH
606 range between 1 and 14. These results suggest iron reducers can win the competition against
607 sulfate reducers under acidic conditions but might lose the competition under alkaline conditions.
608 Thus, changes in pH have the potential to alter the proportions of iron reducers relative to sulfate
609 reducers in an environment.

610

611 Results of laboratory experiments by Kirk et al. (2013) are consistent with this possibility.
612 In their study, microbial consortia from a freshwater aquifer grew on acetate under two different
613 pHs, 7.2 and 5.7, and the microbial community that developed in each reactor was sampled at the
614 end of the study and analyzed by sequencing 16S rRNA gene amplicons. The relative abundance
615 of sequences that grouped within *Geobacteraceae* and *Myxococcaceae* was twice as high in pH
616 5.7 reactors than pH 7.2 reactors. Members of *Geobacteraceae* and *Myxococcaceae*, such as
617 *Geobacter* and *Anaeromyxobacter*, are capable of iron reduction (Lonergan et al., 1996; Treude et
618 al., 2003). Conversely, sequences that grouped within taxa commonly associated with sulfate
619 reduction, such as *Desulfobulbaceae*, *Desulfovibrionaceae*, *Desulfuromonadaceae*, and
620 *Desulfobacteraceae*, were primarily only present in pH 7.2 reactors.

621

622 These differences in relative abundance are consistent with contributions of iron
623 reduction and sulfate reduction to acetate oxidation evaluated using mass-balance calculations.
624 According to their results, in pH 7.2 reactors, sulfate reduction overwhelmed iron reduction;
625 sulfate reduction consumed 85% of acetate, and the rest is accounted for by iron reduction. At
626 pH 5.7, iron reduction consumed at least 90% of acetate while sulfate reduction consumed a
627 negligible amount (<1%). In agreement with these findings, furthermore, Kirk et al. (2016) found
628 that broad-scale patterns in groundwater geochemistry in U.S. aquifers are also consistent with
629 an increase in the significance of iron reduction relative to sulfate reduction as pH decreases.

630

631 **4.5. Concluding comments**

632

633 We applied geochemical reaction modeling, and explored the thermodynamic responses
634 of microbial redox reactions to environmental pH. Our modeling focused on the energy yields of
635 redox reactions, and neglected other impacts brought upon cell metabolisms by pH. For example,
636 low pH conditions promotes the diffusion of formic acid, acetic acid, and other short-chain fatty
637 acids across the membrane, which dissipates proton motive force across the membrane and
638 inhibits microbial growth (Russell, 1992). Low pH also helps dissolve ferric and ferrous minerals,

639 which makes available ferric iron to iron reducers and ferrous iron to iron oxidizers, and
640 promotes the biogeochemical cycling of iron (Coupland and Johnson, 2008; Emerson et al.,
641 2010).

642
643 Our work represents a step forward towards a mechanistic view of the pH control on
644 microbial metabolisms and community structures. Current studies rely on phenomenological
645 models to describe the apparent microbial responses to pH. Here we focused on microbial
646 respiration, and illustrated that environmental pH influences the thermodynamics of microbial
647 redox reactions and that this influence can be strong enough to cause significant changes in
648 respiration kinetics.

649
650 The simulation results illustrate that environmental pH can impact the energies of
651 microbial redox reactions in two ways. Chemical energies are a direct function of pH – the
652 chemical activity of protons – for reactions that consume and produce protons. In addition, pH
653 also controls the speciation and concentrations of electron donors, acceptors, and reaction
654 products, which in turn determine the energy yields of redox reactions. For microbial reduction
655 of goethite and other ferric oxyhydroxides, the effect of proton consumption is dominant. For
656 other reactions, the indirect speciation effect is of similar magnitude as the proton activity effect.
657 These thermodynamic responses are strong enough that they can switch the thermodynamic
658 states of microbial respiration between favorable and unfavorable and change microbial rates
659 from 0 to their maximum values. Thermodynamic responses also help give rise to the lower or
660 upper pH limits of microbial respiration reactions and pH-dependent changes in microbial
661 community composition. By changing the thermodynamics of individual microbial redox
662 reactions, pH variations are capable of shifting microbial community structures and modulating
663 the interactions among microbes.

