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a b s t r a c t

The direct propylene epoxidation reaction has been investigated experimentally in the past by several

different groups, and gold-based catalysts tend to provide high selectivity for propylene oxide, but the

conversion is relatively low. Models that can connect the atomistic catalytic details to the observed

experimental data are desired, in order to identify new catalyst structures and formulations. While elec-

tronic structure calculations have been used to quantify some of the key reaction steps in the direct

propylene epoxidation reaction, atomistic models for translating this information into more

experimentally-relevant data are needed. Here, kinetic Monte Carlo (KMC) simulations are used to bridge

this gap in the modeling hierarchy. Relevant data from previous experiments and electronic structure

calculations are used to parameterize a KMC model for predicting propylene oxide production from an

Au/TiO2/SiO2 catalyst. The model connects the H2/O2-related reactions occurring on the Au sites with

the epoxidation step on the isolated Ti surface sites. In addition, the composition in the bulk gas phase

is synchronized with the dynamic reaction events occurring on the surface. The KMCmodel is able to ade-

quately reproduce the experimental trends with respect to temperature and different reactant partial

pressures. However, this is only achieved by considering the re-adsorption of trace amounts of the oxi-

dant (H2O2) from the gas phase, versus merely assuming that desorbed species are immediately swept

away in the gas stream.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Propylene oxide (C3H6O, PO) derived from propylene (C3H6) is a

key chemical intermediate for the production of a number of com-
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modity chemicals, including polyol, propylene glycol, and glycol

ethers (Weissermel, 2003). However, current industrial methods

that produce propylene oxide from propylene, namely chlorohy-

drin and hydroperoxide processes, pose environmental risks

because of the production of chlorinated or peroxycarboxylic

waste (Monnier, 2001; Nijhuis et al., 2006). Using supported

gold-based catalysts to produce propylene oxide directly from

propylene and molecular H2 and O2 provides an alternative, clean,

and potentially more efficient route.

Nearly 20 years ago, Haruta and co-workers discovered that

nm-sized Au catalysts on TiO2 are active and highly selective for

the direct gas-phase PO reaction (Hayashi et al., 1998; Uphade

et al., 2001; Uphade et al., 2002). When propylene, oxygen, and

hydrogen are co-fed, hydrogen peroxide can be readily formed on

the surface of gold, and in turn, selectively oxidizes propylene

molecules that are adsorbed on TiO2 sites to propylene oxide

(Nijhuis et al., 2006). Also, it has been found that Au supported

by titanium silicalite (TS-1) is particularly effective at catalyzing

the propylene epoxidation reaction. The isolated Ti active sites

are necessary for obtaining a high selectivity towards propylene

oxide (Stangland et al., 2000; Nijhuis et al., 1999; Chen et al.,

2013a), since propylene oxide molecules that adsorb on adjacent

Ti sites lead to catalyst deactivation and the formation of

unwanted byproducts. Although the selectivity is very high

(>90%), even the best catalysts found to date still suffer from mul-

tiple challenges, including low propylene conversion (<10%), poor

stability and inefficient usage of H2 (<50%). Therefore, significant

improvement with regard to these issues is necessary, and this

requires a more thorough understanding of the underlying chemi-

cal reaction network.

A lot of experimental effort has been focused on developing Au-

based catalysts for the direct PO reaction (Nijhuis et al., 2006; Chen

et al., 2013a, 2013b; Feng et al., 2016; Ferrandez et al., 2015), Also,

many related studies have investigated different catalysts for

direct H2O2 synthesis (Joshi et al., 2007; Landon et al., 2002,

2003; Edwards et al., 2009), since this is a key reaction step prior

to the propylene epoxidation. Alternate catalyst formulations have

been explored (including Ag, Cu, Mo, as well as photocatalysts)

(Ghosh et al., 2014; Lei et al., 2010; Cheng et al., 2014; Chu et al.,

2006; Vaughan et al., 2005; Song et al., 2007; Murata et al.,

2003; Amano et al., 2004), but performance issues still limit eco-

nomic viability.

Over the same time period, computational chemistry

approaches, mainly first-principles density-functional theory

(DFT), have provided additional insights into the chemical mecha-

nisms driving the experimentally-observed PO reaction behavior.

These studies have been used to clarify energetic and structural

information about the active sites most responsible for the produc-

tion of PO. For instance, there are DFT reports of the O2 + H2 reac-

tion mechanisms on Au surfaces and clusters (Wells et al., 2004a;

Barton and Podkolzin, 2005), as well as comparisons of the same

reactions on other transition metal surfaces (Rh, Ir, Ni, Pd, Pt, Cu,

Ag) (Ford et al., 2010; Duzenli et al., 2015) and bimetallic surfaces

(Li and Yoshizawa, 2015) (including extrapolations via scaling rela-

tions) (Grabow et al., 2012). Computational studies focused exclu-

sively on the direct PO reaction mechanism are more limited, and

these have mainly originated from the Thomson (Wells et al.,

2004b, 2006; Joshi et al., 2006, 2007) and Corma (Pulido et al.,

2012a, 2012b) groups, along with a few related studies of ethylene

epoxidation (Karlsen and Schoffel, 1996; Limtrakul et al., 2004).

