
TEACHING A COMPUTER TO SING: INTEGRATING COMPUTING AND MUSIC IN A
MIDDLE SCHOOL, AFTER-SCHOOL PROGRAM

 Jesse M. Heines Daniel A. Walzer
 Dept. of Computer Science Dept. of Music
 Univ. of Massachusetts Lowell Univ. of Massachusetts Lowell
 Jesse_Heines@uml.edu Daniel_Walzer@uml.edu

ABSTRACT
This paper reports on an after-school program that introduced middle school

students to computing through music. The program ran for two years, from October 2015
through April 2017. It involved singing, encoding music with ABC notation, and program-
ming music with Pencil Code. We describe the program’s goals and the activities students
pursued, as well as suggestions for improvement. While rigorous evaluation of such a
program is difficult, we present survey and focus group results that show that students’
attitudes toward the program were positive and that they did learn some programming.

FROM SINGING TO PROGRAMMING
It probably goes without saying that most educators, regardless of field, think it’s

important for students to be computer literate and even to learn at least a little about how
to program. But how do we “hook ’em,” especially in an after-school program that doesn’t
even begin until after they’ve been in school for seven hours and are ready to just play and
hang out with their friends?

Our approach has been to work with a dynamic music teacher whom the children
adore, have her teach them songs with multiple parts and modest complexity, and then
have the children encode those songs in ABC notation [2, 27] and program them in Pencil
Code [16]. (In the first year we also used Audacity [1] and Scratch [20], but we switched to
ABC notation and Pencil Code in our second year.) The students “performed” their crea-
tions for each other using a computer projector and the room’s sound system, thereby
enjoying an outlet for their work and learning from what others had produced.

While this approach sounds straightforward, it wasn’t easy to implement. Despite
their love of listening to—and singing along with—popular music with their friends, the
children were initially shy about singing in a class setting. The music teacher worked hard
to get them to overcome their reluctance. The team struggled to engage them in the
computer part of the program. Due to our lack of experience with this age group, it took
some time to “get our footing.” However, as discussed in this paper, persistence paid off
and the children indeed made progress in both singing and programming.

ENABLING RESEARCH
Our research explores the intersection of computing and music at the middle school

level. The basis for this research is our prior work in Performamatics [6, 14, 15]. The first of
our prior projects explored interdisciplinary connections between computer science and
art, music, and theater [5, 7, 8, 9, 13, 18]. It then focused on computing+music [8, 19],
which for us turned out to be the collaboration that had the most “traction.” The popularity
of the university courses we built and the positive research results we observed enticed us
to see if we could achieve similar gains with younger students.

Teaching a Computer to Sing builds on the premise outlined by Magerko et al. [12]
that creative coding can enhance musicianship by helping students identify a song’s
structure. It also builds on the concept of “coding through play” described by Stinson [23],
who taught Scratch coding by having children follow robots through a series of imaginative
storytelling activities. The key here is that children saw immediate, tangible results as the
robots responded to various commands. Programming music also yielded immediate
results, which children learned to identify as “right” or “wrong” by what they heard.

Ho [10] conducted a five-year study to evaluate the ability of information
technology to inspire learner-centered music creation practices in young students. Both
students and teachers remarked that the use of MIDI improved pitch and rhythmic
accuracy when added to traditional choral rehearsal techniques and pedagogy. Our work
builds on this finding by having students work with the same music in multiple modes.

Studer [24] explored the use of computers in choral rehearsals and noted that music
notation programs are highly useful for isolating each part. We took an analogous
approach: having children write programs that “sang” multiple parts to help them learn
each one. Studer also found that music notation programs enhance STEM learning along
with musical competency. Our project went one step further: writing computer programs
to play music using standard computing constructs.