664
665 Taken together, our results provide a mechanistic understanding of how environmental
666 pH regulates microbial respiration and affects the community composition of natural microbes.
667 They expand our view on the evaluation of microbial processes using routine environmental
668 parameters, such as pH and chemical energies. In addition to microbial respiration, microbial
669 growth and maintenance are also influenced by environmental pH (Russell and Dombrowski,
670 1980). Future efforts should explore the pH impact on growth and maintenance in order to
671 achieve a holistic view of microbial response to environmental pH.

672
673 **Acknowledgement**

674
675 This research was funded by the National Science Foundation under Award EAR-
676 1636815 and by National Aeronautics and Space Administration under Grant NNX16AJ59G.

677 **References**

678

679 Amend, A.S., Oliver, T.A., Amaral-Zettler, L.A., Boetius, A., Fuhrman, J.A., Horner-Devine, M.C., Huse,
680 S.M., Welch, D.B.M., Martiny, A.C., Ramette, A., Zinger, L., Sogin, M.L. and Martiny, J.B.H. (2013)
681 Macroecological patterns of marine bacteria on a global scale. *Journal of Biogeography* 40, 800-811.

682 Baker-Austin, C. and Dopson, M. (2007) Life in acid: pH homeostasis in acidophiles. *Trends in*
683 *Microbiology* 15, 165-171.

684 Bethke, C.M. (2008) *Geochemical and Biogeochemical Reaction Modeling*, 2nd ed. Cambridge University
685 Press, Cambridge, UK.

686 Bethke, C.M., Ding, D., Jin, Q. and Sanford, R.A. (2008) Origin of microbiological zoning in groundwater
687 flows. *Geology* 36.

688 Bethke, C.M., Sanford, R.A., Kirk, M.F., Jin, Q. and Flynn, T.M. (2011) The thermodynamic ladder in
689 geomicrobiology. *American Journal of Science* 311, 183-210.

690 Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M. (1996) Schwertmannite and the
691 chemical modeling of iron in acid sulfate waters. *Geochimica et Cosmochimica Acta* 60, 2111-2121.

692 Booth, I.R. (1985) Regulation of cytoplasmic pH in bacteria. *Microbiological Reviews* 49, 359-378.

693 Chapelle, F.H. and Lovley, D.R. (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing
694 bacteria: a mechanism for producing discrete zones of high-iron ground water. *Ground Water* 30, 29-36.

695 Chapelle, F.H., McMahon, P.B., Dubrovsky, N.M., Fujii, R.F., Oaksford, E.T. and Vroblesky, D.A. (1995)
696 Deducing the distribution of terminal electron-accepting processes in hydrologically diverse
697 groundwater systems. *Water Resources Research* 31, 359-371.

698 Chen, G., He, Z. and Wang, Y. (2004) Impact of pH on Microbial Biomass Carbon and Microbial Biomass
699 Phosphorus in Red Soils. *Pedosphere* 14, 9-15.

700 Cornell, R.M. and Schwertmann, U. (2003) *The Iron Oxides : Structure, Properties, Reactions,
701 Occurrences and Uses*, 2nd ed. Wiley-VCH.

702 Coupland, K. and Johnson, D.B. (2008) Evidence that the potential for dissimilatory ferric iron reduction
703 is widespread among acidophilic heterotrophic bacteria. *FEMS Microbiology Letters* 279, 30-35.

704 Delany, J.M. and Lundeen, S.R. (1990) The LLNL thermodynamical database. Lawrence Livermore
705 National Laboratory Report UCRL-21658, p. 150.

706 Dolfing, J., Xu, A. and Head, I.M. (2010) Anomalous energy yields in thermodynamic calculations:
707 importance of accounting for pH-dependent organic acid speciation. *The Isme Journal* 4, 463.

708 Dwyer, D.F., Weeg-Aerssens, E., Shelton, D.R. and Tiedje, J.M. (1988) Bioenergetic conditions of butyrate
709 metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic
710 and sulfidogenic bacteria. *Applied and Environmental Microbiology* 54, 1354-1359.

711 Edwards, K.J., Becker, K. and Colwell, F. (2012) The deep, dark energy biosphere: Intraterrestrial life on
712 Earth. *Annual Review of Earth and Planetary Sciences* 40, 551-568.

713 Emerson, D., Fleming, E.J. and McBeth, J.M. (2010) Iron-Oxidizing Bacteria: An Environmental and
714 Genomic Perspective. *Annual Review of Microbiology* 64, 561-583.

