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The direct propylene epoxidation reaction has been investigated experimentally in the past by several
different groups, and gold-based catalysts tend to provide high selectivity for propylene oxide, but the
conversion is relatively low. Models that can connect the atomistic catalytic details to the observed
experimental data are desired, in order to identify new catalyst structures and formulations. While elec-
tronic structure calculations have been used to quantify some of the key reaction steps in the direct
propylene epoxidation reaction, atomistic models for translating this information into more
experimentally-relevant data are needed. Here, kinetic Monte Carlo (KMC) simulations are used to bridge
this gap in the modeling hierarchy. Relevant data from previous experiments and electronic structure
calculations are used to parameterize a KMC model for predicting propylene oxide production from an
Au/TiO,/SiO, catalyst. The model connects the H,/O,-related reactions occurring on the Au sites with
the epoxidation step on the isolated Ti surface sites. In addition, the composition in the bulk gas phase
is synchronized with the dynamic reaction events occurring on the surface. The KMC model is able to ade-
quately reproduce the experimental trends with respect to temperature and different reactant partial
pressures. However, this is only achieved by considering the re-adsorption of trace amounts of the oxi-
dant (H,0,) from the gas phase, versus merely assuming that desorbed species are immediately swept
away in the gas stream.
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1. Introduction

Propylene oxide (C3HgO, PO) derived from propylene (CsHg) is a
key chemical intermediate for the production of a number of com-
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modity chemicals, including polyol, propylene glycol, and glycol
ethers (Weissermel, 2003). However, current industrial methods
that produce propylene oxide from propylene, namely chlorohy-
drin and hydroperoxide processes, pose environmental risks
because of the production of chlorinated or peroxycarboxylic
waste (Monnier, 2001; Nijhuis et al., 2006). Using supported
gold-based catalysts to produce propylene oxide directly from
propylene and molecular H, and O, provides an alternative, clean,
and potentially more efficient route.

Nearly 20 years ago, Haruta and co-workers discovered that
nm-sized Au catalysts on TiO, are active and highly selective for
the direct gas-phase PO reaction (Hayashi et al., 1998; Uphade
et al., 2001; Uphade et al., 2002). When propylene, oxygen, and
hydrogen are co-fed, hydrogen peroxide can be readily formed on
the surface of gold, and in turn, selectively oxidizes propylene
molecules that are adsorbed on TiO, sites to propylene oxide
(Nijhuis et al., 2006). Also, it has been found that Au supported
by titanium silicalite (TS-1) is particularly effective at catalyzing
the propylene epoxidation reaction. The isolated Ti active sites
are necessary for obtaining a high selectivity towards propylene
oxide (Stangland et al., 2000; Nijhuis et al., 1999; Chen et al,,
2013a), since propylene oxide molecules that adsorb on adjacent
Ti sites lead to catalyst deactivation and the formation of
unwanted byproducts. Although the selectivity is very high
(>90%), even the best catalysts found to date still suffer from mul-
tiple challenges, including low propylene conversion (<10%), poor
stability and inefficient usage of H, (<50%). Therefore, significant
improvement with regard to these issues is necessary, and this
requires a more thorough understanding of the underlying chemi-
cal reaction network.

A lot of experimental effort has been focused on developing Au-
based catalysts for the direct PO reaction (Nijhuis et al., 2006; Chen
et al., 2013a, 2013b; Feng et al., 2016; Ferrandez et al., 2015), Also,
many related studies have investigated different catalysts for
direct H,0, synthesis (Joshi et al.,, 2007; Landon et al.,, 2002,
2003; Edwards et al., 2009), since this is a key reaction step prior
to the propylene epoxidation. Alternate catalyst formulations have
been explored (including Ag, Cu, Mo, as well as photocatalysts)
(Ghosh et al., 2014; Lei et al., 2010; Cheng et al., 2014; Chu et al,,
2006; Vaughan et al.,, 2005; Song et al., 2007; Murata et al.,
2003; Amano et al., 2004), but performance issues still limit eco-
nomic viability.

Over the same time period, computational chemistry
approaches, mainly first-principles density-functional theory
(DFT), have provided additional insights into the chemical mecha-
nisms driving the experimentally-observed PO reaction behavior.
These studies have been used to clarify energetic and structural
information about the active sites most responsible for the produc-
tion of PO. For instance, there are DFT reports of the O, + H, reac-
tion mechanisms on Au surfaces and clusters (Wells et al., 2004a;
Barton and Podkolzin, 2005), as well as comparisons of the same
reactions on other transition metal surfaces (Rh, Ir, Ni, Pd, Pt, Cu,
Ag) (Ford et al., 2010; Duzenli et al., 2015) and bimetallic surfaces
(Li and Yoshizawa, 2015) (including extrapolations via scaling rela-
tions) (Grabow et al., 2012). Computational studies focused exclu-
sively on the direct PO reaction mechanism are more limited, and
these have mainly originated from the Thomson (Wells et al.,
2004b, 2006; Joshi et al., 2006, 2007) and Corma (Pulido et al.,
2012a, 2012b) groups, along with a few related studies of ethylene
epoxidation (Karlsen and Schoffel, 1996; Limtrakul et al., 2004).
These DFT studies provide an excellent framework for interpreting
the experimental results, but due to the variability of experimental
sample preparation (structural defects, catalyst particle size distri-
butions, etc.) there can be a wide range of experimentally-observed
performance (Qi et al., 2004; Feng et al., 2015a, 2015b; Huang
et al., 2010; Lee et al., 2011, 2013, 2014) that is difficult to capture