These DFT studies provide an excellent framework for interpreting

the experimental results, but due to the variability of experimental

sample preparation (structural defects, catalyst particle size distri-

butions, etc.) there can be a wide range of experimentally-observed

performance (Qi et al., 2004; Feng et al., 2015a, 2015b; Huang

et al., 2010; Lee et al., 2011, 2013, 2014) that is difficult to capture

with computationally-expensive DFT approaches. Thus, a lot of the

modeling efforts have been more empirical, in order to provide

analytical expressions for the product distributions as a function

of the natural experimental variables (temperature, reactant par-

tial pressure, feed rates, catalyst loading, etc.). For instance, a series

of methodical experimental kinetic tests of the propylene epoxida-

tion performance and related reactions have previously been used

to regress reaction orders and elementary reaction steps

(Ferrandez et al., 2015; Barton and Podkolzin, 2005; Bravo-

Suarez et al., 2008, 2007).

While the DFT-based approaches provide fundamental elec-

tronic structure information about ideal systems, and the

experimentally-derived rate expressions are useful for optimizing

synthesis conditions, there is a large gap between these two ends

of the modeling spectrum. More predictive models are needed that

can directly connect the atomistic details to the observed experi-

mental behavior. In order to establish this connection, we have

pursued a kinetic Monte Carlo (KMC) simulation approach. Funda-

mental DFT-based values (such as adsorption energies and transi-

tion state barriers) can be combined with information about the

catalyst surface, in order to make predictions about reactivity on

experimentally-relevant time scales. This approach has been pur-

sued previously for modeling heterogeneous catalyst behavior

(Hansen and Neurock, 2000; Haug and Raibeck, 2003; Mei et al.,

2003, 2006, 2010; Kieken et al., 2005), as well as other activated

processes, such as surface deposition (Turner et al., 2016; Jiang

and Hou, 2015; Rodgers et al., 2015; Hu et al., 2009a, 2009b;

Zheng et al., 2008; Drews et al., 2004; Lou and Christofides,

2004; Wadley et al., 2001), diffusion, (Van der Ven and Ceder,

2000; Greenfield and Theodorou, 2001; Krishnamurthy et al.,

2004; Scarle et al., 2005; Munn et al., 2009; Neyertz and Brown,

2010) and electrochemical systems (Lau et al., 2008; Turner

et al., 2015).

In the present work, KMC simulations are constructed by select-

ing a minimal set of systems events relevant to direct PO synthesis

(adsorption, desorption, reaction, diffusion), as well as their associ-

ated rate expressions. Although the model does not capture all of

the possible reactions and side products that are known to exist,

it serves as a first step towards developing a stronger connection

between the atomistic events and the experimental performance

of the direct PO synthesis reaction. This is intended to provide

the necessary insight to enable the design of efficient and econom-

ical heterogeneous catalysts in the future. In particular, our KMC

model is able to adequately reproduce the experimental trends

with respect to temperature and different reactant partial pres-

sures. However, we find that this is only achieved by considering

the re-adsorption of trace amounts of H2O2 from the gas phase,

versus merely assuming that the desorbed products are immedi-

ately swept away in the gas stream. The next section describes

the details of our KMC implementation, followed by our results,

experimental benchmarking, and analysis. The conditions for the

experimental data used for comparison correspond to a feed gas

concentration of 10% H2, 10% O2, 10% C3H6, and the balance Ar at

a total flowrate of 35 ml/min (additional details provided in the

Supplementary Information). The coverage of TiO2 on SiO2 is

approximately 10% and the Au deposition is 1 wt%, and the tem-

perature ranges from 413 to 473 K.

2. Computational methods

The KMC simulation technique originated from the early contri-

butions of Young and Elcock (1966), Cox and Miller (1965)), and

Gillespie (1976). In the years following, Fichthorn and Weinberg

(1991) provided an additional analysis of the method, and others

(Chatterjee and Vlachos, 2007; Voter, 2005) have provided valu-
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able critiques and reviews of KMC. In brief, the KMC method can

provide an estimate of the time evolution of Markovian processes

(Landau and Binder, 2005), as long as there is an accurate set of

transition rates characterizing the simulated processes, which are

assumed to obey Poisson statistics (Martinez et al., 2008). The

KMC simulation approach can typically span time-scales that are

orders-of-magnitude beyond traditional molecular dynamics

methods, since the KMC simulation time is inversely proportional

to the rate of the fastest processes included in the model. This

allows systems with activated processes, such as chemical reac-

tions, to be modeled efficiently.

With such a complex catalytic system, involving many steps

and surface intermediates, it is unrealistic to expect that our model

will fully capture all of the aspects of the experimental system.

Thus, along with a well-defined set of experimental benchmark

data, we have adopted a minimal event database for modeling

the direct PO reaction on TiO2/SiO2-supported Au nanoparticles.