715 Falkowski, P.G., Fenchel, T. and Delong, E.F. (2008) The Microbial Engines That Drive Earth's
716 Biogeochemical Cycles. *Science* 320, 1034-1039.

717 Fernández-Calviño, D. and Bååth, E. (2010) Growth response of the bacterial community to pH in soils
718 differing in pH. *FEMS Microbiology Ecology* 73, 149-156.

719 Golyshina, O.V. and Timmis, K.N. (2005) Ferroplasma and relatives, recently discovered cell wall-lacking
720 archaea making a living in extremely acid, heavy metal-rich environments. *Environmental Microbiology*
721 7, 1277-1288.

722 Hedrich, S., Schlömann, M. and Johnson, D.B. (2011) The iron-oxidizing proteobacteria. *Microbiology*
723 157, 1551-1564.

724 Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and
725 pressures. *American Journal of Science* 267, 729-804.

726 Horikoshi, K. (1999) Alkaliphiles: Some Applications of Their Products for Biotechnology. *Microbiology*
727 and *Molecular Biology Reviews* 63, 735-750.

728 Jin, Q. (2007) Control of hydrogen partial pressures on the rates of syntrophic microbial metabolisms: a
729 kinetic model for butyrate fermentation. *Geobiology* 5, 35-48.

730 Jin, Q. (2012) Energy conservation of anaerobic respiration. *American Journal of Science* 312, 573-628.

731 Jin, Q. and Bethke, C.M. (2002) Kinetics of electron transfer through the respiratory chain. *Biophysical*
732 *Journal* 83, 1797-1808.

733 Jin, Q. and Bethke, C.M. (2003) A new rate law describing microbial respiration. *Applied and*
734 *Environmental Microbiology* 69, 2340-2348.

735 Jin, Q. and Bethke, C.M. (2005) Predicting the rate of microbial respiration in geochemical environments.
736 *Geochimica et Cosmochimica Acta* 69, 1133-1143.

737 Jin, Q. and Bethke, C.M. (2007) The thermodynamics and kinetics of microbial metabolism. *American*
738 *Journal of Science* 307, 643-677.

739 Jin, Q. and Bethke, C.M. (2009) Cellular energy conservation and the rate of microbial sulfate reduction.
740 *Geology* 36, 739-742.

741 Jin, Q. and Kirk, M., F. (in review) pH as a primary control in environmental microbiology: 2. Kinetic
742 perspective. *Frontiers in Environmental Microbiology* 3.

743 Jin, Q. and Roden, E.E. (2011) Microbial physiology-based model of ethanol metabolism in subsurface
744 sediments. *Journal of Contaminant Hydrology* 125, 1-12.

745 Johnson, D.B., Kanao, T. and Hedrich, S. (2012) Redox Transformations of Iron at Extremely Low pH:
746 Fundamental and Applied Aspects. *Frontiers in Microbiology* 3.

747 Kemmitt, S.J., Wright, D., Goulding, K.W.T. and Jones, D.L. (2006) pH regulation of carbon and nitrogen
748 dynamics in two agricultural soils. *Soil Biology and Biochemistry* 38, 898-911.

749 Kirk, M.F., Jin, Q. and Haller, B.R. (2016) Broad-scale evidence that pH influences the balance between
750 microbial iron and sulfate reduction. *Groundwater* 54, 406-413.

751 Kirk, M.F., Santillan, E.F.U., Sanford, R.A. and Altman, S.J. (2013) CO₂-induced shift in microbial activity
752 affects carbon trapping and water quality in anoxic bioreactors. *Geochimica et Cosmochimica Acta* 122,
753 198-208.

754 Kotsyurbenko, O.R., Chin, K.-J., Glagolev, M.V., Stubner, S., Simankova, M.V., Nozhevnikova, A.N. and
755 Conrad, R. (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic
756 populations in an acidic West-Siberian peat bog. *Environmental Microbiology* 6, 1159-1173.

757 Krulwich, T.A., Ito, M., Hicks, D.B., Gilmour, R. and Guffanti, A.A. (1998) pH homeostasis and ATP
758 synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic
759 *Bacillus* species. *Extremophiles* 2, 217-222.

