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ABSTRACT: The molecular actions of proteins occur along reaction
coordinates. Current computer methods have limited ability to explore
them. We describe a fast protocol called MELD-path that (1) efficiently
samples relevant conformational states via MELD, an accelerator of
Molecular Dynamics (MD), (2) seeds multiple short MD trajectories
from MELD states, and then (3) constructs Markov State Models
(MSM) that give the routes and kinetics. We tested the method against
extensive (multi ps) MD simulations of the right-handed- to left-
handed-helix transition of a 9-mer peptide of AIB, the symmetry of
which allows us to establish convergence. MELD-path finds all the
metastable states, their correct relative populations, and the full ensemble of routes, not just a single assumed route. For this
transition, we find a very broad route structure. MELD-path is highly parallelizable and efficient, yielding the full route map in a
few days of computation. We believe MELD-path could be a general and rapid way to explore mechanistic processes in
biomolecules on the computer,

1. INTRODUCTION For example, the pathway can be sampled by umbrella
sampling.' Or, the pathway can be divided into small bins,
each of which has a different biasing potential, allowing for a
more accurate reconstruction of the free energy profile using
the weighted histogram analysis method (WHAM)® or the
Multistate Bennett Acceptance Ratio (MBAR).>*

Current approaches assume that a pathway has a dominant
route and some small ensemble of variations around it. For
example, the nudged elastic band method®® starts with an
assumed dominant path but allows for deviations from it by
spring-law forces.” Metadynamics® assumes a pathway is defined
by a set of collective variables (CV) and then samples those
paths efficiently using history-dependent biases along them to
force the sampling into regions not sampled before. This
methodology is often combined with parallel tempering for
more efficient sampling.”'® Here, big challenges include
guessing good 'CVs and the hysteresis and inaccuracies that
arise when the CVs do not reflect well the underlying
pathways.q

Some current methods use multiple independent runs rather
than biasing potentials to overcome barriers and sampling
limitations. In transition path sampling'"'* many independent
trajectories are started from states near a possible transition
path in order to collect statistics on which paths traverse from
one basin to another. The approach is highly parallelizable and
the computational cost is linear in the barrier (W,5), whereas it
is exponential for a direct (MD) approach (whenever Wy, >>

A main way to study the detailed actions and mechanisms of
biomolecules is by Molecular Dynamics (MD) computer
simulations. Based on the underlying physical driving forces,
they can give the picosecond-by-picosecond and Angstrom-by-
Angstrom narratives that experiments are too coarse-grained to
provide. However, MD modeling of biomolecular mechanisms
is currently limited, for the following reasons. MD sampling is
very ineflicient by itself to sample large conformational changes
and overcoming kinetic barriers. MD mechanistic modeling
requires knowing a proper reaction coordinate, which is often
difficult to determine. It must sample the conformations well
enough along the reaction coordinates to get accurate closely
spaced free-energy distributions, but such computations are
prohibitively expensive for all but the simplest problems.
Consequently, it is unable to explore more than one or a few
dominant routes, even though biomolecule transition routes are
likely to be many and varied. We describe here a method called
MELD-path that can address these problems, and we give a
proof-of-principle example.

It is often of interest to learn about a particular transition
between two states (A and B). Sometimes it is possible to guess
or identify a reaction coordinate between states A and B. Then,
the free energy profile along the reaction coordinate can be
found using enhanced sampling methods to get good
population statistics on the recrossings between A and B.
Typically, enhanced sampling methods require either adding
restraining potentials to guide the system from one basin to
another or require multiple independent simulations near the Received: December 28, 2017
transition site to get good statistics on the crossing of A and B, Published: March 16, 2018
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kT). In milestoning'® the energy surface is broken into
different sections, and trajectories are initiated in each to record
crossings between sections. This allows us to reconstruct the
whole kinetic landscape. In the weighted ensemble path
sampling'"® method, different trajectories are started from
the same point (or bin), each carrying a weight of 1/M where
M is the number of runs started. After each simulation,
statistical weights for bins are calculated, and more simulations
are started from the end points. By keeping track of the
different weights and resampling, the kinetics and thermody-
namics can be efficiently recovered at the end of the simulation.
Reccnt]zy, Markov State Models (MSM) have become a popular
16-20 . s :

way to describe the kinetics as memoryless jumps between
metastable states. Transition probabilities between states are
estimated from either long or many short independent MD
trajectories. Also, methods to build MSMs from independent
trajectories include adaptive sampling®'™** (spawning simu-
lations in regions of higher uncertainties) and adaptive
seeding®™* for choosing good starting configurations (e.g,
the FAST algorithm®) for spawning short trajectories.