with computationally-expensive DFT approaches. Thus, a lot of the
modeling efforts have been more empirical, in order to provide
analytical expressions for the product distributions as a function
of the natural experimental variables (temperature, reactant par-
tial pressure, feed rates, catalyst loading, etc.). For instance, a series
of methodical experimental kinetic tests of the propylene epoxida-
tion performance and related reactions have previously been used
to regress reaction orders and elementary reaction steps
(Ferrandez et al., 2015; Barton and Podkolzin, 2005; Bravo-
Suarez et al., 2008, 2007).

While the DFT-based approaches provide fundamental elec-
tronic structure information about ideal systems, and the
experimentally-derived rate expressions are useful for optimizing
synthesis conditions, there is a large gap between these two ends
of the modeling spectrum. More predictive models are needed that
can directly connect the atomistic details to the observed experi-
mental behavior. In order to establish this connection, we have
pursued a kinetic Monte Carlo (KMC) simulation approach. Funda-
mental DFT-based values (such as adsorption energies and transi-
tion state barriers) can be combined with information about the
catalyst surface, in order to make predictions about reactivity on
experimentally-relevant time scales. This approach has been pur-
sued previously for modeling heterogeneous catalyst behavior
(Hansen and Neurock, 2000; Haug and Raibeck, 2003; Mei et al.,
2003, 2006, 2010; Kieken et al., 2005), as well as other activated
processes, such as surface deposition (Turner et al., 2016; Jiang
and Hou, 2015; Rodgers et al., 2015; Hu et al., 2009a, 2009b;
Zheng et al.,, 2008; Drews et al., 2004; Lou and Christofides,
2004; Wadley et al., 2001), diffusion, (Van der Ven and Ceder,
2000; Greenfield and Theodorou, 2001; Krishnamurthy et al.,
2004; Scarle et al., 2005; Munn et al., 2009; Neyertz and Brown,
2010) and electrochemical systems (Lau et al., 2008; Turner
et al,, 2015).

In the present work, KMC simulations are constructed by select-
ing a minimal set of systems events relevant to direct PO synthesis
(adsorption, desorption, reaction, diffusion), as well as their associ-
ated rate expressions. Although the model does not capture all of
the possible reactions and side products that are known to exist,
it serves as a first step towards developing a stronger connection
between the atomistic events and the experimental performance
of the direct PO synthesis reaction. This is intended to provide
the necessary insight to enable the design of efficient and econom-
ical heterogeneous catalysts in the future. In particular, our KMC
model is able to adequately reproduce the experimental trends
with respect to temperature and different reactant partial pres-
sures. However, we find that this is only achieved by considering
the re-adsorption of trace amounts of H,O, from the gas phase,
versus merely assuming that the desorbed products are immedi-
ately swept away in the gas stream. The next section describes
the details of our KMC implementation, followed by our results,
experimental benchmarking, and analysis. The conditions for the
experimental data used for comparison correspond to a feed gas
concentration of 10% H,, 10% O,, 10% C3Hg, and the balance Ar at
a total flowrate of 35 ml/min (additional details provided in the
Supplementary Information). The coverage of TiO, on SiO, is
approximately 10% and the Au deposition is 1 wt%, and the tem-
perature ranges from 413 to 473 K.

2. Computational methods

The KMC simulation technique originated from the early contri-
butions of Young and Elcock (1966), Cox and Miller (1965)), and
Gillespie (1976). In the years following, Fichthorn and Weinberg
(1991) provided an additional analysis of the method, and others
(Chatterjee and Vlachos, 2007; Voter, 2005) have provided valu-
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able critiques and reviews of KMC. In brief, the KMC method can
provide an estimate of the time evolution of Markovian processes
(Landau and Binder, 2005), as long as there is an accurate set of
transition rates characterizing the simulated processes, which are
assumed to obey Poisson statistics (Martinez et al., 2008). The
KMC simulation approach can typically span time-scales that are
orders-of-magnitude beyond traditional molecular dynamics
methods, since the KMC simulation time is inversely proportional
to the rate of the fastest processes included in the model. This
allows systems with activated processes, such as chemical reac-
tions, to be modeled efficiently.

