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ABSTRACT

Longitudinal data analysis is an often encountered problem
in Medical Image Analysis. A differential geometric treat-
ment of such problems has been reported in literature in the
recent past. However, most of these methods require that the
trajectory characterizing the evolution of features over time
lie on a geodesic emanating from the initial time point on the
manifold containing the trajectory. This is a stringent and not
necessarily a meaningful requirement. Further, most of these
methods impose the restriction that the number of samples on
a trajectory be the same across the members of a group of
trajectories. At times, this restriction is hard to meet from a
practical view point. In this paper, we present a novel formu-
lation of the trajectory analysis problem that overcomes the
aforementioned limitations. We represent the trajectories by
embedding them in a product Riemannian manifold and en-
dowing it with a Riemannian metric, thereby facilitating the
statistical analysis. Finally, we present real data (from MR
brain scans of dementia patients) examples depicting the per-
formance of our algorithms.

Index Terms— Longitudinal studies, Trajectories, Mani-
folds, PGA.

1. INTRODUCTION

In this paper, we present a novel method to perform statistical
analysis on the “space of trajectories” which is a Riemannian
manifold. We will formally define “space of trajectories” in
Section 2, but one can view a trajectory as a path consisting of
discrete points on a Riemannian manifold. It is very common
in longitudinal data analysis applications in medical imaging
to formulate this problem by considering the “trajectory” to
lie on a Riemannian manifold. For example, it is often possi-
ble to identify patients with dementia by taking a time course
of magnetic resonance (MR) brain scans over time, assess-
ing and comparing the structural changes from the norm in
the corpus callosum. But, as the “space of trajectories” does
not have a well-known geometric structure, we first give the
“space of trajectories” a topological structure by identifying
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it with a product space of two Riemannian manifolds. In the
rest of paper, we use the term “space of trajectories” to denote
the identification with the product space of two Riemannian
manifolds. In this work, we have used the publicly available
OASIS data [1], where each patient has multiple brain MR
scans from different visits over time. For each patient, we
track the changes in their corpus callosum and map them on
to the space of trajectories. Then, we perform statistical anal-
ysis including computation of Fréchet mean (FM) [2] and the
modes of variation to classify patients with dementia versus
people without dementia. The salient features of our proposed
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Fig. 1: Toy example

method are, (1) as our identification is a bijection, we can re-
cover the trajectory completely, hence we can compute the
mean trajectory or the “trajectory atlas” of a population of
trajectories. (2) Unlike most of the existing works in litera-
ture, our method does not assume that each trajectory is along
a geodesic on the manifold. (3) Further, unlike the previous
works, our formulation allows for trajectories with variable
number of points on them. 7o the best of our knowledge, our
technique is the first method without the linearity assumption,
i.e., the entire trajectory is not required to lie on a geodesic,
further, the number of points on each trajectory is not required
to be equal. In the “toy” example of Figure (1), we show
trajectories on the sphere, S? (shown in blue) and the mean
of these trajectories is shown in red. It is evident that the
mean trajectory goes through the “midpoint” of the the sam-
ple trajectories. In the rest of the paper, we first present the
algorithm to get the mapping to identify the space of trajec-
tories with the product space of two Riemannian manifolds.
We have taken multiple MR scans of both demented and non-
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demented patients and map them on to trajectories that lie on
a hypersphere. Then, we compute the FM and the principal
geodesics to classify demented and non-demented patients.
Before we discuss our framework to compute statistics on the
space of trajectories, we will briefly discuss some of the re-
cent related work.

In [3], the authors developed a framework to compute
“trajectory atlas” and registration of trajectories. They mod-
eled each trajectory as a smooth curve on a Riemannian man-
ifold. In this work, the authors formulated the computation of
“trajectory atlas” as an optimization. From a computational
perspective, this is not as efficient as our proposed method,
which does not need any optimization. In [4], authors iden-
tify each trajectory as a point on the tangent bundle and then
perform statistical analysis on the tangent bundle using the
Sasaki metric. In [5], authors performed a principal geodesic
analysis (PGA) on the tangent bundle to achieve PGA of the
longitudinal dataset. Authors in [6] performed the segmenta-
tion of motion characterized by trajectories on a Riemannian
manifold.

2. STATISTICS ON THE SPACE OF TRAJECTORIES

In this section, we first briefly discuss the geometry of Stiefel
manifold, henceforth denoted by St(p,n) which will be re-
quired throughout the paper. Then, we will define the space
of trajectories and compute statistics on this space.

Stiefel manifold : The set of all full column rank
(n x p) dimensional real matrices form a Stiefel mani-
fold, St(p,n), where n > p. A compact Stiefel manifold
is the set of all column orthonormal real matrices. In many
Computer Vision and Medical Imaging applications, we en-
counter the compact Stiefel manifold and hence in the rest
of the paper, we concern ourselves only with this manifold.
With a slight abuse of notation, henceforth, we denote the
compact Stiefel manifold by St(p,n) defined formally as,
St(p,n) = {X € R™P|XTX I,}, where I, is the
p X p identity matrix. At any X € St(p,n), the tangent
space T'xSt(p,n) is defined as follows TxSt(p,n) = {U €
R™P|XTU + UTX = 0}. Now, given U,V € TxSt(p, n),
the canonical Riemannian metric on St(p,n) is defined as
follows (U, V) = trace (UTV).