In summary, here are the challenges. First, good reaction
coordinates or CVs are rarely known in advance. Second, for
computational practicality, it is often assumed that only one
reaction path dominates. Yet, in important problems like
protein folding, the route structure is highly diverse and
heterogeneous. Third, obtaining the free energies, barriers, and
kinetics along paths is computationally expensive because it
requires expensive enhanced sampling of closely spaced
probability distributions stepping along the whole path. We
describe below MELD-path, which first seeks relevant states on
the whole conformational surface by MELD-accelerated MD
and then finds free energies and kinetics by seeding unbiased
trajectories from these states. Below, we first review the MELD
method for accelerating the MD searching for relevant states,
given the two end states A and B.

MELD Samples States and Populations. MELD
(Modeling Employing Limited Data) is a method that
accelerates MD simulations when at least some information is
known.””** Using Bayesian modeling, MELD “melds together”
physical simulations, such as MD with force fields, with external
information on some kind that need not be well conditioned.
MELD-accelerated MD preserves detailed balance. Hence,
populations are relevant and related to free energies using
Boltzmann weights. MELD uses a Hamiltonian and temper-
ature replica exchange protocol where the Hamiltonian is
modified with biasing potentials to satisfy general knowl-
ec]ge.n’23 It has been validated for folding small proteins,m‘zq in
protein structure determination,” and in finding the binding
poses and affinities of peptides binding to proteins.***' MELD
can speed up in sampling rare events; for example, NuG2 (a
designed fast folding variant of protein G)** can be folded
starting from a completely extended chain within 500 ns of
MELD simulations and detected as the lowest-free-energy
cluster,”® whereas unaccelerated MD simulations exceeding 50
us do not sample the native state.’* So far, MELD has only
been proven as a method for finding stable or metastable
conformational states of proteins, not of mechanistic pathways.
In the present work, we show how MELD can be used to
identify metastable states and heterogeneous reaction coor-
dinates and give populations and rates,

Modeling the Helix-to-Helix Transition of AIB. As a
proof-of-principle, we test MELD-path on the Aib, peptide

(Figure 1). This is a good test system because (1) extensive

Figure 1. Left- to right-helix transition of AIB9 studied here.

unaccelerated MD simulations are already available. (2) AIB
exhibits hierarchical dynamics and is too complex to sample
efficiently via long MD (the unaccelerated simulations are not
fully converged). (3) The full set of metastable states are readily
enumerated. (4) It is symmetric (because AIB, a-amino-
isobutyric acid, is achiral; see SI Figure 1), providing for a
strong internal check on accuracy and convergence (of states,
kinetics and pathways). (5) From the nature of the possible
states, it is clear that many different routes between the end
states are possible.

Despite it is short length, the Aiby peptide forms very stable
3,0 helices®*™*” and is able to stabilized shorter living a-helices.
This system has been broadly studied both computationally and
experimentally for energy transport along its chain,*%* giving
good qualitative results between the two and exhibiting a
dynamical transition behavior that is well reproduced computa-
tionally. Long MD trajectories carried out previously™ show
two kinds of events are needed for transitions between left (I)
and right (r) helix conversion (which happens in the
microsecond time scale): (1) hydrogen bond transitions in
the picosecond time scale and (2) transitions of individual
residues (I/r) at the nanosecond time scale. Thus, in MD
simulations, many hydrogen bond transitions and conforma-
tional switching of individual residues are observed but few
complete helix-to-helix transitions. Standard MD does not
obtain converged populations and kinetics of the system, as
judged with the imperfect symmetry in time scales and
populations.*’ Here, we focus on the behavior of the central
five residues of this peptide in order to avoid end effects. Each
residue can be classified into three dominant states of the
Ramachandran map: left helix region (1), right helix region (r),
or neither (—). Hence, there are 3° = 243 possible states for this
system.