With such a complex catalytic system, involving many steps
and surface intermediates, it is unrealistic to expect that our model
will fully capture all of the aspects of the experimental system.
Thus, along with a well-defined set of experimental benchmark
data, we have adopted a minimal event database for modeling
the direct PO reaction on TiO,/SiO,-supported Au nanoparticles.
The experimental catalyst surface (Au/TiO,/SiO,) is mapped to a
2-D square periodic grid, with a nominal size of 200 x 200. Smaller
grid sizes were also evaluated in preliminary tests (183 x 183,
141 x 141, and 115 x 115), but predicted PO production rates
per kg of catalyst varied by no more than 1% with the grid size.
Although we are not able to capture the exact crystal structure of
the support surface or the Au nanoparticles, the grid spacing is
assumed to correspond to a nominal length of 0.288 nm. This res-
olution allows for a reasonable accounting of the Au catalyst load-
ing, Au size distribution, and occupancy of adsorbates on the
surface. According to the experimental loading of Au and TiO,,
the initial SiO, surface is decorated with Ti sites, as well as Au
nanoparticles of varying diameters. In accordance with the surface
grid, the Au nanoparticles were represented as two-dimensional
discs on the SiO, surface. In the model, the Au nanoparticle diam-
eters were chosen from a random distribution between 2.3 nm and
4.6 nm, while the experimental system corresponds to an average
Au particle size of 2.5 nm. The experimental Au loading was
approximately 0.1 wt%, and this value was used to make quantita-
tive rate comparisons between the simulations and experiments.
Regardless of the exact Au particle sizes in each KMC simulation
run, the results are always normalized with respect to the Au mass
in each simulation, in order to make consistent comparisons with
the experiments. The concentration of Ti sites in the KMC system
is set at 10% (experimental surface is estimated at 9.7%), and these
are randomly distributed on the surface by direct substitution of
the Si sites. A snapshot of the basic model layout is illustrated in
Fig. 1.

In order to evaluate the reproducibility of the KMC results, four
different independent simulations are performed at each condi-

Fig. 1. Illustration of the KMC model system. The two-dimensional periodic catalyst
surface is coupled to the gas phase composition via adsorption/desorption steps. On
the surface, the red/pink/white sites correspond to different species on the Au
nanoparticles, while the cyan/olive sites correspond to different species on the TiO,/
Si0, surface.

tion, and each simulation is propagated through time for a minimal
duration of 500 x 10® KMC steps. These independent simulations
allow for statistical fluctuations of the numerical values, but each
simulation also corresponds to a slightly different surface configu-
ration (Au particle sizes are chosen from a random distribution
mentioned previously, their positions on the SiO, surface are ran-
domly assigned, and the Ti site positions also vary). As the simula-
tions proceed, the catalyst structure remains fixed, but the species
on the surface can adsorb, desorb, react, and diffuse.

The system is propagated through time by implementing a KMC
algorithm, along with a pre-specified database of system events
and rate information. Thus, starting from the initial system config-
uration on a square lattice, the rate (I i) of each event (n) is cal-
culated at each lattice site (x,y), which gives a net event rate of I',,,
and the total rate of all events in the system is T'¢pqr.

1—‘n = ern.site(x>y) (1)
Xy

1—‘mml = Zrn (2)
n

After the system configuration has been defined and the initial
rates have been calculated, the system clock is then advanced
according to the following equation, where At is the time step
and RN is a random number, evenly distributed between 0 and 1.

In(RN)
B l—‘total (3)

After the clock has been incremented, the system configuration
is then updated by stochastically choosing an event to occur,
according to the probability shown in Eq. (4). Once an event is
identified to occur, the system configuration is updated, and the
list of event rates is updated (according to the new configuration).
At each time step, an event is always performed.

1—‘n,site 4
nsite = T ( )
total

At =

P

At the conditions of interest, the selectivity of propylene to
propylene oxide conversion is 70-80%. Therefore, at this point,
no other side reactions involving propylene are considered in the
model. The reacting Hy/O, species can form several different inter-
mediates on the Au surface (preferably H,0,), but H,0 is also con-
sidered, since its formation rate is often competitive with H,0,
production. In the experimental system, there is debate about
the active oxidant species (H,0, versus —OOH, or possibly both).
As a first approximation, we use H,0, as the oxidant. If we also
included —OOH as an oxidant, it is unlikely that the results would
be significantly different as the surface population of —OOH is typ-
ically <10% of the population of H,0, in our model.

A summary of the events that are included in the present sys-
tems is provided in Table 1, which includes both forward and
reverse events, in order to maintain microscopic reversibility. The
rate of reaction, diffusion, and desorption at relevant surface sites
is evaluated using Eq. (5) (with v; = kgT/h), while the rate of adsorp-
tion on vacant sites is evaluated using Eq. (6).

o =vi-exp( ) (5)
_ So - Pi - As _AEa.i
s = Rr'e"1’< RT ) (6)

The activation barriers (AE,;) are adapted from previous stud-
ies, and the final values used may deviate somewhat from the ref-
erences provided (e.g., in order to reproduce experimental
adsorption behavior or surface coverage in preliminary tests). Also,
as a first approximation, neighbor-neighbor interactions are not
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Table 1

System events and corresponding activation barriers (in kcal/mol) that are included in the KMC simulations, along with literature references, where applicable. The (*) symbol is

used to indicate a surface-bound species.

#  AE, Event References

Barton and Podkolzin (2005), Bravo-Suarez et al. (2007) and Barrio et al. (2006)
Bravo-Suarez et al. (2007) and Xu and Mavrikakis (2003)

Joshi et al. (2007) and Bravo-Suarez et al. (2007)
Wells et al. (2004a, 2004b), Barton and Podkolzin (2005), Ford et al. (2010) and Grabow et al.