The experimental catalyst surface (Au/TiO2/SiO2) is mapped to a

2-D square periodic grid, with a nominal size of 200 � 200. Smaller

grid sizes were also evaluated in preliminary tests (183 � 183,

141 � 141, and 115 � 115), but predicted PO production rates

per kg of catalyst varied by no more than 1% with the grid size.

Although we are not able to capture the exact crystal structure of

the support surface or the Au nanoparticles, the grid spacing is

assumed to correspond to a nominal length of 0.288 nm. This res-

olution allows for a reasonable accounting of the Au catalyst load-

ing, Au size distribution, and occupancy of adsorbates on the

surface. According to the experimental loading of Au and TiO2,

the initial SiO2 surface is decorated with Ti sites, as well as Au

nanoparticles of varying diameters. In accordance with the surface

grid, the Au nanoparticles were represented as two-dimensional

discs on the SiO2 surface. In the model, the Au nanoparticle diam-

eters were chosen from a random distribution between 2.3 nm and

4.6 nm, while the experimental system corresponds to an average

Au particle size of 2.5 nm. The experimental Au loading was

approximately 0.1 wt%, and this value was used to make quantita-

tive rate comparisons between the simulations and experiments.

Regardless of the exact Au particle sizes in each KMC simulation

run, the results are always normalized with respect to the Au mass

in each simulation, in order to make consistent comparisons with

the experiments. The concentration of Ti sites in the KMC system

is set at 10% (experimental surface is estimated at 9.7%), and these

are randomly distributed on the surface by direct substitution of

the Si sites. A snapshot of the basic model layout is illustrated in

Fig. 1.

In order to evaluate the reproducibility of the KMC results, four

different independent simulations are performed at each condi-

tion, and each simulation is propagated through time for a minimal

duration of 500 � 106 KMC steps. These independent simulations

allow for statistical fluctuations of the numerical values, but each

simulation also corresponds to a slightly different surface configu-

ration (Au particle sizes are chosen from a random distribution

mentioned previously, their positions on the SiO2 surface are ran-

domly assigned, and the Ti site positions also vary). As the simula-

tions proceed, the catalyst structure remains fixed, but the species

on the surface can adsorb, desorb, react, and diffuse.

The system is propagated through time by implementing a KMC

algorithm, along with a pre-specified database of system events

and rate information. Thus, starting from the initial system config-

uration on a square lattice, the rate (Cn,site) of each event (n) is cal-

culated at each lattice site (x,y), which gives a net event rate of Cn,

and the total rate of all events in the system is Ctotal.

Cn ¼
X

x

X

y

Cn;siteðx; yÞ ð1Þ

Ctotal ¼
X

n

Cn ð2Þ

After the system configuration has been defined and the initial

rates have been calculated, the system clock is then advanced

according to the following equation, where Dt is the time step

and RN is a random number, evenly distributed between 0 and 1.

Dt ¼ � lnðRNÞ
Ctotal

ð3Þ

After the clock has been incremented, the system configuration

is then updated by stochastically choosing an event to occur,

according to the probability shown in Eq. (4). Once an event is

identified to occur, the system configuration is updated, and the

list of event rates is updated (according to the new configuration).

At each time step, an event is always performed.

Pn;site ¼
Cn;site

Ctotal

ð4Þ

At the conditions of interest, the selectivity of propylene to

propylene oxide conversion is 70–80%. Therefore, at this point,

no other side reactions involving propylene are considered in the

model. The reacting H2/O2 species can form several different inter-

mediates on the Au surface (preferably H2O2), but H2O is also con-

sidered, since its formation rate is often competitive with H2O2

production. In the experimental system, there is debate about

the active oxidant species (H2O2 versus AOOH, or possibly both).

As a first approximation, we use H2O2 as the oxidant. If we also

included AOOH as an oxidant, it is unlikely that the results would

be significantly different as the surface population of AOOH is typ-

ically <10% of the population of H2O2 in our model.

A summary of the events that are included in the present sys-

tems is provided in Table 1, which includes both forward and

reverse events, in order to maintain microscopic reversibility. The

rate of reaction, diffusion, and desorption at relevant surface sites

is evaluated using Eq. (5) (with mi = kBT/h), while the rate of adsorp-

tion on vacant sites is evaluated using Eq. (6).

ki ¼ mi � exp
�DEa;i

RT

� �

ð5Þ

kads;i ¼
s0 � Pi � As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p �MW i � RT
p � exp �DEa;i

RT

� �

ð6Þ

The activation barriers (DEa,i) are adapted from previous stud-

ies, and the final values used may deviate somewhat from the ref-

erences provided (e.g., in order to reproduce experimental

adsorption behavior or surface coverage in preliminary tests). Also,

as a first approximation, neighbor-neighbor interactions are not
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Fig. 1. Illustration of the KMCmodel system. The two-dimensional periodic catalyst

surface is coupled to the gas phase composition via adsorption/desorption steps. On

the surface, the red/pink/white sites correspond to different species on the Au

nanoparticles, while the cyan/olive sites correspond to different species on the TiO2/

SiO2 surface.
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assumed to affect the rates of the individual events, and the default

sticking coefficients (s0) are given a value of 1.0. In these equations,

h is Plank’s constant, kB is Boltzmann’s constant, Pi is the partial

pressure of species i, R is the gas constant, MWi is the molecular

weight of species i, and As is the area of the adsorption site (corre-

sponding to the area of an individual grid cell).