PROGRAM LOGISTICS
Teaching a Computer to Sing is an after-school program. It ran for 2½ hours on

Tuesdays and Thursdays from October 2015 through April 2017. Students spent the first
half of the session singing songs and then, after a break, spent the second coding those
songs using ABC notation and Pencil Code. Sometimes we used the last 10-15 minutes of
the computing session for children to show their work to the entire group. At other times,
when students were fully engaged in the day’s activities, we felt it best to let them continue
what they were doing rather than interrupt them to share their creations.

Software Choices
We began the program in 2015 using Scratch, but the middle school students had a

lot of trouble converting music notation to MIDI numbers [28]. First, converting musical
scores to MIDI involved two steps: figuring out a note’s alphabetic name (such as C), and
then converting that note to its MIDI value (such as 60). Second, the resulting code bore
little resemblance to the musical notation. For example, it’s pretty hard to know that the
code in Figure 1(a) plays Frère Jacques even if one compares it to the sheet music in Figure
1(b). The Pencil Code version in Figure 1(c) that uses ABC notation still requires a bit of
interpretation, but it is clearly easier to explain to students than the Scratch version.

To help students make the transition from sheet music to ABC notation, we used
EasyABC [21]. This free program allows one to enter ABC notation in one window and see
the resultant score in another window. Students can thus compare the resultant score with
the original score that they have on paper to ensure that they are the same. If the two
scores are not identical, the ABC notation is easily edited to correct any problems.

Once the ABC notation is entered into EasyABC, it is easy to copy and paste that into
Pencil Code. The final step is to enclose the Pencil Code ABC notation in quotes and add
code to pass it to a function that plays it. “Pure” Pencil Code using the built-in “play”
function is shown in Figure 1(c), but a little additional code displayed a dynamic keyboard

that showed which key
was being played as
each note sounded. We
wrote a custom function
“sing” that allowed
playing up to four parts
simultaneously by
specifying which phrase
to play on which piano.

The code in
Figure 2 (shown in text
rather than block mode)
calls our custom “sing”
function to play Frère
Jacques as a round (in
the key of C). Note that
line 10 rests part 2 for 8
beats before “singing”
that part, thus creating
the round. The graphic
in Figure 2 shows the
keyboards as they
appear during playback.

In the second
year we introduced
Soundtrap [22]. This
online tool allowed
students to record their
own songs and sounds
to create their own
mashups. This is a
different type of coding than done with the other tools, but it proved interesting to students
and allowed them to extend their work ABC notation and Pencil Code. That is, Soundtrap
allowed them to capture what they had done in the other programs and remix it along with
pre-recorded sounds and effects as well as their own voices to create new compositions.

Song Choices
Songs were mostly chosen by the music teacher. We began with popular songs such

Rachel Platten’s Fight Song [17], Taylor Swift’s Shake It Off [25], and Shawn Mendes’s
Stitches [4]. We had an arranger create simple harmony parts for these songs, but these did
not prove popular because students had trouble with the complexity of the songs’ rhythms.

The music teacher suggested that we switch to “partner songs,” which were sets of
three simple, complementary melodies meant to be sung together. One such set consisted
of One Bottle of Pop, Don’t Throw Your Trash in My Backyard, and Fish and Chips and Vinegar
[youtu.be/u-TdsmPHjo0]. It was much easier for the students to sing and code these songs
in multiple parts.

(a)

(b)

(c)

Figure 1. Frère Jacques in (a) Scratch, (b) standard music
notation, and (c) Pencil Code using ABC notation.

Student Assistants
One of the program’s key features

was the relatively large number of univer-
sity student assistants we employed. We
had originally budgeted for two, but it
quickly became apparent that that was not
enough. We really needed one university
student for each pair of middle school
students, so we increased the number of
assistants to six.

To establish rapport, the university
students (and professors) sang with the
middle schoolers as well as assisted them
both with reading music (which was
necessary to translate scores into ABC
notation) and actual coding. About half the
assistants were music majors, while the
other half were computer science majors.

In the first year we had only one
female assistant: Nicole. With 12 female and
two male children in the program, we felt
that it was important to recruit more,
especially since Nicole provided us with
invaluable insights about the complex
issues that middle school girls deal with and
thus helped us weather a number of storms.
In the second year we had three female assistants and two males.