DOI: 10.1021/acs jote. 7h01254
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Figure 2. Sampling needed to achieve convergence with long MD or the MELD-path approach. (Top row) Single MD trajectories as a function of
simulation time, showing averages and standard deviations aver 16 independent runs. (Bottom row) Showing MELD-path quantities obtained using
a fraction x = all, 1/2, 1/5,- of the full run to construct the MSMs. (A and D) Amount of sampling needed to visit all 46 relevant states. (B and E)
Convergence of the top five state populations. (C and F) Convergence of the MFPT for going from left- to right-handed helix or vice versa. The red
and black lines in panel C represent using all 16 independent simulations to construct the MSM.

2. METHODS

Details of the Present Simulations. We used AIB
parameters derived for the NCAA** (Non Canonical Amino
Acid force field library) compatible with the AMBER molecular
package*® using the GBNeck2 implicit-solvent model.>* For the
present problem, the force field and implicit solvent model are
able to reproduce well the helical conformations of the
molecule. The kinetics predicted within the implicit solvent
model are likely to be accelerated relative to explicit solvent or
experiments. The MELD-path protocol discussed here can also
be applied using explicit solvent at a higher computational
expense, but the point of the present work is just to test the
sampling approach in MELD:{Path.

MELD Runs. The MELD*"** plugin to OpenMM™ is used
to run the H,T-REMD. The innovation comes in the way the
Hamiltonian is changed: we input information about the system
based on the knowledge that Aib, likes to make helices, with
the understanding that some of the information will be accurate
and some will not. During MELD trajectories, only the data
that are most compatible with the current conformation are
used until the next time step. The data are enforced with flat
bottom harmonic restraints that vanish at the higher replicas
and become stronger at the lower ones; thus, the system
samples from completely unfolded structures to structures that
are compatible with a part of the data and the force field at
lower replicas. We enforced three different types of protocols to
assess whether our results were independent of the information
we used (three independent MELD runs).

Here, we describe one of the protocols, The other two
protocols are described in the SL Since the helices can be either
3—-10 or a-helices, we input all possible hydrogen bond
patterns O(i) — N(i + 3) or O(i) — N(i + 4) to be within 4 A
of each other as flat bottom harmonic restraints. But, we only
ask that one restraint be satisfied at any point during the
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trajectory. Note that this resembles an experiment that mimics
low-quality NMR NOE data. Indeed, this is what MELD has
successfully been shown to do:** ' to handle sparse, noisy,
and ambiguous data, 272845 Consequently, MELD-path is an
extensible approach to more complex problems of folding and
binding than the small peptide conformational transition
described here. The use of data accelerates the nucleation of
helical states. Since the system is symmetric, these restraints do
not favor either left- or right-handed helices. We ran MELD
with 30 replicas for 2.5 us, requiring under a week of
computation on our local GPU cluster.

MELD-Path. MELD by itself is a method for searching over
states, not for giving kinetics. In contrast, MELD-path uses
unbiased simulations seeded from states found by MELD to
recover both kinetics and state populations. Relevant states
were chosen as seeds for generating unbiased simulations. We
use three seed structures for each state originating from the
three protocols described above and in the SL For each seed,
we run 20 independent simulations, each of which runs for
about 15 ns in implicit solvent (25 min computer time limit on
a single GPU in the Blue Waters supercomputer) using the
Amber MD p:u:k:agc."3 This corresponds to 13,805 simulations
for an aggregated simulation time of about 221 gs. The 25 min
time limit takes advantage of the backlogging in the queueing
system, allowing us to collect 221 pus of unbiased MD
simulations in 17 days (a sequential run of the same length
would have taken 255 days if it could run continuously; our
approach would have taken under 2 h if we could use all Blue
Waters GPU nodes simultaneously).

Long, unbiased MD. We ran 16 independent simulations
with the same implicit solvent and force field parameters as the
MELD and MELD-path runs. Each trajectory was at least least
S ps, summing to a total of 80 us. Each independent trajectory

DOI: 10,1021 /acs jete.7b01294
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took about 6 days of computer time using the same resources as
above.

3. RESULTS AND DISCUSSION

MELD Samples the Relevant States and Populations
Well. Out of the possible 243 states, the initial MELD
simulations samples 231 states (the other two protocols
described here produce 229 and 228 states). SI Figure 2
shows good symmetry, and evaluation of all the states across
the three different protocols shows good agreement. However,
this characterization of states is not optimal; many states are
kinetically indistinguishable and interconvert rapidly (SI Figure
2). Hence, following previous work,™ we processed the
ensemble of trajectories using standard Markov state modeling
software*"***” as well as our own approach.**** We featurized
MELD trajectories in terms of the phi and psi dihedrals of each
internal residue and projected them onto the principal
components (tICA and dPCA+,*’ see SI Figure 3 for
projections of principal components). Both tICA and dPCA+
analyses of the unaccelerated MD and the MELD simulations
show a better definition of states based on kinetic clustering
despite the limitation that in our MELD replica exchange
approach kinetics are biased. dPCA+ categorized residues to be
in one of four states: I, r, I*, or r¥, where * defines excited states
(SI. Figure 1). According to this definition, there are 46
macrostates, We use this definition from now on.