It should be noted that the kinetic constants used in our model

are unlikely to be unique to our results. Due to possible cancella-

tion of errors, each of the kinetic constants in Table 1 could vary

slightly, but still yield indistinguishable results. In order to probe

such behavior, which is common to multi-parameter models, a

comprehensive sensitivity analysis should be performed, which

we intend to explore in future work. Others have recently reported

rigorous and efficient approaches for performing quantitative error

analysis of KMC simulations (Hoffmann et al., 2017).

There are several practical hurdles that challenge our imple-

mentation of KMC to the direct PO reaction. First, due to the variety

of events and reactions that are included in our database of system

events, there is an extremely wide range of event probabilities that

must be captured. For instance, fast events (like diffusion, with low

activation barriers) will statistically dominate the moves per-

formed in the simulation, while slow events (like chemical reac-

tions, with high activation barriers) may have rates so low that

they are not sampled during a typical simulation. In our case, the

last step in the reaction mechanism, the epoxidation of propylene

on the Ti sites, has a relatively high activation barrier, yet it is a

critical reaction that must be adequately sampled. Second, our

reaction system is somewhat more complicated than that encoun-

tered in other KMC studies. For instance, instead of following a sin-

gle reaction zone (or simple surface deposition), we consider the

H2/O2-related reactions on the Au nanoparticles, followed by trans-

port of the oxidant to the Ti sites, which are then responsible for

the epoxidation of adsorbed propylene. Coupling the events that

are occurring at the different reaction zones (as well as the oxidant

transport) also leads to challenges of sampling efficiency. This

reaction/diffusion co-dependency also hampers the direct numeri-

cal modeling of this system by solving a set of chemical rate equa-

tions (i.e., motivating our KMC-based approach). Third, as is

Table 1

System events and corresponding activation barriers (in kcal/mol) that are included in the KMC simulations, along with literature references, where applicable. The (*) symbol is

used to indicate a surface-bound species.

# DEa Event References

1 0.00 H2(g) + (*)Au ! H2(*)Au –

2 5.50 H2(*)Au ! H2(g) + (*)Au Barton and Podkolzin (2005), Bravo-Suarez et al. (2007) and Barrio et al. (2006)

3 0.00 O2(g) + (*)Au ! O2(*)Au –

4 8.00 O2(*)Au ! O2(g) + (*)Au Bravo-Suarez et al. (2007) and Xu and Mavrikakis (2003)

5 0.00 C3H6(g) + (*)TiO2 ! C3H6(*)TiO2 –

6 16.00 C3H6(*)TiO2 ! C3H6(g) + (*)TiO2 Joshi et al. (2007) and Bravo-Suarez et al. (2007)

7 3.69 H2O2(*)Au ! H2O2(g) + (*)Au Wells et al. (2004a, 2004b), Barton and Podkolzin (2005), Ford et al. (2010) and Grabow et al.

(2012)

8 3.69 H2O2(*)SiO2 ! H2O2(g) + (*)SiO2 Wells et al. (2004a, 2004b), Barton and Podkolzin (2005), Ford et al. (2010) and Grabow et al.

(2012)

9 3.69 H2O2(*)TiO2 ! H2O2(g) + (*)TiO2 Wells et al. (2004a, 2004b), Barton and Podkolzin (2005), Ford et al. (2010) and Grabow et al.

(2012)

10 19.72 C3H6(*)TiO2 + H2O2(*)SiO2 ! C3H6O(*)TiO2 + H2O(*)

SiO2

Wells et al. (2004b) and Joshi et al. (2007)

11 4.00 C3H6O(*)TiO2 ! C3H6O(g) + (*)TiO2 –

12 4.00 H2O2(*) diffusion –

13 6.23 H2(*)Au + (*)Au ! H(*)Au + H(*)Au Barton and Podkolzin (2005), Ford et al. (2010), Grabow et al. (2012) and Barrio et al. (2006)

14 6.23 H(*)Au + H(*)Au ! H2(*)Au + (*)Au Barton and Podkolzin (2005), Ford et al. (2010), Grabow et al. (2012) and Barrio et al. (2006)

15 47.04 O2(*)Au + (*)Au ! O(*)Au + O(*)Au Bravo-Suarez et al. (2007) and Xu and Mavrikakis (2003)

16 17.06 O(*)Au + O(*)Au ! O2(*)Au + (*)Au Ford et al. (2010) and Xu and Mavrikakis (2003)

17 2.54 H2O(*)Au + O(*)Au ! OH(*)Au + OH(*)Au Ford et al. (2010) and Jiang et al. (2014)