As with any program that uses student assistants, some worked out well and some
did not. Most were good at helping to keep the children on task and getting them past
hurdles such as computer freeze-ups and simple programming issues. Some made excellent
suggestions during our activity planning sessions, and some provided insightful observa-
tions when we reviewed each day’s experiences.

Some assistants even established strong personal relationships with the middle
schoolers and functioned as role models, which contributed significantly to the clubhouse
atmosphere we were trying to maintain. When one assistant was absent, the children were
always disappointed and asked if they would be there the next time we met.

Additional Incentives
During the second year we actively sought ways to motivate the children. We

produced a CD of their work that proved to be a very popular and motivating activity.
Every student contributed at least one track and many contributed multiple tracks. We
made about 80 copies to fulfill all of the students’ requests, and they gave them to their
friends and families for the holidays.

Additional Resources
Throughout the program we created handouts with titles such as Getting Started

 1 for [1..2] # part 1, phrase 1
 2 sing 1, "C D E C"

 3 for [1..2] # part 1, phrase 2
 4 sing 1, "E F G2"

 5 for [1..2] # part 1, phrase 3
 6 sing 1, "G/2 A/2 G/2 F/2 E C"

 7 for [1..2] # part 1, phrase 4
 8 sing 1, "C G, C2"

 9

10 sing 2,"Z8" # rest for 8 beats
11 for [1..2] # part 2, phrase 1
12 sing 2,"C D E C"

13 for [1..2] # part 2, phrase 2
14 sing 2,"E F G2"

15 for [1..2] # part 2, phrase 3
16 sing 2, "G/2 A/2 G/2 F/2 E C"

17 for [1..2] # part 2, phrase 4
18 sing 2, "C G, C2"

Figure 2. Playing Frère Jacques as a round.

with Pencil Code, Understanding Note and Rest Values, and Using the TACTS Pencil Code
Functions. These handouts, as well as links to demonstration programs and other
resources, are available at jheines.github.io/tacts/Workshops, a website we created to
support teacher workshops that we taught at the 2017 CCSCNE and CSTA conferences.

QUESTIONS AND FINDINGS
Our project investigated two instructional questions and two supporting questions.

We attempted to answer these questions both by documenting our own informal
observations and by employing surveys and focus groups conducted by the evaluation
team. The former obviously suffer somewhat from observer bias, while the latter suffer
somewhat from small sample size. Nevertheless, we feel that we can draw a number of
conclusions from our experiences that can be reasonably supported by credible anecdotal
evidence if not by hard numbers and statistical significance.

Instructional Questions
(1) Can middle schoolers follow the connections from singing to digitized

sound to computer notation and back to music to help them learn to program using
songs they like to sing?

Our answer to this question is an unqualified “yes.” We would go even further to say
“yes, and sometimes with enthusiasm.” Of course, not every student was “into” the coding
part of the program, and some days it seemed like none wanted to do any coding at all. (As
every parent knows, such is life when working with children.) But on other days a good
number of students exhibited real excitement about their ability to “teach a computer to
sing” and eagerly lined up for “show and tell” at the end of the day to demonstrate their
accomplishments to others.

We began the year having students code music as a series of Pencil Code play blocks.
As the year progressed, we introduced progressively more advanced computing concepts.
The first of these was simple loops (like those in Figure 2(c)), which allowed students to
replay musical phrases that repeated in succession. Next, we introduced loops with control
variables, such as for k in [1..3]. This allowed students to make the connection between
songs with larger repetitive structures that used first and second endings and conditional if
statements in code. We then introduced general variables, which allowed us to store and
reuse musical phrases coded as ABC notation strings. A couple of students even got as far
as indexed variables (one-dimensional arrays), which we used as two parallel structures to
pair each note with its lyric.