MELD correctly identifies the two helical states as the lowest
in free energy, and the slowest conformational transition in the
system corresponds to the helix-to-helix transition (SI Figure
2). There are an additional 20 metastable states in the system,
none involving excited states (which have lower populations).
These results are in agreement with previously published*' long
unbiased simulations, but they are obtained in fraction of the
time. The 2.5 ps required 5 days of sampling, while unbiased
simulations of the same length are much less efficient at
sampling the conformational landscape. The caveat is that
MELD kinetics are biased since MELD uses replica exchange,
but they can still capture the underlying routes. The MELD-
path protocol uses these states as a starting point to produced
corrected kinetics. However, before describing MELD-path
results, it is worth noting similarities and differences with
unbiased simulations. Rather than using published data, we
started several long, independent unbiased simulations (see
Methods) from the same configuration. This is to ensure a fair
comparison vis-a-vis the solvent model, capping groups, and
force field parameters. We did independent simulations in
order to get error estimates and compare overall performance
with MELD-path.

The dPCA+ decomposition exhibits a qualitatively similar
free energy surface between MELD simulations and the pooling
of the 16 long MD simulations. In all cases, the results are
consistent with 46 main states. It takes a bit over 2 us of
sampling with unbiased MD to ensure visiting all 46 states
(Figure 2). MELD runs cover the 46 states in the range from
0.3 to 0.6 ps in the three protocols we tested, a significant speed
up (less than a day of sampling in our local cluster). However,
MELD does not provide kinetics and hence only provides good
starting structures for the MELD-path approach.

MELD-Path Samples Well the Kinetic Routes. We used
MELD-path starting from MELD states to sample 221 us of
unbiased MD as described in Methods. The Ramachandran
plot is identical for all five internal residues analyzed here (SI
Figure 1). The resulting dPCA+ plot is perfectly symmetrical,
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with the left-hand helix and right-hand helix being the two most
populated states (Table 1 and Figure 3). Clustering using a

Table 1. Metastable Populations (in percent) and Right-/
Left-Handed Classification with r/l Denoting the Main
States

I/r

state pop state Iir pop
1 i 309 2 rrrrr 30.6
3 rrill 44 4 rrell 4.4
6 lirr 42 S Hrrr 42
7 il a8 8 Irrrr 38
10 liiir 32 9 rrrel 33
504
25- [KT)
3 B 100
o I 7.5
O 001 T e %
a il w w3 =0
25
-2.51 .0-0
~5.04

PC1

Figure 3. 2D projections of Aib9 of MELD-path trajectories on the
two first eigenvectors from dPCA+. Notice that MELD+MD samples
the landscape significantly better than just MELD (SI Figure 2), and
the symmetry of the molecule is captured in the symmetry in state
populations.

density-based approach*® on the subspace of the first five PCA
modes, we can again identify 46 microstates (SI Table 1 and
Figure 3). At this point, the data coming from pooling the 16
long MD (80 pis of aggregate sampling) or the MELD-path data
(221 ps of aggregate sampling) tells us the same information:
(1) Both sample 46 states efficiently. (2) The populations of
the top states converge to roughly 33% each for the left- and
right-handed helix. (3) The mean first passage time for the
helix-to-helix transition is of the order of 40 ns. We can
investigate how much data is needed to converge to these
results. For the long MD, we can estimate Markov models
based on shorter chunks of simulation and estimate average and
standard deviations from the 16 independent runs, whereas for
the MELD-path data we can choose to use a different number
of trajectories to construct the Markov state models and
choosing different subsets of trajectories estimate averages and
deviations, This is summarized in Figure 2 for the three
quantities described above: states, populations, and helix-to-
helix kinetics. It is easy to see that MELD-path runs efficiently
sample all states even for a fraction of the data. This is expected
since by construction we are starting from seeded states
representing all states in the system, On the other hand,
individual MD needs to be longer than 2 gs to ensure sampling
of all 46 states (panels A and B in Figure 2). Looking at the
convergence of the population for the top five states (panels C
and D in Figure 2), we see that we would need only 1/20th of
the data (11 ps to sample to converge the top two states, 1 day
of sampling), whereas it would take at least 4 ys from an