18 0.00 OH(*)Au + OH(*)Au ! O(*)Au + H2O(*)Au Ford et al. (2010) and Jiang et al. (2014)

19 2.08 H2O(*)Au ! H2O(g) + (*)Au Barton and Podkolzin (2005), Ford et al. (2010), Jiang et al. (2014) and Huzayyin et al. (2014)

20 10.15 O(*)Au + H(*)Au ! OH(*) + (*)Au Ford et al. (2010) and Jiang et al. (2014)

21 47.97 OH(*) + (*)Au ! O(*)Au + H(*)Au Ford et al. (2010) and Jiang et al. (2014)

22 5.76 H(*)Au + O2(g) ! OOH(*)Au Wells et al. (2004a) and Ford et al. (2010)

23 13.38 OOH(*)Au ! H(*)Au + O2(g) Wells et al. (2004a) and Ford et al. (2010)

24 6.00 OH(*)Au + H(*)Au ! H2O(*)Au + (*)Au Ford et al. (2010), Grabow et al. (2012) and Jiang et al. (2014)

25 2.54 OOH(*)Au + H(*)Au ! H2O2(*)Au + (*)Au Ford et al. (2010) and Grabow et al. (2012)

26 7.38 H2O2(*)Au + (*)Au ! OOH(*)Au + H(*)Au Ford et al. (2010) and Grabow et al. (2012)

27 11.76 H2O2(*)Au + (*)Au ! OH(*)Au + OH(*)Au Ford et al. (2010) and Grabow et al. (2012)

28 11.76 OOH(*)Au + (*)Au ! OH(*)Au + O(*)Au Grabow et al. (2012)

29 16.60 OH(*)Au + O(*)Au ! OOH(*)Au + (*)Au Ford et al. (2010)

30 33.21 OH(*)Au + OH(*)Au ! H2O2(*)Au + (*)Au Barton and Podkolzin (2005) and Ford et al. (2010)

31 3.69 OOH(*)Au + H(*)Au ! OOHH(*)Au + (*)Au Ford et al. (2010)

32 5.76 OOHH(*)Au + (*)Au ! OOH(*)Au + H(*)Au Ford et al. (2010)

33 1.61 OOHH(*)Au ! O(*)Au + H2O(g) Ford et al. (2010)

34 44.51 O(*)Au + H2O(g) ! OOHH(*)Au Ford et al. (2010)

35 0.00 H2O2(g) + (*)Au ! H2O2(*)Au –

36 0.00 H2O2(g) + (*)Si ! H2O2(*)Si –

37 0.00 H2O2(g) + (*)Ti ! H2O2(*)Ti –

38 0.00 H2O(g) + (*)Au ! H2O(*)Au –

39 43.12 H2O(*)Au + (*)Au ! OH(*)Au + H(*)Au Ford et al. (2010)

40 4.00 H2O(*) diffusion –

41 12.00 H2(*) diffusion Santiago-Rodriguez et al. (2014)

42 12.88 O2(*) diffusion Santiago-Rodriguez et al. (2014)

43 3.46 H(*) diffusion Santiago-Rodriguez et al. (2014)

44 12.91 O(*) diffusion Santiago-Rodriguez et al. (2014)

45 2.31 OH(*) diffusion Santiago-Rodriguez et al. (2014)
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common to many KMC studies, our rate database contains a

heterogeneous mix of both rigorous and estimated values. Some

of the events and rates have been thoroughly studied, but many

of the reaction/adsorption/diffusion events have not received ade-

quate attention (or their reported rates vary by many orders-of-

magnitude). While we are not able to completely address this

information gap, our experimental benchmarking provides some

confidence in our event database. In addition, our KMC model

can provide some insight into the relative sensitivity of the model

predictions to the individual event rates, in order to highlight the

steps that deserve the most scrutiny in the future.

In order to deal with the inherent time-scale challenges men-

tioned above (due to the wide range of reaction rates and neces-

sary diffusion events), others have proposed some possible

solutions. For instance, Samant and Vlachos (2005) developed a

multiscale KMC technique to deal with such systems. In their

approach, the underlying KMC engine alternates between periods

of sampling the fast events and periods of sampling the slow

events (within the limit of well-equilibrated fast events). The

extent of equilibration of the slow events is evaluated on-the-fly

by quantifying the deviation in the quasi-equilibrated populations.

Other accelerated KMC techniques have been reported, such as the

s-leap method (Gillespie, 2001; Vlachos, 2008), and an overview of

many similar techniques were reviewed a decade ago by Chatterjee

and Vlachos (2007).

We have pursued a slightly different technique for enhancing

the sampling efficiency, but it reflects some of the same basic con-

cepts as mentioned in the examples above. In our simulations, a

critical event is the oxidation of propylene at the Ti site. However,

this reaction has a high barrier (relative to the other system

events), and the sampling is compounded by the fact that it is rare

for the oxidizing species (H2O2) to be in close proximity to this site,

due to the short lifetime and low concentration of the H2O2 spe-

cies. As a result, we artificially reduced the activation barrier for

the propylene epoxidation step, in order to improve sampling,

and then used a simple scaling relationship to extrapolate the sim-

ulation results to correspond to the full activation barrier value.