Only one student in our program was a 7th grader, while all others were 5th and 6th
graders. Only one had prior experience with computer programming, and about 25% did
not have computers at home. Given these demographics, the fact that the students had
already been in school for more than seven hours by the time they began programming
with us, and our own inexperience in teaching middle school students, we feel that the
programming concepts we were able to introduce represent a reasonable level of learning.

(2) Conversely, can programming their individual parts help students learn to
sing in three- and four-part harmony?

During initial discussions, the music teacher told the professors that she thought it
would be difficult for the children to sing in more than two parts because they had never
done it before and had no familiarity with it. By the end of the year, however, they were

successfully singing the “partner songs” in three parts. They even cheered when they all
finished at the same time! We can’t give all the credit for that progress to the work in pro-
gramming those songs, but the music teacher felt that at least some credit was due there.

One of the programming techniques that seemed to help students learn multipart
songs was the use of variables to store and reuse musical phrases coded as ABC notation
strings. This helped students see song structures, notice where phrases repeated, and
understand how the melody lines went together. Again, we do not want to overstate this
result, as it was impossible to measure objectively. However, we have learned to trust the
music teacher’s instincts, as she is clearly highly attuned to the students’ capabilities.

Supporting Questions
(3) What resources, models, and tools are necessary to integrate STEM into a

middle school, after-school choral program?
The school resources were severely limited. The computer network and Internet

access were so severely tied down that Windows systems could not access the network at
all and sites such as YouTube were not accessible without teacher credentials. Luckily,
access to all the music sites mentioned earlier was available.

We were also unable to install software on the school systems. No one in the school
had authority to do so, either. We had to make a request of the central school district office,
and that took weeks to be fulfilled. To resolve this issue, we were fortunate to be able to
buy systems specifically for the project’s exclusive use.

Our model for the after-school program was initially what we were used to: a labor-
atory class. This did not prove viable, as the children were simply unable to pay attention to
instructions for more than a minute or two in the after-school environment. We therefore
transitioned toward a clubhouse model, where students worked one-on-one or two-on-one
with a professor, university student assistant, or another middle school student.

As noted earlier, we prepared handouts with instructions and illustrations so that
the children could work on their own rather than listen to us explain how to accomplish the
day’s goals. We also hired three times the number of university student assistants than we
had originally planned, as it became evident that they were needed in the clubhouse model.

The tools we used have been discussed previously, but it is important to
reemphasize that they changed throughout the program. The switch from Scratch to Pencil
Code was the biggest unanticipated change at the beginning of the first year, and the
discovery of EasyABC for writing ABC notation proved to be a godsend.

(4) Can the involvement of older students and teachers who match the
students’ racial and/or cultural backgrounds have a positive effect on the “people
like me don’t (or can’t) do that” belief that some researchers claim is a factor in
underrepresented groups’ disproportionally small participation in STEM?

One of the issues that concerned us was our ability to “connect” with the middle
school students. Almost all of the children had very different racial profiles from our own,
and, as noted earlier, the vast majority (86%) were female. Numerous authors such as Kohl
[11], Delpit [3], and Tatum [26] have written about issues related to race in the classroom,
and we feared that at least some of those issues extended to gender, as well.

Looking back, it appears that we need not have been so concerned, as racial and
cultural attributes did not appear to be major stumbling blocks. The children did build

relationships faster with some university students than with others or with the professors,
but with time all facilitators were able to build relationships with all of the students.

Peer pressure seemed to play a larger role in relationship-building. In follow-up
interviews conducted by our evaluation team, one professor observed that he had no
trouble working with any child one-on-one. As soon as two or three of the students got
together, however, they seemed to shut him out. He said he felt that the children—
especially the girls—appeared reluctant to admit to their peers that they were comfortable
talking to a teacher, especially an older white male.

The bottom line is that while we can only report observational and anecdotal
evidence, in our case we feel that the premise of this question does not appear to be
supported. That said, we acknowledge that our project had a small sample size and that our
results are dependent on the many specific personalities involved. Thus, it is difficult—if
not impossible—to generalize these results.