DOi: 10,1021 /acs jete. 701294
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individual trajectory (4.8 days of sampling). These results hold
also for converging the mean first passage time for the helix-to-
helix transition (panels E and F in Figure 2). Roughly, we see
that we need to wait 5 times longer to sample the same
phenomena using long simulations. Note that this is a small
system, so the scaling benefits should increase for larger
systems.

Finally, SI Figure 4 shows us the free energy surface vs the
two principal components for different amounts of sampling. It
illustrates the 5 fold increase in efficiency of convergence. It
also shows the high degree of symmetry in sampling even in the
least populated cases.

Kinetic information further allows us to identify the first 22
states representing 98% of the sampled conformations as
metastable and correspond to each residues being in a [ or r
region of the Ramachandran plot. Their populations follow
symmetry quite well. We looked at the transition matrices at
different lag times to estimate the stabilities of these states (SI
Figure 5). At short lag times (40 ps), all 46 states have a high
self-transition probability, denoted by a high probability value
along the diagonal in SI Figure 5 (left plot). The first 22 states
exhibit very small probability of jumping to other states on this
time scale. However, the next 24 states correspond to short-
lived conformations with high probability to transition to one
of the top 22 states. Moving to longer time scales (1 ns, right-
hand panel in SI Figure §) shows indeed that the self-transition
probability of states 23 to 46 vanishes, and most states have a
high probability of transitioning to the top 22 states. The
diagonal values in SI Figure S (right plot) now exhibit very low
probability after state 22. Some residues in states 23—46
correspond to excited states™ (marked I* or r* in SI Figure 1).
These excited states have been described before as
intermediates on the way to I/r transitions,

We then looked in more detail at the transitions between the
main 22 states. Figure 4 shows the metastable states and the
transition rates between them as a network of nodes at their
average PC1/PC2 positions (see SI Figure 6 for long MD vs
MELD-path on the original 46 states). Node sizes are scaled by
the logarithm of state population, and edges are scaled by the

Figure 4. Transition rates between the 22 states and their neighbors
from MELD + MSM. MSM representation (7 = 1 ns) of the 22 major
states, positioned according to their average of PCI and PC2. Line
thicknesses are proportional to the rates. Blue connections go to the
left, orange to the right
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transition rate. Blue connections depict transitions to the left
(along PC1), while orange connections go to the right. The
network is based on the transition matrix with 7 = 1 ns.
Detailed balance has been checked for this matrix, with
differences in population probabilities from forward and
backward propagation of ~107% i, considering numerical
errors detailed balance is fulfilled. Figure 4 highlights again the
remarkable symmetry of Aib9 in aspects like state populations,
I/r compositions, and transition rates. Note that the most
populated metastable states (1—10) lie on the edges of the plot.
Kinetics are converged and return the expected behavior of the
system. For example, the transition rate between state one (or
two) and any other state in which one residue flips
conformation is roughly the same; this is expected since the
probability of breaking the helix at any one point in the central
five residues is roughly the same.

We now quantify the rates and routes by using Markov
Chain Monte Carlo sampling (averaging over 10° chains) and
transition probability propagation. The mean first passage time
of the I & r helix transition has been estimated to be of the
order of ~40 ns, compared to ~200 ns from previous results in
explicit water. This disagreement in time scales is to be
expected as the implicit solvent allows much faster diffusion due
to the lower viscosity of the solvent. So, these dynamics are
accelerated by a factor of 5, well within the expected range.
Further mean first passage times are shown in Table 2. Using

Table 2. Mean First Passage Times (ns) between Important
States as Given by Markov Chain Monte Carlo Sampling on
MSM with 7= 1 ns

i j MFPT(ij) MEFPT(j,i)
mmm T 40 40
i lilr 41 11
i e 50 20
nm rllll 43 15
mn el 51 23
rrrrr rrrrl 41 11
rrrrr rrell 49 20
rrrrr Irrrr 44 15
e llrrr 53 23

Bayesian Markov models, we estimate the errors on these
transition times for the helix-to-helix transitions to be 40.0 ns
(standard deviation of 0.6 ns, standard error of 1.5) and 39.5 ns
(standard deviation of 0.6 ns and standard error of 1.6),
indicating the robustness and symmetry of the simulated
transitions. The transitions toward the (very) high populated
all-l and all-r states are relatively fast (~10-20 ns), and
transitions out of these states are about twice as slow, as one
would expect. However, regardless of the target state, all
transitions out of the stable states happen on about the same
time scale, with the all-] to all-r transitions even being relatively
fast in comparison to other transitions.