This is similar to the accelerated sampling approach very recently

introduced by Neurock and coworkers (Dybeck et al., 2017). Tests

were performed to check for any unintended deviations in other

quantities (surface coverages of individual species, adsorption/des-

orption rates, etc.).

A unique aspect of our KMC simulations is the coupling

between the surface adsorption/desorption events and the bulk

gas phase composition. This allowed for the product species to

potentially re-adsorb onto the surface. Even though the variations

in the gas phase composition were very small, there were measur-

able changes in the overall production rates of H2O2, H2O, and PO,

when this coupling between the gas phase and the surface was

permitted. In most past KMC models of surface catalysis (Hansen

and Neurock, 2000; Lorenzi et al., 2016; Reuter, 2016; Saeys

et al., 2005), the gas concentration is held fixed, and it is assumed

that the reaction products from the surface are swept away as soon

as they are desorbed (preventing re-adsorption and further reac-

tion). In general, this is a reasonable assumption with minimal

impact on the predicted catalytic properties. However, in our sys-

tem, the trace amounts of H2O2 are important to quantify, since its

concentration can significantly impact the simulation results. Thus,

in our simulations, there is a small volume element above the sur-

face which represents the bulk gas phase, with horizontal (x,y)

dimensions identical to the catalyst surface and a vertical (z)

dimension equal to five times the length of the (x,y) dimension.

Within this bulk volume (1.15 � 107 nm3), the concentration is

updated at each KMC step by accounting for the flux of fresh feed

gas (of a pre-specified inlet composition), as well as any adsorp-

tion/desorption steps occurring on the surface.

The appropriate volume of the bulk gas phase above the surface,

as well as the exact value of the incoming flux of fresh feed gas

within this volume element, cannot be rigorously benchmarked

against the experiments. However, the intent was to capture the

possibility of re-adsorption of small amounts of product species

back onto the surface from an effective boundary layer. We set

the feed gas flux equivalent to a nominal residence time value of

1.42 � 10�5 s. While this is a small value, it reflects the limited size

of our model (length-scale on the order of nanometers). This is

orders-of-magnitude smaller than the experimental systems, so

we normalize our simulated results on a mass-weighted basis in

order to facilitate comparisons with the experiments. At the condi-

tions explored, this yielded typical gas-phase concentrations of

H2 = 9.87%, O2 = 9.95%, C3H6 = 10.02%, H2O2 < 0.01%, H2O = 0.14%,

and C3H6O < 0.01%, but of course, these values vary slightly at dif-

ferent operating conditions. In order to test the sensitivity of our

results to the details of the gas flux, a sensitivity analysis is

performed.

Although rare, there have been other attempts at connecting

KMC simulations with a dynamic gas phase composition. For

instance, Reuter and coworkers (Matera et al., 2014) recently intro-

duced a protocol for coupling a computational fluid dynamics

(CFD) transport model with a KMC reaction model. The CFD model

provided information about the local gas-phase concentrations

above the catalyst surface, while a set of KMC simulations involv-

ing a set of chemical reactions were performed at discrete locations

on the surface (each corresponding to the local gas-phase concen-

trations). This approach can provide some important insight into

this atomistic-level reaction-diffusion behavior. In our work, we

treat the gas phase with less detail, but our surface model pre-

serves the catalyst structure, which is critical to the propylene

epoxidation reaction being presently modeled.

3. Results and discussion

The main H2/O2 reactions and rates were adapted from the DFT

calculations of Ford et al. (2010), and these reactions account for

the H2O2 and H2O formation on an Au(1 1 1) surface. Although

nm-sized Au clusters are expected to have many edge sites, leading

to different activation barriers for the reactions, other computa-

tional studies have predicted that Au(1 1 1) terrace sites and Au

(2 1 1) steps have almost identical H2O2 formation rates and selec-

tivity (Grabow et al., 2012). The epoxidation step is assumed to

involve the direct reaction between H2O2 and C3H6 molecules

adsorbed on Ti sites. The Thomson group has calculated the barrier

for this reaction to be 19.9 kcal/mol within TS-1 catalyst pores

(Joshi et al., 2007), but the local structure can alter this value to

as low as 9.3 kcal/mol near surface defects (Wells et al., 2004b).

Experimental studies of the direct PO reaction on Au/TS-1 and

Au-Ti-TUD catalysts have been used to empirically estimate a PO

rate barrier of 8.4–13.1 kcal/mol (Taylor et al., 2006; Lu et al.,

2007). The experimental samples in our current work have been

prepared with atomic-layer deposition (see additional details in

Supporting Information) and are likely to be best represented by

the ideal TS-1 model used in the previous DFT calculations, corre-

sponding to a PO activation barrier of 19.9 kcal/mol.