Wells et al. (2004a, 2004b), Barton and Podkolzin (2005), Ford et al. (2010) and Grabow et al.
Wells et al. (2004a, 2004b), Barton and Podkolzin (2005), Ford et al. (2010) and Grabow et al.

Wells et al. (2004b) and Joshi et al. (2007)

Barton and Podkolzin (2005), Ford et al. (2010), Grabow et al. (2012) and Barrio et al. (2006)
Barton and Podkolzin (2005), Ford et al. (2010), Grabow et al. (2012) and Barrio et al. (2006)
Bravo-Suarez et al. (2007) and Xu and Mavrikakis (2003)

Ford et al. (2010) and Xu and Mavrikakis (2003)

Ford et al. (2010) and Jiang et al. (2014)

Ford et al. (2010) and Jiang et al. (2014)

Barton and Podkolzin (2005), Ford et al. (2010), Jiang et al. (2014) and Huzayyin et al. (2014)
Ford et al. (2010) and Jiang et al. (2014)

Ford et al. (2010) and Jiang et al. (2014)

Wells et al. (2004a) and Ford et al. (2010)

Wells et al. (2004a) and Ford et al. (2010)

Ford et al. (2010), Grabow et al. (2012) and Jiang et al. (2014)

2010) and Grabow et al. (2012)

Ford et al. (2010) and Grabow et al. (2012)

Ford et al. (2010) and Grabow et al. (2012)

Barton and Podkolzin (2005) and Ford et al. (2010)

Santiago-Rodriguez et al. (2014
Santiago-Rodriguez et al. (2014

Santiago-Rodriguez et al. (2014

1 0.00  Hx(g)+ (*)Au — Hy(*)Au -
2 550  Hy(*)Au — Hy(g) + (*)Au
3 0.00 0y(g)+(")Au — Oy(*)Au -
4 8.00  O0y(")Au — Ox(g)+(*)Au
5 0.00 C3Hg(g)+ (*)TiO; — C3He(*)TiO, -
6 16.00 C3Hg(*)TiO, — C3Hg(g) + (*)TiO,
7  3.69  Hy0,(*)Au — H,0x(g) + (*)Au
(2012)
8  3.69  Hy0,(*)SiO; — Hy0,(g) + (*)Si0,
(2012)
9 3.69  Hy05(")TiO; — Hy04(g) + (*)TiO2
(2012)
10 19.72  C3He(*)TiO, + H0,(*)Si0; — C3HgO(*)TiO, + HoO(*)
SiO,
11 4.00 C3HgO(*)TiO, — C3HeO(g) + (*)TiO, -
12 4.00 H,0,(*) diffusion -
13 623  Hy(*)Au+(*)Au — H(*)Au + H(*)Au
14 6.23 H(*)Au + H(*)Au — H(*)Au + (*)Au
15 47.04 Oy(")Au+(*)Au — O(*)Au + O(*)Au
16 17.06 O(*)Au + O(*)Au — O,(*)Au + (*)Au
17 254  HyO0(*)Au + O(*)Au — OH(*)Au + OH(*)Au
18 0.00  OH(*)Au+ OH(*)Au — O(*)Au + H,0(*)Au
19 2.08  HO(*)Au — H,0(g) + (*)Au
20 10.15 O(*)Au+H(*)Au — OH(*) + (*)Au
21  47.97 OH(*)+(*)Au — O(*)Au + H(*)Au
22 576  H(*)Au+ 0,(g) — OOH(*)Au
23 13.38 OOH(*)Au — H(*)Au + 05(g)
24 6.00 OH(*)Au+ H(*)Au — H,O(*)Au + (*)Au (
25 254 OOH(*)Au + H(*)Au — H,0,(*)Au + (*)Au Ford et al. (
26 7.38  Hy0,(*)Au + (*)Au — OOH(*)Au + H(*)Au (
27 1176  Hy0,(*)Au + (*)Au — OH(*)Au + OH(*)Au
28 11.76 OOH(*)Au + (*)Au — OH(*)Au + O(*)Au Grabow et al. (2012)
29 16.60 OH(*)Au +O(*)Au — OOH(*)Au + (*)Au Ford et al. (2010)
30 3321 OH(*)Au+ OH(*)Au — H,0,(*)Au + (*)Au
31 3.69 OOH(*)Au + H(*)Au — OOHH(*)Au + (*)Au Ford et al. (2010)
32 576 OOHH(*)Au + (*)Au — OOH(*)Au + H(*)Au Ford et al. ( )
33 1.61 OOHH(*)Au — O(*)Au + H,0(g) Ford et al. ( )
34 4451 O(*)Au+H,0(g) — OOHH(*)Au Ford et al. ( )
35 0.00 Hy0x(g)+(*)Au — H,05(*)Au -
36 0.00 Hy0x(g)+(*)Si — Hp0x(*)Si -
37 0.00  Hy05(g)+ (*)Ti — Hy0,(*)Ti -
38 0.00 H,O(g)+(*)Au — H,O(*)Au -
39 43.12 H,0(*)Au +(*)Au — OH(*)Au + H(*)Au Ford et al. (2010)
40 4.00  H,O(*) diffusion -
41 12.00 Hy(*) diffusion
42 12.88 0,(*) diffusion
43  3.46 H(*) diffusion
44 1291 O(*) diffusion
45 231 OH(*) diffusion

( )
( )
Santiago-Rodriguez et al. (2014)
( )
( )

Santiago-Rodriguez et al. (2014

assumed to affect the rates of the individual events, and the default
sticking coefficients (so) are given a value of 1.0. In these equations,
h is Plank’s constant, kg is Boltzmann’s constant, P; is the partial
pressure of species i, R is the gas constant, MW; is the molecular
weight of species i, and A; is the area of the adsorption site (corre-
sponding to the area of an individual grid cell).