760 Lauber, C.L., Hamady, M., Knight, R. and Fierer, N. (2009) Pyrosequencing-Based Assessment of Soil pH
761 as a Predictor of Soil Bacterial Community Structure at the Continental Scale. *Applied and Environmental*
762 *Microbiology* 75, 5111-5120.

763 Lennon, J.T. and Jones, S.E. (2011) Microbial seed banks: the ecological and evolutionary implications of
764 dormancy. *Nat Rev Micro* 9, 119-130.

765 Leprince, F. and Quiquampoix, H. (1996) Extracellular enzyme activity in soil: effect of pH and ionic
766 strength on the interaction with montmorillonite of two acid phosphatases secreted by the
767 ectomycorrhizal fungus *Hebeloma cylindrosporum*

768 Activité enzymatique extracellulaire dans le sol: effet du pH et de la force ionique sur l'interaction avec
769 la montmorillonite de deux phosphates acides sécrétés par le champignon ectomycorhizien *Hebeloma*
770 *cylindrosporum*. *European Journal of Soil Science* 47, 511-522.

771 Lide, D.R. (2003) Handbook of Chemistry and Physics 83rd ed. CRC Press, Boca Raton, Florida.

772 Lindsay, W.L. (1979) Chemical equilibria in soils. John Wiley and Sons Ltd., New York.

773 Lonergan, D.J., Jenter, H.L., Coates, J.D., Phillips, E.J., Schmidt, T.M. and Lovley, D.R. (1996) Phylogenetic
774 analysis of dissimilatory Fe(III)-reducing bacteria. *Journal of Bacteriology* 178, 2402-2408.

775 Lovley, D.R. and Chapelle, F.H. (1995) Deep subsurface microbial processes. *Reviews of Geophysics* 33,
776 365-382.

777 Lowe, S.E., Jain, M.K. and Zeikus, J.G. (1993) Biology, ecology, and biotechnological applications of
778 anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.
779 *Microbiological Reviews* 57, 451-509.

780 Maestrojuan, G.M. and Boone, D.R. (1991) Characterization of *Methanosarcina barkeri* MST and 227,
781 *Methanosarcina mazei* S-6T, and *Methanosarcina vacuolata* Z-761T. *International Journal of Systematic
782 and Evolutionary Microbiology* 41, 267-274.

783 Matin, A. (1990) Bioenergetics parameters and transport in obligate acidophiles. *Biochimica et
784 Biophysica Acta (BBA) - Bioenergetics* 1018, 267-270.

785 O'Flaherty, V., Mahony, T., O'Kennedy, R. and Colleran, E. (1998) Effect of pH on growth kinetics and
786 sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria.
787 *Process Biochemistry* 33, 555-569.

788 Paul, A., Stösser, R., Zehl, A., Zwirnmann, E., Vogt, R.D. and Steinberg, C.E.W. (2006) Nature and
789 Abundance of Organic Radicals in Natural Organic Matter: Effect of pH and Irradiation. *Environmental
790 Science & Technology* 40, 5897-5903.

791 Postma, D. and Jakobsen, R. (1996) Redox zonation: Equilibrium constraints on the Fe(III)/SO₄-reduction
792 interface. *Geochimica et Cosmochimica Acta* 60, 3169-3175.

793 Rosso, L., Lobry, J.R., Bajard, S. and Flandrois, J.P. (1995) Convenient model to describe the combined
794 effects of temperature and pH on microbial growth. *Applied and Environmental Microbiology* 61, 610-
795 616.

796 Russell, J.B. (1992) Another explanation for the toxicity of fermentation acids at low pH: anion
797 accumulation versus uncoupling. *Journal of Applied Bacteriology* 73, 363-370.

798 Russell, J.B. and Dombrowski, D.B. (1980) Effect of pH on the efficiency of growth by pure cultures of
799 rumen bacteria in continuous culture. *Applied and Environmental Microbiology* 39, 604-610.

800 Schink, B. (1992) Syntrophism among prokaryotes, in: Balows, A., Trüper, H., Dworkin, M., Harder, W.,
801 Schleifer, K. (Eds.), *The Prokaryotes*. Springer-Verlag, New York, pp. 276-299.

802 Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. *Microbiology and
803 Molecular Biology Reviews* 61, 262-280.