In our KMCmodel, we have estimated ourDEa value to be closer

to the most recent DFT result. As mentioned previously, this high

DEa value creates a statistical sampling challenge, so we have arti-

ficially lowered the PO formation barrier (over a range of 12–

15 kcal/mol). Using this range of artificially-low values, the overall

PO formation rates predicted from the KMC simulations follow an

Arrhenius relationship (Fig. 2), so that the behavior at higher Ea
values can be easily extrapolated. The statistic error of the KMC-

predicted PO formation rates reported throughout our work ranges
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from 5 to 8%, based on the results from four different independent

simulations, with explicit error bars included in the experimental

comparison shown in Fig. 3. The correlation coefficient for the

three fitted trend lines in Fig. 2 are over 0.998, and the slopes of

the trend lines gradually decrease with respect to temperature:

�1.22, �1.10, and �1.02 at 413 K, 443 K, and 473 K, respectively.

When the KMC data are extrapolated to the higher DEa values,

the results can be closely aligned with the experimental results.

For instance, with an DEa value of 19.72 kcal/mol (very similar to

the previous DFT calculation), the KMC results fall within reason-

able agreement of the experimental data, as shown in Fig. 3.

Although the PO selectivity can be very high with Au-based cat-

alysts, the efficient formation of hydrogen peroxide can be a major

issue of concern, since it can limit the PO formation rate. The H2O2

species is unstable, and formation of PO requires that the H2O2

molecules diffuse to the edge of the gold nanoparticle or transport

to some other location on the surface to react with propylene

(where Ti sites exist). The KMC simulations predict that the ratio

of H2O2:H2O present in the exit gas stream ranges from 17% down

to 4%, as the temperature increases from 383 K to 473 K (Fig. 4).

Experimentally, 30% H2 efficiency has been previously obtained

(Huang and Haruta, 2012), but the benchmark for achieving indus-

trial economic viability is closer to 50% (Sinha et al., 2004). Thus, as

the temperature increases, the PO reaction rate will naturally

increase, but its formation is also balanced by the availability of

H2O2, since the H2O2 is more quickly converted to H2O at the

higher temperatures.

With our KMC simulations, we can make several comparisons

directly against the experimental data to benchmark our underly-

ing model development. For instance, we can test different feed

compositions, flow rates, and temperatures and predict the results

on the PO formation rate, surface coverage, product distribution,

etc.

The PO formation rate is found to only be mildly sensitive to the

partial pressure of O2 gas in the feed stream. In the experiments,

this aspect is probed at a fixed temperature of 453 K, with both

the H2 and C3H6 gas phase mole fractions set at 10%. In order to

analyze the results, we have compared the PO formation rate with

different O2 feed gas compositions, relative to the base case when

all three entering gas species are set at 10%. Overall, the results

shown in Fig. 5 are very consistent, indicating that there is a mod-

erate positive correlation between the change in the O2 concentra-

tion and the PO formation rate, and the KMCmodel does a good job

of capturing this behavior. It was initially expected that this posi-

tive trend would be reflected in an increase in the relative H2O2/

H2O production rate. However, this ratio actually decreases

slightly. As the O2 feed concentration increases from 4% to 12%,

the relative H2O2/H2O production rate decreases from a value of

0.595 to a value of 0.544. The moderately increased PO production

rate illustrated in Fig. 5 seems to be related to the fact that

although the relative H2O2 production rate decreases (versus

H2O), the total concentration of H2O2 in the gas phase actually
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increases by over 20% over this same range. Thus, despite the selec-

tivity of H2O to H2O2 production, the increased availability of H2O2

in the gas phase is likely responsible for accelerating the PO

formation.

Additional comparisons have been made by varying the concen-

trations of the other reactant gases in the feed stream. The mole

fractions of the H2 and C3H6 species in the feed were varied from

the default values of 10% each, to values of 6% H2/14% C3H6 and

14% H2/6% C3H6. When the KMC results are benchmarked against

the experimental values, the trends in the PO production rate are

captured, but there is not quantitative agreement (see Table 2).

As before, there seems to be a strong positive correlation with

the H2O2 concentration in the gas phase. When the total H2 gas

feed concentration increases (decreases) by 4%, equivalent to a rel-

ative change of ±40%, the H2O2 concentration in the gas phase

increases (decreases) by approximately 84% (20%), and this is likely

responsible for the large change in the PO formation rate. The

experimental data indicate a PO reaction order of�0.2 with respect

to the H2 concentration, while the KMC simulations predict a result

of >1.0 and previous experimental results from similar systems

indicate a reaction order of 0.40–0.50 (Hayashi et al., 1998;

Stangland et al., 2000).

The sensitivity of the KMC simulations to the H2/C3H6 feed com-

position highlights an opportunity for future model improvement.

For instance, adding additional reaction channels (i.e., production

of ethanal, propane, acetone, etc.) may create alternate sinks for

the H2, mitigating its direct sensitivity on the production of PO.

This modification would be consistent with the experimentally-

observed reaction orders of these side-products with respect to

the H2 concentration (Stangland et al., 2000). Also, the adsorp-

tion/desorption rate expressions for the H2 molecules deserve fur-

ther scrutiny, since the surface coverage of H and related

hydrogenation reactions will be affected by the overall hydrogen

balance in the system.

