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ABSTRACT

Longitudinal data analysis is an often encountered problem

in Medical Image Analysis. A differential geometric treat-

ment of such problems has been reported in literature in the

recent past. However, most of these methods require that the

trajectory characterizing the evolution of features over time

lie on a geodesic emanating from the initial time point on the

manifold containing the trajectory. This is a stringent and not

necessarily a meaningful requirement. Further, most of these

methods impose the restriction that the number of samples on

a trajectory be the same across the members of a group of

trajectories. At times, this restriction is hard to meet from a

practical view point. In this paper, we present a novel formu-

lation of the trajectory analysis problem that overcomes the

aforementioned limitations. We represent the trajectories by

embedding them in a product Riemannian manifold and en-

dowing it with a Riemannian metric, thereby facilitating the

statistical analysis. Finally, we present real data (from MR

brain scans of dementia patients) examples depicting the per-

formance of our algorithms.

Index Terms— Longitudinal studies, Trajectories, Mani-

folds, PGA.

1. INTRODUCTION

In this paper, we present a novel method to perform statistical

analysis on the “space of trajectories” which is a Riemannian

manifold. We will formally define “space of trajectories” in

Section 2, but one can view a trajectory as a path consisting of

discrete points on a Riemannian manifold. It is very common

in longitudinal data analysis applications in medical imaging

to formulate this problem by considering the “trajectory” to

lie on a Riemannian manifold. For example, it is often possi-

ble to identify patients with dementia by taking a time course

of magnetic resonance (MR) brain scans over time, assess-

ing and comparing the structural changes from the norm in

the corpus callosum. But, as the “space of trajectories” does

not have a well-known geometric structure, we first give the

“space of trajectories” a topological structure by identifying
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it with a product space of two Riemannian manifolds. In the

rest of paper, we use the term “space of trajectories” to denote

the identification with the product space of two Riemannian

manifolds. In this work, we have used the publicly available

OASIS data [1], where each patient has multiple brain MR

scans from different visits over time. For each patient, we

track the changes in their corpus callosum and map them on

to the space of trajectories. Then, we perform statistical anal-

ysis including computation of Fréchet mean (FM) [2] and the

modes of variation to classify patients with dementia versus

people without dementia. The salient features of our proposed

Fig. 1: Toy example

method are, (1) as our identification is a bijection, we can re-

cover the trajectory completely, hence we can compute the

mean trajectory or the “trajectory atlas” of a population of

trajectories. (2) Unlike most of the existing works in litera-

ture, our method does not assume that each trajectory is along

a geodesic on the manifold. (3) Further, unlike the previous

works, our formulation allows for trajectories with variable

number of points on them. To the best of our knowledge, our

technique is the first method without the linearity assumption,

i.e., the entire trajectory is not required to lie on a geodesic,

further, the number of points on each trajectory is not required

to be equal. In the “toy” example of Figure (1), we show

trajectories on the sphere, S2, (shown in blue) and the mean

of these trajectories is shown in red. It is evident that the

mean trajectory goes through the “midpoint” of the the sam-

ple trajectories. In the rest of the paper, we first present the

algorithm to get the mapping to identify the space of trajec-

tories with the product space of two Riemannian manifolds.

We have taken multiple MR scans of both demented and non-



demented patients and map them on to trajectories that lie on

a hypersphere. Then, we compute the FM and the principal

geodesics to classify demented and non-demented patients.

Before we discuss our framework to compute statistics on the

space of trajectories, we will briefly discuss some of the re-

cent related work.

In [3], the authors developed a framework to compute

“trajectory atlas” and registration of trajectories. They mod-

eled each trajectory as a smooth curve on a Riemannian man-

ifold. In this work, the authors formulated the computation of

“trajectory atlas” as an optimization. From a computational

perspective, this is not as efficient as our proposed method,

which does not need any optimization. In [4], authors iden-

tify each trajectory as a point on the tangent bundle and then

perform statistical analysis on the tangent bundle using the

Sasaki metric. In [5], authors performed a principal geodesic

analysis (PGA) on the tangent bundle to achieve PGA of the

longitudinal dataset. Authors in [6] performed the segmenta-

tion of motion characterized by trajectories on a Riemannian

manifold.