Given X € St(p,n), we can define the Riemannian retrac-
tion and lifting map within an open neighborhood of X. We
will use an efficient Cayley type retraction and lifting maps
on St(p,n) as defined in [7].

Here, we use the fact that the special orthogonal group,
SO(n) acts on St(p,n) by pre-multiplication, i.e., if g €
SO(n), gX € St(p,n). Note that, SO(n) = {X € R"*"|
XTX = I,,det(X) = 1}. Given X € St(p,n), we de-
fine the lifting map Expy' : St(p,n) — TxSt(p,n) by

_ Cc -BT
Expyl () [

B 0 where, C is a p x p skew-
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symmetric matrix and B is a (n—p) X p matrix defined as fol-
lows: C =2(XT +YI) 7 1sk(V,I X, + X[V (X +Yy) !
and B = (Y] — X;)(X, + Ya,)~ ! where, X = [X,, X;]7,
and Y = [Y,,Y;]7 with X,,,Y, € RP*P, and X;,Y; €
R(=P)*P_ provided that X, +Y,, is nonsingular. And sk(M)
is defined as £(M” — M) and, Y € St(p,n). Given W €
so0(n), the Cayley map is a conformal mapping, Cay : so(n)
— SO(n) defined by Cay(W) = (I, + W)(I,, — W)~L.

Using the Cayley mapping, we can define the Rieman-
nian retraction map Expy : TxSt(p,n) — St(p,n) by
Expy (W) = Cay(W)X. Hence, given X,Y € St(p,n)
within a regular geodesic ball, i.e., the geodesic ball does
not include the cut locus, of appropriate radius (henceforth,
we always assume geodesic ball to be regular), we can de-
fine the unique geodesic between X and Y, denoted by
I ¢ [0,1] = St(p,n) as I% (1) = Expy(t Expy (V).
Also, we can define the distance between X and Y as
A(X,Y) =/ (Expx"(Y), Expy (V) . Note that, the Cay-
ley map used is defined within a geodesic ball of appropriate
radius.

The Space of trajectories and its geometry: Let
(M, g) be a Riemannian manifold equipped with a Rie-
mannian metric g [8]. Let d be the distance on M induced by
g. We define a trajectory on M to be a path \ consists of a set
of discrete points on M. Let (M) be the set of trajectories.
Before identifying the space of trajectories as a topological
space (in fact as a Riemannian manifold), we first define the
following statistics.

Definition 2.1. Fréchet mean (FM): Given {X,;} | C M,
define “the” Fréchet mean (FM) [2], M to be the min-
imizer of sum of squared geodesic distances, i.e., M =
argmin,, Y, d*(uu, X;). FM exists and is unique within a
regular geodesic ball of appropriate radius [9].

Definition 2.2. PGA: Given {X;}" | C M and FM M,
the principal vectors, {v;} C Ty M are recursively de-
fined as v; = argmax|y|_1 vevt, Zjvzl d*(M,11g,(X;)),
where V; is the subspace spanned by {vi,---,v;}, and
S; = Expyy (span{Vi_1,v;}). Ils,(X;) is the projection of
XjonS;. The it" principal geodesic submanifold (PG) given
by the it" principal vector; v; is Exp (V).

In the above definition of principal geodesic analysis
(PGA), we are essentially searching for a direction along
which the data variance is maximized. This is called “vari-
ance maximization” formulation of PGA [10, 11]. An alter-
native definition of PGA is given in by [12],

N
v; = argmin Zdz(Xj,HSi(Xj)),

Ivl=tvevt, 521

6]

i.e., we are searching for a direction s.t. the projection of X
along the direction is closed to X ;. This formulation is known
as “reconstruction error minimization” formulation of PGA.



Given {x;} on the Euclidean space, R™, the SD line [13]
is defined to be a straight line, 1 through the mean of the points
s.t., sum of the squared perpendicular distances from each x;
on 1 (MSE) is minimized. One can naturally generalize the
notion of the SD line on a Riemannian manifold, we will de-
note it by SD geodesic.

Definition 2.3. SD geodesic: Given {X;}~ , C M and FM
M, the principal geodesic through M is defined to be the SD
geodesic.

Proposition 2.1. SD geodesic defined above minimizes the
sum of squared perpendicular distances from data points.

Proof. Tt follows from the alternative “reconstruction error
minimization” formulation of PGA. O

Given {Xi}fvzl C M, we can recursively compute SD
geodesics as follows:

Algorithm 1: Algorithm to compute the SD geodesics
k<« 1,

1
2 {)_(11} +— {Xi}:
3 while £ < K do
4
5

Compute vy, using Eq. 1 on {XF} ;
kM SD geodesic is given by the geodesic passing through M
tangential to v ;

6 Project each X f on the subspace orthogonal to the current
geodesic subspace to get X ik'"'l ;

7 k+—k+1;

end

®

Definition 2.4. Given a trajectory, v, consisting of N points
on a Riemannian manifold M of dimension m, identify ~ with
(X5,Y,) € M xSt(K,m), where X, is the FM of the points
of v and it" column of Y., consists of the tangent vector cor-
responding to it" SD geodesics. We will denote this mapping
from T(M) to M x St(K, m) by D.