804 Schink, B. and Stams, A.J.M. (2013) Syntrophism Among Prokaryotes, in: Rosenberg, E., DeLong, E.F.,
805 Lory, S., Stackebrandt, E., Thompson, F. (Eds.), *The Prokaryotes: Prokaryotic Communities and
806 Ecophysiology*. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 471-493.

807 Schmidt, J.E. and Ahring, B.K. (1993) Effects of hydrogen and formate on the degradation of propionate
808 and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. *Applied and
809 Environmental Microbiology* 59, 2546-2551.

810 Shock, E.L., Holland, M., Meyer-Dombard, D.A., Amend, J.P., Osburn, G.R. and Fischer, T.P. (2010)
811 Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National
812 Park, USA. *Geochimica et Cosmochimica Acta* 74, 4005-4043.

813 Sprott, G.D., Bird, S.E. and McDonald, I.J. (1985) Proton motive force as a function of the pH at which
814 *Methanobacterium bryantii* is grown. *Canadian Journal of Microbiology* 31, 1031-1034.

815 Steigmiller, S., Turina, P. and Gräber, P. (2008) The thermodynamic H⁺/ATP ratios of the H⁺-ATPsynthases
816 from chloroplasts and *Escherichia coli*. *Proceedings of the National Academy of Sciences of the United
817 States of America* 105, 3745-3750.

818 Straub, K.L., Hanzlik, M. and Buchholz-Cleven, B.E.E. (1998) The Use of Biologically Produced Ferrihydrite
819 for the Isolation of Novel Iron-Reducing Bacteria. *Systematic and Applied Microbiology* 21, 442-449.
820 Stumm, W. and Morgan, J.J. (1996) *Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters*,
821 third edition ed. John Wiley & Sons, Inc., New York.
822 Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A.,
823 Gibbons, S.M., Ackermann, G., Navas-Molina, J.A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González,
824 A., Morton, J.T., Mirarab, S., Zech Xu, Z., Jiang, L., Haroon, M.F., Kanbar, J., Zhu, Q., Jin Song, S., Kosciolek,
825 T., Bokulich, N.A., Lefler, J., Brisbaw, C.J., Humphrey, G., Owens, S.M., Hampton-Marcelli, J., Berg-Lyons,
826 D., McKenzie, V., Fierer, N., Fuhrman, J.A., Clauset, A., Stevens, R.L., Shade, A., Pollard, K.S., Goodwin,
827 K.D., Jansson, J.K., Gilbert, J.A., Knight, R. and The Earth Microbiome Project, C. (2017) A communal
828 catalogue reveals Earth's multiscale microbial diversity. *Nature* 551, 457.
829 Treude, N., Rosencrantz, D., Liesack, W. and Schnell, S. (2003) Strain FAc12, a dissimilatory iron-reducing
830 member of the Anaeromyxobacter subgroup of Myxococcales. *FEMS Microbiology Ecology* 44, 261-269.
831 Ward, D.M., Ferris, M.J., Nold, S.C. and Bateson, M.M. (1998) A Natural View of Microbial Biodiversity
832 within Hot Spring Cyanobacterial Mat Communities. *Microbiology and Molecular Biology Reviews* 62,
833 1353-1370.
834 Windman, T., Zolotova, N., Schwandner, F. and Shock, E.L. (2007) Formate as an Energy Source for
835 Microbial Metabolism in Chemosynthetic Zones of Hydrothermal Ecosystems. *Astrobiology* 7, 873-890.
836 Wu, C., Dong, X. and Liu, X. (2007) *Syntrophomonas wolfei* subsp. *methylbutyratica* subsp. nov., and
837 assignment of *Syntrophomonas wolfei* subsp. *saponavida* to *Syntrophomonas saponavida* sp. nov. comb.
838 nov. *Systematic and Applied Microbiology* 30, 376-380.
839 Ye, R., Jin, Q., Bohannan, B., Keller, J.K., McAllister, S.A. and Bridgman, S.D. (2012) pH controls over
840 anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in
841 peatlands across an ombrotrophic-minerotrophic gradient. *Soil Biology and Biochemistry* 54, 36-47.
842 Zhalnina, K., Dias, R., de Quadros, P.D., Davis-Richardson, A., Camargo, F.A.O., Clark, I.M., McGrath, S.P.,
843 Hirsch, P.R. and Triplett, E.W. (2015) Soil pH Determines Microbial Diversity and Composition in the Park
844 Grass Experiment. *Microbial Ecology* 69, 395-406.
845 Zhang, C., Liu, X. and Dong, X. (2004) *Syntrophomonas curvata* sp. nov., an anaerobe that degrades fatty
846 acids in co-culture with methanogens. *International Journal of Systematic and Evolutionary Microbiology*
847 54, 969-973.
848 Zhang, C., Liu, X. and Dong, X. (2005) *Syntrophomonas erecta* sp. nov., a novel anaerobe that
849 syntrophically degrades short-chain fatty acids. *International Journal of Systematic and Evolutionary
850 Microbiology* 55, 799-803.