2. STATISTICS ON THE SPACE OF TRAJECTORIES

In this section, we first briefly discuss the geometry of Stiefel

manifold, henceforth denoted by St(p, n) which will be re-

quired throughout the paper. Then, we will define the space

of trajectories and compute statistics on this space.

Stiefel manifold : The set of all full column rank

(n × p) dimensional real matrices form a Stiefel mani-

fold, St(p, n), where n ≥ p. A compact Stiefel manifold

is the set of all column orthonormal real matrices. In many

Computer Vision and Medical Imaging applications, we en-

counter the compact Stiefel manifold and hence in the rest

of the paper, we concern ourselves only with this manifold.

With a slight abuse of notation, henceforth, we denote the

compact Stiefel manifold by St(p, n) defined formally as,

St(p, n) = {X ∈ R
n×p|XTX = Ip}, where Ip is the

p × p identity matrix. At any X ∈ St(p, n), the tangent

space TXSt(p, n) is defined as follows TXSt(p, n) = {U ∈
R

n×p|XTU + UTX = 0}. Now, given U, V ∈ TXSt(p, n),
the canonical Riemannian metric on St(p, n) is defined as

follows 〈U, V 〉X = trace
(

UTV
)

.

Given X ∈ St(p, n), we can define the Riemannian retrac-

tion and lifting map within an open neighborhood of X . We

will use an efficient Cayley type retraction and lifting maps

on St(p, n) as defined in [7].

Here, we use the fact that the special orthogonal group,

SO(n) acts on St(p, n) by pre-multiplication, i.e., if g ∈
SO(n), gX ∈ St(p, n). Note that, SO(n) = {X ∈ R

n×n|
XTX = In, det(X) = 1}. Given X ∈ St(p, n), we de-

fine the lifting map Exp−1
X : St(p, n) → TXSt(p, n) by

Exp−1
X (Y ) =

[

C −BT

B 0

]

where, C is a p × p skew-

symmetric matrix and B is a (n−p)×p matrix defined as fol-

lows: C = 2(XT
u + Y T

u )−1sk(Y T
u Xu +XT

l Yl)(Xu + Yu)
−1

and B = (Yl − Xl)(Xu + Yu)
−1 where, X = [Xu, Xl]

T ,

and Y = [Yu, Yl]
T with Xu, Yu ∈ R

p×p, and Xl, Yl ∈
R

(n−p)×p, provided that Xu+Yu is nonsingular. And sk(M)
is defined as 1

2 (M
T − M) and, Y ∈ St(p, n). Given W ∈

so(n), the Cayley map is a conformal mapping, Cay : so(n)
→ SO(n) defined by Cay(W ) = (In +W )(In −W )−1.

Using the Cayley mapping, we can define the Rieman-

nian retraction map ExpX : TXSt(p, n) → St(p, n) by

ExpX(W ) = Cay(W )X . Hence, given X,Y ∈ St(p, n)
within a regular geodesic ball, i.e., the geodesic ball does

not include the cut locus, of appropriate radius (henceforth,

we always assume geodesic ball to be regular), we can de-

fine the unique geodesic between X and Y , denoted by

ΓY
X : [0, 1] → St(p, n) as ΓY

X(t) = ExpX(t Exp−1
X (Y )).

Also, we can define the distance between X and Y as

d(X,Y ) =
√

〈Exp−1
X (Y ),Exp−1

X (Y )〉
X

. Note that, the Cay-

ley map used is defined within a geodesic ball of appropriate

radius.

The Space of trajectories and its geometry: Let

(M, g) be a Riemannian manifold equipped with a Rie-

mannian metric g [8]. Let d be the distance on M induced by

g. We define a trajectory on M to be a path λ consists of a set

of discrete points on M. Let T(M) be the set of trajectories.

Before identifying the space of trajectories as a topological

space (in fact as a Riemannian manifold), we first define the

following statistics.