It should be noted that the kinetic constants used in our model
are unlikely to be unique to our results. Due to possible cancella-
tion of errors, each of the kinetic constants in Table 1 could vary
slightly, but still yield indistinguishable results. In order to probe
such behavior, which is common to multi-parameter models, a
comprehensive sensitivity analysis should be performed, which
we intend to explore in future work. Others have recently reported
rigorous and efficient approaches for performing quantitative error
analysis of KMC simulations (Hoffmann et al., 2017).

There are several practical hurdles that challenge our imple-
mentation of KMC to the direct PO reaction. First, due to the variety
of events and reactions that are included in our database of system
events, there is an extremely wide range of event probabilities that

must be captured. For instance, fast events (like diffusion, with low
activation barriers) will statistically dominate the moves per-
formed in the simulation, while slow events (like chemical reac-
tions, with high activation barriers) may have rates so low that
they are not sampled during a typical simulation. In our case, the
last step in the reaction mechanism, the epoxidation of propylene
on the Ti sites, has a relatively high activation barrier, yet it is a
critical reaction that must be adequately sampled. Second, our
reaction system is somewhat more complicated than that encoun-
tered in other KMC studies. For instance, instead of following a sin-
gle reaction zone (or simple surface deposition), we consider the
H,/O,-related reactions on the Au nanoparticles, followed by trans-
port of the oxidant to the Ti sites, which are then responsible for
the epoxidation of adsorbed propylene. Coupling the events that
are occurring at the different reaction zones (as well as the oxidant
transport) also leads to challenges of sampling efficiency. This
reaction/diffusion co-dependency also hampers the direct numeri-
cal modeling of this system by solving a set of chemical rate equa-
tions (i.e., motivating our KMC-based approach). Third, as is



C.H. Turner et al./Chemical Engineering Science 174 (2017) 229-237 233

common to many KMC studies, our rate database contains a
heterogeneous mix of both rigorous and estimated values. Some
of the events and rates have been thoroughly studied, but many
of the reaction/adsorption/diffusion events have not received ade-
quate attention (or their reported rates vary by many orders-of-
magnitude). While we are not able to completely address this
information gap, our experimental benchmarking provides some
confidence in our event database. In addition, our KMC model
can provide some insight into the relative sensitivity of the model
predictions to the individual event rates, in order to highlight the
steps that deserve the most scrutiny in the future.

In order to deal with the inherent time-scale challenges men-
tioned above (due to the wide range of reaction rates and neces-
sary diffusion events), others have proposed some possible
solutions. For instance, Samant and Vlachos (2005) developed a
multiscale KMC technique to deal with such systems. In their
approach, the underlying KMC engine alternates between periods
of sampling the fast events and periods of sampling the slow
events (within the limit of well-equilibrated fast events). The
extent of equilibration of the slow events is evaluated on-the-fly
by quantifying the deviation in the quasi-equilibrated populations.
Other accelerated KMC techniques have been reported, such as the
t-leap method (Gillespie, 2001; Vlachos, 2008), and an overview of
many similar techniques were reviewed a decade ago by Chatterjee
and Vlachos (2007).

We have pursued a slightly different technique for enhancing
the sampling efficiency, but it reflects some of the same basic con-
cepts as mentioned in the examples above. In our simulations, a
critical event is the oxidation of propylene at the Ti site. However,
this reaction has a high barrier (relative to the other system
events), and the sampling is compounded by the fact that it is rare
for the oxidizing species (H,0,) to be in close proximity to this site,
due to the short lifetime and low concentration of the H,0, spe-
cies. As a result, we artificially reduced the activation barrier for
the propylene epoxidation step, in order to improve sampling,
and then used a simple scaling relationship to extrapolate the sim-
ulation results to correspond to the full activation barrier value.
This is similar to the accelerated sampling approach very recently
introduced by Neurock and coworkers (Dybeck et al., 2017). Tests
were performed to check for any unintended deviations in other
quantities (surface coverages of individual species, adsorption/des-
orption rates, etc.).

A unique aspect of our KMC simulations is the coupling
between the surface adsorption/desorption events and the bulk
gas phase composition. This allowed for the product species to
potentially re-adsorb onto the surface. Even though the variations
in the gas phase composition were very small, there were measur-
able changes in the overall production rates of H,0,, H,0, and PO,
when this coupling between the gas phase and the surface was
permitted. In most past KMC models of surface catalysis (Hansen
and Neurock, 2000; Lorenzi et al., 2016; Reuter, 2016; Saeys
et al., 2005), the gas concentration is held fixed, and it is assumed
that the reaction products from the surface are swept away as soon
as they are desorbed (preventing re-adsorption and further reac-
tion). In general, this is a reasonable assumption with minimal
impact on the predicted catalytic properties. However, in our sys-
tem, the trace amounts of H,0, are important to quantify, since its
concentration can significantly impact the simulation results. Thus,
in our simulations, there is a small volume element above the sur-
face which represents the bulk gas phase, with horizontal (x,y)
dimensions identical to the catalyst surface and a vertical (z)
dimension equal to five times the length of the (x,y) dimension.
Within this bulk volume (1.15 x 10’ nm?), the concentration is
updated at each KMC step by accounting for the flux of fresh feed
gas (of a pre-specified inlet composition), as well as any adsorp-
tion/desorption steps occurring on the surface.