851

852 Table 1. Redox reactions, standard available energy $\Delta G_A^{\circ'}$, and the energy ΔG_A available in the assumed environment.
 853

Redox reaction		$\Delta G_A^{\circ'}$ ^(a) (kJ·mol ⁻¹)	ΔG_A ^(b) (kJ·mol ⁻¹)
Syntrophic oxidation			
1. Acetate+4H ₂ O \rightleftharpoons	$\text{H}_2\text{O} + 2\text{HCO}_3^- + \text{H}^+$	-175.25	-13.89
2. 2Lactate+4H ₂ O \rightleftharpoons	$\text{H}_2\text{O} + 4\text{H}_2\text{(aq)} + 2\text{HCO}_3^- + 2\text{H}^+$	-52.65	68.81
3. $\frac{4}{3}$ Propionate+4H ₂ O \rightleftharpoons	$\text{H}_2\text{O} + 4\text{H}_2\text{(aq)} + \frac{4}{3}\text{HCO}_3^- + \frac{4}{3}\text{H}^+$	-175.58	3.37
4. 2Butyrate+4H ₂ O \rightleftharpoons	$\text{H}_2\text{O} + 4\text{H}_2\text{(aq)} + 2\text{H}^+$	-170.90	23.31
5. $\frac{4}{3}$ Methanol+ $\frac{8}{3}$ H ₂ O \rightleftharpoons	$\text{H}_2\text{O} + \frac{4}{3}\text{HCO}_3^- + \frac{4}{3}\text{H}^+$	-102.24	35.51
6. 2Ethanol+2H ₂ O \rightleftharpoons	$\text{H}_2\text{O} + 4\text{H}_2\text{(aq)} + 2\text{H}^+$	-89.42	29.84
Goethite reduction			
7. 4H ₂ (aq)+8Goethite+16H ⁺ \rightleftharpoons	$\text{H}_2\text{O} + 8\text{Fe}^{2+}$	89.90	169.78
8. Acetate+8Goethite+15H ⁺ \rightleftharpoons	$\text{H}_2\text{O} + 12\text{H}_2\text{O} + 8\text{Fe}^{2+}$	-85.35	155.88
9. 2Lactate+8Goethite+14H ⁺ \rightleftharpoons	$\text{H}_2\text{O} + 2\text{HCO}_3^- + 12\text{H}_2\text{O} + 8\text{Fe}^{2+}$	37.25	307.40
10. $\frac{4}{3}$ Propionate+8Goethite+ $\frac{38}{3}$ H ⁺ \rightleftharpoons	$\text{H}_2\text{O} + \frac{4}{3}\text{HCO}_3^- + 12\text{H}_2\text{O} + 8\text{Fe}^{2+}$	-85.68	174.26
11. 2Butyrate+8Goethite+14H ⁺ \rightleftharpoons	$\text{H}_2\text{O} + 12\text{H}_2\text{O} + 8\text{Fe}^{2+}$	-81.00	216.41
12. $\frac{4}{3}$ Methanol+8Goethite+ $\frac{44}{3}$ H ⁺ \rightleftharpoons	$\text{H}_2\text{O} + 8\text{Fe}^{2+} + \frac{40}{3}\text{H}_2\text{O}$	-12.34	209.54
13. 2Ethanol+8Goethite+14H ⁺ \rightleftharpoons	$\text{H}_2\text{O} + 8\text{Fe}^{2+} + 14\text{H}_2\text{O}$	0.48	240.80
Sulfate reduction			
14. 4H ₂ (aq)+SO ₄ ²⁻ +2H ⁺ \rightleftharpoons	H_2O	223.23	80.68
15. Acetate+SO ₄ ²⁻ +H ⁺ \rightleftharpoons	H_2S	47.97	66.79