Lessons Learned
Based on these experiences, the main lessons we learned are as follows.

 Working with children after they’ve been in school for seven or more hours is hard.
There are times when one has to just let them play. In addition, one must understand
that some days they just won’t want to code, and that pushing them to do so is futile.
There were even days when the beloved and experienced music teacher found it
difficult to get them to sing. “Go with the flow.”

 Knowing how the children perceive a program such as this is also hard. Attitudes often
cannot be seen, and one must be very careful not to make assumptions about observed
behaviors.

 When meeting only once or twice a week, there is a strong need for concrete, over-
arching goals to tie sessions together.

 University student assistants must be vetted carefully. We had no major problems with
any assistants’ interactions with the children, but it was clear that some were far better
than others at helping the children learn and remain on task.

 There is simply no substitute for partnering with an experienced teacher who has a
strong rapport with the children and understands where they’re coming from. On
several occasions, our music teacher partner pointed out where some of our
assessments and impressions of how the program was going were wrong. For example,
we thought that one student who didn’t seem to engage with the program simply didn’t
want to be in it. Our teacher partner pointed out that all of this student’s friends had
dropped out of the program for one reason or another, and the fact that she was still
with us was a strong indicator of her desire to be there.

 Despite all the time and patience it takes to get children to focus on learning in an after-
school program and the inevitable ups and downs of such an endeavor, there are
numerous, priceless, unforgettable “ah-ha” moments that make the effort worthwhile.

FORMAL EVALUATION
Our project was supported by an evaluation team centered in the UMass Lowell

Center for Program Evaluation. The team observed after-school sessions and administered
surveys and conducted focus groups with both students and faculty. We present just a few

of their more interesting findings here in descriptive terms, because all but one of the
statistical measures were not significant due to small sample sizes.

Student Surveys and Focus Groups
Student surveys and focus groups revealed two major outcomes, although we stress

again that these are not statistically significant.
 Measures of students’ attitudes toward music and their perceptions of their own music-

related abilities both increased slightly from pre- to post-program assessments.
 Measures of students’ attitudes toward computer programming remained the same, but

their perceptions of their own computer-related abilities increased slightly from pre- to
post-program assessments.

To demonstrate just how tricky it is to conduct formal evaluation on this type of
program, consider the following student responses to open-ended questions. The reasons
cited most frequently for liking computer programming were “making games, music, and
websites,” “coding,” and “I don’t know.” Those cited most frequently for not liking computer
programming were “boring,” “hard,” “so much to do,” and “I don’t know.” We find it
interesting that “coding” shows up in the positive list, while “hard” and “so much to do”
show up in the negative list. These seem contradictory, and of course the “I don’t know”
response is not helpful, particularly because it appears in both lists.

A more positive outcome that the evaluation team reported was that 67% of
students responded “yes” when asked if computer science and music were related in any
way. We interpret this as at least an indication that most students were able to achieve one
of our primary goals: to have them follow the connections from singing to digitized sound
to computer notation and back to music.

The focus group discussion clearly revealed that students preferred working with
EasyABC and Pencil Code to Audacity and Scratch. They like the visual aspects of EasyABC
and the versatility of Pencil Code, that is, its ability to support various types of projects.

It is also telling that the students’ two most prominent suggestions across both
years for improving the program were related to having more snacks and more fun. We feel
that such comments are typical for an after-school program, and we tried to accommodate
them by allowing snacks during the program and giving students more free time after they
completed coding activities.

Facilitator Surveys and Focus Groups
As discussed above, a number of changes were made in Year 2 of the program.

Facilitator surveys and focus groups attempted to assess the effect of these differences, at
least from the facilitators’ perspective.

Using a five-point Likert scale, facilitators were asked whether students were able to
follow the connections from singing to digitized sound to computer notation and back to
music. As shown in Table 1, their responses were far more positive in Year 2 than in Year 1,
and even with the small sample size the difference was statistically significant (p < .05).