The appropriate volume of the bulk gas phase above the surface,
as well as the exact value of the incoming flux of fresh feed gas
within this volume element, cannot be rigorously benchmarked
against the experiments. However, the intent was to capture the
possibility of re-adsorption of small amounts of product species
back onto the surface from an effective boundary layer. We set
the feed gas flux equivalent to a nominal residence time value of
1.42 x 107> s. While this is a small value, it reflects the limited size
of our model (length-scale on the order of nanometers). This is
orders-of-magnitude smaller than the experimental systems, so
we normalize our simulated results on a mass-weighted basis in
order to facilitate comparisons with the experiments. At the condi-
tions explored, this yielded typical gas-phase concentrations of
H, =9.87%, 0, =9.95%, C3Hg=10.02%, H,0, < 0.01%, H,0 = 0.14%,
and C3HgO < 0.01%, but of course, these values vary slightly at dif-
ferent operating conditions. In order to test the sensitivity of our
results to the details of the gas flux, a sensitivity analysis is
performed.

Although rare, there have been other attempts at connecting
KMC simulations with a dynamic gas phase composition. For
instance, Reuter and coworkers (Matera et al., 2014) recently intro-
duced a protocol for coupling a computational fluid dynamics
(CFD) transport model with a KMC reaction model. The CFD model
provided information about the local gas-phase concentrations
above the catalyst surface, while a set of KMC simulations involv-
ing a set of chemical reactions were performed at discrete locations
on the surface (each corresponding to the local gas-phase concen-
trations). This approach can provide some important insight into
this atomistic-level reaction-diffusion behavior. In our work, we
treat the gas phase with less detail, but our surface model pre-
serves the catalyst structure, which is critical to the propylene
epoxidation reaction being presently modeled.

3. Results and discussion

The main H,/O; reactions and rates were adapted from the DFT
calculations of Ford et al. (2010), and these reactions account for
the H,0, and H,0 formation on an Au(11 1) surface. Although
nm-sized Au clusters are expected to have many edge sites, leading
to different activation barriers for the reactions, other computa-
tional studies have predicted that Au(1 1 1) terrace sites and Au
(21 1) steps have almost identical H,O, formation rates and selec-
tivity (Grabow et al., 2012). The epoxidation step is assumed to
involve the direct reaction between H,0, and C3Hg molecules
adsorbed on Ti sites. The Thomson group has calculated the barrier
for this reaction to be 19.9 kcal/mol within TS-1 catalyst pores
(Joshi et al., 2007), but the local structure can alter this value to
as low as 9.3 kcal/mol near surface defects (Wells et al., 2004b).
Experimental studies of the direct PO reaction on Au/TS-1 and
Au-Ti-TUD catalysts have been used to empirically estimate a PO
rate barrier of 8.4-13.1 kcal/mol (Taylor et al., 2006; Lu et al.,
2007). The experimental samples in our current work have been
prepared with atomic-layer deposition (see additional details in
Supporting Information) and are likely to be best represented by
the ideal TS-1 model used in the previous DFT calculations, corre-
sponding to a PO activation barrier of 19.9 kcal/mol.

In our KMC model, we have estimated our AE, value to be closer
to the most recent DFT result. As mentioned previously, this high
AE, value creates a statistical sampling challenge, so we have arti-
ficially lowered the PO formation barrier (over a range of 12-
15 kcal/mol). Using this range of artificially-low values, the overall
PO formation rates predicted from the KMC simulations follow an
Arrhenius relationship (Fig. 2), so that the behavior at higher E,
values can be easily extrapolated. The statistic error of the KMC-
predicted PO formation rates reported throughout our work ranges
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Fig. 2. Scaling behavior of the overall PO formation rate predicted from the KMC
simulations, with respect to changes in the activation barrier of the reaction
between hydrogen peroxide and propylene.