Definition 2.1. Fréchet mean (FM): Given {Xi}
N
i=1 ⊂ M,

define “the” Fréchet mean (FM) [2], M to be the min-

imizer of sum of squared geodesic distances, i.e., M =
argminµ

∑

i d
2(µ,Xi). FM exists and is unique within a

regular geodesic ball of appropriate radius [9].

Definition 2.2. PGA: Given {Xi}
N
i=1 ⊂ M and FM M ,

the principal vectors, {vi} ⊂ TMM are recursively de-

fined as vi = argmax‖v‖=1,v∈V ⊥

i−1

∑N
j=1 d

2(M,ΠSi
(Xj)),

where Vi is the subspace spanned by {v1, · · · ,vi}, and

Si = ExpM (span {Vi−1,vi}). ΠSi
(Xj) is the projection of

Xj on Si. The ith principal geodesic submanifold (PG) given

by the ith principal vector, vi is ExpM (vi).

In the above definition of principal geodesic analysis

(PGA), we are essentially searching for a direction along

which the data variance is maximized. This is called “vari-

ance maximization” formulation of PGA [10, 11]. An alter-

native definition of PGA is given in by [12],

vi = argmin
‖v‖=1,v∈V ⊥

i−1

N
∑

j=1

d2(Xj ,ΠSi
(Xj)), (1)

i.e., we are searching for a direction s.t. the projection of Xj

along the direction is closed to Xj . This formulation is known

as “reconstruction error minimization” formulation of PGA.



Given {xi} on the Euclidean space, Rn, the SD line [13]

is defined to be a straight line, l through the mean of the points

s.t., sum of the squared perpendicular distances from each xi

on l (MSE) is minimized. One can naturally generalize the

notion of the SD line on a Riemannian manifold, we will de-

note it by SD geodesic.

Definition 2.3. SD geodesic: Given {Xi}
N
i=1 ⊂ M and FM

M , the principal geodesic through M is defined to be the SD

geodesic.

Proposition 2.1. SD geodesic defined above minimizes the

sum of squared perpendicular distances from data points.

Proof. It follows from the alternative “reconstruction error

minimization” formulation of PGA.

Given {Xi}
N
i=1 ⊂ M, we can recursively compute SD

geodesics as follows:

Algorithm 1: Algorithm to compute the SD geodesics

1 k ← 1 ;

2

{

X̄
1
i

}

← {Xi} ;

3 while k ≤ K do

4 Compute vk using Eq. 1 on
{

X̄
k

i

}

;

5 k
th SD geodesic is given by the geodesic passing through M

tangential to vk ;

6 Project each X̄
k

i
on the subspace orthogonal to the current

geodesic subspace to get X̄k+1

i
;

7 k ← k + 1 ;

8 end

Definition 2.4. Given a trajectory, γ, consisting of N points

on a Riemannian manifold M of dimension m, identify γ with

(Xγ , Yγ) ∈ M×St(K,m), where Xγ is the FM of the points

of γ and ith column of Yγ consists of the tangent vector cor-

responding to ith SD geodesics. We will denote this mapping

from T(M) to M× St(K,m) by Φ.

Observe that in the above definition columns of Yγ are

mutually orthogonal as they are principal vectors. Moreover,

the product manifold M×St(K,m) is equipped with a prod-

uct metric (distance) given by: d((Xγ1
, Yγ1

), (Xγ2
, Yγ2

)) =
d(Xγ1

, Xγ2
) + d(Yγ1

, Yγ2
). It is easy to see that the above

identification is well-defined and using it along with the prod-

uct Riemannian metric gives T(M) a Riemannian manifold

structure.

Proposition 2.2. Φ is surjective. Moreover, Φ is injective iff

K is sufficiently large to reconstruct γ.

In the experimental section, we have used trajectories that

lie on hypersphere. The projection operator used to get SD

geodesics (in line 6 of Algorithm 1) is given in [10]. Further,

an analytic expression for reconstruction of data points from

principal vectors is given in [10].