One of the more surprising outcomes from the KMC simulations

is that the production of PO seems to depend strongly on the re-

adsorption of the H2O2 (and hence, the gas phase concentration).

Once H2O2 is formed on the Au sites, it can ultimately either desorb

(with a low activation barrier), it can degrade to H2O (with a low

activation barrier), or it can diffuse to a Ti site and potentially react

with an adsorbed C3H6 molecule. Due to these alternate pathways,

the probability of an H2O2 molecule surviving on the surface and

successfully diffusing to a C3H6-occupied Ti site is extremely rare,

leading to almost zero PO production over the course of a typical

simulation. However, when re-adsorption from the gas phase is

enabled, the probability of an encounter between the C3H6 and

the H2O2 is significantly increased (even though the gas-phase con-

centration of H2O2 is �1%).

Due to this apparent connection between the gas phase product

concentrations and the surface reactions, a closer analysis of the

gas phase details was performed. While the gas phase product con-

centrations are very low, they can be further diluted by increasing

the flux of the incoming feed gas, and this decreases their re-

adsorption rate onto the catalyst surface. A sensitivity analysis

was performed by varying the gas phase residence time over a

range of five orders of magnitude and calculating the change in

the PO production rate, as shown in Fig. 6.

The predicted PO formation rate as a function of the feed gas

residence time displays a volcano-like trend, and this can be corre-

lated to changes in the gas-phase concentration of H2O2. For

instance, Fig. 7 shows the gas phase composition of H2O and

H2O2 as a function of the residence time, and although the H2O

shows a monotonic increase as a function of the residence time,

the H2O2 concentration is maximized at a residence time of

approximately 10�4 s, similar the PO formation rate shown in

Fig. 6. The shape of the H2O2 concentration data in Fig. 7 arises

from a competition between two different mechanisms. First, as

Table 2

Relative PO production rate at different gas feed compositions, compared to the default concentration of 10% for all gases, as well as the corresponding H2O2 composition in the

gas phase. The temperature corresponds to 413 K, and the concentration of O2 gas in the feed is held fixed at 10%. Standard deviations are indicated in parentheses.

Gas feed composition Relative PO production rate H2O2% (g)

H2% C3H6% Experiment (%) Simulation (%) Simulation

6.0 14.0 77(1) 47(8) 0.0058(4)

14.0 6.0 110(10) 155(9) 0.0131(5)

6.0 10.0 – 48(7) 0.0056(2)

8.0 10.0 – 84(10) 0.0069(5)

12.0 10.0 – 106(6) 0.0123(4)

14.0 10.0 – 143(14) 0.0145(11)
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the residence time is initially increased, the longer residence time

allows for a gradual accumulation of H2O2 in the system. However,

as the residence time continues to increase, the conversion of H2O2

to H2O begins to dominate in the system, leading to a decline of

H2O2 (and a corresponding decrease of the PO formation rate).

Thus, regardless of the activity of the catalyst, the actual availabil-

ity of the H2O2 is a key factor in maximizing the synthesis of PO.

This trend is also reflected in Table 2, which includes data for the

corresponding H2O2 composition in the gas phase.

4. Conclusions

In this work, KMC simulations are used to model the direct

epoxidation of propylene to propylene oxide on an Au/TiO2/SiO2

catalyst. Although the model is a simple two-dimensional repre-

sentation of the actual catalyst surface, the basic catalyst features

are preserved (Ti concentration, Au loading, Au particle sizes),

and the KMC results are benchmarked against relevant experimen-

tal data. In addition, the composition in the bulk gas phase is syn-

chronized with the dynamic reaction events occurring on the

surface, and this coupling allows us to relax the typical assumption

of a constant gas-phase composition. By acquiring mechanistic

information from various DFT studies, and compiling this informa-

tion into a KMC model, several aspects of the experimental cat-

alytic behavior can be captured. In particular, we can model the

reaction and surface transport processes simultaneously in the

KMC simulations (i.e., proximity of reactants to the active sites),

and this is difficult to replicate with other modeling techniques.

We find close agreement between the KMC simulations and the

experimental data in several aspects, but this is only achieved by

considering the re-adsorption of trace amounts of the oxidant

(H2O2) from the gas phase.

An obvious shortcoming in the KMC model is the H2 sensitivity,

which is higher than in most previous experimental studies. This

may be an artifact that arises from our neglect of other competing

reaction channels on the catalyst surface which may serve as

hydrogen sinks. Also, several of the individual event rates used in

the model deserve additional scrutiny. If some of these secondary

effects can be resolved, this approach can provide an excellent

modeling tool for connecting the atomistic-level features of such

a catalytic system to the predicted experimental behavior. In par-

ticular, bimetallic catalyst and optimally-designed supports will

likely be needed for advancing the direct synthesis of propylene

oxide beyond current limits, while maximizing the availability of

the oxidizing species near the Ti sites is critical for accelerating

the production of PO.
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