16.	$2\text{Lactate} + \text{SO}_4^{2-} \rightleftharpoons$	$\text{H}_2\text{S} + 2\text{HCO}_3^-$	170.57	218.30
17.	$\frac{4}{3}\text{Propionate} + \text{SO}_4^{2-} + \frac{2}{3}\text{H}^+ \rightleftharpoons$	$\text{H}_2\text{S} + \frac{4}{3}\text{HCO}_3^-$	47.64	85.16
18.	$2\text{Butyrate} + \text{SO}_4^{2-} \rightleftharpoons$	$\text{H}_2\text{S} + \text{H}_2\text{O}$	52.33	127.31
19.	$\frac{4}{3}\text{Methanol} + \text{SO}_4^{2-} + \frac{2}{3}\text{H}^+ \rightleftharpoons$	$\frac{4}{3}\text{H}_2\text{O} + \frac{4}{3}\text{HCO}_3^-$	120.98	120.44
20.	$2\text{Ethanol} + \text{SO}_4^{2-} \rightleftharpoons$	$\text{H}_2\text{S} + 2\text{H}_2\text{O}$	133.80	151.70
Methanogenesis				
21.	$4\text{H}_2\text{(aq)} + \text{H}^+ + \text{HCO}_3^- \rightleftharpoons$	$\text{CH}_4\text{(g)} + 3\text{H}_2\text{O}$	190.33	49.56
22.	$\text{Acetate} + \text{H}_2\text{O} \rightleftharpoons$	$\text{CH}_4\text{(aq)}$	15.07	35.67

854
855

856 (a) ΔG_A^o ^a is calculated as the negative of the Gibbs free energy at 25°C, pH 7, 1 atm pressure, and chemical activities of unity.
857 (b) ΔG_A is calculated according to equation 1 and the assumed environmental conditions for the hypothetical freshwater
858 environment.
859

860 **Figure Caption**

861
862 Figure 1. Variations with pH in the concentrations of short-chain fatty acids and their conjugate
863 bases (A), dissolved inorganic carbon (carbonic acid H_2CO_3 , bicarbonate HCO_3^- , and carbonate
864 CO_3^{2-} , B), sulfide (dihydrogen sulfide H_2S , monohydrogen sulfide HS^- , and sulfide S^{2-} , C),
865 sulfate (ferric iron-sulfate complex FeSO_4^+ , hydrogen sulfate HSO_4^- , and sulfate SO_4^{2-} , D), and
866 ferrous iron (ferrous iron Fe^{2+} , E) in the assumed environment.

867
868 Figure 2. Variations with pH in the energy available from syntrophic oxidation of acetate (A),
869 lactate (B), propionate, methanol (C), butyrate, and ethanol (D) in the assumed environment.
870 Solid lines are results of biogeochemical modeling, and dashed lines are calculated according to
871 equation 5.

872
873 Figure 3. Variations with pH in the energy available from the reduction of goethite coupled to
874 the oxidation of H_2 (A), acetate (B), lactate, butyrate, ethanol (C), propionate (D), and methanol
875 (E) in the assumed environment. Solid lines are results of biogeochemical modeling, and dashed
876 lines are calculated according to equation 5.

877
878 Figure 4. Variations with pH in the energy available from the reduction of sulfate coupled to the
879 oxidation of H_2 (A), acetate (B), propionate, methanol (C), lactate, butyrate, and ethanol (D) in
880 the assumed environment. Solid lines are results of biogeochemical modeling, and dashed lines
881 are calculated according to equation 5.

882
883 Figure 5. Variations with pH in the energy available from hydrogentrophic (A) and acetoclastic
884 methanogenesis (B) in the assumed environment. Solid lines are results of biogeochemical
885 modeling, and dashed lines are calculated according to equation 5.

886
887 Figure 6. Variations with pH in the thermodynamic drives of syntrophic butyrate oxidation (A),
888 hydrogenotrophic and acetotrophic goethite reduction (B), sulfate reduction (C), and
889 methanogenesis (D) in the assumed environment.

890
891 Figure 7. Variations with pH in the thermodynamic factors of syntrophic butyrate oxidation (A),
892 hydrogenotrophic and acetotrophic goethite reduction (B), sulfate reduction (C), and
893 methanogenesis (D) in the assumed environment.