from 5 to 8%, based on the results from four different independent
simulations, with explicit error bars included in the experimental
comparison shown in Fig. 3. The correlation coefficient for the
three fitted trend lines in Fig. 2 are over 0.998, and the slopes of
the trend lines gradually decrease with respect to temperature:
—1.22, —1.10, and —1.02 at 413 K, 443 K, and 473 K, respectively.
When the KMC data are extrapolated to the higher AE, values,
the results can be closely aligned with the experimental results.
For instance, with an AE, value of 19.72 kcal/mol (very similar to
the previous DFT calculation), the KMC results fall within reason-
able agreement of the experimental data, as shown in Fig. 3.
Although the PO selectivity can be very high with Au-based cat-
alysts, the efficient formation of hydrogen peroxide can be a major
issue of concern, since it can limit the PO formation rate. The H,0,
species is unstable, and formation of PO requires that the H,0,
molecules diffuse to the edge of the gold nanoparticle or transport
to some other location on the surface to react with propylene
(where Ti sites exist). The KMC simulations predict that the ratio
of H,0,:H,0 present in the exit gas stream ranges from 17% down
to 4%, as the temperature increases from 383 K to 473 K (Fig. 4).
Experimentally, 30% H, efficiency has been previously obtained
(Huang and Haruta, 2012), but the benchmark for achieving indus-
trial economic viability is closer to 50% (Sinha et al., 2004). Thus, as
the temperature increases, the PO reaction rate will naturally
increase, but its formation is also balanced by the availability of

16.0
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10.0 ~SIM

=+EXP
8.0

6.0
4.0
2.0

PO formation rate (g/hr/kg-cat)

0.0
400 420 440 460 480

Temperature (K)

Fig. 3. Comparison of experimental and extrapolated KMC simulation of the PO
formation rate, achieved using an AE, value of 19.72 kcal/mol for the PO reaction
step. The error bars indicate the standard deviation, which is smaller than the
symbol in some cases.
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Fig. 4. Relative production of H,0, versus H,0, as a function of the temperature
predicted from KMC simulations. The standard deviation of the data gradually
increases from approximately 1% at 383 K-10% at 473 K.

H,0,, since the H,0, is more quickly converted to H,O at the
higher temperatures.

With our KMC simulations, we can make several comparisons
directly against the experimental data to benchmark our underly-
ing model development. For instance, we can test different feed
compositions, flow rates, and temperatures and predict the results
on the PO formation rate, surface coverage, product distribution,
etc.

The PO formation rate is found to only be mildly sensitive to the
partial pressure of O, gas in the feed stream. In the experiments,
this aspect is probed at a fixed temperature of 453 K, with both
the H, and C3Hg gas phase mole fractions set at 10%. In order to
analyze the results, we have compared the PO formation rate with
different O, feed gas compositions, relative to the base case when
all three entering gas species are set at 10%. Overall, the results
shown in Fig. 5 are very consistent, indicating that there is a mod-
erate positive correlation between the change in the O, concentra-
tion and the PO formation rate, and the KMC model does a good job
of capturing this behavior. It was initially expected that this posi-
tive trend would be reflected in an increase in the relative H,O,/
H,O production rate. However, this ratio actually decreases
slightly. As the O, feed concentration increases from 4% to 12%,
the relative H,0,/H,0 production rate decreases from a value of
0.595 to a value of 0.544. The moderately increased PO production
rate illustrated in Fig. 5 seems to be related to the fact that
although the relative H,O, production rate decreases (versus
H,0), the total concentration of H,0, in the gas phase actually

120%
100%

80%

*SIM
60%

TEXP
40%

20%

Relative PO formation rate

0%
4.0 6.0 8.0 10.0 12.0

% O, in gas feed stream

Fig. 5. Comparison of the relative shifts in the PO formation rate from both
simulations and experiments, as a function of the O, concentration in the gas feed
stream. The temperature is 453 K, and the concentrations of H, and C3Hg in the feed
gas are both set at 10%.
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Table 2

Relative PO production rate at different gas feed compositions, compared to the default concentration of 10% for all gases, as well as the corresponding H,0, composition in the
gas phase. The temperature corresponds to 413 K, and the concentration of O, gas in the feed is held fixed at 10%. Standard deviations are indicated in parentheses.

Gas feed composition

Relative PO production rate

Hy0,% ()

Ho% C3Hg% Experiment (%) Simulation (%) Simulation
6.0 14.0 77(1) 47(8) 0.0058(4)
14.0 6.0 110(10) 155(9) 0.0131(5)
6.0 10.0 - 48(7) 0.0056(2)
8.0 10.0 - 84(10) 0.0069(5)
12.0 10.0 - 106(6) 0.0123(4)
14.0 10.0 - 143(14) 0.0145(11)

increases by over 20% over this same range. Thus, despite the selec-
tivity of H,O to H,0, production, the increased availability of H,0,
in the gas phase is likely responsible for accelerating the PO
formation.

Additional comparisons have been made by varying the concen-
trations of the other reactant gases in the feed stream. The mole
fractions of the H, and C3Hg species in the feed were varied from
the default values of 10% each, to values of 6% H,/14% CsHg and
14% H,/6% C3Hg. When the KMC results are benchmarked against
the experimental values, the trends in the PO production rate are
captured, but there is not quantitative agreement (see Table 2).
As before, there seems to be a strong positive correlation with
the H,0, concentration in the gas phase. When the total H, gas
feed concentration increases (decreases) by 4%, equivalent to a rel-
ative change of +40%, the H,0, concentration in the gas phase
increases (decreases) by approximately 84% (20%), and this is likely
responsible for the large change in the PO formation rate. The
experimental data indicate a PO reaction order of ~0.2 with respect
to the H, concentration, while the KMC simulations predict a result
of >1.0 and previous experimental results from similar systems
indicate a reaction order of 0.40-0.50 (Hayashi et al., 1998;
Stangland et al., 2000).