3. EXPERIMENTAL RESULTS

In this section, we use the OASIS data [1] to automatically

discriminate between demented (D) and non-demented (ND)

patients using our proposed framework. This dataset contains

at least two MR brain scans of each of the 150 subjects, aged

between 60 to 96 years old. For each patient, scans are sep-

arated by at least one year. The dataset contains patients of

both sexes. In order to avoid gender effects, we have taken

MR scans of male patients alone from three visits, which re-

sulted in the dataset containing 69 MR scans of 11 subjects

with dementia and 12 subjects without dementia. We first

construct an atlas from 36 “normal” MR scans, i.e., MR scans

from subjects without dementia.

ND D

ND 10 2

D 2 9

(a) using FM

ND D

ND 11 1

D 1 10

(b) using PGA

Table 1: Confusion matrix of demented vs. non-demented classification

First, we rigidly register each MR scan to the atlas and

then compute the displacement field from each MR scan af-

ter non-rigidly registering them to the atlas. Thus, from each

patient, we obtain three displacement fields (collected from

three visits) to get a path on the space of diffeomorphisms.

It can be shown that the space of diffeomorphism group quo-

tiented out by the normal subgroup of volume preserving dif-

feomorphisms is isomorphic to hypersphere. Hence, we use

this identification map to the hypersphere (of appropriate di-

mension) from the space of diffeomorphisms (as was done

in [14]). It is well-known that the geometry of the space of

diffeomorphisms is complicated, hence we can perform sta-

tistical analysis on the hypersphere instead of on the space of

diffeomorphisms after quotienting out the volume preserving

diffeomorphisms. Now, for each patient, we have a trajectory

on the hypersphere, in our experiments, S892. We then use

two techniques to classify demented vs. non-demented pa-

tients. In Figure (2), the segmented corpus callosa for three

visits of two subjects from the two classes (demented and

non-demented) are shown.

We first compute the mean trajectory for each of the two

classes and classify each data (trajectory) to the nearest mean

trajectory (analogous to nearest neighbor classification tech-

nique) in a leave-one-out fashion. In the second technique, we

also perform leave-one-out classification. For each class in

the training set, we compute first principal geodesic, i.e., we

compute the leading principal geodesics for each of the two

classes using the exact-PGA for constant curvature manifolds

[10]. Then, for a test sample, we project the sample on the

principal geodesic and assign the sample to the class in which

the projection error is minimum. The projection error is com-



puted as follows. Given x ∈ S
892, and the principal vector

v ∈ TmS
892 (m is the FM), the projection error, E(x,v) is

computed analytically using,

E(x,v) = arccos(xt
x̄)

where,

x̄ = cos (arctan (θ))m+ sin (arctan (θ))v/‖v‖

where, θ = x
t
v/vt

m

‖v‖ .

We compare both of our proposed classification schemes

in Table 1. From the confusion matrix in Table 1, using FM,

we get the sensitivity, specificity and classification accuracy

as 0.83, 0.82 and 82.61% respectively. On the other hand,

using PGA, the sensitivity, specificity and classification ac-

curacy are 0.92, 0.91 and 91.30% respectively. As evident

and per expectation, the exact-PGA [10] based classification

yields a better accuracy.

Fig. 2: Change in corpus callosa shapes in two classes

4. CONCLUSIONS

In this paper, we presented a novel formulation for perform-

ing statistical analysis of trajectories characterizing longitu-

dinal data e.g., a time course of brain MR scans of dementia

patients and others. The salient features of our formulation

are, (i) it does not require the trajectory to lie on a geodesic,

(ii) it does not require that the number of time points on each

trajectory across the members in a group of trajectories be

the same. Our novel formulation embeds the trajectories on

manifold M in a product Riemannian manifold that is en-

dowed with a Riemannian metric. The specific product man-

ifold here is M× St(p, n). We presented algorithms to com-

pute statistics on this product manifold and used it in conjunc-

tion with a nearest neighbor classifier to discriminate between

subjects scans with and without dementia. Preliminary results

presented here are quite encouraging and provide the impetus

for further research.
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