It may seem paradoxical that a bigger conformational change
can happen on the same time scale as the flipping of a single
amino acid (Table 2). The explanation for this is the
multiplicity of pathways. Upon close inspection of the
transition probabilities (Figure 4), it becomes clear that there
are multiple pathways transitioning between all-l and all-r states,
whereas the individual paths between specific states are fewer.
To illustrate this, we further coarse grain our kinetic model by
lumping together states which have the same amount of

DOL: 101021 /acs jote. 7h01294
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residues in I/r conformations (e.g,, llrrr and Irrrl are now 12r3,
see Figure 5). Hence, in SI Table 2, we look at what is the mean

Figure 5. Mean first passage times (in ns) in a coarse-grained
representation of the system. Switching one residue at a time takes
around 15 ns on average, whereas jumping to any particular microstate
inside those coarse-grained states can take much longer. Transitions
with multiple residues changing state are also possible. The pairs of
numbers refer to forward (i.e., left to right, first number) and backward
(right to left, second number) passage times.

first passage time between states with different numbers of [ or r
states irrespective of their ordering. As expected, now the
probability of going IS «» l4r] & 13r2 & 12r3 & [Ir4 & 1S is
close to intuition. It takes about 15 ns for a single residue to flip
states, but double or triple jumps are possible, accelerating the
process (e.g, IS —=l4r] —13r2 takes about 30 ns, whereas a
direct jump only takes 22 ns). In the same way, the five
independent jumps would take around 75 ns if the amino acids
flipped one at a time, but with cooperativity and multiple
jumps, we get an average of 40 ns for the transition. Thus, we
have shown that the apparent paradox in time scales shown in
Table 2 is easily explainable when considering all possible
pathways in the system. Although, a transition between states
all-I/r to any particular state is rare, the transition from states
all-I/r to one of the other metastable states is not so rare,
MELD-Path Identifies the Dominant Pathways. We use
transition path thcorysu"“ as implemented in the PyEMMA
software 1:|:<lck.agt':'“r to calculate the most populated paths
between the all-l and all-r states (see Figure 6 and similar plots
comparing long MD and MELD-path on the 46 state system in
SI Figure 7). Selecting the six most important pathways for
each direction, we show in Figure 6 and in SI Table 3 that most

Figure 6. Predicted pathways of maximum net flux from all-l to all-r
(orange) and vice versa (blue) coming from transition path theory.

of the transitions occur when an all-l or all-r configuration
sequentially loses [ or r residues, starting from one end or the
other. These pathways alone describe about 60% of the total
flux between the all-l and all-r states (SI Figure 8). Significantly
less frequently does the molecule transition directly from all-l to
all-r (or the reverse). While specific pathways with config-
uration changes in the middle of the chain are also very
infrequently sampled, as a total they still describe roughly the
other 40% of total flux. The comparison between long MD and
MELD-path can also be seen in SI Figure 7.

4, SUMMARY

We describe MELD-path, a computational accelerator for
molecular dynamics simulations that finds reaction pathways
between conformational states of biomolecules. It broadly
samples kinetically relevant states and is correspondingly able
to find broad ensembles of routes, if they exist. We give a proof
of principle on the Aib, peptide helix-to-helix transition. The
Markov-State Model seeding is embarrassingly parallelizable: in
the limit of enough GPUs, all 13,805 independent trajectories
used in this work could be collected in 25 min, whereas a single
aggregate trajectory would require 255 days (requiring the same
total GPU time). Qur 30-replica MELD run took 1 week, and
the collection of all the short MD trajectories took 17 days,
giving a huge speedup relative to a single trajectory. The
method can readily be adapted for explicit solvent. Also, the
generation of initial conformations could have been based on
geometric sampling of dihedrals at a lower computational cost.
In short, we believe the MELD-path method may also be a
general and efficient way to explore more complex mechanisms
and pathways.
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