Facilitators were also asked if they felt that (a) using songs that students like to sing
helped them learn to program, (b) students’ efficacy for programming had improved
throughout the program, and (c) working with adults who match the students’ racial or
cultural backgrounds had a positive effect on the students. The Likert scale results for these
questions increased from Year 1 to Year 2, but not enough to be statistically significant.

Table 1. Facilitators’ Perspectives on Program Objectives

Objective Year N Mean Std.Err. Sig.

Follow connections both ways
1 4 2.00 0.577

p < .05
2 8 3.88 0.350

Learn to program using songs
1 4 3.50 0.289

no
2 8 4.13 0.295

Improve efficacy for programming
1 4 3.50 0.289

no
2 7 3.71 0.184

Racial/cultural matching positive
1 4 2.75 0.479

no
2 7 3.71 0.184

The differences between facilitators’ responses to open-ended questions in Year 1

and Year 2 are telling with regard to the program’s development.
 In Year 1, responses focused on what they needed to teach. In Year 2, they focused on

the need for more structured plans.
 In Year 1, their favorite songs to work on were the partner songs. In Year 2, their

favorites were those that supported loops.
A major theme in the focus group discussion was relationships, that is, establishing a

rapport with the children so that they would be receptive to instruction. This improved
greatly in Year 2 with more careful vetting of university student assistants and the
professors’ acceptance of the need to work one-on-one or one-on-two. In addition, we all
had to learn to allow for the ebb and flow of the children’s learning and attention span in an
after-school program.

RECOMMENDATIONS FOR FUTURE PROGRAMS
 Structure the program to include ample time for facilitator planning and preparation

outside of the time spent with the children.
Comment: This was difficult for us given our office locations of different campuses

and the differences in our teaching schedules. We also would have benefitted from more
outside the classroom time with the university student facilitators.

 Have many structured activities available to keep the children engaged.
Comment: In most sessions, we had structured activities for the main theme of the

day, but it would have been good to have had several backup structured activities, as well.

 Ensure that all facilitators circulate throughout the room and work with the children
one-on-one or in pairs.

Comment: Some of the university student assistants thought that they should wait
until a child asked for assistance, which they seldom did. We talked with the student
assistants about this, but some were still reluctant to simply sit down next to a child and
ask him or her to show them what they were doing. On the other hand, the children were
very receptive to help and advice when it was offered.

 Present short narratives or movie clips and discuss famous minorities in STEM.
Comment: The children were very receptive to clips that we did show them, and it

would have been good to do that more often.

 Provide more opportunities for students to share what they have done in the program.

Comment: The children were all strongly engaged with the creation of the holiday
CD. In retrospect, we could have created a second CD or had some other culminating joint
project to further motivate their participation.

ACKNOWLEDGMENTS
This work is supported by Award No. 1515767 from the National Science

Foundation Division of Research on Learning. Any opinions, findings, conclusions, or
recommendations expressed in this proposal are solely those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES
[1] Audacity Open Source Development Team (2011). Audacity: The Free, Cross-Platform Audio Editor and Recorder.

audacity.sourceforge.net accessed Oct. 25, 2014.
[2] Chambers, J. (2016). An ABC Primer. trillian.mit.edu/~jc/music/abc/doc/ABCprimer.html accessed Aug. 16, 2016.
[3] Delpit, L. (2006). Other People's Children: Cultural Conflict in the Classroom. New York: The New Press.
[4] Geiger, T., Parker, D., & Kyriakides, D. (2015). Stitches: Hal Leonard Music Publishing.
[5] Greher, G.R., & Heines, J.M. (2009). Sound Thinking: Conceptualizing the Art and Science of Digital Audio for an Inter-

disciplinary General Education Course. Assoc. for Technology in Music Instruction (ATMI) 2009 Conf. Portland, OR.
[6] Greher, G.R., & Heines, J.M. (2014). Computational Thinking in Sound. New York: Oxford University Press.
[7] Heines, J.M., Jeffers, J., & Kuhn, S. (2008). Performamatics: Experiences with Connecting a Computer Science Course to a