Observe that in the above definition columns of Y, are
mutually orthogonal as they are principal vectors. Moreover,
the product manifold M x St(K, m) is equipped with a prod-
uct metric (distance) given by: d((X,,,Y5,), (X+,,Y5,)) =
d(X5,, X,,) +d(Y,,,Y,,). Itis easy to see that the above
identification is well-defined and using it along with the prod-
uct Riemannian metric gives T(M) a Riemannian manifold
structure.

Proposition 2.2. ® is surjective. Moreover, ® is injective iff
K is sufficiently large to reconstruct 7.

In the experimental section, we have used trajectories that
lie on hypersphere. The projection operator used to get SD
geodesics (in line 6 of Algorithm 1) is given in [10]. Further,
an analytic expression for reconstruction of data points from
principal vectors is given in [10].
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3. EXPERIMENTAL RESULTS

In this section, we use the OASIS data [1] to automatically
discriminate between demented (D) and non-demented (ND)
patients using our proposed framework. This dataset contains
at least two MR brain scans of each of the 150 subjects, aged
between 60 to 96 years old. For each patient, scans are sep-
arated by at least one year. The dataset contains patients of
both sexes. In order to avoid gender effects, we have taken
MR scans of male patients alone from three visits, which re-
sulted in the dataset containing 69 MR scans of 11 subjects
with dementia and 12 subjects without dementia. We first
construct an atlas from 36 “normal” MR scans, i.e., MR scans
from subjects without dementia.

ND D ND D
N> N 2| o
D[ 28 0o [ 1 NN
(a) using FM (b) using PGA

Table 1: Confusion matrix of demented vs. non-demented classification

First, we rigidly register each MR scan to the atlas and
then compute the displacement field from each MR scan af-
ter non-rigidly registering them to the atlas. Thus, from each
patient, we obtain three displacement fields (collected from
three visits) to get a path on the space of diffeomorphisms.
It can be shown that the space of diffeomorphism group quo-
tiented out by the normal subgroup of volume preserving dif-
feomorphisms is isomorphic to hypersphere. Hence, we use
this identification map to the hypersphere (of appropriate di-
mension) from the space of diffeomorphisms (as was done
in [14]). It is well-known that the geometry of the space of
diffeomorphisms is complicated, hence we can perform sta-
tistical analysis on the hypersphere instead of on the space of
diffeomorphisms after quotienting out the volume preserving
diffeomorphisms. Now, for each patient, we have a trajectory
on the hypersphere, in our experiments, S892, We then use
two techniques to classify demented vs. non-demented pa-
tients. In Figure (2), the segmented corpus callosa for three
visits of two subjects from the two classes (demented and
non-demented) are shown.

We first compute the mean trajectory for each of the two
classes and classify each data (trajectory) to the nearest mean
trajectory (analogous to nearest neighbor classification tech-
nique) in a leave-one-out fashion. In the second technique, we
also perform leave-one-out classification. For each class in
the training set, we compute first principal geodesic, i.e., we
compute the leading principal geodesics for each of the two
classes using the exact-PGA for constant curvature manifolds
[10]. Then, for a test sample, we project the sample on the
principal geodesic and assign the sample to the class in which
the projection error is minimum. The projection error is com-



puted as follows. Given x € S8%2, and the principal vector
v € T;,S®? (m is the FM), the projection error, E(x, V) is
computed analytically using,

t

E(x,v) = arccos(x'X)
where,
Z = cos (arctan (8)) m + sin (arctan (6)) v/||v||
where, 6 = x'v/vim

[N

We compare both of our proposed classification schemes
in Table 1. From the confusion matrix in Table 1, using FM,
we get the sensitivity, specificity and classification accuracy
as 0.83, 0.82 and 82.61% respectively. On the other hand,
using PGA, the sensitivity, specificity and classification ac-
curacy are 0.92, 0.91 and 91.30% respectively. As evident
and per expectation, the exact-PGA [10] based classification
yields a better accuracy.

Nondemented

Demented

Fig. 2: Change in corpus callosa shapes in two classes

4. CONCLUSIONS

In this paper, we presented a novel formulation for perform-
ing statistical analysis of trajectories characterizing longitu-
dinal data e.g., a time course of brain MR scans of dementia
patients and others. The salient features of our formulation
are, (i) it does not require the trajectory to lie on a geodesic,
(ii) it does not require that the number of time points on each
trajectory across the members in a group of trajectories be
the same. Our novel formulation embeds the trajectories on
manifold M in a product Riemannian manifold that is en-
dowed with a Riemannian metric. The specific product man-
ifold here is M x St(p, n). We presented algorithms to com-
pute statistics on this product manifold and used it in conjunc-
tion with a nearest neighbor classifier to discriminate between
subjects scans with and without dementia. Preliminary results
presented here are quite encouraging and provide the impetus
for further research.
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