The sensitivity of the KMC simulations to the H,/C3Hg feed com-
position highlights an opportunity for future model improvement.
For instance, adding additional reaction channels (i.e., production
of ethanal, propane, acetone, etc.) may create alternate sinks for
the H,, mitigating its direct sensitivity on the production of PO.
This modification would be consistent with the experimentally-
observed reaction orders of these side-products with respect to
the H, concentration (Stangland et al., 2000). Also, the adsorp-
tion/desorption rate expressions for the H, molecules deserve fur-
ther scrutiny, since the surface coverage of H and related
hydrogenation reactions will be affected by the overall hydrogen
balance in the system.

140%
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80%
60%
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Relative PO formation rate
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Feed gas residence time (s)

Fig. 6. Relative change in the PO production rate as a function of the feed gas
residence time (reference value of 1.42 x 107> s) at a temperature of 473 K.

One of the more surprising outcomes from the KMC simulations
is that the production of PO seems to depend strongly on the re-
adsorption of the H,0, (and hence, the gas phase concentration).
Once H,0, is formed on the Au sites, it can ultimately either desorb
(with a low activation barrier), it can degrade to H,O (with a low
activation barrier), or it can diffuse to a Ti site and potentially react
with an adsorbed CsHg molecule. Due to these alternate pathways,
the probability of an H,O, molecule surviving on the surface and
successfully diffusing to a CzHg-occupied Ti site is extremely rare,
leading to almost zero PO production over the course of a typical
simulation. However, when re-adsorption from the gas phase is
enabled, the probability of an encounter between the C3Hg and
the H,0, is significantly increased (even though the gas-phase con-
centration of H,0, is «1%).

Due to this apparent connection between the gas phase product
concentrations and the surface reactions, a closer analysis of the
gas phase details was performed. While the gas phase product con-
centrations are very low, they can be further diluted by increasing
the flux of the incoming feed gas, and this decreases their re-
adsorption rate onto the catalyst surface. A sensitivity analysis
was performed by varying the gas phase residence time over a
range of five orders of magnitude and calculating the change in
the PO production rate, as shown in Fig. 6.

The predicted PO formation rate as a function of the feed gas
residence time displays a volcano-like trend, and this can be corre-
lated to changes in the gas-phase concentration of H,0,. For
instance, Fig. 7 shows the gas phase composition of H,O and
H,0, as a function of the residence time, and although the H,0
shows a monotonic increase as a function of the residence time,
the H,0, concentration is maximized at a residence time of
approximately 10~*s, similar the PO formation rate shown in
Fig. 6. The shape of the H,0, concentration data in Fig. 7 arises
from a competition between two different mechanisms. First, as

102%
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- H0,
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Gas phase composition

10 %

10%
107 10% 105 10*  10® 102 10"

Feed gas residence time (s)

Fig. 7. Gas phase composition of H,0 and H,0, as a function of the feed gas
residence time at a temperature of 473 K.
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the residence time is initially increased, the longer residence time
allows for a gradual accumulation of H,0, in the system. However,
as the residence time continues to increase, the conversion of H,0,
to H,O begins to dominate in the system, leading to a decline of
H,0, (and a corresponding decrease of the PO formation rate).
Thus, regardless of the activity of the catalyst, the actual availabil-
ity of the H,0,; is a key factor in maximizing the synthesis of PO.
This trend is also reflected in Table 2, which includes data for the
corresponding H,0, composition in the gas phase.

4. Conclusions

In this work, KMC simulations are used to model the direct
epoxidation of propylene to propylene oxide on an Au/TiO,/SiO,
catalyst. Although the model is a simple two-dimensional repre-
sentation of the actual catalyst surface, the basic catalyst features
are preserved (Ti concentration, Au loading, Au particle sizes),
and the KMC results are benchmarked against relevant experimen-
tal data. In addition, the composition in the bulk gas phase is syn-
chronized with the dynamic reaction events occurring on the
surface, and this coupling allows us to relax the typical assumption
of a constant gas-phase composition. By acquiring mechanistic
information from various DFT studies, and compiling this informa-
tion into a KMC model, several aspects of the experimental cat-
alytic behavior can be captured. In particular, we can model the
reaction and surface transport processes simultaneously in the
KMC simulations (i.e., proximity of reactants to the active sites),
and this is difficult to replicate with other modeling techniques.
We find close agreement between the KMC simulations and the
experimental data in several aspects, but this is only achieved by
considering the re-adsorption of trace amounts of the oxidant
(H20,) from the gas phase.

An obvious shortcoming in the KMC model is the H; sensitivity,
which is higher than in most previous experimental studies. This
may be an artifact that arises from our neglect of other competing
reaction channels on the catalyst surface which may serve as
hydrogen sinks. Also, several of the individual event rates used in
the model deserve additional scrutiny. If some of these secondary
effects can be resolved, this approach can provide an excellent
modeling tool for connecting the atomistic-level features of such
a catalytic system to the predicted experimental behavior. In par-
ticular, bimetallic catalyst and optimally-designed supports will
likely be needed for advancing the direct synthesis of propylene
oxide beyond current limits, while maximizing the availability of
the oxidizing species near the Ti sites is critical for accelerating
the production of PO.
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