Design Arts Course. Int'l. Jrnl. of Learning 15(2):9-16.
[8] Heines, J.M., Greher, G.R., & Kuhn, S. (2009). Music Performamatics: Interdisciplinary Interaction. Proc. of the 40th

ACM Tech. Symposium on CS Education, pp. 478-482. Chattanooga, TN: ACM.
[9] Heines, J.M., Greher, G.R., Ruthmann, S.A., & Reilly, B. (2011). Two Approaches to Interdisciplinary Computing+ Music

Courses. IEEE Computer 44(12):25-32.
[10] Ho, W.-C. (2004). Use of information technology and music learning in the search for quality education. British Jrnl. of

Educational Technology 35(1):57-67.
[11] Kohl, H. (1994). “I Won’t Learn from You” and Other Thoughts on Creative Maladjustment. NY: The New Press.
[12] Magerko, B., Freeman, J., McKlin, T., McCoid, S., Jenkins, T., & Livingston, E. (2013). Tackling engagement in com-

puting with computational music remixing. Proc. of the 44th ACM Tech. Symposium on CS Education, pp. 657-662.
[13] Martin, F., Greher, G.R., Heines, J.M., Jeffers, J., Kim, H.-J., Kuhn, S., Roehr, K., Selleck, N., Silka, L., & Yanco, H. (2009).

Joining Computing and the Arts at a Mid-Size University. Jrnl. of Computing Sciences in Colleges 24(6):87-94.
[14] National Science Foundation (2007). NSF Award #0722161 - CPATH CB: Performamatics: Connecting Computer

Science to the Performing, Fine, and Design Arts. CNS: Division of Computer and Network Systems,
www.nsf.gov/awardsearch/showAward?AWD_ID=0722161 accessed Nov. 4, 2013.

[15] National Science Foundation (2011). NSF Award #1118435 - Computational Thinking through Computing and Music.
DUE: Division of Undergrad. Ed., www.nsf.gov/awardsearch/showAward?AWD_ID=1118435 accessed Nov. 4, 2013.

[16] Pencil Code (2016). Dream it. Code it. pencilcode.net accessed 8/16/2016.
[17] Platten, R., & Bassett, D. (2015). Fight Song: Columbia Records.
[18] Ruthmann, S.A., & Heines, J.M. (2009). Designing Music Composing Software with and for Middle School Students: A

Collaborative Project among Senior Computer Science and Music Education Majors. Association for Technology in
Music Instruction (ATMI) 2009 Conference. Portland, OR.

[19] Ruthmann, S.A., Greher, G.R., & Heines, J.M. (2012). Real World Projects for Developing Musical and Computational
Thinking. 30th Int'l Society for Music Education (ISME) World Conf. on Music Ed. Thessaloniki, Greece.

[20] Scratch (2016). Create stories, games, and animations; Share with others around the world. scratch.mit.edu accessed
Aug. 16, 2016.

[21] Shlien, S. (2017). EasyABC. easyabc.sourceforge.net accessed Aug. 8, 2017.
[22] Soundtrap (2017). Soundtrap Education. www.soundtrap.com/edu/ accessed Aug. 13, 2017.
[23] Stinson, L. (2013). Google and apple alums invent adorable robots that teach kids to code. Wired.
[24] Studer, K. (2005). Maximum Technology in the Music Classroom: Minimum Requirements. Teaching Music 13(3):44-47.
[25] Swift, T., Martin, M., & Shellback (2014). Shake It Off: Big Machine Records.
[26] Tatun, B. (1997). "Why Are All the Black Kids Sitting Together in the Cafeteria" and Other Conversations About Race.

New York: Basic Books.
[27] Walshaw, C. (2017). ABC Notation. abcnotation.com accessed Aug. 8, 2017.
[28] Wolfe, J. (2017). Note names, MIDI numbers and frequencies. newt.phys.unsw.edu.au/jw/notes.html accessed Aug. 8,

2017.

